<table>
<thead>
<tr>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU</td>
<td>MO</td>
<td>TU</td>
<td>WE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1968</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
</tr>
<tr>
<td>SU</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Bulletin of the California Institute of Technology

Volume 71 Number 3

The California Institute of Technology Bulletin is published quarterly

Second class postage paid at the Post Office at Pasadena, California under the Act of August 24, 1912
INFORMATION FOR STUDENTS 1962-1963

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA · CALIFORNIA
SEPTEMBER 1962
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Calendar</td>
<td>4</td>
</tr>
<tr>
<td>Campus</td>
<td>6</td>
</tr>
</tbody>
</table>

SECTION I. OFFICERS AND FACULTY

<table>
<thead>
<tr>
<th>Officers and Faculty</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board of Trustees</td>
<td>9</td>
</tr>
<tr>
<td>Trustee Committees</td>
<td>10</td>
</tr>
<tr>
<td>Administrative Officers of the Institute</td>
<td>12</td>
</tr>
<tr>
<td>Faculty Officers and Committees, 1962-63</td>
<td>14</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>16</td>
</tr>
<tr>
<td>Graduate Fellows, Scholars, Assistants and Graduate Appointments</td>
<td>68</td>
</tr>
<tr>
<td>California Institute Associates</td>
<td>91</td>
</tr>
<tr>
<td>Industrial Associates</td>
<td>95</td>
</tr>
</tbody>
</table>

SECTION II. GENERAL INFORMATION

<table>
<thead>
<tr>
<th>General Information</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Policies</td>
<td>97</td>
</tr>
<tr>
<td>Historical Sketch</td>
<td>99</td>
</tr>
<tr>
<td>Industrial Relations Center</td>
<td>105</td>
</tr>
<tr>
<td>Buildings and Facilities</td>
<td>107</td>
</tr>
<tr>
<td>Study and Research</td>
<td>112</td>
</tr>
<tr>
<td>The Sciences</td>
<td></td>
</tr>
<tr>
<td>Astronomy</td>
<td>112</td>
</tr>
<tr>
<td>Biology</td>
<td>114</td>
</tr>
<tr>
<td>Chemistry and Chemical Engineering</td>
<td>116</td>
</tr>
<tr>
<td>Geology</td>
<td>118</td>
</tr>
<tr>
<td>Mathematics</td>
<td>121</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>123</td>
</tr>
<tr>
<td>Physics</td>
<td>124</td>
</tr>
<tr>
<td>Engineering</td>
<td>127</td>
</tr>
<tr>
<td>Aeronautics</td>
<td>129</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>131</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>132</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>133</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>135</td>
</tr>
<tr>
<td>Materials Science</td>
<td>136</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>137</td>
</tr>
<tr>
<td>Guggenheim Jet Propulsion Center</td>
<td>138</td>
</tr>
<tr>
<td>Hydrodynamics</td>
<td>139</td>
</tr>
<tr>
<td>The Humanities</td>
<td>141</td>
</tr>
<tr>
<td>Student Life</td>
<td>142</td>
</tr>
<tr>
<td>Air Force Reserve Officers Training Corps</td>
<td>149</td>
</tr>
</tbody>
</table>
SECTION III. INFORMATION AND REGULATIONS FOR THE GUIDANCE OF UNDERGRADUATE STUDENTS

Requirements for Admission to Undergraduate Standing 150
Admission to the Freshman Class 150
Admission to Upper Classes by Transfer 157
The 3-2 Plan 160
Registration Regulations 161
Scholastic Grading and Requirements 163
Student Health and Physical Education 168
Undergraduate Expenses 171
Scholarships, Student Aid, and Prizes 175

SECTION IV. INFORMATION AND REGULATIONS FOR THE GUIDANCE OF GRADUATE STUDENTS

General Regulations 186
Graduate Expenses 189
Regulations Concerning Work for the Degree of Master of Science 189
Regulations Concerning Work for the Engineer’s Degree 192
Regulations Concerning Work for the Degree of Doctor of Philosophy 194
Graduate Scholarships, Fellowships, and Assistantships 214
Post-Doctoral Fellowships 216
Institute Guests 218

SECTION V. SCHEDULES OF THE COURSES 219
Schedules for the Undergraduate Courses 220
Schedules of Fifth- and Sixth-year Courses 235

SECTION VI. SUBJECTS OF INSTRUCTION 249

SECTION VII. DEGREES, HONORS, AND AWARDS, 1961-62

Degrees Conferred June 1962 317
Candidates for Commissions, U.S. Air Force ROTC 332
Honor Standing 333
Awards 334

GENERAL INDEX 336
ACADEMIC CALENDAR
1962-1963

1962

FIRST TERM

September 20 Registration of entering freshmen—8:00 a.m. to 12 noon.
September 20 Registration of students transferring from other colleges—8:00 a.m.
to 12 noon.
September 20-22 Student Camp.
September 24 General Registration—8:30 a.m. to 3:30 p.m.
September 24 Undergraduate Academic Standards and Honors Committee—
 3:00 p.m.
September 25 Beginning of instruction—8:00 a.m.
October 12 Last day for adding courses.
October 13 Examinations for the removal of conditions and incompletes.
October 27 Parents’ Day.
Oct. 29-Nov. 3 Mid-Term Week.
November 3 MID-TERM.
November 5 Mid-Term deficiency notices due—9:00 a.m.
November 9 Last day for dropping courses.
November 9 French examination for admission to candidacy for degree of Doctor
 of Philosophy.
November 13 Freshman-Sophomore MUDEO—3:00 p.m.
November 16 German examination for admission to candidacy for degree of Doctor
 of Philosophy.
November 19-23 Pre-registration for second term, 1962-63.
November 22-23 Thanksgiving recess.
November 22-23 Thanksgiving holidays for employees.
December 1 Students’ Day.
December 8-14 Final examinations—first term, 1962-63.
Dec. 16-Jan. 1 Christmas vacation.
December 24-25 Christmas holidays for employees.
December 28 Undergraduate Academic Standards and Honors Committee—
 9:00 a.m.

1963

SECOND TERM

January 1 New Year’s holiday for employees.
January 2 General Registration—8:30 a.m. to 3:30 p.m.
January 3 Beginning of instruction—8:00 a.m.
January 18 Last day for adding courses.
January 19 Examinations for the removal of conditions and incompletes.
Jan. 28-Feb. 2 Mid-Term Week.
February 2 MID-TERM.
February 4 Mid-Term deficiency notices due—9:00 a.m.
February 8 Last day for dropping courses.
February 8 French examination for admission to candidacy for the degree of
 Doctor of Philosophy.
February 15 German examination for admission to candidacy for the degree of
 Doctor of Philosophy.
February 18-22 Pre-registration for third term, 1962-63.
March 16 End of second term, 1962-63.
March 17-24 Spring Recess.
March 22 Undergraduate Academic Standards and Honors Committee—
 9:00 a.m.
THIRD TERM

March 25 General Registration—8:30 a.m. to 3:30 p.m.
March 26 Beginning of instruction—8:00 a.m.
April 12 Last day for adding courses.
April 13 Examinations for the removal of conditions and incompletes.
April 22-27 Mid-Term Week.
April 27 Last day for obtaining admission to candidacy for Engineers' degrees.
April 27 MID-TERM.
April 29 Mid-Term deficiency notices due—9:00 a.m.
May 3 Last day for dropping courses.
May 3 French examination for admission to candidacy for the degree of Doctor of Philosophy.
May 10 German examination for admission to candidacy for the degree of Doctor of Philosophy.
May 10-11 Examinations for admission to upper classes, September 1963.
May 13-17 Pre-registration for first term, 1963-64.
May 24 Last day for final oral examinations and presenting of theses for the degree of Doctor of Philosophy.
May 24 Last day for presenting theses for Engineers' degrees.
May 30 Memorial Day holiday.
May 30 Memorial Day holiday for employees.
June 1-7 Final examinations for undergraduate students, third term, 1962-63
June 3-14 Summer Registration.
June 5 Curriculum Committee—10:00 a.m.
June 5 Faculty Meeting—2:00 p.m.
June 6 Class Day.
June 7 Commencement.
June 8 End of third term, 1962-63.
June 14 Undergraduate Academic Standards and Honors Committee—9:00 a.m.
July 4 Independence Day holiday for employees.

FIRST TERM, 1963-64

September 2 Labor Day holiday for employees.
September 26 Registration of entering freshmen—8:00 a.m. to 12 noon.
September 26 Registration of students transferring from other colleges—8:00 to 12 noon.
September 26-28 Student Camp.
September 30 General Registration—8:30 a.m. to 3:30 p.m.
October 1 Beginning of instruction—8:00 a.m.
OFF CAMPUS UNITS

Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena

Kerckhoff Marine Laboratory (Biology)
Corona Del Mar

Radio-Astronomy Observatory
Bishop

Palomar Observatory
Palomar Mountain

Seismological Research Laboratory
295 N. San Rafael Ave., Pasadena
Section I

CALIFORNIA INSTITUTE OF TECHNOLOGY
OFFICERS AND FACULTY

BOARD OF TRUSTEES

OFFICERS

Robert L. Minckler, Chairman

John O'Melveny .. Vice-President
Shannon Crandall, Jr. .. Vice-President
Herbert L. Hahn .. Vice-President
John E. Barber .. Vice-President and Treasurer
George W. Green* ... Vice-President for Business Affairs
Herbert H. G. Nash .. Secretary
Robert B. Gilmore .. Comptroller and Assistant Secretary
Robert T. Baker .. Assistant Comptroller

Lee A. DuBridge, President of the California Institute

MEMBERS OF THE BOARD

(Arranged in order of seniority of service with dates of first election)

John O'Melveny (1940) Los Angeles
Norman Chandler (1941) Los Angeles
Lee A. DuBridge (1947) Pasadena
Edward R. Valentine (1948) San Marino
Leonard S. Lyon (1950) Los Angeles
Elbridge H. Stuart (1950) Bel Air
Harry J. Volk (1950) Los Angeles
Arnold O. Beckman (1953) Corona del Mar
Charles S. Jones (1953) Pasadena
John E. Barber (1954) Pasadena
Lawrence A. Williams (1954) San Marino
Robert L. Minckler (1954) Pasadena
Howard G. Vesper (1954) Oakland
Shannon Crandall, Jr. (1955) Pasadena
F. Marion Banks (1955) Pasadena
Herbert L. Hahn (1955) Pasadena
Richard R. Von Hagen (1955) Encino
Earle M. Jorgensen (1957) Los Angeles
J. S. Fluor (1958) .. Santa Ana
Lindley C. Morton (1959) Pasadena
John G. Braun (1959) Pasadena
Thomas V. Jones (1960) Los Angeles
Seeley G. Mudd (1960) San Marino
Thomas J. Watson, Jr. (1961) Greenwich, Conn.
Frank Pace, Jr. (1961) Greenwich, Conn.
L. F. McCollum (1961) Houston, Texas
William M. Keck, Jr. (1961) Los Angeles

HONORARY TRUSTEES

(Arranged in order of seniority of service on the Board, with date of election as Honorary Trustee)

William C. McDuffie (1933, 1961) Santa Barbara
Albert B. Ruddock (1938, 1961) Santa Barbara
P. G. Winnett (1939, 1961) Los Angeles

* Died July 22, 1962
trustee committees

ELECTED COMMITTEES

EXECUTIVE COMMITTEE
Robert L. Minckler, Chairman
Arnold O. Beckman
Shannon Crandall, Jr.
Lee A. DuBridge
Herbert L. Hahn

Lindley C. Morton
John O'Melveny
Edward R. Valentine
Harry J. Volk

H. H. G. Nash, Secretary

FINANCE COMMITTEE
James R. Page, Chairman*
John E. Barber
Norman Chandler
Lee A. DuBridge

Robert L. Minckler
Edward R. Valentine
Harry J. Volk

H. H. G. Nash, Secretary

APPOINTED COMMITTEES

WAYS AND MEANS COMMITTEE
J. S. Fluor, Chairman
Earle M. Jorgensen, Vice-Chairman
Norman Chandler
Shannon Crandall, Jr.
Lindley C. Morton

NOMINATING COMMITTEE
Edward R. Valentine, Chairman
Arnold O. Beckman
Shannon Crandall, Jr.
John O'Melveny
Harry J. Volk

BUDGET COMMITTEE
F. Marion Banks, Chairman
Arnold O. Beckman
Thomas V. Jones
Howard G. Vesper
Richard R. Von Hagen
Lawrence A. Williams

AUDITING COMMITTEE
John E. Barber, Chairman
Shannon Crandall, Jr.
Leonard S. Lyon

JET PROPULSION LABORATORY COMMITTEE
Clark B. Millikan, Chairman
Robert F. Bacher
John G. Braun
Thomas V. Jones
Earle M. Jorgensen
Charles C. Lauritsen
Frederick C. Lindvall
William H. Pickering

* Died July 21, 1962
BUILDINGS AND GROUNDS COMMITTEE
Edward R. Valentine, Chairman
F. Marion Banks
Arnold O. Beckman
Norman Chandler
Wesley Hertenstein
William M. Keck, Jr.
Joseph B. Koepfli
Frederick C. Lindvall
Lindley C. Morton

COMMITTEE ON SPONSORED RESEARCH
Carl D. Anderson, Chairman
James F. Bonner
William H. Corcoran
Charles C. Lauritsen
Frederick C. Lindvall
Clark B. Millikan
John D. Roberts

COMMITTEE ON THE INDUSTRIAL RELATIONS CENTER
Harry J. Volk, Chairman
Norman Chandler
Robert D. Gray
Charles S. Jones
Thomas V. Jones
Earle M. Jorgensen
Frederick C. Lindvall
Lindley C. Morton
Hallett D. Smith
Elbridge H. Stuart

ATHENAEUM GOVERNING BOARD
Hallett D. Smith, Chairman
Shannon Crandall, Jr.
*Jesse L. Greenstein
*Arie J. Haagen-Smit
Herbert L. Hahn
John E. Pomfret
*Ernest E. Sechler
Lawrence A. Williams
George W. Housner, Secretary

*Selected by the membership of the Athenaeum

DIVISIONAL ADVISORY COUNCILS
BIOLOGY
Lawrence A. Williams, Chairman
James F. Bonner
J. S. Fluor
Norman H. Horowitz
Ray D. Owen
Elbridge H. Stuart

CHEMISTRY
Howard G. Vesper, Chairman
Shannon Crandall, Jr.
William H. Corcoran
Lindley C. Morton
John D. Roberts
Ernest H. Swift

ENGINEERING
Thomas V. Jones, Chairman
John G. Braun
William M. Keck, Jr.
Frederick C. Lindvall
Clark B. Millikan
Gilbert D. McCann

GEOLOGY
F. Marion Banks, Chairman
Charles S. Jones
Frank Press
Robert P. Sharp
Edward R. Valentine
Gerald J. Wasserburg

HUMANITIES
Richard R. Von Hagen, Chairman
Norman Chandler
Herbert L. Hahn
Rodman W. Paul
Hallett D. Smith
Alan R. Sweezy

PHYSICS
Arnold O. Beckman, Chairman
Carl D. Anderson
H. F. Bohnenblust
Jesse L. Greenstein
Earle M. Jorgensen
Seeley G. Mudd
Officers and Faculty

ADMINISTRATIVE OFFICERS OF THE INSTITUTE

Lee A. DuBridge, President
Robert F. Bacher, Provost

CHAIRMEN OF DIVISIONS

Biology ... Ray D. Owen
Chemistry and Chemical Engineering Ernest H. Swift
Engineering and Applied Science Frederick C. Lindvall
Geology ... Robert P. Sharp
Humanities Hallett D. Smith
Physics, Mathematics, and Astronomy Carl D. Anderson

DEANS

Dean of Graduate Studies H. Frederic Bohnenblust
Dean of Admissions L. Winchester Jones
Dean of Students Paul C. Eaton
Dean of Freshmen Foster Strong

BUSINESS OFFICERS

Vice-President for Business Affairs George W. Green
Acting Business Manager and Comptroller Robert B. Gilmore
Assistant to the Vice-President for Business Affairs Ivan F. Betts
Assistant Comptroller Robert T. Baker
Contract Administrator Frederick W. Hess
Director of Central Engineering Services Bruce H. Rule
Director of Personnel James N. Ewart
Director of Physical Plant Wesley Hertenstein
Manager of Residences and Dining Halls Elmo E. Taylor
Manager of Graphic Arts Lowell E. Peterson
Patent Officer J. Paul Youtz
Purchasing Agent Kermit A. Jacobson
Safety Engineer Charles W. Easley

OTHER ADMINISTRATIVE OFFICERS

Director of Development and Assistant to the President .. Charles Newton
Secretary .. H. H. G. Nash
Registrar ... Henry I. Weitzel
Assistant Secretary Robert B. Gilmore
Director of Athletics and Physical Education Harold Z. Musselman
Director of Health Services Richard F. Webb, M.D.
Director of Institute Libraries Roger F. Stanton
Director of Undergraduate Scholarships L. Winchester Jones
Assistant Director of Admissions and Undergraduate Scholarships Peter M. Miller
Director of Placements Donald S. Clark
Director of News Bureau James R. Miller
Editor of Engineering and Science Edward Hutchings, Jr.
Executive Director of Industrial Associates Arthur M. Warner
Master of Student Houses Robert A. Huttenback
Superintendent of the Graduate Aeronautical Laboratories William H. Bowen

* Died July 22, 1962
OFFICERS AND FACULTY

Administrative Committees

OFFICERS

Chairman: R. M. Badger
Vice-Chairman: G. D. McCann
Secretary: H. C. Martel

FACULTY BOARD—Ch., R. M. Badger; Vice-Ch., G. D. McCann; Sec., H. C. Martel.

<table>
<thead>
<tr>
<th>Name</th>
<th>Term Expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. R. Davidson</td>
<td>June 30, 1963</td>
</tr>
<tr>
<td>L. Davis, Jr.</td>
<td>June 30, 1964</td>
</tr>
<tr>
<td>R. V. Langmuir</td>
<td>June 30, 1963</td>
</tr>
<tr>
<td>T. Lauritsen</td>
<td>June 30, 1964</td>
</tr>
<tr>
<td>F. Press</td>
<td>June 30, 1963</td>
</tr>
<tr>
<td>C. H. Wilts</td>
<td>June 30, 1964</td>
</tr>
<tr>
<td>N. R. Davidson*</td>
<td>R. F. Christy**</td>
</tr>
<tr>
<td>C. Niemann*</td>
<td>J. L. Greenstein*</td>
</tr>
<tr>
<td>R. F. Christy*</td>
<td>R. D. Owen*</td>
</tr>
</tbody>
</table>

*Automatic nominee for election to 2nd two-year term
**Serving 2nd two-year term, not eligible for re-election

STANDING COMMITTEES

Officers and Faculty

Officers and Faculty

STAFF OF INSTRUCTION AND RESEARCH

SUMMARY

DIVISION OF BIOLOGY
Ray D. Owen, Chairman

PROFESSORS EMERITI
Ernest G. Anderson, Ph.D. ... Genetics
George E. MacGinitie, M.A ... Biology
Alfred H. Sturtevant, Ph.D., D. Sc. Thomas Hunt Morgan Professor of Biology

PROFESSORS
James F. Bonner, Ph.D. ... Biology
Henry Borsook, Ph.D. .. Biochemistry
Max Delbrück, Ph.D. ... Biology
Renato Dulbecco, M.D. .. Biology
Sterling Emerson, Ph.D. .. Genetics
Arie Jan Haagen-Smit, Ph.D. ... Bio-organic Chemistry
Alan J. Hodge, Ph.D. ... Biology
Norman H. Horowitz, Ph.D. .. Biology
Anton Lang, Ph.D. ... Biology
Edward B. Lewis, Ph.D. .. Biology
Herschel K. Mitchell, Ph.D. .. Biology
Ray D. Owen, Ph.D., Sc.D. ... Biology
Robert L. Sinsheimer, Ph.D. ... Biophysics
Roger W. Sperry, Ph.D. ... Hixon Professor of Psychobiology
Albert Tyler, Ph.D. ... Biology
Anthonie van Harreveld, Ph.D., M.D. Physiology
Cornelis A. G. Wiersma, Ph.D. ... Biology

RESEARCH ASSOCIATES
Gordon A. Alles, Ph.D. .. Biology
William S. Stewart, Ph.D. .. Biology
Jean J. Weigle, Ph.D. ... Biophysics

ASSOCIATE PROFESSOR
Derek H. Fender, Ph.D. ... Biology and Electrical Engineering

SENIOR RESEARCH FELLOWS
John H. Fessler, Ph.D. .. Biology
Henry Hellmers, Ph.D. ... Biology
Geoffrey I. Keighley, Ph.D. ... Biology
John D. Smith, Ph.D. ... Biology
Paul O. P. Ts’o, Ph.D. ... Biology
Marguerite Vogt, M.D. ... Biology

ASSISTANT PROFESSORS
Giuseppe Attardi, M.D. .. Biology
Charles J. Brokaw, Ph.D. .. Biology
Robert S. Edgar, Ph.D. ... Biology

VISITING ASSISTANT PROFESSOR
Wheeler J. North, Ph.D. ... Biology

*On leave 1962-63
1U.S. Forest Service
INSTRUCTOR
Edward A. Carusi, Ph.D. Biology

GOSNEY FELLOW
Robert H. Pritchard, Ph.D. Biology

RESEARCH FELLOWS

Harbans L. Arora, Ph.D. .. Hendrik J. Ketellapper, Ph.D.
Joseph T. August1, M.D. .. Jerry B. Lingrel2, Ph.D.
Bilandrai Baldev, Ph.D. .. Peter Lowy, Doctorandum
Robert E. Bases3, M.D. .. Kenneth D. Luman4, Ph.D.
Claudio Basilico, M.D. .. Vincent Marinkovich5, M.D.
Klaus Bayreuther, Ph.D. .. Richard F. Mark, M.D.
Margaret C. Birnstiel, Ph.D. David S. Mathan, Ph.D.
Max L. Birnstiel, D.Nat.Sci. Peter J. Mill, Ph.D.
Lu Belle Boice, Ph.D. ... Mary Mitchell, M.A.
Hans Burkhardt, Ph.D. ... Michael F. Moody, Ph.D.
Alice J. Burton6, Ph.D. .. N. T. Nakabayashi7, Ph.D.
Enrique A. CarregaP, PhD. Peter B. Nicholls31, Ph.D.
Jane Crowell, Ph.D. ... Eduardo Orias11, Ph.D.
Harlow H. Daron1, Ph.D. ... Leslie G. Paleg2, Ph.D.
James E. Davis2, Ph.D. ... John A. Petruska, Ph.D.
Clifton E. Dowell, Jr.2, Ph.D. Dietrich Pfeifer, Ph.D.
Alan Durrant, Ph.D. ... Georg R. Philipp, M.D.
Edward M. Eisenstein, Ph.D. Lajos Piko, D.V.M.
William G. Flamm2, Ph.D. ... Grace L. Rosenquist, Ph.D.
Marguerite Fling, Ph.D. .. Manfred D. E. Ruddat, Ph.D.
Laura B. Frlan*, Ph.D. ... C. Ronald Scott12, M.D.
Raymond V. Gilden2, Ph.D. Arne Shoden13, Kern. Ing.
Erich Heftmann4, Ph.D. .. Kenneth G. M. Skene2, Ph.D.
Mary C. Henry2, Ph.D. ... N. S. Sutherland, Ph.D.
Harry R. Highkin7, Ph.D. ... Herman Teitelbaum2, Ph.D.
H. Max Houichens5, Ph.D. Walter Tranquillini, Ph.D.
P. C. Huang, Ph.D. .. Colwyn B. Trevarthen, Ph.D.
R. C. Huang, Ph.D. .. Cornelius Vanderwolf, Ph.D.
Chester D. Hull2, Ph.D. .. Joan M. Wallace, Ph.D.
Beal B. Hyde, Ph.D. .. Alfred Weil, M.D.
Kazuo Ikeda, Ph.D. ... Roderick A. Westerman2, Ph.D.
Brian M. Johnstone, Ph.D. Ernest Winocour, Ph.D.
Albert Kahn, Ph.D. .. Eyaldo Zangheri14, M.D.
Hans Kende, Ph.D. ..

GRADUATE FELLOWS AND ASSISTANTS, 1961-62

Ezekiel Akinrimisi, B.S. .. James B. Boyd, B.A.
Dennis Barrett, A.B. ... Thomas A. Cole, B.A.
Thomas L. Benjamin, B.A. David T. Denhardt, B.A.

*In residence 1961-62
1New York University
2U.S. Public Health Service Fellow
3Huntington Memorial Hospital
4National Science Foundation Fellow
5Immaculate Heart College
6U.S. Public Health Service
7San Fernando Valley State College
8Veterans Administration, Washington, D.C.
9University of California at Los Angeles
10Commonwealth Scientific Industrial Organization
11University of California, Santa Barbara
12National Foundation Fellow
13Children’s Hospital
14Rockefeller Foundation Fellow

[These footnotes pertain to pages 17 and 18]
Officers and Faculty

Paul C. Denny, B.A.
Philip Filner, B.A.
Michael Fried, B.A.
Michael S. Gazzaniga, A.B.
Ellen R. Glowacki, B.A.
George D. Guthrie, A.B.
Charles R. Hamilton, B.S.
Robert L. Heath, M.S.
Clyde A. Hutchison, B.S.
Morton H. Kirsch, M.D.
Stanley G. Krane, M.S.
Robert L. Millette, M.S.

D. James Morré, M.S.
Michael H. Nesson, B.S.
Arthur D. Riggs, A.B.
Alan P. Roberts, B.A.
Joseph E. Scheibe, Jr., A.B.
James H. Strauss, Jr., B.S.
F. William Studier, B.S.
John C. Urey, B.A.
Robert A. Weisberg, A.B.
Jack M. Widholm, B.S.
Michael J. Yarus, B.A.
DIVISION OF CHEMISTRY AND CHEMICAL ENGINEERING

Ernest H. Swift, Chairman
J. H. Sturdivant, Executive Officer

PROFESSORS EMERITI

James E. Bell, Ph.D. .. Chemistry
William N. Lacey, Ph.D. Chemical Engineering
Howard J. Lucas, D.Sc. Organic Chemistry
Laszlo Zechmeister, Dr.Ing. Organic Chemistry

PROFESSORS

Richard M. Badger, Ph.D. Chemistry
Dan H. Campbell, Ph.D., Sc.D. Immunocchemistry
William H. Corcoran, Ph.D. Chemical Engineering
Robert B. Corey, Ph.D. Structural Chemistry
Norman Davidson, Ph.D. Chemistry
George S. Hammond, Ph.D. Organic Chemistry
Paul D. V. Manning, Ph.D. Chemical Engineering
Harden M. McConnell, Ph.D. Chemistry and Physics
Carl G. Niemann, Ph.D Organic Chemistry
Linus Pauling, Ph.D., Sc.D., L.H.D., U.J.D., Dr. h.c., D.F.A., LL.D., Nobel Laureate
John D. Roberts, Ph.D., Dr. h.c. Organic Chemistry
G. Wilse Robinson, Ph.D. Physical Chemistry
Bruce H. Sage, Ph.D., Eng.D. Chemical Engineering
J. Holmes Sturdivant, Ph.D. Chemistry
Ernest H. Swift, Ph.D., LL.D. Analytical Chemistry
Jürg Waser, Ph.D. ... Chemistry
Don M. Yost, Ph.D. Inorganic Chemistry

RESEARCH ASSOCIATES

Edwin R. Buchman, D. Phil. Organic Chemistry
Edward W. Hughes, Ph.D. Physical Chemistry
Joseph B. Koepfli, D.Phil. Chemistry
Seeley G. Mudd, M.D. Medical Chemistry
Walter A. Schroeder, Ph.D. Chemistry
Jerome R. Vinograd, Ph.D. Chemistry
Oliver R. Wulf, Ph.D. ... Physical Chemistry

VISITING ASSOCIATES

Henry E. Baumgarten, Ph.D. Chemistry
John R. Holum, Ph.D. Chemistry
Donald M. Rockwell, Ph.D. Chemistry
Scott Searles, Jr., Ph.D. Chemistry
Herbert Steinberg, Ph.D. Chemistry
Harold H. Warren, Ph.D. Chemistry

ASSOCIATE PROFESSORS

Fred C. Anson, Ph.D. Analytical Chemistry
Paul A. Longwell, Ph.D. Chemical Engineering
Cornelius J. Pings, Ph.D. Chemical Engineering
John H. Richards, Ph.D. Organic Chemistry

*Member U.S. Weather Bureau.
1John Simon Guggenheim Memorial Foundation Fellow.
2National Science Foundation Science Faculty Fellow.
3National Science Foundation Senior Postdoctoral Fellow.
SENIOR RESEARCH FELLOWS

Marjorie C. Caserio, Ph.D. ... Chemistry
Justine S. Garvey, Ph.D. ... Chemistry
Alvin F. Hildebrandt, Ph.D. ... Chemistry
Richard E. Marsh, Ph.D. ... Chemistry
Chester M. McCloskey, Ph.D. ... Chemistry
H. Hollis Reamer, M.S. ... Chemical Engineering
Sten Samson, Fil.Lic. ... Chemistry
Kenneth N. F. Shaw, Ph.D. ... Chemistry

ASSISTANT PROFESSORS

George Neal Richter, Ph.D. ... Chemical Engineering
Robert G. Rinker, Ph.D. ... Chemical Engineering
William P. Schaefer, Ph.D. ... Chemistry

RESEARCH FELLOWS

Alfred A. Amkraut, Ph.D. ... Toyoki Kunitake, Ph.D.
Donald R. Babin, Ph.D. ... Edward J. Land, Ph.D.
Jerald S. Bradshaw, Ph.D. ... Jacob Lebowitz, Ph.D.
John Francis Catchpool, M.B., B.S. ... Arthur Malley, Ph.D.
Arthur Cherkin, Ph.D. ... Harry B. Mark, Jr., Ph.D.
Dwaine O. Cowan, Ph.D. ... Alan E. Platt, Ph.D.
Natalie E. Cremer, Ph.D. ... Klaus Plesske, Dr. rer. nat.
Peter D. Edmonds, Ph.D. ... William T. Raynes, Ph.D.
John R. Fox, Ph.D. ... Egon E. Rickli, Ph.D.
Albert J. Fry, Ph.D. ... Richard Robson, D.Phil.
Peter P. Gaspar, Ph.D. ... Anil Kumar Saha, Ph.D.
Hanna K. Goldring, Ph.D. ... Ulrich Scheidegger, D.Sc.
Carlo Maria Gramaccioli ... Richard C. Seagrave, Ph.D.
Donald E. Gwynn, Ph.D. ... Brahma Datta Sharma, Ph.D.
Donald Halford, Ph.D. ... Richard H. Stanford, Jr., Ph.D.
William J. Halliday, Ph.D. ... Charles A. Stout, Ph.D.
Peter Hauk, Ph.D. ... Janis Vasilevskis, Ph.D.
Alfred H. Kalantar, Ph.D. ... Roger J. Weil, M.D.
Lois M. Kay, M.S. ... Helmut Werner, Dr. rer. nat.
Heimo Keller, Ph.D. ... Peter West, Ph.D.
Charles M. Knobler, Dr. Wis.-Nat. ... Chin-Hua Wu, Ph.D.

GRADUATE FELLOWS AND ASSISTANTS, 1961-62

Peter Baine, G.R.I.C. ... Lelia M. Coyne, B.S.
John E. Baldwin, A.B. ... Robert F. Cuffel, M.S.
Thomas E. Berty, M.E. ... Robert S. Deverill, B.S.
Charles M. Blair, B.A. ... H. Harvey Dewing, Jr., B.S.
Frank B. Booth, M.S. ... Joe A. Duardo, B.S.
David A. Brueckner, B.S. ... Alan S. Dubin, Ch.E.
Roger W. Caputi, B.S. ... David J. Duchamp, B.S.
Robert E. Carter, A.B. ... Michael H. Fisch, A.B.
Shiou-Shan Chen, B.S. ... Robert P. Foss, B.A.
Charles R. Christensen, B.E. ... James N. Foster, B.A.
James S. Clovis, B.S. ... Charles J. Fritchie, Jr., B.S.
Leon R. Coker, M.S. ... Robert P. Frosch, B.S.
Harold T. Couch, M.S. ... Edward S. Glazer, B.A.

1National Research Council Fellow.
2National Science Foundation Postdoctoral Fellow.
3United States Public Health Service Fellow.
Dennis J. Graue, B.S.
Hayes O. Griffith, A.B.
David W. Hall, B.S.
Carole Olson Hamilton, B.S.
William M. Hardham, B.S.
Robert E. Harmon, B.S.
William G. Herkstroeter, B.A.
Walter R. Holmquist, B.S.
Wallace I. Honeywell, B.S.
Johannes Huisman, B.S.
Glen O. Hultgren, B.S.
Kwang-Chou Hwang, M.S.
Ronald H. Jensen, B.S.
Janet G. Jones, B.A.
Noel D. Jones, B.S.
Albert P. Kendig, B.S.
John J. Kennedy, B.S.
James W. Kessel, B.S.
Leon F. Keyser, B.S.
Warner B. Kover, B.S.
Alvin L. Kwiram, B.A.
Joel Kwok, B.S.
Angelo A. Lamola, B.S.
Robert C. Leif, B.S.
Milton I. Levenberg, B.S.
Roy N. Levitch, B.Ch.E.
Gerald R. Liebling, B.S.
Chung-Chiu Liu, B.S.
Robert S. H. Liu, B.S.
Ruth M. Lynden-Bell, B.A.
Edward R. H. McDowell, M.S.
Robert L. McNeely, B.S.
Paul G. Mikolaj, M.S.
Hugh T. Millard, Jr., B.A.
William J. Moore, S.B.
Milton E. Morrison, B.S.
Robert G. Mortimer, M.S.
Francis G. Moses, B.A.
Werner A. Mukatis, B.S.
Eugene B. Nebeker, M.S.
Robert C. Neuman, Jr., B.S.
George C. Nieman, B.S.
Maurice J. Nugent, Jr., B.A.
Heiko H. Ohlenbusch, B.S.
Baldomero M. Olivera, B.S.
Edwin S. Olson, B.A.
Dinshaw J. Patel, B.Sc.
James M. Peterson, B.S.
Roger L. Peterson, B.S.
John C. Porter, B.S.
Sergio E. Rodriguez, M.S.
Allan J. Rosen, A.B.
Charles D. Russell, S.B.
Jack Saltiel, B.A.
Kenneth L. Servis, B.S.
Usha B. Shah, B.S.
Harris J. Silverstone, A.B.
Himan Sternlicht, B.S.
Robert F. Stewart, B.A.
Peter R. Sumner, B.S.
Masaaki Takahashi, B.S.
Donal D. Thomas, B.S.
Nicholas J. Turro, Jr., B.A.
Harris E. Ulery, B.A.
Janis Vasilevskis, B.S.
Emilio C. Venezian, M.S.
Yui-Loong Wang, M.S.
Ned C. Webb, B.A.
Mariana Weissmann, Lic. en Ciencias
George M. Whitesides, B.A.
Thomas H. Wirth, A.B.
David E. Wood, B.S.
Joe W. Woodward, M.S.
Daniel L. Wulff, B.S.
DIVISION OF ENGINEERING AND APPLIED SCIENCE
Frederick C. Lindvall, Chairman
Clark B. Millikan, Director, Graduate Aeronautical Laboratories

PROFESSORS EMERITI
Frederick J. Converse, B.S. Soil Mechanics
Robert L. Daugherty, M.E. Mechanical and Hydraulic Engineering
Aladar Hollander, M.E. .. Mechanical Engineering
R. R. Martel, S.B. .. Structural Engineering
William W. Michael, B.S. Civil Engineering
Royal W. Sorensen, D.Sc. Electrical Engineering

PROFESSORS
Norman H. Brooks,* Ph.D Civil Engineering
Thomas K. Caughey, Ph.D. Applied Mechanics
Donald S. Clark, Ph.D. Mechanical Engineering
Julian D. Cole,* Ph.D. Aeronautics
Charles E. Crede, M.S. Mechanical Engineering
Charles R. DePrima,* Ph.D. Applied Mechanics
Pol E. Duwez, D.Sc. ... Mechanical Engineering
Yuan-Cheng Fung, Ph.D. Aeronautics
Roy W. Gould, Ph.D. ... Electrical Engineering and Physics
George W. Housner, Ph.D. Civil Engineering and Applied Mechanics
Donald E. Hudson, Ph.D. Mechanical Engineering
Arthur L. Klein, Ph.D. Aeronautics
Paco A. Lagerstrom, Ph.D. Aeronautics
Robert V. Langmuir, Ph.D. Electrical Engineering
Lester Lees, M.S. ... Aeronautics
Hans W. Liepmann, Ph.D. Electrical and Mechanical Engineering
Frederick C. Lindvall, Ph.D. Aeronautics
Gilbert D. McCann, Jr., Ph.D. Electrical Engineering
Jack E. McKee, Sc.D. ... Environmental Health Engineering
Frank E. Marble, Ph.D. .. Jet Propulsion and Mechanical Engineering
Julius Miklowitz, Ph.D. Applied Mechanics
Clark B. Millikan, Ph.D. Aeronautics
Dino A. Morelli, Ph.D. Engineering Design
Charles H. Papas, Ph.D. Electrical Engineering
Stanford S. Penner,* Ph.D. Jet Propulsion
William H. Pickering,* Ph.D. Electrical Engineering
Milton S. Plesset, Ph.D. Applied Mechanics
W. Duncan Rannie, Ph.D. Robert H. Goddard Professor of Jet Propulsion
Anatol Roshko, Ph.D. ... Aeronautics
Rolf Sabersky, Ph.D. ... Mechanical Engineering
Ernest E. Sechler, Ph.D. Aeronautics
Homer J. Stewart, Ph.D. Aeronautics
Vito A. Vanoni, Ph.D. .. Hydraulics
J. Harold Wayland, Ph.D. Applied Mechanics
Gerald Whitham, Ph.D. Aeronautics and Mathematics
Max L. Williams, Ph.D. Aeronautics
Charles H. Wilts, Ph.D. Electrical Engineering
David S. Wood, Ph.D. .. Mechanical Engineering
Theodore Y. Wu, Ph.D. Applied Mechanics

VISITING PROFESSORS
William Chester, Ph.D. Aeronautics
August T. Rossano, Jr., D.Sc. Environmental Health Engineering

*Leave of absence
RESEARCH ASSOCIATES
Simon Ramo, Ph.D. ... Electrical Engineering
Dean E. Wooldridge, Ph.D. Engineering

ASSOCIATES
George W. Downs ... Engineering
Henry Dreyfuss ... Industrial Design

ASSOCIATE PROFESSORS
Allan J. Acosta, Ph.D. Mechanical Engineering
Francis S. Buffington, Sc.D. Mechanical Engineering
Donald E. Coles, Ph.D. Aeronautics
Albert T. Ellis, Ph.D. ... Applied Mechanics
Derek H. Fender, Ph.D. Biology and Electrical Engineering
Joel N. Franklin, Ph.D. Applied Mechanics
Nicholas George, Ph.D. Electrical Engineering
Karl R. Johansson, Ph.D. Environmental Health Engineering
James K. Knowles, Ph.D. Applied Mechanics
Harold Lurie, Ph.D. ... Applied Mechanics
Caleb W. McCormick, Jr., M.S. Civil Engineering
Hardy C. Martel, Ph.D. Electrical Engineering
Carver A. Mead, Ph.D. Electrical Engineering
Robert D. Middlebrook, Ph.D. Electrical Engineering
Ronald F. Scott, Sc.D. Electrical Engineering
Thad Vreeland, Jr., Ph.D. Mechanical Engineering
David F. Welch, I.D. ... Jet Propulsion
Edward E. Zukoski, Ph.D. Jet Propulsion

VISITING ASSOCIATE PROFESSOR
Donald R. F. Harleman, Sc.D. Hydraulics

VISITING ASSOCIATE
Thomas E. Stelson, D.Sc. Civil Engineering

SENIOR RESEARCH FELLOWS
T. R. Anantharaman, D.Phil. Materials Science
Paul J. Blatz, Ph.D. ... Aeronautics
Kamalaksha Das Gupta Engineering
Anthony Demetriades, Ph.D. Aeronautics
Floyd B. Humphrey, Ph.D. Electrical Engineering
Makoto Isida, Dr.E. .. Aeronautics
Saul Kaplun, Ph.D. ... Aeronautics
Hans D. Krumhaar, Dr.rer.nat. Aeronautics
Hao-Wen Liu, Ph.D. ... Aeronautics
Raymond E. Miller, Ph.D. Electrical Engineering
Sitaram Rao Valluri, Ph.D. Aeronautics

SENIOR LECTURERS
E. Richard Cohen, Ph.D. Engineering
Charles E. Jacob, M.S. Engineering

ASSISTANT PROFESSORS
David J. Braverman, Ph.D. Electrical Engineering
Thomas L. Grettenberg, Ph.D. Electrical Engineering
Toshi Kubota, Ph.D. ... Aeronautics
Peter B. S. Lissaman, M.S. (Part-time) Aeronautics
Kenneth Lock, Ph.D. .. Electrical Engineering
Officer and Faculty

Peter V. Mason, Ph.D. Electrical Engineering
Marc-Aurele Nicolet, Ph.D. Electrical Engineering
Frederic Raichlen, Sc.D. .. Civil Engineering
William R. Samples .. Civil Engineering
Bradford Sturtevant, Ph.D. Aeronautics

LECTURER

Harvey F. Ludwig, M.S. Environmental Health Engineering

INSTRUCTOR

Roger E. Messick, Ph.D. Applied Mechanics

RESEARCH FELLOWS

Gerhard Adamait, Dr.Ing. .. Engineering
Daniel K. Ai, Ph.D. .. Engineering
A. V. Anantaraman, Ph.D. Engineering
Charles D. Babcock, Jr., Ph.D. Aeronautics
B. J. S. Barnard, Ph.D. ... Engineering
George Bienkowski, Ph.D. Aeronautics
Fred E. C. Culick, Sc.D. Jet Propulsion
Peter Daly, Ph.D. ... Electrical Engineering
Wallace G. Frasner, Jr., M.D. Engineering
Solomon W. Golomb, Ph.D. Electrical Engineering
Hans Groenig, Dipl. ... Aeronautics
Ludwig Hartmann, Ph.D. Environmental Health Engineering
David P. Houl, Ph.D. ... Aeronautics
Din-Yu Hsieh, Ph.D. ... Applied Mechanics
Jirair K. Kevorkian, Ph.D. .. Aeronautics
Takeshi Kunio, Ph.D. ... Aeronautics
G. J. Mohanrao, Sc.D. ... Environmental Health Engineering
Barry L. Reeves, D.Sc. ... Aeronautics
Jerome L. Shapiro, Ph.D. .. Engineering
Werner Stober, Ph.D. ... Engineering
Duen-pao Wang, Ph.D. ... Engineering
Anthony M. Watts, Ph.D. .. Engineering
Ronald H. Willens, Ph.D. Engineering
Adam R. Zak, Ph.D. ... Aeronautics

GRADUATE FELLOWS AND ASSISTANTS, 1961-62

Kenneth Hoyt Adams, M.S. ... Ben Graham Burke, B.S.
Nazeer Ahmed, B.E. ... William Berrian Bush, B.S.
Frank Addison Albini, M.S. ... Ward M. Calaway, B.S.
Vincent George Aquino, B.S. ... Tsiu Chiu Chan, B.E.
George S. Argyropoulos, M.S. Robert Eugene Chandos, M.S.
John Fredrich Asmus, M.S. ... Chang-chih Chao, M.S.
Clement Atudet, B.Sc.A. .. Robert Gorham Chapman, Jr., B.S.E.
Boris Auksmann, M.E. ... Peter Osgood Clark, M.S.
Charles Dwight Babcock, Jr., M.S. Don Paul Clauzing, B.S.
Donald Bagatoff, M.S. ... Donald Henry Close, B.S.
Wayne Metcalfe Beebe, M.S. .. René Clément Collette M.S.
George Wood Beeler, Jr., M.S. Terrill Alan Cool, B.S.
Wilhelm Behrens, Dipl.Ing. .. Robert Glen Coyer, B.S.
James Melvin Bell, M.S. ... Richard Clark Crewdson, B.S.
Narain Mulchand Bhattia, M.S. Donald Leslie Cronin, M.S.
Robert Harold Bond, M.S. Benjamin Edgar Cummings, Ae.E.
Arthur Gerald Brady, B.S. ... Michel Maulbon d'Arbaumont, Dipl.Ing.
Jacques de Barbeyrac Saint-Maurice, M.S.
Robert Dewey de Pencier, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Donald Bozell Forrest, B.S.
Michael Eugene Fourney, M.S.
C. Forbes Dewey, Jr., M.S.
Jean-Pierre Dorlha, Dipl.Eng.
Richard Harold Drew, B.S.
Jean-Claude Dubois, Ing.Civil
François Duffaut, Dipl.Eng.
Richard Carl Eden, B.S.
David Arthur Evensen, M.S.
William Thomas Fehlberg, B.S.E.
John Edward Fischer, B.S.M.E.
Furman Yates Sorrell, Jr., M.S.
Frank William Spaid, M.S.
Walter Albert Specht, Jr., B.S.
John Charles Stansel, B.S.
John Paul Stenbit, B.S.
Raynold A. Svenson, B.S.
Jerold Lindsay Swedlow, M.S.
Mitchell Thomas, Jr., M.S.
Thomas Ross Thompson, M.S.A.E.
Harry Warren Townes, M.S.
John Burgess Trenholme, B.S.
Wai Keung Tso, M.S.
Thomas Janney Tyson, M.S.
Charles William Van Atta, M.S.E.

Suryanarayana Rao Varanasi, M.S.
George Charpentier Vlases, M.S.
Neng-Ming Wang, M.S.
Martin Cameron Watson, B.S.E.
Ronald Watson, M.S.
Maurice Whelan, B.E.
Donald Martin Wiberg, M.S.
Po Kee Wong, M.Sc.
Jain-Ming Wu, M.S.
Ying-Chu Lin Wu, M.S.
DIVISION OF GEOLOGY
Robert P. Sharp, Chairman
Frank Press, Director of the Seismological Laboratory

PROFESSORS
Hugo Benioff, Ph.D. .. Seismology
Harrison S. Brown, Ph.D. .. Geochemistry
Charles Hewitt Dix, Ph.D. .. Geophysics
Samuel Epstein, Ph.D. .. Geochemistry
W. Barclay Kamb, Ph.D. .. Geology
Leon Knopoff, Ph.D. .. Geophysics
Heinz A. Lowenstam, Ph.D. Paleontology
Frank Press, Ph.D. .. Geophysics
Charles F. Richter, Ph.D. .. Seismology
Robert P. Sharp, Ph.D. .. Geology
Gerald J. Wasserburg, Ph.D.* Geology

VISITING PROFESSOR
Eugene M. Shoemaker, Ph.D. .. Geology

RESEARCH ASSOCIATE
Ian Campbell, Ph.D. .. Geology

VISITING ASSOCIATE
S. Keith Runcorn, Ph.D. .. Geophysics

ASSOCIATE PROFESSORS
Arden L. Albee, Ph.D. .. Geology
Clarence R. Allen, Ph.D. .. Geology
Arthur J. Boucot, Ph.D. .. Paleontology
Leon T. Silver, Ph.D. .. Geology

VISITING ASSOCIATE PROFESSOR
Keiiti Aki, Ph.D. .. Seismology

SENIOR RESEARCH FELLOW
Claire C. Patterson, Ph.D. .. Geochemistry

ASSISTANT PROFESSORS
Egon T. Degens, Ph.D. .. Geology
Robert A. Phinney, Ph.D. .. Geophysics
Stewart W. Smith, Ph.D. .. Geophysics
Hugh P. Taylor, Ph.D. .. Geology

RESEARCH FELLOWS
Don L. Anderson, Ph.D. .. Geophysics
Ari Ben-Menahem, Ph.D. .. Geophysics
Peter Edgar Hare, Ph.D. .. Geochemistry
Hans B. Hirt, Ph.D. .. Geochemistry
John A. Hudson, Ph.D. .. Geophysics
Marvin A. Lanphere, Ph.D. Geology
Emanuel Mazor, Ph.D. .. Geochemistry
Takeshi Mikumo, Ph.D. .. Geophysics

*On leave of absence, first semester 1962-1963
Curator of Mineralogy

William C. Oke .. Mineralogy

Graduate Fellows and Assistants, 1961-62

Shelton S. Alexander, M.S. ... Lisle T. Jory, B.Sc.
Hector M. Alvarez, Ing. Civil de Minas S. Douglas McDowell, B.S.
Don L. Anderson, M.S. ... Thomas R. McGetchin, Sc.M.
Charles B. Archambeau, M.S. Richard S. Naylor, B.S.
Eliahu Arieh, Jr., M.Sc. ... David J. Roddy, M.S.
Philip O. Banks, S.B. .. Samuel M. Savin, B.A.
Shawn Biehler, M.S. .. David L. Schleicher, B.S.
Armando Cisternas, M.S. ... George A. Sellers, M.S.
Michael B. Duke, M.S. .. Robert V. Sharp, M.S.
John K. Gardner, M.S. .. Alan Stratton, B.S.
George Garlick, M.S. .. Ta-liang Teng, B.S.
James A. Grant, M.A. .. M. Nafi Toksoz, M.S.
David G. Harkrider, M.A. .. John Watson, M.S.
Charles Harper, S.M. .. Kenneth Watson, M.S.
Lincoln S. Hollister, B.A. .. Dennis R. Wik, B.S.
Roger L. Hooke, B.A. .. Francis Taming Wu, B.S.
Abou-Bakr Khalil Ibrahim, M.S. Robert E. Zartman, M.S.
DIVISION OF THE HUMANITIES
Hallett D. Smith, Chairman

PROFESSOR EMERITUS
George R. MacMinn, A.B. ... English

PROFESSORS
J. Kent Clark, Ph.D. ... English
James C. Davies, Ph.D.* .. Political Science
Harvey Eagleson, Ph.D. ... English
David C. Elliot, Ph.D. ... History
Horace N. Gilbert, M.B.A. ... Business Economics
Robert D. Gray, B.S. ... Industrial Relations
Edwin S. Munger, Ph.D. ... Geography
Rodman W. Paul, Ph.D. .. History
Hallett D. Smith, Ph.D. ... English
Roger Stanton, Ph.D. ... English
Alfred Stern, Ph.D. ... Languages and Philosophy
Cushing Strout, Ph.D.* ... History
Alan R. Sweezy, Ph.D. ... Economics
Ray E. Untereiner, Ph.D. ... Economics

VISITING PROFESSOR
Bertram Morris, Ph.D. ... Philosophy

ASSOCIATE PROFESSORS
Paul Bowerman, A.M. ... Languages
Melvin D. Brockie, Ph.D. ... Economics
Charles E. Bures, Ph.D. ... Philosophy
Paul C. Eaton, A.M. ... English
Heinz Ellersieck, Ph.D. ... History
Peter Fay, Ph.D. ... History
L. Winchester Jones, A.B. .. English
Beach Langston, Ph.D. ... English
Oscar Mandel, Ph.D. ... English
George P. Mayhew, Ph.D.* .. English
Robert W. Oliver, Ph.D. ... Economics
Howard Sherman, Ph.D. ... Economics
John R. Weir, Ph.D. ... Psychology

ASSISTANT PROFESSORS
Paul R. Baker, Ph.D. ... History
Robert Huttenback, Ph.D. .. History
George Langdon, Ph.D. ... History
David Smith, Ph.D. ... English
Robert D. Wayne, M.A. ... German

LECTURERS
Marcel Bolomet ... French
Charles K. Ferguson, Ed.D. .. Psychology
Edward Hutchings, Jr., B.A. ... Journalism
Alexander Kosloff, Ph.D. ... Russian
Peter Miller, Ph.D. ... English
Charles Newton, Ph.B. ... English
Orpha Ochse, Ph.D. ... Music

*On leave of absence
Eleanor Searle, D.L.M.S. .. History
Robert R. Wark, Ph.D. .. Art

VISITING LECTURERS
Alan Horton, Ph.D. ... International Affairs
Lawrence Olson, Ph.D. International Affairs
Richard W. Patch, Ph.D. International Affairs
Albert Ravenholt ... International Affairs

INSTRUCTOR
Robert Conhaim, M.A. .. History

SENIOR RESEARCH FELLOW
Robert Sigafoos, Ph.D. Economics

RESEARCH ASSISTANT
Doris Logan, B.A. ... Public Affairs
DIVISION OF PHYSICS, MATHEMATICS AND ASTRONOMY
Carl D. Anderson, Chairman

PROFESSORS EMERITI
Paul S. Epstein, Ph.D. .. Theoretical Physics
C. C. Lauritsen, Ph.D. .. Physics
Earnest C. Watson, Sc.D. Physics

PROFESSORS
Carl D. Anderson, Ph.D., Sc.D., LL. D., Nobel Laureate Physics
Tom M. Apostol, Ph.D. .. Mathematics
Robert F. Bacher, Ph.D., Sc.D. Physics
Charles A. Barnes,* Ph.D. Physics
Felix Boehm, Ph.D. .. Mathematics
H. F. Bohnenblust, Ph.D. Mathematics
R. F. Christy, Ph.D. .. Theoretical Physics
Eugene W. Cowan, Ph.D. Physics
Leverett Davis, Jr., Ph.D. Theoretical Physics
Robert P. Dilworth, Ph.D. Mathematics
Jesse W. M. DuMond, Ph.D. Physics
Olín J. Eggen, Ph.D. ... Astronomy
A. Erdélyi, D.Sc. .. Mathematics
Richard P. Feynman, Ph.D. . Richard Chace Tolman Professor of Theoretical Physics
William A. Fowler, Ph.D. Physics
Murray Gell-Mann, Ph.D. Physics
Roy W. Gould, Ph.D. ... Electrical Engineering & Physics
Jesse L. Greenstein, Ph.D. Astrophysics
Marshall Hall, Jr., Ph.D. Mathematics
Robert B. King, Ph.D. .. Physics
Thomas Lauritsen, Ph.D. Physics
Robert B. Leighton, Ph.D. Physics
W. A. J. Luxemburg, Ph.D. Mathematics
Harden M. McConnell, Ph.D. Chemistry & Physics
Rudolf L. Moessbauer, Ph.D. Physics
Guido Münch, Ph.D. .. Astronomy
H. Victor Neher, Ph.D. .. Physics
John R. Pellam, Ph.D. .. Physics
Matthew Sands, Ph.D. .. Physics
William R. Smythe, Ph.D. Physics
Richard M. Sutton, Ph.D. Physics
John Todd, B.Sc. ... Mathematics
Alvin V. Tollestrup, Ph.D. Physics
Robert L. Walker, Ph.D. Physics
Morgan Ward,* Ph.D. ... Mathematics
Ward Whaling, Ph.D. ... Mathematics
Gerald B. Whitham, Ph.D. Aeronautics & Mathematics
Fritz Zwicky, Ph.D. ... Astrophysics

VISITING PROFESSORS
Howard P. Stabler, Ph.D. Physics
Otto Struve, Ph.D. ... Addison White Greenway Visiting Professor of Astronomy

RESEARCH ASSOCIATES
Gordon J. Stanley, Dipl.E.E. Radio Astronomy
Olga T. Todd, Ph.D. ... Mathematics

*On leave of absence
VISITING ASSOCIATES

Aage Bohr, Ph.D. ... Physics
Ben Roy Mottelson, Ph.D. ... Physics
Peter Roquette, Ph.D. ... Mathematics

ASSOCIATE PROFESSORS

Richard A. Dean, Ph.D. ... Mathematics
F. Brock Fuller, Ph.D. ... Mathematics
Adriano M. Garsia, Ph.D. ... Mathematics
Alexander Goetz, Ph.D. ... Physics
Jon Mathews, Ph.D. ... Theoretical Physics
J. B. Oke, Ph.D. ... Astronomy
Maarten Schmidt, Ph.D. ... Astronomy
Fredrik Zachariasen, Ph.D. ... Theoretical Physics

SENIOR RESEARCH FELLOWS

Sherwin P. Avann, Ph.D. ... Mathematics
Albrecht Frohlich, Ph.D. ... Mathematics
Gvirol Goldring, Ph.D. ... Physics
Ricardo Gomez, Ph.D. ... Physics
George M. Griffiths, Ph.D. ... Physics
Icko Iben, Jr., Ph.D. ... Physics
Thomas A. Matthews, Ph.D. ... Radio Astronomy
Joe H. Mullins, Ph.D. ... Physics
Venkataraman Radhakrishnan, B.Sc. ... Radio Astronomy
Donald W. Robinson, Ph.D. ... Mathematics
Richard L. Sears, Ph.D. ... Physics
Aage F. Winther, Ph.D. ... Physics

ASSISTANT PROFESSORS

Richard E. Block, Ph.D. ... Mathematics
Everett C. Dade, Ph.D. ... Mathematics
Steven C. Frautschi, Ph.D. ... Theoretical Physics
Ralph W. Kavanagh, Ph.D. ... Physics
Milton Lees, Ph.D. ... Mathematics
Gerry Neugebauer, Ph.D. ... Physics
Foster Strong, M.S. ... Physics
James D. van Putten, Jr., Ph.D. ... Physics
Rochus Vogt, Ph.D. ... Physics

LECTURERS

Frank B. Estabrook, Ph.D. ... Physics
Robert W. Hellwarth, Ph.D. ... Physics

INSTRUCTORS

G. D. Chakerian, Ph.D. ... Mathematics
John D. Dixon, Ph.D. ... Mathematics
Alan Sharples, Ph.D. ... Mathematics

RESEARCH FELLOWS

Peter Alexander, Ph.D. ... Physics
John N. Bahcall, Ph.D. ... Physics
Johan G. Belinfante, Ph.D. ... Theoretical Physics
Georgeanne R. Caughlan, M.S. ... Physics
Hung Cheng, Ph.D. ... Theoretical Physics
Donald D. Clayton, Ph.D. ... Physics
John M. Cornwall, Ph.D. ... Physics
Jorrit de Boer, Ph.D. .. Physics
Robert F. Deery, Ph.D. .. Physics
Jorg Eichler, Ph.D. .. Physics
James D. Halpern, Ph.D. ... Mathematics
Stanley Hinds, Ph.D. .. Physics
Egbert Kankeleit, Ph.D. ... Physics
Hans G. E. Kobrak, Ph.D. .. Physics
Alan G. Konheim, Ph.D. ... Mathematics
John Owen Maloy, Ph.D. ... Physics
F. Curtis Michel, Ph.D. .. Physics
David Morris, Ph.D. .. Radio Astronomy
Rafael Nunez-Lagos, Ph.D. .. Theoretical Physics
Richard B. Read, Ph.D. .. Radio Astronomy
John D. Rogers, Ph.D. .. Physics
Edward J. Seppi, Ph.D. ... Physics
Virendra Singh, Ph.D. ... Theoretical Physics
Raymond H. Spear, Ph.D. .. Physics
Richard M. Talman, M.A. .. Physics
William G. Wagner, Ph.D. ... Theoretical Physics
Sven B. F. Wahlborn, Ph.D. Theoretical Physics
A. Bruce Whitehead, Ph.D. .. Physics
Robert W. Wilson, Ph.D. .. Radio Astronomy
Hubert Winkler, Ph.D. .. Physics

GRADUATE FELLOWS AND ASSISTANTS, 1961-62

Eric G. Adelberger, B.S. ... Physics
David G. Agresti, B.S. ... Physics
Roedar Ahmad, M.Sc. ... Physics
Norman W. Albright, B.S. Physics
Ethan D. Alyea, Jr., B.S. ... Physics
Stephen A. Andrea, B.A. ... Physics
John P. Andelin, Jr., B.S. Physics
Claude Arpigny, Lic.Sci. .. Physics
Robert G. Ashenfelter, B.S. Physics
Andrew D. Bacher, A.B. .. Physics
Donald M. Baker, B.S. ... Physics
James M. Bardeen, A.B. .. Physics
J. Frederick Bartlett, B.S. Physics
Leonard D. Baumert, M.A. Physics
Douglas S. Beder, B.Sc. .. Physics
Ronald D. Bercov, B.Sc. ... Physics
Glenn L. Benge, B.A. ... Physics
Thomas M. Bieniewski, M.S. Physics
James L. Blue, A.B. .. Physics
James D. Bowman, B.S. .. Physics
Richard T. Brockmeier, M.S. Physics
John I. Castor, A.B. ... Physics
Subhash Chandra, M.S. ... Physics
David B. Chang, B.S. ... Physics
James T. Chang, B.S. ... Physics
Philip J. Chase, B.A. ... Physics
Ronald B. Chesler, A.B. ... Physics
Arthur N. Chester, B.S. .. Physics
Barry G. Clark, B.S. ... Physics
Milton J. Clauser, S.B. ... Physics
Carl R. Clinesmith, B.S. Physics
Richard L. Cohen, M.S. ... Physics

Sidney R. Coleman, B.S. ... Physics
Peter A. Compton, B.S. .. Physics
Donald G. Coyne, B.S. .. Physics
Yvon Cusson, B.S. ... Theoretical Physics
Roger F. Dashen, A.B. ... Physics
John W. Davies, B.A. ... Physics
Melvin D. Daybell, B.S. ... Physics
James M. Dickey, B.A. .. Physics
Robert E. Diebold, M.S. ... Physics
Frank S. Dietrich III, B.A. Physics
Theodore Neil Divine, M.S. Physics
Richard Dolen, B.E.Ph. ... Physics
John J. Domingo, B.S. ... Physics
Stanley D. Ecklund, B.S. Physics
Thornton R. Fisher, B.A. Physics
Melinda A. Flory, A.B. .. Physics
Edward B. Fomalont, B.S. Physics
Douglas G. Fong, A.B. ... Physics
James L. C. Ford, Jr., M.S. Physics
Lorraine L. Foster, B.A. ... Physics
Lyman J. Fretwell, Jr., B.S. Physics
Robert W. Gammon, B.A. Physics
Hans Gassmann, Dr.rer.nat. Physics
Robert J. Gerbracht, B.A. Physics
Charles A. Greenhall, B.A. Physics
David H. Griffel, B.Sc. .. Physics
David E. Groce, B.S. ... Physics
Donald E. Groom, B.S. .. Physics
Fletcher I. Gross, B.S. ... Physics
James E. Gunn, B.A. ... Physics
Ralph S. Hager, B.S. ... Physics
Alfred W. Hales, B.S. ... Physics

1Harry Bateman Research Fellow
2Richard Chace Tolman Research Fellow
William D. Harrison, B.Sc.
Donald L. Hartill, B.S.
James B. Hartle, A.B.
G. Laurie Hatch, B.S.
M. Jeannette Hebb, A.B.
Thomas M. Helilwell, B.A.
David C. Hensley, B.S.
H. Hunter Hill, B.A.
John L. Honsaker, B.S.
James S. Howland, B.S.
Richard O. Hundley, B.S.
Thomas K. Hunt, M.S.
Jack R. Jokipii, B.S.
Boris J. Kayser, A.B.
Kenneth I. Kellermann, S.B.
Donald E. Knuth, B.S.
J. Howard Marshall III, B.S.
J. Howard Marshall III, B.S.
Egon Marx, E.E.
James H. McNally, B.E.Ph.
Manuel Mendez, Theor. Physc., C.E.
F. Curtis Michel, B.S.
James E. Midgley, B.S.E.
Dimitri M. Mihalas, M.S.
Ralph F. Miles, Jr., M.S.
Richard G. Miller, M.Sc.
Catalin D. Mitescu, B.E.Ph.
Norton L. Moise, M.S.
Charles G. Montgomery, M.S.
Fernando B. Morinigo, B.S.
Calvin E. Moss, B.S.
John C. Nickel, M.S.
Park S. Nobel, B.E.Ph.
Harris A. Notarys, S.B.
Robert W. Noyes, B.A.
Jerald V. Parker, B.S.
Peter D. M. Parker, B.A.
Robert A. R. Parker, B.A.
John D. Pearson, Sc.B.
Charles W. Peck, B.S.
Philip C. Peters, B.S.
John M. Poindexter, M.S.
Charles Y. Prescott, B.A.
Paul W. Purdom, Jr., B.S.
Richard B. Read, B.S.
John D. Reichert, B.S.
James H. Renken, M.Sc.
Henry Ruderman, B.S.
Stanley A. Sawyer, B.S.
Philip A. Seeger, B.A.
George A. Seielstad, A.B.
Edwin C. Seltzer, B.S.
Lionel S. Shenhouse, Jr., M.S.
Edward J. Seppi, M.S.
Lawrence F. Shampine, B.S.
Wesley L. Shanks, B.S.
David H. Sharp, A.B.
Neil R. Sheeley, Jr., B.S.
Harvey K. Shepley, B.S.
Jon H. Shirley, A.B.
George W. Simon, M.S.
William A. Sinoof, B.S.
R. Venci Skarda, B.A.
Earnest E. Smith, B.A.
Lewis L. Smith, B.A.
Frank T. Snively, M.S.
D. Gary Swanson, M.S.
Richard M. Talman, M.A.
Ivo Tammaru, B.S.
Henry A. Thiessen, B.S.
Alan T. Title, M.S.
Laurence M. Trafton, B.S.
John M. Trischuk, B.E.Ph.
Lorin L. Vant-Hull, M.S.
Joseph L. Vogl, Jr., M.S.
William G. Wagner, B.S.
Donald H. Webb, M.S.
Robert W. Weinman, B.E.Ph.
John F. Wilkinson, B.S.
Douglas W. Willett, B.S.
Franklin B. Wolverton, B.S.
James S. W. Wong, B.S.
Harold T. Yura, B.S.
Clyde S. Zaidins, B.S.
Jonas S. Zmuidzinas, B.S.
George Zweig, B.S.
MOUNT WILSON AND PALOMAR OBSERVATORIES
Operated Jointly with the Carnegie Institution of Washington
Ira S. Bowen, Director
Horace W. Babcock, Assistant Director

OBSERVATORY COMMITTEE

Carl D. Anderson
Ira S. Bowen, Chairman
Horace W. Babcock

Jesse L. Greenstein
Robert B. Leighton
Allan R. Sandage

STAFF MEMBERS

Halton C. Arp, Ph.D.
Horace W. Babcock, Ph.D.
William A. Baum, Ph.D.
Ira S. Bowen, Ph.D., Sc.D.
Armin J. Deutsch, Ph.D.
Olin J. Eggen, Ph.D.
Jesse L. Greenstein, Ph.D.
Robert F. Howard, Ph.D.

Robert P. Kraft, Ph.D.
Guido Munch, Ph.D.
J. Beverley Oke, Ph.D.
Allan R. Sandage, Ph.D.
Maarten Schmidt, Ph.D.
Otto Struve, Ph.D., Sc.D., LL.D.
Olin C. Wilson, Ph.D.
Fritz Zwicky, Ph.D.

RESEARCH ASSOCIATES

Kenneth O. Wright, Ph.D.

Lyman Spitzer, Jr., Ph.D., D.Sc.

SENIOR RESEARCH FELLOWS IN ASTRONOMY

Rudolph Kippenhahn, Ph.D.

Leonard Searle, Ph.D.

RESEARCH FELLOWS IN ASTRONOMY

Bodo Baschek, Ph.D.
Jacques Berger, Ph.D.
John G. Ireland, Ph.D.
D. H. P. Jones, B.Sc.

Charles R. O'Dell, Ph.D.
K. Rudnicki, Ph.D.
Henrietta H. Swope, A.M.
Hugo van Woerden, Ph.D.

John B. Whiteoak, Ph.D.

ENGINEERS

Bruce H. Rule, B.S.

Byron Hill, B.S.

INSTITUTE LIBRARIES

Roger Stanton, Ph.D., Director
Evelyn Huston, M.A., Associate Director

REPRESENTATIVES FOR THE DEPARTMENTAL LIBRARIES

Tom M. Apostal, Ph.D.
Charles R. DePrima, Ph.D.
Armin J. Deutsch, Ph.D.
David C. Elliot, Ph.D.
Robert D. Gray, B.S.
Charles E. Helsley, Ph.D.
Robert B. King, Ph.D.

Charles H. Papas, Ph.D.
Bruce H. Sage, Ph.D.
William R. Samples, Ph.D.
Walter A. Schroeder, Ph.D.
Earnest E. Sechler, Ph.D.
Albert Tyler, Ph.D.
Fritz Zwicky, Ph.D.
AIR SCIENCE

PROFESSOR
Major Leo T. Woods, U.S.A.F., B.S., M.B.A.

ASSISTANT PROFESSOR
Captain Cary D. Stephenson, U.S.A.F., B.S.

ASSISTANTS
T/Sgt. Richard E. Stafford
T/Sgt. Willard J. Garner
S/Sgt. Andrew F. Ventimiglia

DEPARTMENT OF PHYSICAL EDUCATION
Harold Z. Musselman, A.B., Director of Athletics and Physical Education

COACHES
Bert LaBrucherie, B.E.
Warren G. Emery, M.S.
James H. Nerrie, B.S.
Edward T. Priesler, B.A.

TRAINER
Paul G. Barthel, M.A.

ASSISTANTS
Lee A. Andrews, B.A. John Lamb
Shelby C. Calhoun, B.A. Walter Mack, M.A.

ATHLETIC COUNCIL
The intercollegiate athletic program is under the supervision of the Athletic Council, which consists of representatives of the Faculty, the Associated Students of the California Institute of Technology (ASCIT), and the Alumni of the Institute.

INDUSTRIAL RELATIONS CENTER
Robert D. Gray, B.S., Director, Industrial Relations Center; Professor of Economics and Industrial Relations
(Mrs.) Geraldine M. Beideman, M.A., Associate Research Director, Benefits and Insurance Research Section
Robert N. Fick, M.S., Assistant Director, Management Development Section
(Mrs.) Helen L. Thompson, B.Ed., Assistant to the Director, Industrial Relations Center
Arthur H. Young, Lecturer Emeritus on Industrial Relations
STUDENT HEALTH SERVICES

Richard F. Webb, M.D., Director of Health Services
R. Stewart Harrison, M.D. Assistant Director and Consultant in Radiology
Daniel C. Siegel, M.D. Consultant Physician
N. Y. Matossian, M.D. Attending Physician
R. A. Crosse, M.D. Attending Physician
Kenneth W. Eells, Ph.D. Institute Psychologist
Alice A. Shea, R.N. Nursing Director

The Faculty Committee on Student Health acts in an advisory capacity to the Director of Health Services on all matters of policy pertaining to the Health Program and administers the Emergency Health Fund.

STUDENT MUSICAL ACTIVITIES

John C. Deichman Director of Student Band
Olaf Frodsham Director of Student Glee Club
Lee Alvin DuBridge, Ph.D., Sc.D., LL. D., President
A.B., Cornell College (Iowa), 1922; A.M., University of Wisconsin, 1924; Ph.D., 1926. California Institute, 1946-. (106 Throop) 415 South Hill Avenue.

Allan James Acosta, Ph.D., Associate Professor of Mechanical Engineering
B.S., California Institute, 1945; M.S., 1949; Ph.D., 1952. Assistant Professor, 1954-58; Associate Professor, 1958-. (207 Thomas) 1779 East Mendocino, Altadena.

Gerhard Adomeit, Dr.Ing., Research Fellow in Engineering
Dipl.Ing., Technische Hochschule, Aachen, 1956; Dr.Ing., 1962. Scientific Assistant, Department of Mechanics, Technische Hochschule, 1956-. California Institute 1962-63. (239 Keck) 258 South Hudson, Apt. 3.

Daniel Kwoh-i Ai, Ph.D., Research Fellow in Engineering
B.S., Swarthmore College, 1953; M.S., University of Wisconsin, 1954; M.S., Brown University, 1957; Ph.D., California Institute, 1961. Research Fellow, 1961-. (111 Karman) 96 North Catalina Avenue.

Keiiti Aki, Ph.D., Visiting Associate Professor of Geophysics
B.S., Tokyo University, 1952; Ph.D., 1958. Seismologist, Earthquake Research Institute, Tokyo University, 1957-. Research Fellow, California Institute, 1958-60; Visiting Associate Professor, 1962-63.

Arden Leroy Albee, Ph.D., Associate Professor of Geology
A.B., Harvard College, 1950; A.M., Harvard University, 1951; Ph.D., 1957. Visiting Assistant Professor, California Institute, 1959-60; Associate Professor, 1960-. (269 Arms) 1320 Hastings Ranch Drive.

Peter Alexander, Ph.D., Research Fellow in Physics
B.S., Massachusetts Institute of Technology, 1936; Ph.D., Purdue University, 1960. Research Associate, Purdue University, 1961-. California Institute, 1961-. (59 W. Bridge) 1002 Emerson Street.

Clarence Roderic Allen, Ph.D., Associate Professor of Geology
B.A., Reed College, 1949; M.Sc., California Institute, 1951; Ph.D., 1954. Assistant Professor, 1955-59; Associate Professor, 1959-. (351 Arms) 1160 Cordova Street, Apt. 8.

Gordon Albert Alles, Ph.D., Research Associate in Biology
B.S., California Institute, 1922; M.S., 1924; Ph.D., 1926. Research Associate, 1939-. 770 South Arroyo Parkway.

Alfred A. Ankrout, Ph.D., Research Fellow in Chemistry

A. V. Anantaraman, Ph.D., Research Fellow in Engineering

Carl David Anderson, Ph.D., Sc.D., L.L.D., Nobel Laureate, Professor of Physics; Acting Chairman, Division of Physics, Mathematics, and Astronomy
B.S., California Institute, 1927; Ph.D., 1930. Research Fellow, 1930-33; Assistant Professor, 1933-37; Associate Professor, 1937-39; Professor, 1939-. Acting Division Chairman 1962-. (111 E. Bridge) 2915 Lorain Road, San Marino.

Don Lynn Anderson, Ph.D., Research Fellow in Geophysics

Ernest Gustaf Anderson, Ph.D., Professor of Genetics, Emeritus
B.S., University of Nebraska, 1915; Ph.D., Cornell University, 1920. Associate Professor, California Institute, 1925-47; Professor, 1947-61; Professor Emeritus, 1961-. 1227 South Temple City Boulevard, Arcadia.

Dang Dinh Ang, Ph.D., Visiting Senior Research Fellow in Aeronautics
B.S., University of Kansas, 1955; Ph.D., California Institute, 1958. Professor of Mathematics, Saigon University 1960-. Research Fellow, California Institute, 1958-60; Visiting Senior Research Fellow, 1962.

Fred Colvig Anson, Ph.D., Associate Professor of Analytical Chemistry
B.S., California Institute, 1954; Ph.D., Harvard University, 1957. Instructor, California Institute, 1957-58; Assistant Professor, 1958-63; Associate Professor, 1962-. (125 Gates) 410 Churchill Road, Sierra Madre.
Tom M. Apostol, Ph.D., *Professor of Mathematics*
B.S., University of Washington, 1944; M.S., 1946; Ph.D., University of California, 1948. Assistant Professor, California Institute, 1950-56; Associate Professor, 1956-62; Professor, 1962-. (359 Sloan) 3705 Alzada Road, Altadena.

Harbans Lall Arora, Ph.D., *Research Fellow in Biology*
B.S., Panjab University, India, 1944; M.S., 1945; Ph.D., Stanford University, 1949. California Institute, 1957-. (319 Kerckhoff) 720 Magnolia Street.

Halton Christian Arp, Ph.D., *Staff Member, Mount Wilson and Palomar Observatories*
A.B., Harvard College, 1949; Ph.D., California Institute, 1953, Mt. Wilson Observatory, 1957-. (Mt. Wilson Office) 1034 Laguna Avenue, Los Angeles.

John Richard Atkins, A.M., *Instructor in Psychology and Anthropology*

Giuseppe Attardi, M.D., *Assistant Professor of Biology*
M.D., University of Padua, Italy, 1947. Research Fellow, California Institute, 1959-60; Assistant Professor, 1960-63.

Sherwin Parker Avann, Ph.D., *Senior Research Fellow in Mathematics*
B.S., University of Washington, 1938; M.S., California Institute, 1940; Ph.D., 1942. Associate Professor of Mathematics, University of Washington. California Institute, 1962-63.

Charles Dwight Babcock, Jr., Ph.D., *Research Fellow in Aeronautics*
B.S., Purdue University, 1957; M.S., California Institute, 1958; Ph.D., 1962. (212 Firestone) 8818 1/2 East Duarte Road, San Gabriel.

Horace Welcome Babcock, Ph.D., *Assistant Director, Mount Wilson and Palomar Observatories*
B.S., California Institute, 1934; Ph.D., University of California, 1938. Mt. Wilson Observatory, 1946-. (Mt. Wilson Office) 439 South Virginia Avenue.

Donald Ralph Babin, Ph.D., *Research Fellow in Chemistry*

Robert Fox Bacher, Ph.D., Sc.D., *Professor of Physics; Provost*
B.S., University of Michigan, 1926; Ph.D., 1930. Professor of Physics, California Institute, 1949-; Chairman, Division of Physics, Mathematics, and Astronomy; Director, Norman Bridge Laboratory of Physics, 1949-62; Provost, 1962-. 345 South Michigan Avenue.

Richard McLean Badger, Ph.D., *Professor of Chemistry*
B.S., California Institute, 1921; Ph.D., 1924. Research Fellow, 1924-28; International Research Fellow, 1928-29; Assistant Professor, 1929-38; Associate Professor, 1938-45; Professor, 1945- (15 Crellin) 1963 New York Drive, Altadena.

John Norris Bahcall, Ph.D., *Research Fellow in Physics*

Paul Raymond Baker, Ph.D., *Assistant Professor of History*
A.B., Stanford University, 1949; M.A., Columbia University, 1951; Ph.D., Harvard University, 1960. Instructor, California Institute 1960-62; Assistant Professor, 1962-. (14 Dabney) 598 South Oakland.

Bilandrai Baldev, Ph.D., *Research Fellow in Biology*

Charles Andrew Barnes, Ph.D., *Professor of Physics*
B.A., McMaster University, 1943; M.A., University of Toronto, 1944; Ph.D., Cambridge University, 1950. Research Fellow, California Institute, 1953-54; Senior Research Fellow, 1954-55; 1956-58; Associate Professor, 1959-62; Professor, 1962-.

Bodo Baschek, Ph.D., *Research Fellow in Astronomy*

Robert Erwin Bases, M.D., *Research Fellow in Biology*
B.A., Cornell University, 1951; M.D., New York University School of Medicine, 1955. California Institute, 1961- (655 Church) 483 Wickliffe Drive.

Claudio Basilico, Ph.D., *Research Fellow in Biology*

#Leaves of absence
Leave of absence, 1962-63.
40 Officers and Faculty

William Alvin Baum, Ph.D., Staff Member, Mount Wilson and Palomar Observatories

Henry Ernest Baumgarten, Ph.D., Visiting Associate in Chemistry
B.A., Rice Institute, 1943; M.A., 1944; Ph.D., 1948. Professor of Chemistry, University of Nebraska, 1958-. California Institute, 1962-63.

Klaus Bayreuther, Ph.D., Research Fellow in Biology
Ph.D., University of Wurzburg, 1955. Staff Member, Karolinska Institute, Stockholm, 1958-. California Institute, 1960-. (81 Alles) 1510 Oakdale Street.

Johan Gijsbertus Frederik Belinfante, Ph.D., Research Fellow in Physics
B.S., Purdue University, 1958; Ph.D., Princeton University, 1961. California Institute, 1961-62.

James Edgar Bell, Ph.D., Professor of Chemistry, Emeritus
B.S., University of Chicago, 1905; Ph.D., University of Illinois, 1913. California Institute, 1916-45; Professor Emeritus, 1955-. 1705 Sierra Madre Villa Avenue.

Victor Hugo Benioff, Ph.D., Professor of Seismology
A.B., Pomona College, 1921; Ph.D., California Institute, 1935. Assistant Professor, 1937; Associate Professor, 1937-50; Professor, 1950- (Seismological Lab.) 5534 Rock Castle Drive, La Cañada.

Avi Ben-Menahem, Ph.D., Research Fellow in Geophysics
M.S., Hebrew University, 1954; Ph.D., California Institute, 1961. Research Fellow, 1961-. (672 Arms) 535 South Oakland Avenue.

Jacques Berger, Ph.D., Research Fellow in Astronomy

George Bienkowski, Ph.D., Research Fellow in Aeronautics
B.S., M.S., Massachusetts Institute of Technology, 1959; Ph.D., 1962. California Institute, 1961-. (202 Guggenheim) 664 South Oak Knoll.

Margaret Chipchase Birnstiel, Ph.D., Research Fellow in Biology

Max Luciano Birnstiel, D.Sc., Research Fellow in Biology

Paul J. Blatz, Ph.D., Senior Research Fellow in Aeronautics
B.S., Fordham University, 1944; Ph.D., Princeton University, 1947. Research Fellow, California Institute, 1959-59; Senior Research Fellow, 1959- (Guggenheim) 156 West 7th Avenue, Claremont.

Richard Earl Block, Ph.D., Assistant Professor of Mathematics
A.B., University of Chicago, 1949; S.B., 1950; S.M., 1952; Ph.D., 1956. Bateman Research Fellow, California Institute, 1959-60; Assistant Professor, 1960-. (380 Sloan) 530 South Euclid Avenue.

Olaf Alexander Boedtker, Ph.D., Research Fellow in Engineering
Dipl. Engr., Federal Institute of Technology, Zurich, 1944; M.S., California Institute, 1958; Ph.D., 1961. Research Fellow, 1960-. (335 Keck) 767 Mountain View Road, Altadena.

Felix Hans Boehm, Ph.D., Professor of Physics
Dipl., Federal Institute of Technology, Zurich, 1948; Ph.D., 1951. Research Fellow, California Institute, 1953-55; Senior Research Fellow, 1955-56; Assistant Professor, 1956-59; Associate Professor, 1959-61; Professor, 1961-. (137 West Bridge) 2310 Altadena Drive, Altadena.

Jorrit de Boer, Ph.D., Research Fellow in Physics

Henri Frederic Bohnenblust, Ph.D., Professor of Mathematics; Dean of Graduate Studies
A.B., Federal Institute of Technology, Zurich, 1928; Ph.D., Princeton University, 1931. Professor, California Institute, 1946-. Dean of Graduate Studies, 1956-. (114 Throop; 288 Sloan) 1798 North Pepper Drive.

Aage Bohr, Ph.D., Visiting Associate in Physics
Ph.D., Institute for Theoretical Physics, Copenhagen, 1952. Professor of Physics, Institute for Theoretical Physics, 1956-. California Institute, 1962.

Lu Belle Boice, Ph.D., Research Fellow in Biology
Marcel Bolomet, Lecturer in French
Assistant Professor of French, University of Southern California, 1962-. California Institute, 1961; 1962. 1204 West 27th Street, Los Angeles 7.

James Frederic Bonner, Ph.D., Professor of Biology
A.B., University of Utah, 1931; Ph.D., California Institute, 1934. Research Assistant, 1935-36; Instructor, 1936-38; Assistant Professor, 1938-42; Associate Professor, 1942-46; Professor, 1946-. (128 Kerckhoff) 1740 Homest Road.

Henry Borsook, Ph.D., M.D. Professor of Biochemistry
Ph.D., University of Toronto, 1924; M.B., 1927; M.D., 1940. Assistant Professor, California Institute, 1929-35; Professor, 1935-. (226 Kerckhoff) 1121 Constance Street.

Arthur James Boucot, Ph.D., Associate Professor of Paleontology

Ira Sprague Bowen, Ph.D., Sc.D., Director, Mount Wilson and Palomar Observatories
A.B., Oberlin College, 1919; Ph.D., California Institute, 1926. Instructor, California Institute, 1921-28; Assistant Professor, 1926-28; Associate Professor, 1928-31; Professor, 1931-45; Mt. Wilson Observatory, 1946-. (Mt. Wilson Office) 2388 North Altadena Drive, Altadena.

Paul Bowerman, A.M., Associate Professor of Modern Languages
A.B.; Dartmouth College, 1920; A.M., University of Michigan, 1936. Instructor, California Institute 1945-48; Assistant Professor, 1945-47; Associate Professor, 1947-. (9 Dabney) 707 Auburn Avenue, Sierra Madre.

Jerald Sherwin Bradshaw, Ph.D., Research Fellow in Chemistry

David John Braverman, Ph.D., Assistant Professor of Electrical Engineering
B.S., University of California (Los Angeles), 1956; M.S., 1958; Ph.D., Stanford University, 1961. California Institute, 1961-. (327 Spalding) 736 East Palm Street, Altadena.

Melvin David Brockie, Ph.D., Associate Professor of Economics
B.A., University of California (Los Angeles), 1942; M.A., 1944; Ph.D., 1948. Instructor, California Institute, 1947-49; Assistant Professor, 1949-53; Associate Professor, 1953-. (10 Dabney) 1730 North Roosevelt Avenue, Altadena.

Charles Jacob Brokaw, Ph.D., Assistant Professor of Biology
B.S., California Institute, 1955; Ph.D., Cambridge University, 1958. Visiting Assistant Professor, California Institute, 1960; Assistant Professor, 1962-. (07 Kerckhoff) 270 South Greenwood Avenue.

Norman Herrick Brooks, Ph.D., Professor of Civil Engineering
A.B., Harvard College, 1949; M.S., Harvard University, 1950; Ph.D., California Institute, 1954. Instructor, 1953-54; Assistant Professor, 1954-58; Associate Professor, 1958-62. Professor, 1962-. (10 Dabney) 5G4 South Marengo Avenue, La Cañada.

Harrison Scott Brown, Ph.D., LL.D., Professor of Geochemistry
B.S., University of California, 1938; Ph.D., Johns Hopkins University, 1941; LL.D., University of Alberta, 1960. California Institute, 1951-. (016 Mudd) 5153 Stoneglenn Road, La Cañada.

Edwin Raphael Buchman, Dr.Phil.Nat., Research Associate in Organic Chemistry
Ch.E., Rensselaer Polytechnic Institute, 1922; S.M., Massachusetts Institute of Technology, 1925; Dr.Phil.Nat., University of Frankfurt, 1933. Research Fellow, California Institute, 1937-38; Research Associate, 1938-. (254 Crelina) 446 Devonwood Drive, Altadena.

Francis Stephan Buffington, Sc.D., Associate Professor of Mechanical Engineering
S.B., Massachusetts Institute of Technology, 1938; Sc.D., 1951, Assistant Professor, California Institute, 1951-56; Associate Professor, 1956-. (309 Keck) 1644 Kaweah Drive.

Charles E. Bures, Ph.D., Associate Professor of Philosophy
B.A., Grinnell College, 1933; M.A., University of Iowa, 1936; Ph.D., 1938. Assistant Professor, California Institute, 1949-53; Associate Professor, 1953-. (2 Dabney) 564 South Marengo Avenue.

Hans Joachim Burkhardt, Ph.D., Research Fellow in Biology
Ph.D., University of Tubingen, 1957. California Institute, 1959-. (217 Kerckhoff) 2804 High View, Altadena.

Alice Jean Burton, Ph.D., Research Fellow in Biology

Dan Hampton Campbell, Ph.D., Sc.D., Professor of Immunochemistry
A.B., Wabash College, 1930; M.S., Washington University, 1932; Ph.D., University of Chicago, 1936; Sc.D., Wabash College, 1960. Assistant Professor, California Institute, 1942-45; Associate Professor, 1945-50; Professor, 1950-. (131 Crelina) 1154 Mount Lowe Drive, Altadena.

Ian Campbell, Ph.D., *Research Associate in Geology*
A.B., University of Oregon, 1925; A.M., 1924; Ph.D., Harvard University, 1931. Assistant Professor, California Institute, 1931-35; Associate Professor, 1935-46; Professor, 1946-60; Research Associate, 1960-.

Enrique Jose Alvarez Carregal, Ph.D., *Research Fellow in Biology*
M.D., University of Santiago, Spain, 1954; Ph.D., 1960. Research Associate, Huntington Memorial Hospital, 1960-. California Institute, 1962-63. (336 Kerckhoff) 640 Prospect Street, South Pasadena.

Edward A. Carusi, Ph.D., *Instructor in Biology*

Marjorie Constance Caserio, Ph.D., *Research Associate in Geology*
Research Fellow, California Institute, 1956-59; Senior Research Fellow, 1959-. (358 Crellin) 370 Cherry Drive.

John Francis Catchpool, M.B., *Research Fellow in Chemistry*
B.Sc., Chelsea Polytechnic, University of London, 1950; M.A., Bryn Mawr, 1951; Ph.D., 1956. Research Fellow, California Institute, 1956-59; Senior Research Fellow, 1959-. (373 Corson) 370 Cherry Drive.

Thomas Kirk Caughey, Ph.D., *Professor of Applied Mechanics*
B.S., Glasgow University, 1948; M.M.E., Cornell University, 1952; Ph.D., California Institute, 1954. Instructor, 1953-54; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-. (319 Thomas) 1938 Rose Villa Street.

Georganne R. Caughlan, M.S., *Research Fellow in Physics*

Gulbank Donald Chakerian, Ph.D., *Instructor in Mathematics*
A.B., University of California, 1955; Ph.D., 1960. California Institute, 1960-. (219 Church) 615 East California Boulevard.

I-Dee Chang, Ph.D., *Visiting Associate in Engineering*
B.S., National Central University, China, 1944; M.S., Kansas State College, 1955; Ph.D., California Institute, 1959. Instructor, 1953-54; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-. (319 Thomas) 1938 Rose Villa Street.

Hung Cheng, Ph.D., *Research Fellow in Theoretical Physics*
B.S., California Institute, 1959; Ph.D., 1962. Research Fellow, 1961-. (361 West Bridge) 380 North Oakland Avenue.

Robert Frederick Christy, Ph.D., *Professor of Theoretical Physics*
B.A., University of British Columbia, 1935; Ph.D., University of California, 1941. Associate Professor, California Institute, 1946-50; Professor, 1950-. (164 Thomas) 2810 Vista Street.

Donald Sherman Clark, Ph.D., *Professor of Mechanical Engineering; Director of Placements*
B.S., California Institute, 1929; M.S., 1930; Ph.D., 1934. Instructor, California Institute, 1934-37; Assistant Professor, 1937-45; Associate Professor, 1945-51; Professor, 1951-. (120 Throop) 665 Canterbury Road, San Marino.

J. Kent Clark, Ph.D., *Professor of English*
A.B., Brigham Young University, 1939; Ph.D., Stanford University, 1950. Instructor, California Institute, 1947-50; Assistant Professor, 1950-54; Associate Professor, 1954-60; Professor, 1960-. (303 Dabney) 475 Fillmore Street.

Donald Delbert Clayton, Ph.D., *Research Fellow in Physics*
B.S., Southern Methodist University, 1956; M.S., California Institute, 1959; Ph.D., 1962. Research Fellow, 1961-. (3 Kellogg) 749 Lakewood Place.

Emanuel Richard Cohen, Ph.D., *Senior Lecturer in Engineering*

Julian David Cole, Ph.D., *Professor of Aeronautics*
B.M.E., Cornell University, 1944; M.S. (AE) California Institute, 1946; Ph.D., 1949. Research Fellow, 1949-51; Assistant Professor, 1951-55; Associate Professor, 1955-59; Professor, 1959-.

Donald Earl Coles, Ph.D., *Associate Professor of Aeronautics*
B.S., University of Minnesota, 1947; M.S., California Institute, 1948; Ph.D., 1953. Research Fellow, 1953-55; Senior Research Fellow, 1955-56; Assistant Professor, 1956-59; Associate Professor, 1959-. (306 Karman) 1033 Alta Fine Drive, Altadena.

Robert I. Conhaim, M.A., *Instructor in History*

Frederick James Converse, B.S., Professor of Soil Mechanics, Emeritus
B.S., University of Rochester, 1914. Instructor, California Institute, 1921-33; Assistant Professor, 1933-39; Associate Professor, 1939-47; Professor, 1947-62; Professor Emeritus, 1962-. (107 Thomas) 1416 Wemley Road, San Marino.

William Harrison Corcoran, Ph.D., Professor of Chemical Engineering
B.S., California Institute, 1941; M.S., 1942; Ph.D., 1948, Associate Professor, 1952-57; Professor, 1957-. (215 Spalding) 8335 Longden Avenue, San Gabriel.

Robert Brainard Corey, Ph.D., Professor of Structural Chemistry
B.Chem., University of Pittsburgh, 1919; Ph.D., Cornell University, 1924. Senior Research Fellow, California Institute, 1937-46; Research Associate, 1946-49; Professor, 1949-, (215 Church) 352 South Parkwood Avenue.

John M. Cornwall, Ph.D., Research Fellow in Chemistry

Dwaine O. Cowan, Ph.D., Research Fellow in Chemistry

Eugene Woodville Cowan, Ph.D., Professor of Physics
B.S., University of Missouri, 1941; M.S., Massachusetts Institute of Technology, 1943; Ph.D., California Institute, 1948. Research Fellow, 1948-50; Assistant Professor, 1950-54; Associate Professor, 1954-61; Professor, 1961-. (354 West Bridge) 2215 Monte Vista Street.

Charles Edwin Crede, Associate Professor of Mathematics
B.S., University of Missouri, 1941; M.S., Massachusetts Institute of Technology, 1943; Ph.D., California Institute, 1948. Research Fellow, 1948-50; Assistant Professor, 1950-54; Associate Professor, 1954-61; Professor, 1961-. (354 West Bridge) 2215 Monte Vista Street.

Frederick James Converse, Ph.D., Professor of Structural Chemistry
B.Chem., University of Pittsburgh, 1919; Ph.D., Cornell University, 1924. Senior Research Fellow, California Institute, 1937-46; Research Associate, 1946-49; Professor, 1949-, (215 Church) 352 South Parkwood Avenue.

John M. Cornwall, Ph.D., Research Fellow in Chemistry
Robert Francis Deery, Ph.D., Research Fellow in Physics

Egon Theodor Degens, Ph.D., Assistant Professor of Geology
Ph.D., Bonn University, 1955; Habilitation, University of Wurzburg, 1959. Research Fellow, California Institute, 1958; Assistant Professor, 1960-. (218 Mudd) 3688 North Fair Oaks, Altadena.

Max Delbruck, Ph.D., Professor of Biology
Ph.D., University of Göttingen, 1931. California Institute, 1947-.

Anthony Demetriades, Ph.D., Senior Research Fellow in Aeronautics
B.A., Colgate University, 1951; Ph.D., California Institute, 1958. Research Fellow, 1958-60. Senior Research Fellow, 1960-. (105 Firestone) 2046 Oakwood Street, Altadena.

Charles Raymond DePrima, Ph.D., Professor of Applied Mechanics
B.A., New York University, 1940; Ph.D., 1954; Assistant Professor, California Institute, 1946-51; Associate Professor, 1951-56; Professor, 1956-.

Armin Joseph Deutsch, Ph.D., Staff Member, Mount Wilson and Palomar Observatories
B.S., University of Arizona, 1940; Ph.D., University of Chicago, 1946. Mt. Wilson and Palomar Observatories, 1951-. (Mt. Wilson Office) 625 Coleman, Altadena.

Robert Palmer Dilworth, Ph.D., Professor of Mathematics
B.S., California Institute, 1936; Ph.D., 1939. Assistant Professor, California Institute, 1943-45; Associate Professor, 1945-51; Professor, 1951-. (286 Sloan). 1748 North Grand Oaks, Altadena.

Charles Hewitt Dix, Ph.D., Professor of Geophysics
B.S., California Institute, 1927; A.M., Rice Institute, 1928; Ph.D., 1931. Associate Professor, California Institute, 1948-54; Professor, 1954-. (315 Mudd) 1506 Ramona Avenue, South Pasadena.

John D. Dixon, Ph.D., Instructor in Mathematics

George W. Downs, Associate in Engineering
President, Research Instrument Corporation, 1948-. California Institute, 1962-. (Thomas Lab) 1970 Windover Road.

Henry Dreyfuss, Associate in Industrial Design
California Institute, 1947-. 500 Columbia Street, South Pasadena.

Lee Alvin DuBridge, Ph.D., Sc.D., LL.D.
(See page 38.)

Renato Dubeczko, M.D., Professor of Biology
M.D., University of Torino, 1936; Senior Research Fellow, California Institute, 1949-52; Associate Professor, 1952-54; Professor, 1954-. (055 Church) 1800 State Street, South Pasadena.

Jesse William Monroe DuMond, Ph.D., Professor of Physics
B.S., California Institute, 1916; M.E. (E.E.), Union College, 1918; Ph.D., California Institute, 1929. Research Associate, California Institute, 1931-38; Associate Professor, 1938-46; Professor, 1946-. (163 W. Bridge) 550 South Greenwood Avenue.

Pol Duwez, D.Sc., Professor of Mechanical Engineering
Metallurgical Engineer, School of Mines, Mons, Belgium, 1932; D.Sc., University of Brussels, 1933, Research Engineer, California Institute, 1942-47; Associate Professor, 1947-52; Professor, 1952-. (305 Keck) 1535 Oakdale Street.

Harvey Eagleson, Ph.D., Professor of English
B.A., Reed College, 1920; M.A., Stanford University, 1922; Ph.D., Princeton University, 1928. Assistant Professor, California Institute, 1925-38; Associate Professor, 1938-47; Professor, 1947-. (305 Dubrey) 1768 Fair Oaks Avenue, South Pasadena.

Paul Conant Eaton, A.M., Associate Professor of English; Dean of Students
S.B., Massachusetts Institute of Technology, 1927; A.M., Harvard University, 1930, Visiting Lecturer in English, California Institute, 1946; Associate Professor, 1947-; Dean of Students, 1952-. (115 Throop) 700 Cornell Road.

Robert Stuart Edgar, Ph.D., Assistant Professor of Biology
B.Sc., McGill University, 1953; Ph.D., University of Rochester, 1957. Research Fellow, California Institute, 1957; 1958-60; Assistant Professor 1960-. (82 Allis) 2255 East Oakwood.

Officers and Faculty 45

Peter Derek Edmonds, Ph.D., Research Fellow in Chemical Engineering

Olin Jeuck Eggen, Ph.D., Professor of Astronomy; Staff Member, Mount Wilson and Palomar Observatories
B.A., University of Wisconsin, 1940; Ph.D., 1948. California Institute, 1961-. (211 Robinson) 551 South Hill Avenue.

Jorg Eichler, Ph.D., Research Fellow in Physics

Edward M. Eisenstein, Ph.D., Research Fellow in Biology

Heinz E. Ellersieck, Ph.D., Associate Professor of History
A.B., University of California (Los Angeles), 1942; M.A., 1948; Ph.D., 1955. Instructor, California Institute, 1950-55; Assistant Professor, 1955-60; Associate Professor, 1960-. (13 Dabney) 3175 Del Vina Street.

David Clephan Elliot, Ph.D., Professor of History
M.A., St. Andrew's University, 1939; A.M., Harvard University, 1948; Ph.D., 1951. Assistant Professor, California Institute, 1950-53; Associate Professor, 1953-60; Professor, 1960-. (4 Dabney) 770 Arden Road.

Albert Tromley Ellis, Ph.D., Associate Professor of Applied Mechanics
B.S., California Institute, 1943; M.S., 1947; Ph.D., 1953. Senior Research Fellow, 1954-57; Associate Professor, 1958-. (103 Thomas) 1425 Lombardy Road.

Sterling Emerson, Ph.D., Professor of Genetics
B.Sc., Cornell University, 1922; M.A., University of Michigan, 1924; Ph.D., 1928. Assistant Professor of Genetics, California Institute, 1928-37; Associate Professor, 1937-46; Professor, 1946-. (200 Kerckhoff) 1207 Morada Place, Altadena.

Warren G. Emery, M.S., Coach
B.S., University of Nebraska, 1948; M.S., University of California (Los Angeles), 1959. California Institute, 1955-. (Gymnasium) 426 North Oakland, Apt. 7.

Paul Sophus Epstein, Ph.D., Professor of Theoretical Physics, Emeritus
B.Sc., Moscow University, 1906; M.Sc., 1909; Ph.D., University of Munich, 1914. Professor, California Institute, 1921-53; Professor Emeritus, 1953-. (109 E. Bridge) 1484 Oakdale Street.

Samuel Epstein, Ph.D., Professor of Geochemistry
B.Sc., University of Manitoba, 1941; M.Sc., 1942; Ph.D., McGill University, 1944. Research Fellow, California Institute, 1952-53; Senior Research Fellow, 1953-54; Associate Professor, 1954-59; Professor, 1959-. (616 Mudd) 1175 Daverio Drive.

Arthur Erdélyi, D.Sc., Professor of Mathematics
Cand. Ing., Deutsche Technische Hochschule, Brno, Czechoslovakia, 1928; Dr. rer. nat., University of Prague, 1938; D.Sc., University of Edinburgh, 1940. California Institute, 1947-. (278 Sloan) 2121 Lambert Drive.

Frank Behle Estabrook,** Ph.D., Lecturer in Physics
B.A., Miami University (Ohio), 1943; M.S., California Institute, 1947; Ph.D., 1950. Section Chief, Physics, Jet Propulsion Laboratory, 1950-. California Institute, 1962-63, 853 Lyndon Avenue, South Pasadena.

Peter Ward Fay, Ph.D., Associate Professor of History
B.A., Harvard University, 1947; B.A., Oxford University, 1949; Ph.D., Harvard University, 1954. Assistant Professor, California Institute, 1955-60; Associate Professor, 1960-. (11 Dabney) 400 Churchill Road, Sierra Madre.

Derek Henry Fender, Ph.D., Associate Professor of Biology and Electrical Engineering
B.Sc., Reading University, 1939; B.Sc., (Sp.), 1946; Ph.D., 1956. Senior Research Fellow in Engineering, California Institute, 1961-62; Associate Professor, 1962-. (15 Keck) 1631 North Allen Avenue, Apt. 24, Altadena.

Charles K. Ferguson,** Ed.D., Lecturer in Psychology

John Hans Fessler, Ph.D., Senior Research Fellow in Biology

**Part-time
Richard Phillips Feynman, Ph.D., Richard Chace Tolman Professor of Theoretical Physics
B.S., Massachusetts Institute of Technology, 1939; Ph.D., Princeton University, 1942. Visiting Professor, California Institute, 1950. Professor, 1950-59; Tolman Professor, 1959-. (103 Bridge) 2475 Boulder Road, Altadena.

Marguerite Fling, Ph.D., Research Fellow in Biology
A.B., Hunter College, 1941; Ph.D., Iowa State College, 1946. California Institute, 1946-. (220 Kerckhoff) 1148 Constance Street.

William Alfred Fowler, Ph.D., Professor of Physics
B.Eng., Physics, Ohio State University, 1933; Ph.D., California Institute, 1936. Research Fellow, California Institute, 1936-39; Assistant Professor, 1939-42; Associate Professor, 1942-46; Professor, 1946-. (101 Kellogg) 1565 San Pasqual Street.

John Richard Fox, Ph.D., Research Fellow in Chemistry

Joel N. Franklin, Ph.D., Associate Professor of Applied Mechanics
B.S., Stanford University, 1950; Ph.D., 1953. California Institute, 1957-. (121 Spalding) 1765 Hornet Road.

Wallace Goodman Frasher, Jr., M.D., Research Fellow in Engineering
A.B., University of Southern California, 1941; M.D., 1951. Senior Research Fellow, National Institutes of Health, 1960-. California Institute, 1961-. (327 Thomas) 1909 South Huntington Drive, South Pasadena.

Steven Clark Frautschi, Ph.D., Assistant Professor of Theoretical Physics
B.S., Harvard College, 1955; Ph.D., Stanford University, 1958; California Institute, 1962-.

Laura Brilliantine Frlan, Ph.D., Research Fellow in Biology
A.B., West Virginia University, 1940; M.S., 1941; Ph.D., University of Southern California, 1949. Associate Professor of Bacteriology, Immaculate Heart College, 1957-. California Institute, 1962.

Albrecht Frohlich, Ph.D., Senior Research Fellow in Mathematics

Albert Joseph Fry, Ph.D., Research Fellow in Chemistry

Francis Brock Fuller, Ph.D., Associate Professor of Mathematics
A.B., Princeton University, 1949; M.A., 1950; Ph.D., 1952. Research Fellow, California Institute, 1952-55; Assistant Professor, 1955-59; Associate Professor, 1959-. (256 Sloan) 1959 Meadowbrook Road, Altadena.

Yuan-Cheng Fung, Ph.D., Professor of Aeronautics
B.S., National Central University, 1941; M.S., 1948; Ph.D., California Institute, 1948. Research Fellow, 1948-51. Assistant Professor, 1951-55; Associate Professor, 1955-59; Professor, 1959-. (207 Firestone) 3558 Thormdale Road.

Adriano Mario Garsia, Ph.D., Associate Professor of Mathematics
Ph.D., Stanford University, 1957. Research Fellow, California Institute, 1961-62; Associate Professor, 1962-. (1747 Church) 521 West Loma Alta, Altadena.

Justine Spring Garvey, Ph.D., Senior Research Fellow in Chemistry
B.S., Ohio State University, 1944; M.S., 1948; Ph.D., 1950. Research Fellow, California Institute, 1951-57; Senior Research Fellow, 1957-. (319 Church) 698 Arden Road.

Peter Paul Gaspar, Ph.D., Research Fellow in Chemistry
B.S., California Institute, 1957; M.S., Yale University, 1958; Ph.D., 1961. Research Fellow, California Institute, 1962-63. (251-C Crellin) 240 South Oakhurst Drive, Beverly Hills.

Murray Gell-Mann, Ph.D., Professor of Theoretical Physics
B.S., Yale University, 1948; Ph.D., Massachusetts Institute of Technology, 1950. Associate Professor, California Institute, 1955-56; Professor, 1956-. (162 Sloan) 3637 Canyon Crest Road, Altadena.

Nicholas George, Ph.D., Associate Professor of Electrical Engineering
B.S., University of California, 1949; M.S., University of Maryland, 1956; Ph.D., California Institute, 1959. Visiting Associate Professor, 1959-60; Associate Professor, 1960-. (333 Spalding) 255 South Oakland Avenue.

Horace Nathaniel Gilbert, M.B.A., Professor of Business Economics
A.B., University of Washington, 1923; M.B.A., Harvard University, 1926. Assistant Professor of Business Economics, California Institute, 1929-30; Associate Professor, 1930-47; Professor, 1947-. (104 Dabney) 1815 Orlando Road, San Marino.
Raymond Victor Gilden, Ph.D., Research Fellow in Biology

Alexander Goetz, Ph.D., Associate Professor of Physics
Ph.D., University of Göttingen, 1921; Habilitation, 1928. California Institute, 1930-. (363 West Bridge) 1317 Boston Street, Altadena.

Gvirol Goldring, Ph.D., Senior Research Fellow in Physics
M.Sc., Hebrew University of Jerusalem, Israel, 1949; Ph.D., Imperial College of Science and Technology, London, 1953. Associate Professor of Physics, Weizmann Institute, 1959-. California Institute, 1962-63.

Solomon Wolf Golomb, Ph.D., Research Fellow in Electrical Engineering
A.B., Johns Hopkins University, 1952; M.A., Harvard University, 1953; Ph.D., 1957. Assistant Section Chief, Communications Systems Research Section, Jet Propulsion Laboratory, 1960-61; Lecturer, California Institute, 1961-62; Research Fellow, 1961-62. 5354 Linda Vista Drive, La Cañada.

Ricardo Gomez, Ph.D., Senior Research Fellow in Physics
B.S., Massachusetts Institute of Technology, 1953; Ph.D., 1956. Research Fellow, California Institute, 1956-59; Senior Research Fellow, 1959-61; Senior Research Fellow, 1960-62; Professor, 1962-. (176 Sloan) 3191 Glenrose Avenue, Altadena.

Roy Walter Gould, Ph.D., Professor of Electrical Engineering and Physics
B.S., California Institute, 1949; M.S., Stanford University, 1950; Ph.D., California Institute, 1956. Assistant Professor of Electrical Engineering, 1955-58; Associate Professor, 1958-60; Associate Professor of Electrical Engineering and Physics, 1960-62; Professor, 1962-. (325 Spalding) 808 Linda Vista Avenue.

Robert Davis Gray, B.S., Professor of Economics and Industrial Relations; Director of Industrial Relations Center
B.S., Wharton School of Finance and Commerce, University of Pennsylvania, 1930. Associate Professor, California Institute, 1940-42; Professor, 1942-. (Calbertson Basement) 2486 Morsley Road, Altadena.

Jesse Leonard Greenstein, Ph.D., Professor of Astrophysics; Staff Member, Mount Wilson and Palomar Observatories
A.B., Harvard University, 1929; A.M., 1930; Ph.D., 1937. Associate Professor, California Institute, 1948-49; Professor, 1949-. (215 Robinson) 2057 San Pasqual Street.

Thomas Lynn Grettenberg, Ph.D., Assistant Professor of Electrical Engineering

George M. Griffiths, Ph.D., Senior Research Fellow in Physics
B.Sc., University of Toronto, 1949; M.A., University of British Columbia, 1950; Ph.D., 1953. Associate Professor of Physics, University of British Columbia, 1959-. California Institute, 1962-63.

Donald Eugene Gwynn, Ph.D., Research Fellow in Chemistry

Arie Jan Haagen-Smit, Ph.D., Professor of Bio-organic Chemistry
A.B., University of Utrecht, 1922; A.M., 1926; Ph.D., 1929. Associate Professor, California Institute, 1937-40; Professor, 1940-. (118 Kerckhoff) 418 South Berkeley Avenue.

Donald Wayne Halford, Ph.D., Research Fellow in Chemistry

Marshall Hall, Jr., Ph.D., Professor of Mathematics
B.A., Yale University, 1932; Ph.D., 1936, California Institute, 1959-. (386 Sloan) 1695 East Loma Alta, Altadena.

William James Halliday, Ph.D., Research Fellow in Chemistry
B.S., University of Melbourne, 1948; Ph.D., University of Wisconsin, 1955. Senior Lecturer, University of Queensland, 1958-. California Institute, 1963-64.

James Daniel Halpern, Ph.D., Bateman Research Fellow in Mathematics
A.B., University of Michigan, 1955; M.S., 1956; Ph.D., University of California, 1962. California Institute, 1962-63. (Sloan) 728 West Mount View Street, Altadena.

*Part-time
George Simms Hammond, Ph.D., Professor of Organic Chemistry
B.S., Bates College, 1943; M.S., 1944; Ph.D., Harvard University, 1947. Research Associate, California Institute, 1956-57; Professor, 1958-.(254 Crelin) 1521 East Mountain Street.

Peter Edgar Hare, Ph.D., Research Fellow in Geochronology

Donald Robert Ferguson Harleman, Sc.D., Visiting Associate Professor of Hydraulics

Ludwig Hartmann, Ph.D., Research Fellow in Environmental Health Engineering

Peter Hauk, Ph.D., Research Fellow in Chemistry

Erich Heftmann, Ph.D., Research Fellow in Biology

Henry Hellmers, Ph.D., Senior Research Fellow in Biology
B.S., University of Pennsylvania, 1937; M.S., 1939, Ph.D., University of California, 1950. Research Fellow, California Institute, 1951-55; Senior Research Fellow, 1955-. (130 Kerckhoff) 3700 Shadow Grove Road.

Robert Willis Hellworth, Ph.D., Lecturer in Physics
B.Sc., Princeton University, 1952; Ph.D., Oxford University, 1955. Staff Member, Research Laboratories, Hughes Aircraft Corporation, 1955-. Research Fellow, California Institute, 1955-56; Lecturer, 1957-. (Kellogg) 522 Avendale, Santa Monica.

Mary Catherine Henry, Ph.D., Research Fellow in Biology

Harry R. Highkin, Ph.D., Research Fellow in Biology
B.S., University of Connecticut, 1944; M.S., University of Minnesota, 1946; Ph.D., 1951. California Institute, 1952-. (Earhart).

Alvin F. Hildebrandt, Ph.D., Senior Research Fellow in Chemistry
B.S., University of Houston, 1949; Ph.D., Texas A and M College, 1956. Research Specialist, Jet Propulsion Laboratory, 1959-. California Institute, 1960-. (62 Crelin) 2363 Mountain Avenue, La Crescenta.

Stanley Hinds, Ph.D., Research Fellow in Physics

Hans Bernhard Hirt, Ph.D., Research Fellow in Geochemistry

Alan John Hodge, Ph.D., Professor of Biology
B.Sc., University of Western Australia, 1946; Ph.D., Massachusetts Institute of Technology, 1952. California Institute, 1960-. (090 Alles) 1488 Oakdale Street.

Aladar Hollander, M.E., Professor of Mechanical Engineering, Emeritus
M.E., Joseph Royal University, Budapest, 1904. Professor, California Institute, 1944-51; Professor Emeritus, 1951-. (129 Keck) 2385 Hill Drive, Los Angeles.

John Robert Holom, Ph.D., Visiting Associate in Chemistry
B.A., St. Olaf College, 1950; Ph.D., University of Minnesota, 1954. Associate Professor of Chemistry, Augsburg College, Minneapolis, 1959-. California Institute, 1962-63.

Donald Frederick Horning, Visiting Professor of Chemistry
B.S., Harvard College, 1940; Ph.D., Harvard University, 1943. Professor; Department Chairman, Chemistry, Princeton University, 1938-. California Institute, 1962.

Norman Harold Horowitz, Ph.D., Professor of Biology
B.S., University of Pittsburgh, 1936; Ph.D., California Institute, 1939. Research Fellow, California Institute, 1940-42; Senior Research Fellow, 1946; Associate Professor, 1947-53; Professor, 1953-. (218 Kerckhoff) 2495 Brigden Road,

**Part-time
George William Housner, Ph.D., Professor of Civil Engineering and Applied Mechanics
B.S., University of Michigan, 1933; M.S., California Institute, 1934; Ph.D., 1941. Assistant Professor, 1945-49; Associate Professor, 1949-53; Professor, 1953-. (233 Thomas) 4084 Chevy Chase Drive.

H. Max Houtchens, Ph.D., Research Fellow in Biology
B.S., University of Idaho, 1932; M.S., University of Iowa, 1935; Ph.D., 1937. Chief, Psychology Division, Department of Medicine and Surgery, Veterans Administration, Washington, D.C., 1956-. California Institute, 1962.

Robert Franklin Howard, Ph.D., Staff Member, Mount Wilson and Palomar Observatories

Din-Yu Hsieh, Ph.D., Research Fellow in Applied Mechanics
B.S., National Taiwan University, Taiwan, 1954; M.Sc., Brown University, 1957; Ph.D., California Institute, 1960. Research Fellow, 1960-. (019 Thomas) 555 North El Molino Avenue.

Pien-Chien Huang, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, Taiwan, 1953; M.S., Virginia Polytechnic Institute, 1956; Ph.D., The Ohio State University, 1959. California Institute, 1960-. (202 Kerckhoff) 332 South Michigan Avenue.

Ru-Chih Chow Huang, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, Taiwan, 1954; M.S., Virginia Polytechnic Institute, 1956; Ph.D., The Ohio State University, 1959. California Institute, 1960-. (013 Kerckhoff) 332 South Michigan Avenue.

Donald Ellis Hudson, Ph.D., Professor of Mechanical Engineering
B.S., California Institute, 1958; M.S., 1939; Ph.D., 1942. Instructor, 1941-43; Assistant Professor, 1943-49; Associate Professor, 1949-55; Professor, 1955-. (323 Thomas) 1988 Skyview Drive, Altadena.

John Arthur Hudson, Ph.D., Research Fellow in Geophysics

Edward Wesley Hughes, Ph.D., Research Associate in Chemistry
B.Chem., Cornell University, 1924; Ph.D., 1935. Research Fellow, California Institute, 1938-43; Senior Research Fellow, 1945-48; Research Associate, 1946-. (190 Crellin) 1552 Rose Villa Street.

Chester D. Hull, Ph.D., Research Fellow in Biology
B.A., University of California (Los Angeles), 1952; Ph.D., 1956. Staff Member, Psychology Department, Long Beach State College, 1956-. California Institute, 1962-63. (324 Kerckhoff) 281 Park Avenue, Long Beach.

Floyd Bernard Humphrey, Ph.D. Senior Research Fellow in Electrical Engineering
B.S., California Institute, 1950; Ph.D., 1956. Supervisor, Guidance and Control Research Section, Jet Propulsion Laboratory, 1960-. California Institute, 1960-. (Spalding) 1001 Burnell Oaks Lane, Arcadia.

Edward Hutchings, Jr., B.A., Lecturer in Journalism, Editor of Engineering and Science
B.A., Dartmouth College, 1933. Editor of Engineering and Science Monthly, California Institute, 1948-. Lecturer, 1952-. (2 Throop) 2396 Highland Avenue, Altadena.

Robert A. Huttenback, Ph.D., Assistant Professor of History; Master of Student Houses
B.A., University of California (Los Angeles), 1951; Ph.D., 1959. Master of Student Houses; Lecturer in History, California Institute, 1956-60; Assistant Professor, 1960-. 1245 Arden Road.

Beal Baker Hyde, Ph.D., Research Fellow in Biology
Ph.D., Harvard University, 1952. Assistant Professor of Plant Science, University of Oklahoma, 1954-. California Institute, 1961-. (017 Kerckhoff) 461 South Sierra Bonita Avenue.

Icko Iben, Jr., Ph.D., Senior Research Fellow in Physics

Kazuo Ikeda, Ph.D., Research Fellow in Biology
Ph.D., University of Tokyo, 1957. Associate Professor, Juntendo University, 1960-. California Institute, 1962-63.

The Rev. Richard E. Ingram, S.J., Ph.D., Research Fellow in Seismology

Makoto Isida, D.E., Senior Research Fellow in Aeronautics

B.E., University of Tokyo, 1943; D.E., Kyushu University, 1960. Chief, Structural Research Section, Airframe Division, National Aeronautical Laboratory, Tokyo, 1958-. California Institute, 1962.

Karl Richard Johansson, Ph.D., Associate Professor of Environmental Health Engineering

Brian M. Johnstone, Ph.D., Research Fellow in Biology

Derek Hugh Powell Jones, B.Sc., Research Fellow in Astronomy

B.A., Cambridge University, 1958; B.Sc., London University, 1960. Scientific Officer, Royal Greenwich Observatory, 1958-. California Institute, 1961-. (212 Robinson) 351 South Euclid Avenue.

Louis Winchester Jones, A.B., Associate Professor of English; Dean of Admissions; Director of Undergraduate Scholarships

B.S., Princeton University, 1922. Instructor, California Institute, 1925-37; Assistant Professor, 1937-43; Associate Professor, 1943-; Dean of Admissions, 1937-. (112 Throop) 361 California Terrace.

Albert Kahn, Ph.D., Research Fellow in Biology

Thomas Kallath,** Sc.D., Lecturer in Electrical Engineering

Alfred Husayne Kalantar, Ph.D., Research Fellow in Chemistry

Walter Barclay Kamb, Ph.D., Professor of Geology

B.S., California Institute, 1952; Ph.D., 1956. Assistant Professor, 1959-60; Associate Professor, 1960-62; Professor, 1962-. (310 Mudd) 3500 Fairpoint Street.

Egbert Kankeleit, Ph.D., Research Fellow in Physics

Ph.D., Institute of Technology, Munich, 1960. Research Associate, Department of Physics, Institute of Technology, 1960-. California Institute, 1962-63. (360 West Bridge) 725 Ocean Avenue, Santa Monica.

Saul Kaplun, Ph.D., Senior Research Fellow in Aeronautics

B.S., California Institute, 1948; M.S., 1950; Ae.E., 1951; Ph.D., 1954. Research Fellow, 1954-57; Senior Research Fellow, 1957-. (313 Firestone) 200 South Catalina Avenue.

Theodore von Kármán, Ph.D., Dr.Ing., Sc.D., LL.D., Eng.D., Professor of Aeronautics, Emeritus

M.E., Budapest, 1902; Ph.D., University of Göttingen, 1908, California Institute, 1928-49; Professor Emeritus, 1949-. (2 Kellogg) 1501 South Marengo Avenue.

Ralph William Kavanagh, Jr., Ph.D., Assistant Professor of Physics

B.A., Reed College, 1950; M.A., University of Oregon, 1952; Ph.D., California Institute, 1956. Research Fellow, 1956-58; Senior Research Fellow, 1958-60; Assistant Professor, 1960-. (2 Kellogg) 750 South Mentor Avenue.

Lois Marie Kay, M.S., Research Fellow in Chemistry

B.S., University of California (Los Angeles), 1949; M.S., 1952, Research Fellow, California Institute, 1955-58, 1959-. (208 Church) 4905 Lockhaven Street, Los Angeles.

Geoffrey Lorrimer Keighley, Ph.D., Senior Research Fellow in Biology

B.A., University of Toronto, 1926; M.S., California Institute, 1940; Ph.D., 1944. Instructor, 1943-46; Senior Research Fellow, 1946-. (227 Kerckhoff) 3112 Ewing Avenue, Altadena.

Heimo Keller, Ph.D., Research Fellow in Chemistry

Hans Kende, Ph.D., Research Fellow in Biology

Ph.D., University of Zurich, 1956. Assistant, Institute for General Botany, University of Zurich, 1959-. California Institute, 1961-. (132 Kerckhoff) 307 South Wilson Avenue.

**Part-time
John Fisher Kennedy, Ph.D., Research Fellow in Civil Engineering
B.S., Notre Dame University, 1955; M.S., California Institute, 1956; Ph.D., 1960. Assistant Professor of Civil Engineering, Massachusetts Institute of Technology, 1961-. Research Fellow, California Institute, 1960-61.

Hendrik Jan Ketellapper, Ph.D., Research Fellow in Biology
B.Sc., State University of Utrecht, 1947; D.Sc., 1951; Ph.D., 1953. California Institute, 1957-. (126 Kerckhoff) 784 South Los Robles Avenue.

Jirair Kevork Kevorkian, Ph.D., Research Fellow in Aeronautics

Robert Burnett King, Ph.D., Professor of Physics
B.A., Pomona College, 1930; Ph.D., Princeton University, 1933. Associate Professor, California Institute, 1948-52; Professor, 1952-. (51 Bridge) 1627 E. Mendocino, Altadena.

Rudolf Kippenhahn, Ph.D., Senior Research Fellow in Astronomy
Ph.D., Erlangen University, 1951. Privatdozent, Astronomy Department, Erlangen University, 1958-; Group Leader in Astronomy, Max-Planck-Institut, Munich, Germany, 1960-, California Institute, 1962. (207 Robinson) 1691 Coolidge Avenue, Altadena.

Harry Allister Kirkpatrick**, Ph.D., Research Associate in Physics
B.S., Occidental College, 1914; Ph.D., Research Associate in Physics B.S., Occidental College, 1914; Ph.D., California Institute, 1941. Professor of Physics, Emeritus, Occidental College, 1957-. California Institute, 1958-63. (658 West Bridge) 5340 Kincheloe Drive, Los Angeles 41.

Arthur Louis Klein, ** Ph.D., Professor of Aeronautics
B.S., California Institute, 1921; M.S., 1924; Ph.D., 1925. Research Fellow in Physics and in Aeronautics, 1927-29; Assistant Professor, 1929-34; Associate Professor, 1934-54; Professor, 1954-. (204 Firestone) 437 via Almar, Palos Verdes Estates.

Charles Martin Knobler, Ph.D., Research Fellow in Chemical Engineering

Leon Knopoff, Ph.D., Professor of Geophysics
B.S., California Institute, 1944; Ph.D., 1949. Professor, 1962-

James Kenyon Knowles, Ph.D., Associate Professor of Applied Mechanics
B.S., Massachusetts Institute of Technology, 1952; Ph.D., 1957. Assistant Professor, California Institute, 1958-61; Associate Professor, 1961-. (307 Thomas) 621 North Daisy Avenue.

Hans George Edward Kobra, Ph.D., Research Fellow in Physics

Joseph Blake Koepfli, D.Phil., Research Associate in Chemistry
A.B., Stanford University, 1924; M.A., 1925; D.Phil., Oxford University, 1928. California Institute, 1924-; (105 Church) 955 Avondale Road, San Marino.

Alan G. Konheim, Ph.D., Research Fellow in Mathematics

Robert Paul Kraft, Ph.D., Staff Member, Mount Wilson and Palomar Observatories
B.S., University of Washington, 1947; M.S., 1949; Ph.D., University of California, 1955. Mt. Wilson Observatory, 1960-. (Mount Wilson Office) 404 Port Lewis Drive, Claremont.

Toshi Kubota, Ph.D., Assistant Professor of Aeronautics
B.E., Tokyo University, 1947; M.S., California Institute, 1952; Ph.D., 1957. Research Fellow, 1957-59; Assistant Professor, 1959-. (113 Firestone) 300 South Michigan Avenue.

Takeshi Kunio, Ph.D., Research Fellow in Aeronautics
B.E., Tokyo Imperial University, 1947; Ph.D., 1961. Assistant Professor of Mechanical Engineering, Keio University, Tokyo, 1960-. California Institute, 1962-63.

Toyoki Kunitate, Ph.D., Research Fellow in Chemistry

Bert La Brucher, B.E., Coach
B.E., University of California (Los Angeles), 1929. California Institute, 1949-. (Gymnasium) 3850 Crestway Drive, Los Angeles.

William Noble Lacey, Ph.D., Professor of Chemical Engineering, Emeritus
A.B., Stanford University, 1911; Ch.E., 1912; M.S., University of California, 1913; Ph.D., 1915. Instructor, California Institute, 1916-17; Assistant Professor, 1917-19; Associate Professor, 1919-31; Professor, 1931-. Dean of Graduate Studies, 1946-56; Dean of the Faculty, 1961-62; Professor Emeritus, 1962-. (211 Spalding) 2024 Minoru Drive, Altadena.

**Part-time.
52 Officers and Faculty

Paco Axel Lagerstrom, Ph.D., Professor of Aeronautics
Fil.Kand., University of Stockholm, 1935; Fil.Lic., 1939; Ph.D., Princeton University, 1942. Research Associate in Aeronautics, California Institute, 1946-47; Assistant Professor, 1947-49; Associate Professor, 1949-52; Professor, 1952-. (305 Firestone) 801 Montrose Avenue, South Pasadena.

Edward John Land, Ph.D., Research Fellow in Chemistry

Anton Lang, Ph.D., Professor of Biology
Ph.D., University of Berlin, 1939. Research Fellow, California Institute, 1950-52; Senior Research Fellow, 1952; Assistant Professor, 1952-57; Associate Professor, 1957-63, 2310 South Parkwood Avenue, Altadena.

George Dorland Langdon, Jr., Ph.D., Assistant Professor of History

Robert Vose Langmuir, Ph.D., Professor of Electrical Engineering
A.B., Harvard University, 1935; Ph.D., California Institute, 1943; Senior Research Fellow, 1948-50; Assistant Professor, 1950-52; Associate Professor, 1952-57; Professor, 1957-62. (323 Spalding) 2310 Santa Anita Avenue, Altadena.

Beach Langston, Ph.D., Associate Professor of English
A.B., The Citadel, 1933; M.A., Claremont College, 1934; Ph.D., University of North Carolina, 1940. Assistant Professor, California Institute, 1947-55; Associate Professor, 1955-62, 420 South Parkwood Avenue.

Charles Christian Lauritsen, Ph.D., Professor of Physics, Emeritus
Graduate, Odense Tekniske Skole, 1911; Ph.D., California Institute, 1929. Assistant Professor, 1930-31; Associate Professor, 1931-35; Professor, 1935-62; Professor Emeritus, 1962-. (102 Kellogg) 1444 Del Mar Boulevard.

Thomas Lauritsen, Ph.D., Professor of Physics
B.S., Massachusetts Institute of Technology, 1940; M.S., 1941. Associate Professor, California Institute, 1953-55; Professor, 1955-. (301 Dabney) 420 South Parkwood Avenue.

Lester Lees, M.S., Professor of Aeronautics
S.B., Massachusetts Institute of Technology, 1940; M.S., 1941. Associate Professor, California Institute, 1953-55; Professor, 1955-. (103 Kellogg) 1559 Rose Villa Street.

Milton Lees, Ph.D., Assistant Professor of Mathematics
Ph.D., University of California, 1958, California Institute, 1961-. (370 Sloan) 610 East California Boulevard.

Robert Benjamin Leighton, Ph.D., Professor of Physics
B.S., California Institute, 1941; M.S., 1944; Ph.D., 1947. Research Fellow, 1947-49; Assistant Professor, 1949-52; Associate Professor, 1952-57; Professor, 1957-62. (18 Bridge) 3138 Ewing Avenue, Altadena.

Edward B. Lewis, Ph.D., Professor of Biology
B.A., University of Minnesota, 1939; Ph.D., California Institute, 1942. Instructor, 1946-49; Assistant Professor, 1948-49; Associate Professor, 1949-56; Professor, 1956-. (303 Kerckhoff) 805 Winthrop Road, San Marino.

Hans Wolfgang Liepmann, Ph.D., Professor of Aeronautics
Ph.D., University of Zurich, 1938. Assistant Professor, California Institute, 1939-46; Associate Professor, 1946-49; Professor, 1949-. (303 Karman) 652 652 Antrim Place.

Frederick Charles Lindvall, Ph.D., Professor of Electrical and Mechanical Engineering; Chairman of the Division of Engineering and Applied Science
B.S., University of Illinois, 1924; Ph.D., California Institute, 1928. Instructor in Electrical Engineering, 1930-31; Assistant Professor, 1931-37; Associate Professor of Electrical and Mechanical Engineering, 1937-42; Professor, 1942-. Chairman of Division, 1945-62. (201 Thomas) 1224 Arden Road.

Jerry B. Lingrel, Ph.D., Research Fellow in Biology
B.S., Otterbein College, 1937; Ph.D., The Ohio State University, 1960. California Institute, 1960-. (219 Kerckhoff) 118 South Chester Avenue.

Peter Stuart Barry Lissaman, M.S., Assistant Professor of Aeronautics
B.Sc., Natal University, South Africa, 1951; B.A., Cambridge University, 1954; M.S., California Institute, 1955. Assistant Professor, 1962-.

**Part-time.
Hao-Wen Liu, Ph.D., Senior Research Fellow in Aeronautics

Kenneth Lock, Ph.D., Assistant Professor of Electrical Engineering

Paul Alan Lowy, Doctorandum, Research Fellow in Biology
Doctorandum, University of Vienna, 1936. Research Fellow, California Institute, 1949-. (219 Kerckhoff) 188 South Meredith Avenue.

Howard Johnson Lucas, D.Sc., Professor of Organic Chemistry, Emeritus
B.A., The Ohio State University, 1907; M.A., 1908; D.Sc., 1953. California Institute, 1913-55; Professor Emeritus, 1955-. (125 Gates) 596 South Oakland Avenue.

Harvey F. Ludwig, ** M.S., Lecturer in Engineering
B.S., University of California, 1938; M.S., 1942. President, Engineering-Science, Inc. (Consulting), 1956-. California Institute; 1961-. (107 Keck) 300 Taus Road, Altadena.

Kenneth D. Lunan, Ph.D., Research Fellow in Biology
B.S., California Institute of Technology, 1953; M.S., Iowa State University, 1955; Ph.D., University of California (Los Angeles), 1961. Research Fellow, California Institute, 1962-63. 1732 Atchison Street.

Harold Lurie, Ph.D., Associate Professor of Applied Mechanics
B.Sc., University of Natal, South Africa, 1940; M.Sc., 1946; Ph.D., California Institute, 1950. Lecturer in Aeronautics, 1948-50; Assistant Professor, 1953-56; Associate Professor, 1956-. (324 Thomas) 461 West Luna Alta Drive, Altadena.

Wilhelmus A. J. Luxemburg, Ph.D., Professor of Mathematics
Ph.D., Delft Institute of Technology, 1955. Assistant Professor, California Institute, 1958-60. Associate Professor, 1960-62; Professor, 1962-. (366 Sloan) 833 Oakwood Place.

George Eber MacGinitie, M.A., Professor of Biology, Emeritus
A.B., Fresno State College, 1925; M.A., Stanford University, 1928. California Institute, 1932-57; Professor Emeritus, 1957-. 317 East Dempsey Road, Oxnard.

George Rupert MacMinn, A.B., Professor of English, Emeritus
A.B., Brown University, 1905. California Institute, 1918-54; Professor Emeritus, 1954-. 255 South Bonnie Avenue.

Arthur Malley, Ph.D., Research Fellow in Chemistry
B.A., San Francisco State College, 1953; B.S. 1957; Ph.D., Oregon State University, 1961. California Institute, 1961-. (520 Church) 720 East Mountain Street.

John Owen Maloy, Ph.D., Research Fellow in Physics

Oscar Mandel, Ph.D., Associate Professor of English
B.A., New York University, 1947; M.A., Columbia University, 1948; Ph.D., Ohio State University 1951, Visiting Associate Professor, California Institute, 1961-62; Associate Professor, 1962- (307 Dubney) 2118 Limonite Avenue, Los Angeles 25, California.

Paul DeVries Manning, Ph.D., Professor of Chemical Engineering

Frank Earl Marble, Ph.D., Professor of Jet Propulsion and Mechanical Engineering
B.S., Case Institute of Technology, 1940; M.S., 1942; A.E., California Institute, 1947; Ph.D., 1948. Instructor, 1948-49; Assistant Professor, 1949-53; Associate Professor, 1953-57; Professor, 1957- (210 Kaman) 1665 East Mountain Street.

* * Part-time.
Officers and Faculty

Harry Berst Mark, Jr., Ph.D., Research Fellow in Chemistry

Richard F. Mark, M.Med.Sc., Research Fellow in Biology

Richard Edward Marsh, Ph.D., Senior Research Fellow in Chemistry
B.S., California Institute, 1943; Ph.D., University of California (Los Angeles), 1950. Research Fellow, 1950-55; Senior Research Fellow, 1955- (211 Church) 1947 Sherwood Road, San Marino.

Hardy Cross Martel, Ph.D., Associate Professor of Electrical Engineering
B.S., California Institute, 1949; M.S., Massachusetts Institute of Technology, 1950; Ph.D., California Institute, 1956. Instructor, 1953-55; Assistant Professor, 1955-58; Associate Professor, 1958- (227 Spalding) 1545 Homewood Drive, Altadena.

Romeo Raoul Martel, S.B., Professor of Structural Engineering, Emeritus
S.B., Brown University, 1912; Instructor, California Institute, 1918-20; Assistant Professor, 1920-21; Associate Professor, 1921-30; Professor, 1930-60; Professor Emeritus, 1960- (211 Thomas) 609 Fairfield Circle.

Peter Vroman Mason, Ph.D., Assistant Professor of Electrical Engineering
B.S., California Institute, 1951; M.S., 1952; Ph.D., 1962. Instructor, 1958-61; Assistant Professor, 1961- (29 Spalding) 303 South Chester Avenue.

Tadeusz Bronislaw Massalski, Ph.D., Visiting Associate in Material Science

David S. Mathan, Ph.D., Research Fellow in Biology
B.S., University of California (Los Angeles), 1954; M.S., University of California, (Berkeley), 1956; Ph.D., 1960. California Institute, 1962-63.

Jon Mathews, Ph.D., Associate Professor of Theoretical Physics
B.A. Pomona College, 1952; Ph.D., California Institute, 1957. Instructor, 1957-59; Assistant Professor, 1959-62; Associate Professor, 1962- (158 Sloan) 459 West Loma Alta Drive, Altadena.

Thomas Arnold Matthews, Ph.D., Senior Research Fellow in Radio Astronomy
B.A., University of Toronto, 1950; M.Sc., Case Institute of Technology, 1951; Ph.D., Harvard University, 1956. Research Fellow, California Institute, 1957-59; Senior Research Fellow, 1959- (101 Robinson) 1905 Midlothian Drive, Altadena.

George P. Mayhew, Ph.D., Associate Professor of English
A.B., Harvard University, 1941; M.A., 1947; Ph.D., 1953. Assistant Professor, California Institute, 1954-60; Associate Professor, 1960- (272 Arms) 307 South Chester Avenue.

Emanuel Mazor, Ph.D., Research Fellow in Geochemistry

Gilbert Donald McCann, Ph.D., Professor of Electrical Engineering
B.S., California Institute, 1934; M.S., 1935; Ph.D., 1939. Associate Professor, California Institute, 1946-47; Professor, 1947- (125 Spalding) 2247 N. Villa Heights Road.

Chester Martin McCloskey, Ph.D., Senior Research Fellow in Chemistry
B.A., Whittier College, 1940; M.S., Iowa State University, 1942; Ph.D., 1944. Research Fellow, California Institute, 1953-57; Executive Director of Industrial Associates 1957-61; Senior Research Fellow, 1957-. 1981 Sinaloa Avenue, Altadena.

Harden Marsden McConnell, Ph.D., Professor of Chemistry and Physics
B.S., George Washington University, 1947; Ph.D., California Institute, 1951. Assistant Professor of Physical Chemistry, 1956-58; Associate Professor, 1958-59; Professor, 1959-62; Professor of Chemistry and Physics, 1962- (62 Crellin) 2062 New York Drive, Altadena.

Caleb W. McCormick, Jr., M.S., Associate Professor of Civil Engineering
B.S., University of California, 1945; M.S., 1948. Instructor, California Institute, 1949-51; Assistant Professor, 1951-57; Associate Professor, 1957- (215 Thomas) 1285 Leonard Avenue.

Jack Edward McKee, Sc.D., Professor of Environmental Health Engineering
B.S., Carnegie Institute of Technology, 1936; M.S., Harvard University, 1939; Sc.D., 1941. Associate Professor of Sanitary Engineering, California Institute, 1949-56; Professor, 1955-60; Professor of Environmental Health Engineering, 1960- (105 Kecc) 2036 Oakdale Street.

Carver Andress Mead, Ph.D., Associate Professor of Electrical Engineering
B.S., California Institute, 1956; M.S., 1957; Ph.D., 1960. Instructor, 1958-59; Assistant Professor, 1959-62; Associate Professor, 1962- (33 Spalding) 2036 Pasadena Glenn Road.

Roger Edwin Messick, Ph.D., Instructor in Applied Mechanics

William Whipple Michael, B.S., Professor of Civil Engineering, Emeritus

Frank Curtis Michel, Ph.D., Research Fellow in Physics

Robert David Middlebrook, Ph.D., Associate Professor of Electrical Engineering
B.A., Cambridge University, 1952; M.S., Stanford University, 1953; Ph.D., 1955. Assistant Professor, California Institute, 1955-58; Associate Professor, 1958-. (233 Spalding) 1570 Wilson Avenue, San Marino.

Julius Miklowitz, Ph.D., Professor of Applied Mechanics
B.S., University of Michigan, 1943; Ph.D., 1949. Associate Professor, California Institute, 1956-62; Professor, 1962-. (317 Thomas) 10112 Woodward Avenue, Sunland.

Takeshi Mikumo, Ph.D., Research Fellow in Geophysics
B.S., Kyoto University, 1953; Ph.D., 1960. Assistant Professor of Geophysics, Kyoto University, 1960-. California Institute, 1962-63.

Peter J. Mill, Ph.D., Research Fellow in Biology

Peter McNaughton Miller, Ph.D., Lecturer in English; Assistant Director of Admissions and Undergraduate Scholarships
A.B., Princeton University, 1934; Ph.D., 1939. California Institute, 1956-. Lecturer, 1957-. (112 Throop) 1590 Oakdale Street.

Raymond Edward Miller, Ph.D., Senior Research Fellow in Electrical Engineering

Clark Blanchard Millikan, Ph.D., Professor of Aeronautics; Director of the Graduate Aeronautical Laboratories
Ph.B., Yale University, 1924; Ph.D., California Institute, 1928. Assistant Professor, 1928-34; Associate Professor, 1934-40; Professor, 1940-; Director, 1945-. (205 Firestone) 690 Windover Road.

Herschel Kenworthy Mitchell, Ph.D., Professor of Biology
B.S., Pomona College, 1946; M.S., Oregon State College, 1948; Ph.D., University of Texas, 1941. Senior Research Fellow, California Institute, 1946-49; Associate Professor, 1949-53; Professor, 1953-. (280 Alles) 1600 North Altadena Drive.

Mary B. Mitchell, M.A., Research Fellow in Biology

Rudolf Ludwig Moessbauer, Dr. rer. nat., Nobel Laureate, Professor of Physics
B.S., Institute for Technical Physics, Munich, 1949; Dr. rer. nat., 1958. Research Fellow, California Institute, 1950; Senior Research Fellow, 1961; Professor, 1961-. (160 West Bridge) 1041 Beverly Way, Altadena.

Govindaraju Jagan Mohanrao, Ph.D., Research Fellow in Sanitary Engineering
B.Sc., Andhra University, Waltair, India, 1950; M.Sc., 1951; Ph.D., University of Bombay, 1954; Sc.D., Massachusetts Institute of Technology, 1959. California Institute, 1959-. (9 Keck) 488 South Oakland Avenue.

Michael F. Moody, Ph.D., Research Fellow in Biology

Dino Antonio Morelli, Ph.D., Professor of Engineering Design
B.E., Queensland University 1937; M.E., 1942; M.S., California Institute, 1945; Ph.D., 1946. Lecturer in Mechanical Engineering, 1948-49; 1958-59; Assistant Professor, 1949-56; Associate Professor, 1959-61; Professor of Engineering Design, 1961-. (309 Thomas) 1375 Chamberlin Road.

Bertram Morris, Ph.D., Visiting Professor of Philosophy
A.B., Princeton University, 1930; Ph.D., Cornell University, 1934. Professor, Chairman of the Department of Psychology, University of Colorado, California Institute, 1962-63.

David Morris, Ph.D., Research Fellow in Radio Astronomy
56 Officers and Faculty

Ben Roy Mottelson, Ph.D., Visiting Associate in Physics
B.S., Purdue University, 1947; A.M., Harvard, 1948; Ph.D., 1950. Professor of Physics, Nordic Institute for Theoretical Atomic Physics, Copenhagen, 1956-; California Institute, 1962.

Seeley G. Mudd, M.D., Research Associate in Medical Chemistry
B.S., Columbia University, 1917; M.D., Harvard University, 1924; California Institute, 1931-. 1550 Oak Grove Avenue, San Marino.

Joe Hill Mullins, Ph.D., Senior Research Fellow in Physics
B.S., Agricultural and Mechanical College of Texas, 1950; M.S., California Institute, 1954; Ph.D., 1959. Research Fellow, 1959-60; Senior Research Fellow, 1960-. (103 Synchotron) 471 West Grand View, Sierra Madre.

Guido Munch, Ph.D., Professor of Astronomy; Staff Member, Mount Wilson and Palomar Observatories
B.S., Universidad Nacional Autonoma de Mexico, 1938; M.S., 1944; Ph.D., University of Chicago, 1947. Assistant Professor, California Institute, 1951-54; Associate Professor, 1954-59; Professor, 1959-. (213-B Robinson) 193 East Mendocino, Altadena.

Edwin S. Munger, Ph.D., Professor of Geography
M.S., University of Chicago, 1948; Ph.D., 1951. Visiting Lecturer, American Universities Field Staff, California Institute, 1954; 1957; 1960; Professor, 1961-. (129 Keck) 425 Ninita Parkway.

Bruce Churchill Murray, Ph.D., Research Fellow in Space Science

Harold Z. Musselman, A.B., Director of Athletics and Physical Education
A.B., Cornell College, 1920. Instructor, California Institute, 1921-24; Manager of Athletics, 1924-35; Assistant Director of Physical Education and Manager of Athletics, 1935-42; Acting Director of Physical Education, 1942-43; Director of Physical Education and Manager of Athletics, 1943-47; Director of Athletics and Physical Education, 1947-. (Gymnasium) 1080 North Holliston Avenue.

Nicholas Taketeru Nakabayashi, Ph.D., Research Fellow in Biology
B.S., Utah State University, 1949; M.S., University of Illinois, 1953; Ph.D., 1959. Junior Research Physiologist, University of California (Los Angeles), 1959-. California Institute, 1961-. (308 Kerekoff) 5323 Ninth Avenue, Los Angeles 43.

Herbert H. G. Nash, Secretary
University of Manitoba, 1919. Chief Accountant, California Institute, 1922-35; Assistant Secretary, 1935-52; Secretary, 1952-. (108 Throop) 465 Allendale Road.

Henry Victor Neher, Ph.D., Professor of Physics
A.B., Pomona College, 1926; Ph.D., California Institute, 1931. Instructor and Assistant Professor of Physics, California Institute, 1933-40; Associate Professor of Physics, 1940-44; Professor of Physics 1944-. (24 Bridge) 855 North Holliston Avenue.

James H. Nerrie, B.S., Coach
Diploma, Savage School for Physical Education, 1933; B.S., Rutgers University, 1941. California Institute, 1948-. (Gymnasium) 1561 Iroquois Avenue, Long Beach.

Gerry Neugebauer, Ph.D., Assistant Professor of Physics
A.B., Cornell University, 1954; Ph.D., California Institute, 1960. Assistant Professor, 1962-. 608 Concha Street, Altadena.

Charles Newton, Ph.B., Director of Development; Assistant to the President; Lecturer in English
Ph.B., University of Chicago, 1933. Assistant to the President, California Institute, 1948-; Lecturer, 1955; 1960-; Director of Development, 1961-. (103 Throop) 1375 New York Drive, Altadena.

Marc-Aurele Nicolet, Ph.D., Assistant Professor of Electrical Engineering

Carl George Niemann, Ph.D., Professor of Organic Chemistry
B.S., University of Wisconsin, 1931; Ph.D., 1934. Assistant Professor, California Institute, 1937-43; Associate Professor, 1943-45; Professor, 1945-. (356 Crellin) 400 South Berkeley Avenue.

Wheeler James North, Ph.D., Visiting Assistant Professor of Biology
B.S., California Institute, 1944; 1950; Ph.D., University of California, 1953. Assistant Research Biologist, Project Officer, Institute of Marine Resources Kelp Program, State of California, 1956-. California Institute, 1962.

Rafael Nunez-Lagos, Ph.D., Research Fellow in Theoretical Physics
Orpha Caroline Ochse, Ph.D., Lecturer in Music

Charles Robert O'Dell, Ph.D., Research Fellow in Astronomy

John Beverley Oke, Ph.D., Associate Professor of Astronomy; Staff Member, Mount Wilson and Palomar Observatories
B.A., University of Toronto, 1949; M.A., 1950; Ph.D., Princeton University, 1950. Assistant Professor, California Institute, 1959-61; Associate Professor, 1961-. (220 Robinson) 1102 Beverly Way, Altadena.

Robert Warner Oliver, Ph.D., Associate Professor of Economics
A.B., University of Southern California, 1943; A.M., 1948; A.M., Princeton University, 1950; Ph.D., 1957. Assistant Professor, California Institute, 1959-61; Associate Professor, 1961-. (209 Dahney) 3197 San Pasqual Street.

Ray David Owen, Ph.D., Professor of Biology; Chairman of the Division of Biology
B.S., Carroll College, 1937; Ph.M., University of Wisconsin, 1938; Ph.D., 1941. Gosney Fellow, California Institute, 1946-47; Associate Professor, 1947-53; Professor, 1953-; Chairman, 1961-. (161 Church) 1383 Rose Villa Street.

Leslie G. Paleg, Ph.D., Research Fellow in Biology

Charles Herach Papas, Ph.D., Professor of Electrical Engineering
B.S., Massachusetts Institute of Technology, 1941; M.S., Harvard University, 1946; Ph.D., 1948. Lecturer, California Institute, 1952-54; Associate Professor, 1954-59; Professor, 1959-. (331 Spalding) 534 Vallombrosa Drive.

Claire Cameron Patterson, Ph.D., Senior Research Fellow in Geochemistry
A.B., Grinnell College, 1943; M.S., University of Iowa, 1944; Ph.D., University of Chicago, 1951. Research Fellow, California Institute, 1952-53; Senior Research Fellow, 1953-. (016 Mudd) 5903 Crown Avenue, La Cañada.

Rodman Wilson Paul, Ph.D., Professor of History
A.B., Harvard University, 1936; M.A., 1937; Ph.D., 1943. Associate Professor, California Institute, 1947-51; Professor, 1951-(8 Dahney) 586 La Loma Road.

B.S. (ChE.), Oregon State College, 1922; Ph.D., California Institute, 1925. Research Associate, 1926-27; Assistant Professor, 1927-29; Associate Professor, 1929-31; Professor, 1931-. Chairman of the Division of Chemistry and Chemical Engineering, 1936-58, (205 Church) 3500 Fairpoint Street.

John R. Pellam, Ph.D., Professor of Physics
B.S., Massachusetts Institute of Technology, 1940; Ph.D., 1947. California Institute, 1954-. (61 Sloan) 1340 East California Street.

Stanford S. Penner, Ph.D., Professor of Jet Propulsion
B.S., Union College, 1942; M.S., University of Wisconsin, 1943; Ph.D., 1945. Assistant Professor, California Institute, 1950-53; Associate Professor, 1953-57; Professor, 1957-. (209 Thomas) 2008 Oakdale Street.

John Andrew Petruska, Ph.D., Research Fellow in Biology
B.Sc., Bishop's University, Quebec, 1953; M.Sc., McMaster University, Ontario, 1954; Ph.D., University of Chicago, 1956. Research Fellow in Chemistry, California Institute, 1958-60; Research Fellow, Biology, 1960-. (092 Alles Laboratory) 361 South Oaklnd Avenue.

Dietrich Pfeifer, Ph.D., Research Fellow in Biology
Ph.D., University of Cologne, 1960; Research Assistant, Institute of Genetics, University of Cologne, 1960-. California Institute, 1962-63.

Georg R. Phillips, Dr. Med., Research Fellow in Biology

Robert Alden Phinney, Ph.D., Assistant Professor of Geophysics
S.B., S.M., Massachusetts Institute of Technology, 1959; Ph.D., California Institute, 1961. Assistant Professor, 1961-. (Seismological Lab.) 699 South Grand Avenue.

**Part-time
William Hayward Pickering, Ph.D., Professor of Electrical Engineering; Director of Jet Propulsion Laboratory
B.S., California Institute, 1932; M.S., 1933; Ph.D., 1936, Instructor, 1936-40; Assistant Professor, 1940-45; Associate Professor, 1945-47; Professor, 1947-; Director, Jet Propulsion Laboratory, 1954- (Jet Propulsion Lab.) 2514 Highland Avenue, Altadena.

Lajos Piko, D.V.M., Research Fellow in Biology

Walter Lee Pilant, Ph.D., Research Fellow in Geology
B.S., California Institute, 1953; M.S., University of California (Los Angeles), 1957; Ph.D., 1960. Research Fellow, California Institute, 1962-63.

Cornelius John Pings, Ph.D., Associate Professor of Chemical Engineering
B.S., California Institute, 1951; M.S., 1952; Ph.D., 1955. Associate Professor, 1959-. (315 Spalding) 423 Naomi Avenue, Arcadia.

Alan Edward Platt, Ph.D., Research Fellow in Chemistry

Milton S. Plesset, Ph.D., Professor of Applied Mechanics
B.S., University of Pittsburgh, 1929; Ph.D., Yale University, 1932. Associate Professor, 1948-51; Professor, 1951-. (313 Thomas) 625 Landor Lane.

Klaus Pleske, Dr. rer. nat., Research Fellow in Chemistry

Derek Pooley, Ph.D., Arthur Amos Noyes Research Fellow in Chemistry

Edward T. Preisler, B.A., Coach
B.A., San Diego State College, 1941, California Institute, 1947-. (Gymnasium) 2776 Yorkshire Road.

Frank Press, Ph.D., Professor of Geophysics; Director, Seismological Laboratory

R. H. Pritchard, Ph.D., Gosney Research Fellow in Biology
Ph.D., University of Glasgow, 1954. Staff Member, Microbial Genetics Research Unit, Hammersmith Hospital, London, 1954-. California Institute, 1962-63.

James D. van Putten, Jr., Ph.D., Assistant Professor of Physics
Ph.D., University of Michigan, 1960. California Institute, 1962-.

Venkataraman Radhakrishnan, B.Sc., Senior Research Fellow in Radio Astronomy
B.Sc., University of Mysore, 1950. Research Fellow, California Institute, 1959-61; Senior Research Fellow, 1961-. (110 Robinson) 122 North Oak Avenue, Apt. D.

Fredric Raichlen, Sc.D., Assistant Professor of Civil Engineering

Simon Ramo, Ph.D., Research Associate in Electrical Engineering
B.S., University of Utah, 1935; Ph.D., California Institute, 1936. California Institute, 1946-. 276 Tavistock Avenue, Los Angeles.

W. Duncan Rannie, Ph.D., Robert H. Goddard Professor of Jet Propulsion
B.A., University of Toronto, 1936; M.A., 1937; Ph.D., California Institute, 1951. Assistant Professor of Mechanical Engineering, 1947-51; Associate Professor, 1951-53; Professor, 1953-. (208 Guggenheim) 272 E. Highland Avenue, Sierra Madre.

William Thomas Raynes, Ph.D., Research Fellow in Chemistry

Richard Bradley Read, Ph.D., Research Fellow in Radio Astronomy

H. Hollis Reamer, M.S., Senior Research Fellow in Chemical Engineering
A.B., University of Redlands, 1937; M.S., California Institute, 1939. Research Assistant, 1938-52; Research Fellow, 1952-58; Senior Research Fellow, 1958-. (357 Spalding) 1855 Woodlyn Road.

Barry L. Reeves, D.Sc., Research Fellow in Aeronautics
Johannes Helmut Reuter, Dr. rer. nat., Research Fellow in Geochemistry
B.Sc., University of Cologne, 1957; Dr.rer.nat., University of Wurzburg, 1961. California Institute, 1961-. (216 Mudd) 306 South Chester Avenue.

John Hall Richards, Ph.D., Associate Professor of Organic Chemistry
B.A., University of California, 1951; B.Sc., Oxford University, 1953; Ph.D., University of California, 1955. Assistant Professor, California Institute, 1957-61; Associate Professor, 1961-. (361 Crellin) 1785 Oakwood Drive, Arcadia.

Charles Francis Richter, Ph.D., Professor of Seismology
A.B., Stanford University, 1920; Ph.D., California Institute, 1928. Assistant Professor, California Institute, 1937-47; Associate Professor, 1947-52; Professor, 1952-. (Seismological Lab.) 1820 Kenneth Way.

George Neal Richter, Ph.D., Assistant Professor of Chemical Engineering

Egon Ernst Rickli, Ph.D., Research Fellow in Chemistry

Robert Gene Rinker,* Ph.D., Assistant Professor of Chemical Engineering
B.S., Rose Polytechnic Institute, 1951; M.S., California Institute, 1952; Ph.D., 1957. Research Fellow, 1956-58; Assistant Professor, 1958-. (311 Spalding).

John D. Roberts, Ph.D., Dr.rer.nat., Professor of Organic Chemistry
B.A., University of California (Los Angeles), 1941; Ph.D., 1944; Dr.rer.nat., University of Munich, 1962. California Institute, 1953-. (360 Crellin) 2659 Tamalpais Drive, Altadena.

Donald Wilford Robinson, Ph.D., Senior Research Fellow in Mathematics
B.S., University of Utah, 1948; M.A., 1952; Ph.D., Case Institute of Technology, 1956. Associate Professor of Mathematics, Brigham Young University, 1955-. California Institute, 1962-63.

George Wilse Robinson, Ph.D., Professor of Physical Chemistry
B.S., Georgia Institute of Technology, 1947; M.S., 1949; Ph.D., State University of Iowa, 1952. Associate Professor, California Institute, 1959-61; Professor, 1961-. (11 Gates) 45 Lowell Avenue, Sierra Madre.

Richard Robson, Ph.D., Research Fellow in Chemistry

Donald Mason Rockwell, Ph.D., Visiting Associate in Chemistry
B.S., University of Vermont, 1927; Ph.D., Yale University, 1931. Professor of Chemistry; Department Head, Juniata College, 1950-, California Institute, 1962-63.

Peter Roquette, Ph.D., Visiting Associate in Mathematics

Grace Link Rosenquist, Ph.D., Research Fellow in Biology

Anatol Roshko, Ph.D., Professor of Aeronautics
B.Sc., University of Alberta, 1945; M.S., California Institute, 1947; Ph.D., 1952. Research Fellow, 1952-54; Senior Research Fellow, 1954-55; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-. (304 Karman) 3100 Maiden Lane, Altadena.

August Thomas Rossano, Jr., D.Sc., Visiting Professor of Environmental Health Engineering

Manfred D. E. Ruddat, Ph.D., Research Fellow in Biology
Ph.D., University of Tubingen, 1960. California Institute, 1961-. (124 Kerckhoff) 1107 Sun Pasqual Street.

Konrad Rudnicki, Ph.D., Research Fellow in Astronomy
M.S., Warsaw University, 1949; Ph.D., 1952. Adjunct, Warsaw University Observatory, 1952-. California Institute, 1961-. (015 Robinson) Keck Graduate House.

Stanley Keith Runcorn, Ph.D., *Visiting Associate in Geophysics*
B.A., Cambridge University, 1944; M.A., 1948; Ph.D., Manchester University, 1949. Professor, Director, Department of Physics, King's College, Durham University, 1952-. Visiting Professor, California Institute, 1957; Visiting Associate, 1962.

Rolf Heinrich Sabersky, Ph.D., *Professor of Mechanical Engineering*
B.S., California Institute, 1942; M.S., 1943; Ph.D., 1949. Assistant Professor, 1949-55; Associate Professor, 1955-61; Professor, 1961-. (203 Thomas) 2206 Loma Vista Street.

Bruce Hornbrook Sage, Ph.D., Eng.D., *Professor of Chemical Engineering*
B.S., New Mexico State College, 1929; M.S., California Institute, 1931; Ph.D., 1934; Eng.D., New Mexico State College, 1933. Research Fellow, 1934-35; Senior Fellow in Chemical Research, 1935-37; Assistant Professor, 1937-39; Associate Professor, 1939-44; Professor, 1944-. (213 Spalding) 3216 Mount Curve Avenue, Altadena.

Anil Kumar Saha, Ph.D., *Research Fellow in Chemistry*

William R. Samples, Ph.D., *Assistant Professor of Civil Engineering*
B.S., West Virginia University, 1953; M.S., Harvard University, 1955; Ph.D., 1958. California Institute, 1959-. (109 Keck) 1037 East Monarch, Altadena.

Sten Otto Samson, Fil.Lic., *Senior Research Fellow in Chemistry*
Fil.Kand., University of Stockholm, 1953; Fil.Lic., 1956. Research Fellow, California Institute, 1953-56; 1957-61; Senior Research Fellow, 1961-. (60 Crellin) 351 South Parkwood.

Allan Rex Sandage, Ph.D., *Staff Member, Mount Wilson and Palomar Observatories*
A.B., University of Illinois, 1948; Ph.D., California Institute, 1953. Mt. Wilson Observatory, 1948-. (Mt. Wilson Office) 701 Santa Barbara Street.

Matthew Linnee Sands, Ph.D., *Professor of Physics*
B.A., Clark University, 1940; M.A., Rice Institute, 1941; Ph.D., Massachusetts Institute of Technology, 1948; Senior Research Fellow, California Institute, 1950-52; Assistant Professor, 1952-53; Associate Professor, 1953-59; Professor, 1959-. (174 Sloan) 1546 Rose Villa Street.

William Palzer Schaefer, Ph.D., *Assistant Professor of Chemistry*
B.S., Stanford University, 1952; M.S., University of California (Los Angeles), 1953; Ph.D., 1960. Research Fellow, California Institute, 1960; Instructor 1960-62; Assistant Professor, 1962-. (127 Gates) 11018 East Maplefield Street, El Monte.

Ulrich Scheidegger, D.Sc., *Research Fellow in Chemistry*

Maarten Schmidt, Ph.D., *Associate Professor of Astronomy; Staff Member, Mount Wilson and Palomar Observatories*

Walter Adolph Schroeder, Ph.D., *Research Associate in Chemistry*
B.Sc., University of Nebraska, 1939; M.A., 1940; Ph.D., California Institute, 1943. Research Fellow, 1943-46; Senior Research Fellow, 1946-56; Research Associate 1956-. (109 Church) 2110 East Washington Street.

Ronald Fraser Scott, Sc.D., *Associate Professor of Civil Engineering*
B.Sc., Glasgow University, 1951; S.M., Massachusetts Institute of Technology, 1953; Sc.D., 1955. Assistant Professor, California Institute, 1958-62; Associate Professor, 1962-. (111 Thomas) 1014 East Wapello Street, Altadena.

Richard Charles Seagrave, Ph.D., *Research Fellow in Chemical Engineering*

Eleanor Millard Searle, D.L.M.S., *Lecturer in History*

Leonard Searle, Ph.D., *Senior Research Fellow in Astronomy*
Ph.D., Princeton University, 1956. California Institute, 1960-. (205 Robinson) 421 South Parkwood Avenue.

Scott Searles, Jr., Ph.D., *Visiting Associate of Chemistry*
B.A., University of California (Los Angeles), 1941; M.A., 1942; Ph.D., University of Minnesota, 1947. Associate Professor of Chemistry, Kansas State University, 1952-. California Institute, 1952-63.
Richard Langley Sears, Ph.D., Senior Research Fellow in Physics
A.B., Harvard College, 1953; M.A., Indiana University, 1955; Ph.D., 1958. Research Fellow, California Institute, 1960-61; Senior Research Fellow, 1961-. (304 Kellogg) 419 South Catalina Avenue.

Ernest Edwin Sechler, Ph.D., Professor of Aeronautics
B.S., California Institute, 1928; M.S., 1929; Ph.D., 1933. Instructor, 1930-37; Assistant Professor, 1937-40; Associate Professor, 1940-46; Professor, 1946-. (204 Firestone) 2265 Montecito Drive, San Marino.

Edward Joseph Seppi, Ph.D., Research Fellow in Physics
B.S., Brigham Young University, 1952; M.S., University of Idaho, 1956; Ph.D., California Institute, 1962, Research Fellow, 1962.

Jerome Lee Shapiro, Ph.D., Research Fellow in Engineering

Bralina Datta Sharma, Ph.D., Research Fellow in Chemistry
B.Sc., University of Delhi, India, 1949; M.Sc., 1951; Ph.D., University of Southern California, 1961. California Institute, 1961-.

Robert Phillip Sharp, Ph.D., Professor of Geology; Chairman of the Division of Geologic Sciences
B.S., California Institute, 1934; M.S., 1935; A.M., Harvard University, 1936; Ph.D., 1938. Professor, California Institute, 1947-; Chairman of the Division, 1952-. (158 Arms) 1410 East Palm Street, Altadena.

Alan Sharples, Ph.D., Instructor in Mathematics
B.S., Manchester University, England, 1956; Ph.D., 1960. Assistant Lecturer, University of Liverpool, 1960-. (200 Sloan) 211 South El Molino Avenue.

Kenneth Noel Francis Shaw, Ph.D., Senior Research Fellow in Chemistry
B.A., University of British Columbia, 1940; M.A., 1942; Ph.D., Iowa State College, 1951. California Institute, 1958-61. (200 Church) 124 South Catalina Avenue, Duarte.

Howard J. Sherman, Jur.D., Ph.D., Assistant Professor of Economics
B.A., University of California (Los Angeles), 1950; M.A., University of Southern California, 1957; Jur.D., University of Chicago, 1953; Ph.D., University of California, 1960. California Institute, 1962-63. (Dabney)

Michael Shimshoni, Ph.D., Research Fellow in Geophysics

Arne Shoden, Kem.Ing., Research Fellow in Biology
Kem.Ing., Stockholm Institute of Technology, 1939. Staff Member, Los Angeles Children's Hospital, 1955-. California Institute, 1961-. (092 Alles) 701 Bubbling Drive, Glendora.

Eugene Merle Shoemaker, Ph.D., Visiting Professor of Geology

James Maurice Short, Ph.D., Research Fellow in Geochemistry

Robert A. Sigafoos, Ph.D., Senior Research Fellow in Economics

Leon Theodore Silver, Ph.D., Associate Professor of Geology
B.S., University of Colorado, 1945; M.S., University of New Mexico, 1948; Ph.D., California Institute, 1955. Assistant Professor, 1955-62; Associate Professor 1962-. (016 Mudd) 3315 Crestford Drive, Altadena.

Virendra Singh, Ph.D., Research Fellow in Theoretical Physics
M.S., Agra University, India, 1957; Ph.D., University of California, 1962. California Institute, 1962-63.

Robert Louis Sinsheimer, Ph.D., Professor of Biophysics
S.B., Massachusetts Institute of Technology, 1941; S.M., 1942; Ph.D., 1948. Senior Research Fellow, California Institute, 1953; Professor, 1957-. (188 Alles) 616 South Sierra Bonita Avenue.

Kenneth G. M. Skene, Ph.D., Research Fellow in Biology

*Part-time
62 Officers and Faculty

David Rodman Smith, Ph.D., Assistant Professor of English
B.A., Pomona College, 1944; M.A., Claremont Colleges, 1950; Ph.D., 1960. Instructor, California Institute, 1955-60; Assistant Professor, 1960-. (307 Dabney) 270 West Tenth Street, Claremont.

Hallett D. Smith, Ph.D., Professor of English; Chairman of the Division of Humanities
B.A., University of Colorado, 1928; Ph.D., Yale University, 1934. California Institute, 1949-. (204 Dabney) 1455 South Marengo Avenue.

Stewart Wilson Smith, Ph.D., Assistant Professor of Geophysics
S.B., Massachusetts Institute of Technology, 1958; M.S., California Institute, 1958; Ph.D., 1961. Assistant Professor, 1961-. (Seismological Lab.) 555 East Poppyfields Drive, Altadena.

William Ralph Smythe, Ph.D., Professor of Physics
B.A., Colorado College, 1918; A.M., Dartmouth College, 1919; Ph.D., University of Chicago, 1921. Research Fellow, California Institute, 1926-27; Assistant Professor, 1927-34; Associate Professor, 1934-40; Professor, 1940-. (107 E. Bridge) 674 Manzanita Avenue, Sierra Madre.

Ronald F. Soohoo, Ph.D., Associate Professor of Electrical Engineering
B.S., Massachusetts Institute of Technology, 1948; M.S., Stanford University, 1952; Ph.D., 1956. California Institute, 1961-. (23 Spalding) 182 South Bonnie Avenue.

Raymond Harold Spear, Ph.D., Research Fellow in Physics
B.Sc., University of Melbourne, 1953; M.Sc., 1955; Ph.D., 1959. Senior Demonstrator in Physics, University of Melbourne, 1959-. California Institute, 1960-. (203 Kellogg) 159 North Catalina Avenue.

Roger Wolcott Sperry, Ph.D., Hixon Professor of Psychobiology

Lyman Spitzer, Jr., D.Sc., Research Associate in Astronomy
B.A., Yale University, 1935; M.A., Princeton University, 1937; Ph.D., 1938; D.Sc., Yale University, 1958. Young Professor; Chairman of Astronomy Department; Director of Princeton University Observatory; 1951-. California Institute, 1962.

Howard Parker Stabler, ** Ph.D., Visiting Professor of Physics

Richard Henry Stanford, Jr., Ph.D., Research Fellow in Chemistry
B.A., The Rice Institute, 1954; Ph.D., California Institute, 1958-. (208 Church) Fleming House.

Gordon James Stanley, Dipl., Research Associate in Radio Astronomy
Dipl., New South Wales University of Technology, 1940. Research Engineer, California Institute, 1955-58; Senior Research Fellow, 1958-62; Research Associate, 1962-. (102 Robinson) 1654 East Loma Alta Drive, Altadena.

Roger Fellows Stanton, Ph.D., Professor of English; Director of Institute Libraries
B.S., Colgate University, 1920; M.A., Princeton University, 1924; Ph.D., 1931. Instructor, California Institute, 1925-31; Assistant Professor, 1931-47; Associate Professor, 1947-55; Professor, 1955- (5 Dabney) 790 East Woodbury Road.

Herbert Steinberg, Ph.D., Visiting Associate in Chemistry
Ph.D., University of Amsterdam, 1961. California Institute, 1963-64.

Thomas Eugene Stelson, D.Sc., Visiting Associate in Civil Engineering
B.S., Carnegie Institute of Technology, 1949; M.S., 1950; D.Sc., 1952. ALCOA Professor; Head, Department of Civil Engineering, Carnegie Institute of Technology, 1959-. California Institute, 1962-63.

Captain Cary D. Stephenson, B.S., Assistant Professor of Air Science
B.S., Oklahoma State University, 1952. California Institute, 1959-. (Bldg. T-1), 1449 Davenport Drive.

Alfred Stern, Ph.D., Professor of Languages and Philosophy
Ph.D., University of Vienna, 1923. Instructor, California Institute, 1947-48; Lecturer, 1948-50; Assistant Professor, 1950-53; Associate Professor, 1953-1960; Professor, 1960-. (302 Dabney).

Homer Joseph Stewart, Ph.D., Professor of Aeronautics
B.Aero.E., University of Minnesota, 1936; Ph.D., California Institute, 1940. Instructor, 1939-42; Assistant Professor 1942-46; Associate Professor, 1946-49; Professor, 1949-. (219 Firestone) 2393 Tannoble Drive.

**Part-time.
William Sheldon Stewart, *Research Associate in Biology*
B.A., University of California (Los Angeles), 1936; M.A., 1937; Ph.D., California Institute, 1939; Director, Los Angeles State and County Arboretum, 1955-; California Institute, 1955-; 1666 Oakwood Avenue, Arcadia.

Werner Stöber, Ph.D., *Research Fellow in Engineering*
Ph.D., Max-Planck-Institute for Medical Research, Gottingen, 1955. Scientific Assistant, Max-Planck-Institute, 1955-. Research Fellow in Physics, California Institute, 1961-62; Research Fellow in Engineering, 1962-63. (Keck) 216 South Chester Avenue.

Charles Allison Stout, Ph.D., *Research Fellow in Chemistry*

Thomas Foster Strong, M.S., *Assistant Professor of Physics; Dean of Freshmen*
B.S., University of Wisconsin, 1922; M.S., California Institute, 1937. Assistant Professor, 1944-; Dean of Freshmen, 1946-. (115 Throop) 1791 East Mendocino Street, Altadena.

Sewall Cushing Strout, Jr., Ph.D., *Professor of History*
B.A., Williams College, 1947; M.A., Harvard University, 1949; Ph.D., 1952. Associate Professor, California Institute, 1959-62; Professor, 1962-.

Otto Struve, Ph.D., *Addison White Greenway Visiting Professor of Astronomy; Staff Member, Mount Wilson and Palomar Observatories*

James Holmes Sturdivant, Ph.D., *Professor of Chemistry*
B.A., University of Texas, 1926; M.A., 1927; Ph.D., California Institute, 1930. Research Fellow, 1930-35; Senior Fellow in Research, 1935-38; Assistant Professor, 1938-45; Associate Professor, 1945-47; Professor, 1947-; (68 Crellin) 270 South Berkeley Avenue.

Alfred Henry Sturtevant, Ph.D., Sc.D., *Thomas Hunt Morgan Professor of Biology, Emeritus*
A.B., Columbia University, 1912; Ph.D., 1914; Sc.D., Princeton University, 1947; Sc.D., University of Pennsylvania, 1949. Professor, California Institute, 1928-51; Thomas Hunt Morgan Professor of Genetics, 1951-62; Professor Emeritus, 1962-. (305 Kerckhoff) 1244 Arden Road.

Bradford Sturtevant, Ph.D., *Assistant Professor of Aeronautics*
B.E., Yale University, 1953; M.S., California Institute, 1956; Ph.D., 1960. Research Fellow, 1960-62; Assistant Professor, 1962-; (507 Karman) 3516 North Marengo Avenue, Altadena.

Norman Stuart Sutherland, Ph.D., *Research Fellow in Biology*

Richard Manliffe Sutton, Ph.D., *Professor of Physics; Director of Relations with Secondary Schools*
B.S., Haverford College, 1922; Ph.D., California Institute, 1929. Professor, 1958-; (54 West Bridge) 2226 Crescent Drive, Altadena.

Alan R. Sweezy, Ph.D., *Professor of Economics*
B.A., Harvard University, 1929; Ph.D., 1934. Visiting Professor, California Institute, 1949-50; Professor, 1950-; (311 Dahney) 433 South Greenwood Avenue.

Ernest Haywood Swift, Ph.D., LL.D., *Professor of Analytical Chemistry; Chairman of the Division of Chemistry and Chemical Engineering*
B.S., University of Virginia, 1918; M.S., California Institute, 1920; Ph.D., 1924; LL.D., Randolph-Macon College, 1960. Instructor, 1920-28; Assistant Professor, 1928-39; Associate Professor, 1939-43; Professor, 1943-; Chairman of Division, 1958-. (162 Crellin) 572 La Paz Drive, San Marino.

Henrietta Hill Swope, A.M., *Research Fellow in Astronomy*

Richard Michael Talman, M.A., *Research Fellow in Physics*

Hugh Pettengill Taylor, Jr., Ph.D., *Assistant Professor of Geology*
B.S., California Institute, 1954; A.M., Harvard University, 1955; Ph.D., California Institute, 1959. Assistant Professor, 1959-61; Research Fellow 1961; Assistant Professor, 1962-.

Herman Teitelbaum, Ph.D., *Research Fellow in Biology*
A.B., Johns Hopkins University, 1957; M.S., University of Washington, 1959; Ph.D., McGill University, 1962. California Institute, 1961-. (386 Alles) 42 Marion.

Leave of absence, 1962-63.
John Todd, B.Sc., Professor of Mathematics
B.Sc., Queen's University, Ireland, 1931. California Institute, 1937-. (262 Sloan). 1625 Sierra Bonita Lane.

Olga Taussky Todd, Ph.D., Research Associate in Mathematics
Ph.D., University of Vienna, 1930; M.A., University of Cambridge, 1937. California Institute, 1957-. (264 Sloan) 1625 Sierra Bonita Lane.

Seikichi Tokuda, Ph.D., Research Fellow in Biology

Alvin Virgil Tollestrup, Ph.D., Professor of Physics
B.S., University of Utah, 1944; Ph.D., California Institute, 1950. Research Fellow, 1950-53; Assistant Professor, 1953-58; Associate Professor, 1958-62; Professor, 1962-. (172 Sloan) 461 Mariposa Drive, Altadena.

Kenneth M. Towe, Ph.D., Research Fellow in Geology

Colwyn Boyd Trevarthen, Ph.D., Research Fellow in Biology

Paul On Pong Ts'o, Ph.D., Senior Research Fellow in Biology
B.S., Lingnan University, Canton, China, 1949; M.S., Michigan State University, 1951; Ph.D., California Institute, 1956. Research Fellow, 1955-61; Senior Research Fellow, 1961-. (125 Kerckhoff) 93 South Oak Avenue.

Albert Tyler, Ph.D., Professor of Embryology
A.B., Columbia University, 1927; M.A., 1928; Ph.D., California Institute, 1929. Instructor, 1929-38; Assistant Professor, 1938-46; Associate Professor, 1946-50; Professor, 1950-. (312 Kerckhoff) 530 Bonita Avenue, San Marino.

Ray Edward Untereiner, Ph.D., Professor of Economics
A.B., University of Redlands, 1920; M.A., Harvard University, 1921; J. D., Mayo College of Law, 1925; Ph.D., Northwestern University, 1932. California Institute, 1925-. (10 Dabney) 1089 San Pasqual Street.

Sitaram Rao Valluri, Ph.D., Senior Research Fellow in Aeronautics
B.S., Indian Institute of Science, Bangalore, 1949; M.S., California Institute, 1950; Ph.D., 1954. Research Fellow, 1954-57; Senior Research Fellow, 1957-. (209 Firestone) 109 North Catalina Avenue.

Cornelius H. Vanderwolf, Ph.D., Research Fellow in Biology

Anthonie van Harreveld, Ph.D., M.D., Professor of Physiology
B.A., Amsterdam University, 1925; M.A., 1928; Ph.D., 1929; M.D., 1931. Research Assistant, California Institute, 1934-35; Instructor, 1935-40; Assistant Professor, 1940-42; Associate Professor, 1942-47; Professor, 1947-. (332 Kerckhoff) 764 South Oakland Avenue.

Vito August Vanoni, Ph.D., Professor of Hydraulics
B.S., California Institute, 1926; M.S., 1932; Ph.D., 1940. Associate Professor, 1942-55; Professor, 1955-. (139 Keck) 3545 Lombardy Road.

Jerome Vinograd, Ph.D., Research Associate in Chemistry
M.A., University of California (Los Angeles), 1937; Ph.D., Stanford University, 1939. Senior Research Fellow, California Institute, 1951-56; Research Associate, 1956-. (05 Church) 343 South Parkwood Avenue.

Marguerite M. P. Vogt, M.D., Senior Research Fellow in Biology
M.D., Medical Faculty in Berlin, 1937. Research Fellow, California Institute, 1950-54; Senior Research Fellow, 1954-. (057 Church) 1067 San Pasqual Street.

Rochus Vogt, Ph.D., Assistant Professor of Physics
Ph.D., University of Chicago, 1961. California Institute, 1962-.
William Gerard Wagner, Ph.D., Richard Chace Tolman Research Fellow in Theoretical Physics

Sven B. F. Wahlborn, Lic., Research Fellow in Theoretical Physics

Robert Lee Walker, Ph.D., Professor of Physics
B.S., University of Chicago, 1941; Ph.D., Cornell University, 1948. Assistant Professor, California Institute, 1949-53; Associate Professor, 1953-59; Professor, 1959-. (156 Sloan) 993 Dale Street.

Joan Wallace, Ph.D., Research Fellow in Biology
B.S., Cornell University, 1951; M.S., Rutgers University, 1954; Ph.D., 1957. Research Assistant, California Institute, 1958-59; Research Fellow, 1959-. (201 Kerckhoff) 1835-C Mill Road, South Pasadena.

Victor Gordon Walmsley, Ph.D., Research Fellow in Paleontology
B.Sc., University of Manchester, 1949; Ph.D., University of Wales, 1955. Lecturer, University of Wales, 1951-. California Institute, 1962-63.

Morgan Ward, Ph.D., Professor of Mathematics
A.B., University of California, 1924; Ph.D., California Institute, 1928. Research Fellow, 1928-29; Assistant Professor, 1929-35; Associate Professor, 1935-40; Professor, 1940-. (388 Sloan) 1550 San Pasqual Street.

Robert Rodger Wark, Ph.D., Lecturer in Art

Arthur Howard Warner, Ph.D., Executive Director, Office for Industrial Associates
A.B., University of Colorado, 1917; B.S., 1920; Ph.D., California Institute, 1927. Executive Director, 1962-. (113 Throop) 3321 Grayburn Road.

Harold Hubbard Warren, Ph.D., Visiting Associate in Chemistry
B.S., University of New Hampshire, 1944; M.S., 1947; Ph.D., Princeton University, 1950. Associate Professor of Chemistry, Williams College, 1959-. California Institute, 1962-63.

Jurg Waser, Ph.D., Professor of Chemistry
B.S., University of Zurich, 1939; Ph.D., California Institute, 1944. Professor, 1958-. (119 Gates Laboratory) 1308 East California Street.

Gerald J. Wasserburg, Ph.D., Professor of Geology
S.B., University of California, 1938; M.S., 1941; Ph.D., 1945. Assistant Professor, California Institute, 1955-59; Associate Professor, 1959-62; Professor 1962-. (268 Arms) 5100 Maiden Lane, Altadena.

Earnest Charles Watson, Sc.D., Professor of Physics, Emeritus
Ph.B., Lafayette College, 1914; Sc.D., 1958. Assistant Professor, California Institute, 1919-20; Associate Professor, 1920-30; Professor, 1930-62; Professor Emeritus 1962-. Dean of the Faculty, 1945-60, 930 Knollwood Drive, Santa Barbara.

Anthony McLean Watts, Ph.D., Research Fellow in Aeronautics

J. Harold Wayland, Ph.D., Professor of Applied Mechanics
B.S., University of Idaho, 1931; M.S., California Institute, 1935; Ph.D., 1937. Research Fellow, 1939-41; Associate Professor, 1949-57; Professor, 1957-. (327 Thomas) 361 South Greenwood Avenue.

Robert D. Wayne, M.A., Assistant Professor of German
Ph.B., Dickinson College, 1935; M.A., Columbia University, 1940. Instructor, California Institute, 1952-62; Assistant Professor, 1962-. (304 Dabney) 853 Lyndon Street, South Pasadena.

Richard Fouke Webb, M.D., Director of Health Services
A.B., Stanford University, 1932; M.D., University of Pennsylvania, 1936. California Institute, 1935-55. (Health Center) 1025 Highland Street, South Pasadena.

Jean J. Weigle, Ph.D., Research Associate in Biophysics
Ph.D., University of Geneva, 1923. California Institute, 1949-. (207 Kerckhoff) 551 South Hill Avenue.

Alfred Weil, M.D., Research Fellow in Biology

66 Officers and Faculty

Roger Joseph Weil, M.D., Research Fellow in Chemistry

John R. Weir, Ph.D., Associate Professor of Psychology
B.A., University of California (Los Angeles), 1948; M.A., 1951; Ph.D., 1951. Associate, California Institute, 1951-53; Associate Professor, 1953-. (152 Throop) 3193 Mesaba Lane.

Henry I. Weitzel, Ph.D., Registrar
B.S., University of North Dakota, 1919; M.S., 1920; Ph.D., University of Southern California, 1933. California Institute, 1961-. (119 Throop) 2500 Queensberry Road.

David F. Welch, I.D., Associate Professor of Engineering Design
A.B., Stanford University, 1941; I.D., California Institute, 1943. Instructor in Engineering Graphics, 1943-51; Assistant Professor, 1951-61; Associate Professor of Engineering Design, 1961-. (307 Thomas) 2367 Lambert Drive.

Hugo Christel Helmut Werner, Dr.rer.nat., Research Fellow in Chemistry

Roderick Alan Westerman, Ph.D., Research Fellow in Biology
B.S., Adelaide University, 1953; M.B., 1954; Ph.D., Australian National University, 1961. Medical Officer, Department of Mental Hygiene, Victoria, Australia. California Institute, 1962-63. (387 Alles) 84 Grand Oaks.

Ward Whaling, Ph.D., Professor of Physics
B.A., Rice Institute, 1944; M.A., 1947; Ph.D., 1949. Research Fellow, California Institute, 1949-52; Assistant Professor, 1952-58; Associate Professor, 1958-62; Professor, 1962-. (1 Kellogg) 401 South Parkwood Avenue.

A. Bruce Whitehead, Ph.D., Research Fellow in Physics
B.Sc., University of New Brunswick, 1953; M.Sc., McGill University, 1955; Ph.D., 1957. California Institute, 1961-. (305 Kellogg) 114 South Craig Avenue.

John B. Whiteoak, Ph.D., Research Fellow in Astronomy

Gerald Beresford Whitham, Ph.D., Professor of Aeronautics and Mathematics

Cornelis A. G. Wiersma, Ph.D., Professor of Biology
B.A., University of Leiden, 1926; M.A., University of Utrecht, 1929; Ph.D., 1933. Associate Professor, California Institute, 1933-47; Professor, 1947-. (321 Kerckhoff) 350 South Greenwood Avenue.

Robert Leroy Wildey, Ph.D., Research Fellow in Space Science

Ronald Howard Willens, Ph.D., Research Fellow in Engineering

Max L. Williams, Jr., Ph.D., Professor of Aeronautics
B.S., Carnegie Institute of Technology, 1942; M.S., California Institute, 1947; A.E., 1948; Ph.D., 1950. Lecturer, 1948-50; Research Fellow, 1950-51; Assistant Professor, 1951-55; Associate Professor, 1955-60; Professor, 1960-. (215 Firestone) 2036 San Pasqual Street.

Olin Chaddock Wilson, Ph.D., Staff Member, Mount Wilson and Palomar Observatories
A.B., University of California, 1929; Ph.D., California Institute, 1934. Mt. Wilson Observatory, 1931-. (Mt. Wilson Office) 1754 Locust Street.

Robert Woodrow Wilson, Ph.D., Research Fellow in Radio Astronomy

Charles Harold Wilts, Ph.D., Professor of Electrical Engineering
B.S., California Institute, 1940; M.S., 1941; Ph.D., 1948. Assistant Professor, 1947-52; Associate Professor, 1952-57; Professor, 1957-. (123 Spalding) 1431 Brixton Road.

Hubert Winkler, Ph.D., Research Fellow in Physics
Ph.D., University of Zurich, 1954. Lecturer in Physics, University of Zurich, 1961-. California Institute, 1962-63.
Ernest Winocour, Ph.D., Research Fellow in Biology

Aage Winther, Ph.D., Senior Research Fellow in Physics
M.S., University of Copenhagen, 1950; Ph.D., 1961. Lecturer, University of Copenhagen, 1955-. California Institute, 1956-57; 1962.

Hugo van Woerden, Ph.D., Research Fellow in Astronomy

David Shotwell Wood, Ph.D., Professor of Mechanical Engineering
B.S., California Institute, 1941; M.S., 1946; Ph.D., 1949. Lecturer, 1949-50; Assistant Professor, 1950-55; Associate Professor, 1955-61; Professor, 1961-. (205 Keck) 590 Elm Avenue, Sierra Madre.

Major Leo T. Woods, M.B.A., Professor of Air Science
B.S., St. Louis University, 1949; M.B.A., Columbia University, 1955. California Institute, 1962-.

Dean Everett Wooldridge, Ph.D., Research Associate in Engineering
B.A., University of Oklahoma, 1932; M.A., 1934; B.S., University of California, 1932; M.S., St. Louis University, 1939-52. Research Fellow, 1947-49; Research Associate, 1950-52; 1962-; 319 Copa de Oro, Bel Air.

Kenneth Osborne Wright, Ph.D., Research Associate in Astronomy
B.A., Toronto University, 1933; M.A., 1934; Ph.D., University of Michigan, 1940. Assistant Director, Dominion Astrophysical Observatory, Victoria, B.C., 1961-, California Institute, 1962.

Chin Hua Wu, Ph.D., Research Fellow in Chemistry
B.S., Chiao-Tung University, China, 1949; Ph.D., University of California (Los Angeles), 1955. California Institute, 1955-57; 1958-. (252 Crellin) 3300 Las Lunas Street.

Theodore Yao-Tsu Wu, Ph.D., Professor of Applied Mechanics
B.S., Chiao-Tung University, 1946; M.S., Iowa State University, 1948; Ph.D., California Institute, 1952. Research Fellow, 1952-55; Assistant Professor, 1955-57; Associate Professor, 1957-61; Professor, 1961-. (315 Thomas) 3300 Las Lunas Street.

Oliver Reynolds Wulf, Ph.D., Research Associate in Physical Chemistry
B.S., Worcester Polytechnic Institute, 1920; M.S., American University, 1922; Ph.D., California Institute, 1926. California Institute, 1945-. (56 Crellin) 537 Berkeley Avenue, San Marino.

Don M. Yost, Ph.D., Professor of Inorganic Chemistry
B.S., University of California, 1923; Ph.D., California Institute, 1926. Instructor, California Institute, 1927-29; Assistant Professor, 1929-33; Associate Professor, 1935-41; Professor, 1941-. (107 Gates) 1055 San Pasqual Street.

Arthur Howland Young, Lecturer in Industrial Relations, Emeritus
California Institute, 1939-52. 3 Rosemary Lane, Santa Barbara.

Fredrik Zachariasen, Ph.D., Associate Professor of Theoretical Physics
B.S., University of Chicago, 1951; Ph.D., California Institute, 1956. Assistant Professor, 1960-62; Associate Professor, 1962-. (160 Sloan) 399 Cherry Drive.

Adam Richard Zak, Ph.D., Research Fellow in Aeronautics
B.E., Auckland University, New Zealand, 1956; M.S., Purdue University, 1959; Ph.D., 1961. California Institute, 1961- (217 Firestone) 615 South El Molino Avenue.

Egualdo Oscar Zangheri, M.D., Research Fellow in Biology
M.D., Faculty of Medicine, National University of Cuyo, Mendoza, Argentina, 1959. Instructor, Department of Physiology, National University of Cuyo. California Institute 1962-63, (222 Kerckhoff) 413 South Hudson Avenue.

Laszlo Zechmeister, Dr.Ing., Professor of Organic Chemistry, Emeritus
Diploma of Chemist, Eidgenossische Technische Hochschule, Zurich, Switzerland, 1911; Dr.Ing., 1913; Professor, California Institute, 1940-59; Professor Emeritus, 1959-. (254 Crellin) 1122 Constance Street.

Edward Edom Zukoski, Ph.D., Associate Professor of Jet Propulsion
B.S., Harvard College, 1950; M.S., California Institute, 1951; Ph.D., 1954. Research Engineer, Jet Propulsion Laboratory, 1950-57; Lecturer, California Institute, 1956-57; Assistant Professor, 1957-60; Associate Professor, 1960-. (227 Thomas) 2386 Las Lunas Street.

Fritz Zwicky, Ph.D., Professor of Astrophysics; Staff Member, Mount Wilson and Palomar Observatories
B.S., Federal Institute of Technology, Zurich, Switzerland, 1920; Ph.D., 1922. Research Fellow International Education Board, California Institute, 1925-27; Assistant Professor of Theoretical Physics, 1927-29; Associate Professor, 1929-41; Professor of Astrophysics, 1941-. (201 Robinson) 2065 Oakdale Street.
Graduate Appointments

California Institute of Technology
Graduate Fellows, Scholars and Assistants, 1961-62

Bruce Jerome Aborn, Graduate Teaching Assistant, Laws Scholar, Mathematics
B.S., Ohio State University, 1961; M.A., Middlebury College, 1961

Kenneth Hoyt Adams, Ford Foundation Fellow, Graduate Teaching Assistant, Graduate Research Assistant, Institute Scholar, Materials Science
B.S., California Institute, 1959; M.S., 1960

Eric George Adelberger, National Science Foundation Fellow, Physics
B.S., California Institute, 1960

David George Agresti, Graduate Research Assistant, Institute Scholar, Physics
B.S., Ohio State University, 1959

Harlow Garth Ahlstrom, Institute Scholar, Aeronautics
B.S., University of Washington, 1959; M.S., 1959

Roedar Ahmad, U.S. Government Fellow, Drake Scholar, Physics
F.Sc., Government Akar Memorial College (Mardan, Pakistan), 1955; B.Sc., 1958; M.Sc., University of Peshawar (Pakistan), 1961

Nazeer Ahmed, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.E., University of Mysore (India), 1961

Ezekiel Olabisi Akinrimisi, Graduate Teaching Assistant, Institute Scholar, Biology
B.Sc., Michigan State University, 1960

Frank Addison Albini, Howard Hughes Fellow, Mechanical Engineering
B.S., California Institute, 1958; M.S., 1959

Norman Webster Albright, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., California Institute, 1956

Shelton Setzer Alexander, Standard Oil of California Fellow, Graduate Research Assistant, Institute Scholar, Geology
B.S., University of North Carolina, 1956; M.S., California Institute, 1959

Hector Alvarez-Pavez, Anaconda Fellow, Geology
Ing.Civ., University of Chile, 1958

Ethan Davidson Alyea, Jr., Graduate Research Assistant, Institute Scholar, Physics
A.B., Princeton University, 1953

John Philip Andelin, Jr., Graduate Research Assistant, Institute Scholar, Physics
B.S., California Institute, 1955; M.S., Stanford University, 1956

Don Lynn Anderson, Standard Oil Company of California Fellow, Geology
B.S., Rensselaer Polytechnic Institute, 1955; M.S., California Institute, 1959

William Judson Anderson, Institute Scholar, Aeronautics
B.S., Iowa State College, 1957; M.S., 1958

Stephen A. Andrea, National Defense Education Act Fellow, Graduate Teaching Assistant, Mathematics
B.A., Oberlin College, 1960

Vincent George Aquino, Atomic Energy Commission Fellow, Mechanical Engineering
B.S., University of Portland, 1967

Charles Bruce Archambeau, Sinclair Fellow, Geology
B.S., University of Minnesota, 1955; M.S., 1959

Robert James Arenz, (S.J.), Institute Scholar, Aeronautics
B.S., Oregon State College, 1945; M.S., Lic. in Phil., St. Louis University, 1937

George S. Argyropoulos, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
Dipl. in M. and E.E., National Technical University of Athens, 1960; M.S., California Institute, 1961

Joseph Eliahu Arie, International Cooperation Administration Fellow, Geology
M.Sc., Hebrew University (Jerusalem), 1961
Claude Arpigny, Belgian-American Foundation Fellow, Institute Scholar, NATO Fellow, Astronomy
Lic.Sci., University of Liège, 1958

Robert Carl Ashenfelter, Graduate Research Assistant, Institute Scholar, Physics
B.S., Harvey Mudd College, 1961

John Fredrich Asmus, Tektronix Foundation Fellow, Electrical Engineering
B.S., California Institute, 1958; M.S., 1959

Clement Audet, Department of Health (Province of Quebec) Fellow, Civil Engineering
B.Sc.A., Université Laval (Quebec), 1960

Boris Auksmann, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
B.A.Sc., University of British Columbia, 1955, M.S., California Institute, 1958; M.E., 1959

Charles Dwight Babcock, Jr., National Aeronautics and Space Administration Fellow, Aeronautics
B.S., Purdue University, 1957; M.S., California Institute, 1958

Andrew Dow Bacher, National Science Foundation Fellow, Physics
B.A., Harvard University, 1960

Donald Baganoff, National Aeronautics and Space Administration Fellow, Aeronautics
B.S., Purdue University, 1957; M.S., Washington University, 1960

Peter Baine, Graduate Teaching Assistant, Dobbins Scholar, Chemistry
G.R.I.C., Royal Technical College (Salford, England), 1961

Donald Milford Baker, Graduate Research Assistant, Institute Scholar, Physics
B.S., University of Colorado, 1960

John Edwin Baldwin, National Science Foundation Fellow, Chemistry
A.B., Dartmouth College, 1959

Philip Oren Banks, National Science Foundation Fellow, Geology
S.B., Massachusetts Institute of Technology, 1958

James Maxwell Bardeen, Francis J. Cole Fellow, Physics
A.B., Harvard College, 1960

Clark Reid Barker, Clinedinst Scholar, Applied Mechanics
B.S.M.E., Bradley University, 1961

Dennis Barrett, U.S. Public Health Service Fellow, Biology
A.B., University of Pennsylvania, 1957

J. Frederick Bartlett, Graduate Research Assistant, Inland Steel-Ryerson Scholar, Astronomy
B.S., Yale University, 1958; M.S., California Institute, 1961

Leonard Daniel Baumert, Drake Scholar, Mathematics
B.A., University of California (Los Angeles), 1952; M.A., 1959

Douglas Stanley Beder, Woodrow Wilson Foundation Fellow, Physics
B.Sc., McGill University, 1961

Anthony Bedford, ARCS Scholar, Aeronautics
B.S., University of Texas, 1961

Wayne Metcalf Beebe, Ford Foundation Fellow, Lockheed Leadership Fund Fellow, Aeronautics
B.S., California Institute, 1951; M.S., 1952

George Wood Beeler, Jr., Consolidated Electrodynamics Corporation Fellow, Electrical Engineering
B.S.E., Princeton University, 1960; M.S.; California Institute, 1961

Wilhelm Behrens, NATO Fellow, Aeronautics
Dipl.Ing., Technical University (Munich), 1960

James Melvin Bell, Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Civil Engineering
B.S., Colorado State College of Agriculture and Mechanic Arts, 1954; M.S., California Institute, 1955
Graduate Appointments

Thomas Livingston Benjamin, Graduate Teaching Assistant, Institute Scholar, Biology
B.A., Amherst College, 1959

Ronald David Bercov, General Electric Foundation Fellow, Graduate Teaching Assistant, Mathematics
B.Sc. (Hons), University of Alberta, 1959

Glenn LeRoy Berge, National Science Foundation Fellow, Astronomy
B.A., Luther College, 1960

Thomas Előd Berty, Graduate Research Assistant, Institute Scholar, Chemical Engineering
Dipl. in M.E., Polytechnic University (Budapest), 1954

William Henry Bettes, Jr., Murray Scholar, Aeronautics
B.S., Northrop Institute of Technology, 1961

Narain Mulchand Bhatia, Graduate Research Assistant, Institute Scholar, Mechanical Engineering
B.E., College of Engineering (Poona University), 1960; M.S., California Institute, 1961

Shawn Biehler, Pan American Petroleum Foundation Fellow, Geology
B.S.E., Princeton University, 1958; M.S.E., 1959; M.S., California Institute, 1961

Harry Spencer Blackiston, Jr., Institute Scholar, Aeronautics
B.S., Purdue University, 1957; M.S., 1959

Charles Melvin Blair, Leeds and Northrup Foundation Fellow, Chemistry
B.A., Rice University, 1961

James Brown Boyd, U.S. Public Health Service Fellow, Biology
B.A., Cornell University, 1959

William Charles Boyle, U.S. Public Health Service Trainee, Civil Engineering
C.E., University of Cincinnati, 1959; M.S., 1960

Arthur Gerald Brady, Graduate Teaching Assistant, Institute Scholar, Civil Engineering
B.E., University of Auckland, 1959; M.E., 1960; B.Sc., 1961

Richard Taber Brockmeier, Danforth Foundation Scholar, Graduate Teaching Assistant, Physics
B.A., Hope College, 1959; M.S., California Institute, 1961

David Armstrong Brueckner, National Institutes of Health Fellow, Chemistry
B.S., Ohio University, 1960

Ben Graham Burke, Alfred P. Sloan Foundation Fellow, Mechanical Engineering
B.S., California Institute, 1961

William Berrian Bush, The Boeing Company Fellow, Aeronautics
B.S., Princeton University, 1955

Ward M. Cañaway, Graduate Research Assistant, Blacker Scholar, Electrical Engineering
B.S., California Institute, 1961

Carlos Miguel Campuzano, U.S. Public Health Service Trainee, Civil Engineering
B.S.C.E., University of Kansas, 1959
Roger William Caputi, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.S., California Institute, 1957

Robert Everett Carter, Graduate Research Assistant, Institute Scholar, Chemistry
A.B., Columbia College, 1958

John Irvin Castor, National Science Foundation Fellow, Astronomy
B.S., Fresno State College, 1961

Tsiu Chiu Chan, Graduate Research Assistant, Bridge Scholar, Electrical Engineering
B.E., McGill University, 1961

Robert Eugene Chandos, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.S., California Institute, 1959; M.S., 1960

Subhash Chandra, Graduate Research Assistant, Institute Scholar, Astronomy
B.S., University of Lucknow, 1954; M.S., 1958; M.S., California Institute, 1961

Tseng-hsu Chang, Graduate Teaching Assistant, Graduate Research Assistant, Institute Scholar, Physics
B.S., Columbia University, 1955

Chang-chih Chao, Graduate Research Assistant, Institute Scholar, Engineering Science
B.S., National Taiwan University, 1956; M.S., Virginia Polytechnic Institute, 1960

George Frederick Chapline, Jr., Institute Scholar, Physics
B.A., University of California (Los Angeles), 1961

Robert Gorham Chapman, Jr., Graduate Research Assistant, ARCS Scholar, Electrical Engineering
B.S.E., Princeton University, 1961

Phillip John Chase, Graduate Teaching Assistant, Institute Scholar, Mathematics
B.A., The College of Wooster, 1961

Shiou-Shan Chen, Republic of China Fellow, Chemical Engineering
B.S., Taiwan Provincial Taipei Institute of Technology, 1958

Ronald Benjamin Chesler, Graduate Teaching Assistant, Institute Scholar, Physics
A.B., University of Pennsylvania, 1961

Arthur Noble Chester, National Science Foundation Fellow, Physics
B.S., The University of Texas, 1961

Charles Richard Christensen, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.E., Vanderbilt University, 1960

Armando Cisternas S., Graduate Research Assistant, Institute Scholar, Geology
Min. Eng., University of Chile, 1957; M.S., California Institute, 1960

Barry Gillespie Clark, National Science Foundation Fellow, Astronomy
B.S., California Institute, 1959

Peter Osgood Clark, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.E.Ph., McGill University, 1960; M.S., California Institute, 1961

Milton John Clauser, National Science Foundation Fellow, Physics
S.B., Massachusetts Institute of Technology, 1961

Don Paul Clausing, Alfred P. Sloan Foundation Fellow, Materials Science
B.S., Iowa State University, 1952

Carl Rudolph Clinesmith, Graduate Research Assistant, Institute Scholar, Physics
B.S., University of Washington, 1959

Donald Henry Close, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.S., University of Kansas, 1960

James Stanley Clovis, U.S. Public Health Service Fellow, Chemistry
B.S., Waynesburg College, 1959
Graduate Appointments

Richard Lewis Cohen, Graduate Research Assistant, Institute Scholar, Physics
B.S., Haverford College, 1957; M.S., California Institute, 1959

Leon Randle Coker, Graduate Teaching Assistant, Laws Scholar, Chemistry
B.S., Henderson State Teachers College, 1957; M.S., University of Arkansas, 1961

Thomas Alan Cole, Nutrition Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Biology
B.A., Wabash College, 1958

Sidney Richard Coleman, National Science Foundation Fellow, Physics
B.S., Illinois Institute of Technology 1957

René Clément Collette, Graduate Research Assistant, General Precision, Inc., Scholar, Electrical Engineering
Ing.Civil A.I.M., University of Liège, 1958; M.S., California Institute, 1960

Peter Alfred Compton, Graduate Research Assistant, Murray Scholar, Physics
B.S., University of Maryland, 1961

Terrill Alan Cool, Graduate Teaching Assistant, Clinedinst Scholar, Mechanical Engineering
B.S., University of California (Los Angeles), 1961

Harold Thompson Couch, Standard Oil Company of California Fellow, Chemical Engineering
B.S.E., Princeton University, 1958; M.S., University of Southern California, 1961

Robert Glen Coyer, Graduate Teaching Assistant, Murray Scholar, Civil Engineering
B.S., Tufts University, 1961

Donald Gerald Coyne, Graduate Research Assistant, Institute Scholar, Physics
B.S., University of Kansas, 1958

Lelia M. Coyne, Graduate Teaching Assistant, Drake Scholar, Chemistry
B.S., University of California (Los Angeles), 1961

Richard Clark Crewdson, Atomic Energy Commission Fellow, Engineering Science
B.S., Lafayette College, 1961

Donald Leslie Cronin, R. C. Baker Fellow, Graduate Teaching Assistant, Mechanical Engineering
B.S., Rutgers University, 1957; M.S., California Institute, 1961

Robert Fredrick Cuffel, Graduate Teaching Assistant, Institute Scholar, Chemical Engineering
B.S., Iowa State College, 1959; M.S., California Institute, 1960

Benjamin Edgar Cummings, Ford Foundation Fellow, Institute Scholar, Aeronautics
B.S., California Institute, 1955; M.S., 1956; Ae.E., 1957

Joseph Renald Yvon Cusson, Graduate Teaching Assistant, Institute Scholar, Physics
B.Sc., Université de Montréal, 1960

Michel Maulbon d’Arbaumont, French Ministry of Foreign Affairs Fellow, Electrical Engineering
Dipl. Ing., Ecole Nationale Supérieure des Télécommunications (Paris), 1961

Roger Fred Dashen, Woodrow Wilson Foundation Fellow, Physics
A.B., Harvard College, 1960

John Warren Davies, Graduate Research Assistant, Murray Scholar, Physics
B.A., State University of Iowa, 1961

Jacques de Barbyerac Saint-Maurice, Graduate Research Assistant, Institute Scholar, Electrical Engineering
Dipl.C.A.E., Ecole Nationale Supérieure de l’Aéronautique (Paris), 1959; M.S., California Institute, 1960

David Tilton Denhardt, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Biology
B.A., Swarthmore College, 1960
Paul Claire Denny, *U.S. Public Health Service Fellow, Graduate Teaching Assistant, Biology*
B.A., Westmont College, 1960

Robert Dewey de Pencier, *Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering*
B.Sc., Queen's University, 1959; M.S., California Institute, 1960

Robert Stanford Deverill, *Du Pont Postgraduate Teaching Assistant, Chemistry*
B.S., California Institute, 1958

C. Forbes Dewey, Jr., *National Science Foundation Fellow, Aeronautics*
B.E., Yale University, 1956; M.S., Stanford University, 1957

H. Harvey Dewing, Jr., *Graduate Teaching Assistant, Dobbins Scholar, Chemistry*
B.S., University of Missouri, 1961

James Mills Dickey, *Graduate Teaching Assistant, Dobbins Scholar, Mathematics*
B.A., University of Redlands, 1961

Robert Ernst Diebold, *National Science Foundation Fellow, Physics*
B.S., University of New Mexico, 1958; M.S., California Institute, 1960

Frank Sigel Dietrich III, *National Science Foundation Fellow, Physics*
B.A., Haverford College, 1959

Theodore Neil Divine, *Convair Fellow, Astronomy*
S.B., Massachusetts Institute of Technology, 1959; M.S., University of Michigan, 1960

Richard Dolen, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.E.Ph., Cornell University, 1957

John Jacob Domingo, *Graduate Research Assistant, Institute Scholar, Physics*
B.S., California Institute, 1955

Jean-Pierre Dorlhac, *French Ministry of Foreign Affairs Fellow, Aeronautics*
Dipl.Ing., Ecole Nationale Supérieure de l'Àéronautique (Paris), 1961

Richard Harold Drew, *Graduate Research Assistant, E. N. Brown Scholar, Electrical Engineering*
B.S., California Institute, 1961

Joe Aguirre Duardo, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., University of California (Los Angeles), 1959

Alan Sander Dubin, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
C.E., University of Cincinnati, 1960

Jean-Claude Dubois, *French Ministry of Foreign Affairs Fellow, Electrical Engineering*
Ing.Civil, University of Louvain, 1958

David James Duchamp, *National Science Foundation Fellow, Chemistry*
B.S., University of Southwestern Louisiana, 1961

François Duffaut, *Graduate Research Assistant, Hanson Scholar, Materials Science*
Dipl.Ing., Ecole Nationale Supérieure des Mines (Paris), 1958

Michael B. Duke, *National Science Foundation Fellow, Geology*
B.S., California Institute, 1957; M.S., Pennsylvania State University, 1958; M.S., California Institute, 1961

Stanley Duane Ecklund, *National Science Foundation Fellow, Physics*
B.S., University of Minnesota, 1961

Richard Carl Eden, *Graduate Research Assistant, ARCS Scholar, Electrical Engineering*
B.S., Iowa State University, 1961

David Arthur Evensen, *National Science Foundation Fellow, Aeronautics*
B.S., Worcester Polytechnic Institute, 1959; M.S., California Institute, 1960

William Thomas Fehlberg, *Graduate Teaching Assistant, Institute Scholar, Engineering Science*
B.S.E., University of Michigan, 1960

Philip Filner, *Graduate Teaching Assistant, Institute Scholar, Biology*
B.A., Johns Hopkins University, 1960
Graduate Appointments

Michael Hamilton Fisch, *National Science Foundation Fellow, Chemistry*
A.B., Columbia College, 1960

John Edward Fischer, *Atomic Energy Commission Fellow, Mechanical Engineering*
B.S.M.E., Rensselaer Polytechnic Institute, 1961

Thornton Roberts Fisher, *National Science Foundation Fellow, Physics*
B.A., Wesleyan University, 1958

Melinda Ann Flory, *Woodrow Wilson Foundation Fellow, Physics*
A.B., Bryn Mawr College, 1961

Efthymios Stefanos Folias, *T. S. Brown Scholar, Aeronautics*
B.S., University of New Hampshire, 1959; M.S., 1960

Edward Berel Fomalont, *Graduate Research Assistant, Inland Steel-Ryerson Scholar, Astronomy*
B.S., University of Pennsylvania, 1961

Douglas Gun Fong, *Electro-Optical Systems Fellow, Physics*
A.B., Princeton University, 1961

James Lawrence Collier Ford, Jr., *Graduate Research Assistant, Institute Scholar, Physics*
B.A., Montana State University, 1955; M.S., California Institute, 1959

Donald Bozell Forrest, *Graduate Teaching Assistant, Clinedinst Scholar, Materials Science*
B.S., California Institute, 1961

Robert Paul Foss, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.A., Northwestern University, 1958

James Norman Foster, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.A., Occidental College, 1959

Lorraine Lois Foster, *General Electric Foundation Fellow, Institute Scholar, Mathematics*
B.A., Occidental College, 1960

Michael Eugene Fourney, *Graduate Teaching Assistant, Institute Scholar, Aeronautics*
B.S.A.E., West Virginia University, 1958; M.S., California Institute, 1959

Lyman Jefferson Fretwell, Jr., *Graduate Research Assistant, Institute Scholar, Physics*
B.S., California Institute, 1956

Michael Fried, *Nutrition Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Biology*
B.A., Hunter College, 1959

Charles Julius Fritchie, Jr., *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.S., Tulane University, 1958

Robert Peter Frosch, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.S., Union College, 1959

Claude Michel Alain Fugère, *French Ministry of Foreign Affairs Fellow, Electrical Engineering*
Dipl.Ing., Ecole Nationale d'Ingénieurs Arts et Métiers (Lille), 1961

John Kelsey Gardner, *Graduate Research Assistant, Institute Scholar, Geology*
B.S., University of Arizona, 1953; M.S., 1958

George Donald Garlick, *Graduate Teaching Assistant, Institute Scholar, Geology*
B.Sc., University of Witwatersrand, 1956; M.S., California Institute, 1961

Johann Gassmann, *NATO Fellow, Physics*
Dipl. Ing., Technical University (Munich), 1958

Michael Saunders Gazzaniga, *Graduate Teaching Assistant, Institute Scholar, Biology*
A.B., Dartmouth College, 1961

Robert Joseph Gerbracht, *National Science Foundation Fellow, Physics*
B.A., Reed College, 1960
Edward George Gibson, National Science Foundation Fellow, Mechanical Engineering
B.S., University of Rochester, 1959; M.S., California Institute, 1960

Joseph Paul Giesing, Institute Scholar, Aeronautics
B.S., University of Colorado, 1961

Scott Edwin Gilles, Institute Scholar, Aeronautics
B.S., University of Kansas, 1960

Philip Mwangi Githinji, Graduate Teaching Assistant, Institute Scholar,
Mechanical Engineering
B.S.M.E., Purdue University, 1960; M.S., California Institute, 1961

Edward Stanley Glazer, Graduate Teaching Assistant, Dobbins Scholar, Chemistry
A.B. (Hons), University of Pennsylvania, 1961

Ellen Rose Glowacki, U.S. Public Health Service Fellow, Graduate Teaching Assistant,
Biology
B.A., Swarthmore College, 1960

William Andrew Goddard III, Shell Companies Foundation Fellow, Engineering Science
B.S., University of California (Los Angeles), 1960

Alexander Franklin Hermann Goetz, Dobbins Scholar, Geology
B.S., California Institute, 1961

Harris Gold, Institute Scholar, Aeronautics
B.M.E., Polytechnic Institute of Brooklyn, 1958; M.S.M.E., Columbia University, 1959

Robert Goldstein, National Science Foundation Fellow, Engineering Science
B.S., Columbia University, 1959; M.S., California Institute, 1960

Alfred Frans Gort, Graduate Research Assistant, Blacker Scholar,
Electrical Engineering
Cand., Technische Hogeschool (Eindhoven, Holland), 1960

James Alexander Grant, Graduate Teaching Assistant, Institute Scholar, Geology
B.Sc. (Hons), Aberdeen University, 1957; M.A., Queen’s University, 1959

Dennis Jerome Graue, National Science Foundation Fellow, Chemical Engineering
B.S., University of Colorado, 1961

Augustine Heard Gray, Jr., Garrett Corporation Fellow, Graduate Teaching Assistant,
Engineering Science
S.B., Massachusetts Institute of Technology, 1959; S.M., 1959

Louise Ethel Gray, Amelia Earhart Fellow, Institute Scholar, Engineering Science
B.S., University of California (Los Angeles), 1957; M.S., 1959

Charles August Greenhall, National Science Foundation Fellow, Physics
B.A., Pomona College, 1961

William Franklin Greenman, Murray Scholar, Materials Science
B.S., California Institute, 1960

David Henry Griffel, Graduate Teaching Assistant, Dobbins Scholar, Physics
B.Sc., (Hons), Birmingham University (England), 1961

Hayes Osbice Griffith, National Science Foundation Fellow, Chemistry
A.B., University of California (Riverside), 1960

David Eiben Groce, General Atomic Fellow, Physics
B.Sc. (Hons), Birmingham University (England), 1961

Donald Eugene Groom, Eastman Kodak Fellow, Physics
A.B., Princeton University, 1956

Fletcher Ivan Gross, National Science Foundation Cooperative Fellow, Graduate
Teaching Assistant, Mathematics
B.S., California Institute, 1960

James Edward Gunn, National Science Foundation Fellow, Astronomy
B.A., Rice University, 1961

George Drake Guthrie, Arthur McCallum Fellow, Institute Scholar, Biology
A.B., Wabash College, 1954

Gidali Gutner, French Ministry of Foreign Affairs Fellow, Civil Engineering
Dipl. Ing., Ecole Nationale d'Ingénieurs Arts et Métiers (Lille), 1961
Graduate Appointments

Clovis Roland Haden, Graduate Teaching Assistant, Rutherford Scholar, Electrical Engineering
B.S.E.E., Arlington State College, 1961

Ralph Stuart Hager, Graduate Teaching Assistant, Drake Scholar, Physics
B.S., University of Minnesota, 1961

Alfred Washington Hales, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Mathematics
B.S., California Institute, 1960

David Warren Hall, National Institutes of Health Fellow, Chemistry
B.S., University of Arizona, 1957

Lawrence William Hallanger, Graduate Research Assistant, Institute Scholar, Mechanical Engineering
B.S., Harvey Mudd College, 1961

Carole Olson Hamilton, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.S., Colorado State University, 1958.

Charles Robert Hamilton, Graduate Teaching Assistant, Institute Scholar, Biology
B.S., University of the South, 1957

Robert Duane Hanson, Ford Foundation Fellow, Graduate Research Assistant, Institute Scholar, Civil Engineering
B.S., University of Minnesota, 1957; M.S.C.E., 1958

William Morgan Hardham, Graduate Teaching Assistant, Drake Scholar, Chemistry
B.S., The Pennsylvania State University, 1961

David Garrison Harkrider, International Business Machines Fellow, Geology
B.S., Rice University, 1953; M.A., 1957

Robert Earl Harmon, Stauffer Chemical Company Fellow, Chemical Engineering
B.S., California Institute, 1959

Charles Woods Harper, Jr., Graduate Research Assistant, Roesser Scholar, Geology
S.B., Massachusetts Institute of Technology, 1959; S.M., 1961

William Douglas Harrison, Graduate Research Assistant, Institute Scholar, Physics
B.Sc., Mount Allison University (New Brunswick), 1958; B.Sc. (Spec.), Imperial College of Science and Technology (University of London), 1960

Donald LeRoy Hartill, National Science Foundation Fellow, Physics
S.B., Massachusetts Institute of Technology, 1961

James Burkett Hartle, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Physics
A.B., Princeton University, 1960

Kenneth Edwin Harwell, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., University of Alabama, 1958; M.S., California Institute, 1960

G. Laurie Hatch, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., Tufts University, 1959

Edward Hauptmann, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
B.Sc., University of Alberta, 1960; M.S., California Institute, 1961

Robert Lambdin Heath, Graduate Teaching Assistant, Institute Scholar, Biology
S.B., Massachusetts Institute of Technology, 1956; S.M., 1958

Mathilde Jeanette Hebb, National Science Foundation Fellow, Physics
A.B., Bryn Mawr College, 1961

Gilbert Arthur Hegemier, National Aeronautics and Space Administration Fellow, Aeronautics
B.E.S., Brigham Young University, 1959; M.S., California Institute, 1960

Thomas McCallfree Helliwell, United States Steel Foundation Fellow, Physics
B.A., Pomona College, 1958

David Cecil Hensley, Graduate Teaching Assistant, Dobbins Scholar, Physics
B.S., University of Arizona, 1960

William George Herkstroeter, National Science Foundation Fellow, Chemistry
B.A., Wesleyan University, 1990

Robert Henry Hertel, Graduate Teaching Assistant, Institute Scholar, Electrical Engineering
S.B., Massachusetts Institute of Technology, 1958; M.S., California Institute, 1959
Henry Hunter Hill, *Graduate Teaching Assistant, Institute Scholar, Physics*
 B.A., Rice University, 1960

Lincoln Steffens Hollister, *Graduate Teaching Assistant, Rutherford Scholar, Geology*
 B.A., Harvard College, 1961

Walter Richard Holmquist, *Graduate Teaching Assistant; Bennett Scholar, Chemistry*
 B.S., Washington and Lee University, 1957; B.S., California Institute, 1961

Wallace Irving Honeywell, *Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Chemical Engineering*
 B.S., Stanford University, 1959; M.S., 1960

John Leonard Honsaker, *Graduate Research Assistant, Institute Scholar, Physics*
 B.S., California Institute, 1955

Roger LeBaron Hooke, *Graduate Teaching Assistant, Institute Scholar, Geology*
 B.A., Harvard College, 1961

David Parks Hoult, *Graduate Teaching Assistant, Institute Scholar, Aeronautics*
 S.B., Massachusetts Institute of Technology, 1957; M.S., California Institute, 1958

James Secord Howland, *Graduate Teaching Assistant, Dobbins Scholar, Mathematics*
 B.S., University of Florida, 1959

John Raymond Hribar, *Atomic Energy Commission Fellow, Materials Science*
 B.S., California Institute, 1961

Paul Yu-fei Hu, *Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering*
 B.S., University of Maryland, 1961

Gordon Frierson Hughes, *Graduate Research Assistant, Institute Scholar, Electrical Engineering*
 B.S., California Institute, 1959; M.S., 1960

Johannes Huisman, *Dobbins Scholar, Chemical Engineering*
 Dipl., Dordrecht Technical College (The Netherlands), 1956; Dipl., Royal Melbourne Technical College, 1959

Glen Owen Hultgren, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
 B.S., University of California, 1958

Richard O'Neil Hundley, *Rand Fellow, Physics*
 B.S., California Institute, 1957; M.S., 1959

Thomas Kintzing Hunt, *Graduate Research Assistant, Institute Scholar, Physics*
 B.A., Pomona College, 1959; M.S., California Institute, 1961

Clyde Allen Hutchison III, *Graduate Teaching Assistant, Institute Scholar, Biology*
 B.S., Yale University, 1960

Kwang-chou Hwang, *Graduate Teaching Assistant, Institute Scholar, Chemical Engineering*
 B.S., Taiwan University, 1956; M.S., California Institute, 1961

Abou-Bakr Khalil Ibrahim, *United Arab Republic Fellow, Geology*
 B.S., A'in Shams University (Cairo), 1958; M.S., New Mexico Institute of Mining and Technology, 1962

Marcos Intaglietta, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*
 B.S., University of California, 1957; M.S., California Institute, 1958

Alexander Donald Jacobson, *Howard Hughes Fellow, Electrical Engineering*
 B.S., University of California (Los Angeles), 1955; M.S., 1958

Marlyn Tony Jakub, *Atomic Energy Commission Fellow, Mechanical Engineering*
 B.S., Carnegie Institute of Technology, 1958

Paul Christian Jennings, *Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Civil Engineering*
 B.S., Colorado State University, 1959; M.S., California Institute, 1960

Ronald Harry Jensen, *Graduate Research Assistant, Institute Scholar, Chemistry*
 B.S., Lawrence College, 1960

Robert Joe Johnson, *Atomic Energy Commission Fellow, Mechanical Engineering*
 B.M.E., Georgia Institute of Technology, 1958
Jack Randolph Jokipii, *National Science Foundation Fellow, Physics*
B.S., University of Michigan, 1961

Janet Gretchen Jones, *National Science Foundation Fellow, Chemistry*
B.A., Swarthmore College, 1961

Noel Duane Jones, *U.S. Public Health Service Fellow, Chemistry*
B.S., Rensselaer Polytechnic Institute, 1959

Lisle Thomas Jory, *Kennecott Copper Corporation Fellow, Geology*
B.A.Sc., University of British Columbia, 1960

Boris Jules Kayser, *National Science Foundation Fellow, Physics*
A.B., Princeton University, 1960

Susan Elizabeth Kayser, *Inland Steel-Ryerson Scholar, Astronomy*
A.B., Radcliffe College, 1960

Willard Otis Keightley, *National Science Foundation Fellow, Applied Mechanics*
B.S., Wayne State University, 1951; M.S., 1956

J. Stuart Keith, *Institute Scholar, Aeronautics*
B.S., Rice University, 1958

Kenneth Irwin Kellermann, *Graduate Research Assistant, Institute Scholar, Physics*
S.B., Massachusetts Institute of Technology, 1959

Albert Prall Kendig, *Graduate Teaching Assistant, Murray Scholar, Chemistry*
B.S., Stanford University, 1961

David Walter Kendle, *Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering*
B.S., California Institute, 1961

Hugh Kendrick, *Graduate Teaching Assistant, Murray Scholar, Mechanical Engineering*
B.Sc., Imperial College of Science and Technology (London), 1961

John James Kennedy, *Richfield Oil Corporation Fellow, Chemical Engineering*
B.S., California Institute, 1961

Vassilios Kerdemelidis, *Graduate Teaching Assistant, Institute Scholar, Electrical Engineering*
B.E., National School of Engineering, University of New Zealand, 1957; M.S., California Institute, 1961

James Wesley Kessel, *National Institutes of Health Fellow, Chemistry*
B.S., University of Michigan, 1958

Leon Frank Keyser, *National Science Foundation Fellow, Chemistry*
B.S., University of Notre Dame, 1959

Joseph Roland Kilner, *Graduate Research Assistant, Institute Scholar, Physics*
B.S., Case Institute of Technology, 1957

Kenneth Robert King, *Institute Scholar, Materials Science*
B.S., California Institute, 1953; M.S., 1954

Malcolm Lee Kinter, *Graduate Research Assistant, Institute Scholar, Materials Science*
B.S., California Institute, 1961

Morton Hilliard Kirsch, *U.S. Public Health Service Postdoctoral Fellow, Biology*
A.B., Washington University, 1954; M.D., 1958

Ronald Allan Kleban, *Francis J. Cole Fellow, Electrical Engineering*
B.S., California Institute, 1961

William Klement, Jr., *National Science Foundation Fellow, Engineering Science*
B.S., California Institute, 1958

Gerhard Joachim Klose, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*
B.S., California Institute, 1959; M.S., 1960

Karl Kent Knapp, *Atomic Energy Commission Fellow, Mechanical Engineering*
B.S., California Institute, 1959; M.S., 1960

Wolfgang Gustav Knauss, *National Aeronautics and Space Administration Fellow, Aeronautics*
B.S., California Institute, 1958; M.S., 1959
Donald Ervin Knuth, *Institute Scholar, Mathematics*
B.S., Case Institute of Technology, 1960

William Wei-Lin Ko, *Institute Scholar, Aeronautics*
B.S., National Taiwan University, 1950; M.S., California Institute, 1959

Robert Ching-Yee Koh, *Corning Glass Works Foundation Fellow, Applied Mechanics*
B.S., California Institute, 1960; M.S., 1961

William Patrick Kolodny, *National Defense Education Act Fellow, Mathematics*
B.S., North Carolina State College, 1961

Warner Bruce Kover, *National Science Foundation Fellow, Chemistry*
B.S., Yale University, 1959

Stanley Garson Krane, *U.S. Public Health Service Fellow, Graduate Teaching Assistant, Biochemistry*
B.S., City College of New York, 1957; M.S., Michigan State University, 1958

Daniel Julius Krause, *National Science Foundation Cooperative Fellow, Materials Science*
B.Met.E., Ohio State University, 1958; M.S., California Institute, 1959

Joel Ivan Krugler, *Graduate Research Assistant, Institute Scholar, Physics*
B.E.E., The Cooper Union, 1959

Robert Leroy Kruse, *National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Mathematics*
B.A., Pomona College, 1960

Alvin Lloyd Kwiram, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., Walla Walla College, 1958

Joel Kwok, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., University of California, 1959

Guy J. V. Lafont, *French Ministry of Foreign Affairs Fellow, Electrical Engineering*
Dipl.Ing., Ecole Supérieure d'Electricité (Paris), 1961

Angelo Anthony Lamola, *National Science Foundation Fellow, Chemistry*
S.B., Massachusetts Institute of Technology, 1961

James Edward Lancaster, *Daniel and Florence Guggenheim Fellow, Engineering Science*
B.S., Seattle Pacific College, 1961

Marvin Alder Lanphere, *Institute Scholar, Geology*
B.S., Montana School of Mines, 1955; M.S., California Institute, 1956

William Larrabee IV, *Howard Hughes Fellow, Electrical Engineering*
B.S.E.E., Massachusetts Institute of Technology, 1960; M.S.E.E., 1961

James Daniel Larson, *Graduate Research Assistant, Institute Scholar, Physics*
S.B., Massachusetts Institute of Technology, 1957; M.S., California Institute, 1959

Raymond Walter Latham, *Royal W. Sorensen Fellow, Electrical Engineering*
B.Eng., McGill University, 1958; M.S., California Institute, 1959

Kaye Don Lathrop, *R. C. Baker Fellow, Graduate Teaching Assistant, Mechanical Engineering*
B.S., United States Military Academy, 1955; M.S., California Institute, 1959

George Melvin Lawrence, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.S., University of Utah, 1959

Andrew Scott Lebor, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.S., University of Cincinnati, 1956

Kelvin Shun Hung Lee, *Graduate Research Assistant, Institute Scholar, Electrical Engineering*
B.S., California Institute, 1960; M.S., 1961

Robert Cary Leif, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., University of Chicago, 1959

Arnold Vincent Lesikar, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.A., Rice University, 1958

Milton Irwin Levenberg, *Dow Chemical Company Fellow, Chemistry*
B.S., Illinois Institute of Technology, 1958
Michael Jerry Levine, *National Science Foundation Fellow, Physics*
B.S., University of Illinois, 1958

Paul Hersh Levine, *Institute Scholar, Physics*
S.B., Massachusetts Institute of Technology, 1956; M.S., California Institute, 1957

Mark Levinson, *Ford Foundation Fellow, Institute Scholar, Engineering Science*
B.A.E., Polytechnic Institute of Brooklyn, 1951; M.S., 1960

Roy Nathan Levitch, *National Science Foundation Fellow, Chemical Engineering*
B.Ch.E., Rensselaer Polytechnic Institute, 1961

Milton Levy, *Graduate Teaching Assistant, Dobbins Scholar, Mathematics*
B.A., Cornell University, 1956; M.S., New Mexico State University, 1960

George Wladimir Lewicki, *Graduate Research Assistant, Institute Scholar, Electrical Engineering*
S.B., Massachusetts Institute of Technology, 1960; M.S., California Institute, 1961

Alfred George Lieberman, *Graduate Research Assistant, Institute Scholar, Electrical Engineering*
B.S., Polytechnic Institute of Brooklyn, 1958; M.S., California Institute, 1959

Gerald Richard Liebling, *Graduate Research Assistant, Institute Scholar, Engineering Science*
B.S., Polytechnic Institute of Brooklyn, 1959

Ronald Keith Linde, *Graduate Research Assistant, ARCS Scholar, Materials Science*
B.S., University of California, 1961

Gerald Herbert Lindsey, *Aeronautical Research Laboratory Fellow, Aeronautics*
B.E.S., Brigham Young University, 1960; M.S., 1961

John Kailin Link, *National Science Foundation Fellow, Physics*
B.S., Antioch College, 1959

Chung-Chiun Liu, *Paul E. Lloyd Fellow, Chemical Engineering*
B.Sc., Cheng Kung University (Taiwan), 1959

Chung-Yen Liu, *Institute Scholar, Aeronautics*
B.S., Taiwan College of Engineering, 1955; M.S., Brown University, 1958

Joseph Tsu Chieh Liu, *Institute Scholar, Aeronautics*
B.S., University of Michigan, 1957; M.S., 1958

Louis Aloysius Lopes, Jr., *Murray Scholar, Mathematics*
B.S., Stanford University, 1948; M.S., 1949

Orval George Lorimor, *Graduate Teaching Assistant, Rutherford Scholar, Electrical Engineering*
B.S., Iowa State University, 1961

Helmuth Karl Valentin Lotsch, *NATO Fellow, Electrical Engineering*
Dipl.Ing., Karlsruhe Institute of Technology, 1958

Bruce Albright Lovell, *Graduate Research Assistant, Blacker Scholar, Electrical Engineering*
B.E.E., Rensselaer Polytechnic Institute, 1961

Hans Ludewig, *Institute Scholar, Mechanical Engineering*
B.Sc. (Cum Laude), University of Natal, 1959; M.Sc., 1961

Henry Lumeng, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*
B.S.M.E., Purdue University, 1958; M.S., California Institute, 1961

Huey-Lin Luo, *Graduate Research Assistant, Institute Scholar, Materials Science*
B.S., National Taiwan University, 1956; M.S., Iowa State College, 1959

Robert Lee Luttermoser, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.S., University of Michigan, 1948; M.S., 1950

Ben Edward Lynch, *National Science Foundation Fellow, Physics*
B.E.Ph., Cornell University, 1960

Ruth Marion Truscott Lynden-Bell, *American Association of University Women Fellow, Drake Scholar, Chemistry*
B.A., University of Cambridge (England), 1959; Ph.D., 1962
Robert James Macek, *Graduate Research Assistant, Institute Scholar, Physics*
B.S., South Dakota State College, 1958

Gordon Frank MacGinitie, *Institute Scholar, Electrical Engineering*
B.S., Stanford University, 1957; M.S., 1959

Jack William Macki, *National Science Foundation Fellow, Graduate Teaching Assistant, Mathematics*
B.S., University of Idaho, 1960

Robert Alister MacLeod, *Graduate Teaching Assistant, Laws Scholar, Mathematics*
B.Sc., University of Alberta, 1961

Rajeshwar Kumar Malhotra, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*
I.Sc., Ewing Christian College (Allahabad, India), 1956; B.S., Oregon State College, 1959; M.S., Cornell University, 1961

Norman David Malmuth, *Graduate Teaching Assistant, Institute Scholar, Aeronautics*
B.A.E., University of Cincinnati, 1950; M.A.E., Polytechnic Institute of Brooklyn, 1956

Peter John Mantle, *Graduate Teaching Assistant, Institute Scholar, Aeronautics*
D.C.Ae., The College of Aeronautics (Cranfield, England), 1958

Gary Lynn Marlott, *Institute Scholar, Aeronautics*
B.S.A.E., Purdue University, 1958; M.S., California Institute, 1959

Edward Rae Held McDowell, *Graduate Teaching Assistant, Murray Scholar, Mechanical Engineering*
B.S., Lehigh University, 1953; M.S., California Institute, 1959

Francis Clay McMichael, *National Defense Education Act Fellow, Civil Engineering*
B.S., Lehigh University, 1958; M.S., California Institute, 1959

James Henry McNally, *Graduate Research Assistant, Institute Scholar, Physics*
B.E., Cornell University, 1959

Robert Lewis McNeely, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.S., Duke University, 1960

Chiang-Chung Mei, *Graduate Research Assistant, Institute Scholar, Engineering Science*
B.S.C.E., National Taiwan University, 1955; M.S., Stanford University, 1958

Stanley Brun Mellsen, *Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering*
B.Sc., University of Alberta, 1961
Albert Watts Merrill, Graduate Research Assistant, E. N. Brown Scholar, Electrical Engineering
B.S., California Institute, 1961

Roger Edwin Messick, Graduate Teaching Assistant, Institute Scholar, Engineering Science
B.E., University of Illinois, 1951; M.S., 1952

F. Curtis Michel, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., California Institute, 1955

James Eardley Midgley, Graduate Research Assistant, Institute Scholar, Physics
B.S.E., University of Michigan, 1956

Dimitri Manuel Mihalas, National Science Foundation Fellow, Astronomy
A.B., University of California (Los Angeles), 1959; M.S., California Institute, 1960

Paul George Mikolaj, Graduate Teaching Assistant, Institute Scholar, Chemical Engineering
B.Ch.E., Fenn College, 1958; M.S., University of Rochester, 1960

Ralph Fraley Miles, Jr., Graduate Research Assistant, Institute Scholar, Physics
B.S., California Institute, 1955; M.S., 1960

Hugh Thompson Millard, Institute Scholar, Chemistry
B.A., Coe College, 1957

Richard Graham Miller, Graduate Research Assistant, Laws Scholar, Physics
B.Sc., University of Alberta, 1960; M.Sc., 1961

Robert Loomis Millette, Nutrition Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Biology
B.S., Oregon State College, 1954; M.S., 1959

Catalin Dan Mitescu, Graduate Teaching Assistant, Institute Scholar, Physics
B.Eng., McGill University, 1958

Edward Otto Moeck, Francis J. Cole Fellow, Mechanical Engineering
B.Sc., Queen’s University, 1961

Norton Leonard Moise, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., University of Illinois, 1948; M.A., University of California (Los Angeles), 1954; M.S., California Institute, 1959

Charles Gray Montgomery, National Science Foundation Fellow, Physics
B.A., Yale University, 1959; M.S., California Institute 1961

Donald Wayne Moon, Pacific Scientific Company Fellow, Mechanical Engineering
B.S., University of Illinois, 1956; M.S., 1957

William Joseph Moore, Drake Scholar, Chemical Engineering
S.B., Massachusetts Institute of Technology, 1958

Carlos William Moreno, Alfred P. Sloan Foundation Fellow, Mechanical Engineering
B.S., Case Institute of Technology, 1961

Fernando Bernardo Morinigo, Graduate Research Assistant, Institute Scholar, Physics
B.S., University of Southern California, 1957

Durward James Frederick Morré, Graduate Teaching Assistant, Institute Scholar, Biology
B.S., University of Missouri, 1957; M.S., Purdue University, 1958

Milton Edward Morrison, Dow Chemical Company Fellow, Chemical Engineering
B.S., Iowa State University, 1961

Robert George Mortimer, National Science Foundation Fellow, Chemistry
B.S., Utah State University, 1958; M.S., 1959

Francis Guy Moses, Graduate Research Assistant, Institute Scholar, Chemistry
B.A., University of Delaware, 1958

Calvin Elroy Moss, National Science Foundation Fellow, Physics
B.S., University of Virginia, 1961

Werner Alfred Mukatis, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.S., Northwestern University, 1960

Richard Stephen Muller, General Electric Foundation Fellow, Electrical Engineering
M.E., Stevens Institute of Technology, 1955; M.S., California Institute, 1957
John Fletcher Murphy, *Douglas Aircraft Fellow, Aeronautics*
B.S., University of Notre Dame, 1957

Elliott Robert Nagelberg, *Howard Hughes Fellow, Electrical Engineering*

Richard Stevens Naylor, *Graduate Research Assistant, Institute Scholar, Geology*
S.B., Massachusetts Institute of Technology, 1961

Eugene Byrd Nebeker, *Graduate Research Assistant, Institute Scholar, Chemical Engineering*
B.S., Stanford University, 1959; M.S., California Institute, 1960

Michael Harvey Nesson, *Arthur McCallum Fellow, Graduate Teaching Assistant, Institute Scholar, Biology*
S.B., Massachusetts Institute of Technology, 1960

Robert Canute Neuman, Jr., *U.S. Public Health Service Fellow, Graduate Teaching Assistant, Chemistry*
B.S., University of California (Los Angeles), 1959

Nicholas Scott Newhall, *Institute Scholar, Astronomy*
B.S., Stanford University, 1961

John Carl Nickel, *Graduate Teaching Assistant, Institute Scholar, Physics*
B.A., University of California (Riverside), 1958; M.S., California Institute, 1960

Niels Norby Nielsen, *Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Civil Engineering*
C.E., Technical University (Copenhagen), 1954

George Carroll Nieman, *National Science Foundation Fellow, Graduate Teaching Assistant, Chemistry*
B.S., California Institute, 1961

Park S. Nobel, *National Science Foundation Fellow, Physics*
B.E.Ph., Cornell University, 1961

Jean Marie Noël, *Institute Scholar, Geology*
Dipl., Université de Strasbourg, 1961

Harris Anthony Notarys, *Graduate Research Assistant, Institute Scholar, Physics*
S.B., Massachusetts Institute of Technology, 1954

Robert Wilson Noyes, *Graduate Research Assistant, Institute Scholar, Physics*
B.A., Haverford College, 1957

Maurice Joseph Nugent, Jr., *Graduate Teaching Assistant, Laws Scholar, Chemistry*
B.A., University of Colorado, 1961

Heiko Herbert Ohlenbusch, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., Columbia University, 1959

Baldomero M. Olivera, Jr., *U.S. Education Foundation Fellow, Coates Scholar, Chemistry*
B.S. (Summa Cum Laude), University of the Philippines, 1960; B.S.Chem., 1961

Edwin Soland Olson, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.A., St. Olaf College, 1959

Patrick Gerard O'Regan, *Graduate Research Assistant, Institute Scholar, Electrical Engineering*
B.E., University College (Cork), 1957; M.S., California Institute, 1959

Padraic Declan O'Riordan, *Graduate Teaching Assistant, O'Regan Scholar, Electrical Engineering*
B.E., University College (Cork), 1959

Jerald Vawer Parker, *National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Physics*
B.S., California Institute, 1960

Peter Donald MacDougall Parker, *National Science Foundation Fellow, Physics*
B.A., Amherst College, 1958
Graduate Appointments

Robert Allan Ridley Parker, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant
B.A., Amherst College, 1958

Robert Reid Parmerter, Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., California Institute, 1958; M.S., 1959

Richard Walker Patch, National Science Foundation Fellow, Engineering Science
B.S., Purdue University, 1953; M.S., California Institute, 1958

Dinshaw Jehangir Patel, Institute Scholar, Chemistry
B.Sc., Jai Hind College (Bombay), 1961

Robert Francis Pawula, Graduate Teaching Assistant, Bridge Scholar, Electrical Engineering
B.S., Illinois Institute of Technology, 1960; M.S., Massachusetts Institute of Technology, 1961

John Davie Pearson, Graduate Research Assistant, Institute Scholar, Physics
B.Sc., Brown University, 1956

Charles William Peck, General Electric Foundation Fellow, Physics
B.S., New Mexico College of Agricultural and Mechanical Arts, 1956

Jerry Clifford Peck, Institute Scholar, Aeronautics
B.S., California Institute, 1957; M.S., 1958; A.E., 1959

Philip Carl Peters, National Science Foundation Fellow, Physics
B.S., Purdue University, 1960

James Macon Peterson, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.S., Wake Forest College, 1958

Roger Lee Peterson, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.S., Northwestern University, 1960

James Sibley Petty, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., California Institute, 1959; M.S., 1960

Demetrius Philippou, Institute Scholar, Aeronautics
D.L.C. (Hons), Loughborough College (England), 1954; M.S., California Institute, 1961

Lewis Stephen Pilcher, Institute Scholar, Physics
B.A., Middlebury College, 1955; S.B., Massachusetts Institute of Technology, 1955

Alfred Cyril Pinchak, Union Carbide Corporation Fellow, Mechanical Engineering
B.S.E.E., Case Institute of Technology, 1957; M.S.E., Purdue University, 1959

Robert Leslie Poeschel, Radio Corporation of America Fellow, Electrical Engineering
B.S., University of Illinois, 1960; M.S., 1960

John Cheairs Porter, National Science Foundation Fellow, Chemical Engineering
B.S., University of Tennessee, 1961

John William Porter, Jr., Daniel and Florence Guggenheim Fellow, Mechanical Engineering
B.A., Rice University, 1959; M.S., California Institute, 1960

Charles Young Prescott, National Science Foundation Fellow, Physics
B.A., Rice University, 1961

Paul Walton Purdom, Jr., Atomic Energy Commission Fellow, Physics
B.S., California Institute, 1961

Om Parkash Puri, International Cooperation Administration Fellow, Materials Science
B.Sc. (Hons), Panjab University, 1950; M.Sc. (Hons), 1951

James Ray Rapp, Graduate Teaching Assistant, Institute Scholar, Chemistry
A.B., Harvard College, 1960

Bernard Charles Reardon, Graduate Teaching Assistant, Institute Scholar, Electrical Engineering
B.E., University College (Cork), 1957; M.S., California Institute, 1959

John Douglas Reichert, National Science Foundation Fellow, Physics
B.A., University of Texas, 1961; B.S., 1961

James Howard Renken, National Science Foundation Fellow, Physics
B.S., Ohio State University, 1957; M.S., 1958
Neil Ray Richardson, Institute Scholar, Mechanical Engineering
B.S., California Institute, 1961

Ira Richer, National Science Foundation Fellow, Electrical Engineering
B.E.E., Rensselaer Polytechnic Institute, 1959; M.S., California Institute, 1960

Arthur Dale Riggs, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Biology
A.B., University of California (Riverside), 1960

Peter Paul Augustine Rispin, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
B.Sc., University College (Cork), 1959; M.Sc., 1961

Jean-Claude Rivet, French Ministry of Foreign Affairs Fellow, Electrical Engineering
Dipl. Ing., Ecole Supérieure d'Electricité (Paris), 1961

Alan Proctor Roberts, Graduate Teaching Assistant, Institute Scholar, Biology
B.A., University of New Hampshire, 1955

David John Roddy, Graduate Research Assistant, Institute Scholar, Geology
A.B., Miami University, 1955; M.S., 1957

Sergio Enrique Rodriguez, Graduate Teaching Assistant, Institute Scholar, Chemical Engineering
B.S., California Institute, 1951; M.S., 1952

Louis C. Roesch, Graduate Research Assistant, Institute Scholar, Mechanical Engineering
C.E., Ecole Nationale Supérieure des Mines (Paris), 1960; M.S., California Institute, 1961

Allan Joseph Rosen, National Science Foundation Fellow, Chemistry
A.B., Harvard College, 1959

Robert Leopold Rosenfeld, National Science Foundation Cooperative Fellow, Applied Mechanics
S.B., Massachusetts Institute of Technology, 1959

Henry Ruderman, Graduate Research Assistant, Institute Scholar, Physics
B.S., Rensselaer Polytechnic Institute, 1958

Michael Richard Ruecker, National Science Foundation Cooperative Fellow, Electrical Engineering
B.S., California Institute, 1961

Paul Ridder Rupert, Institute Scholar, Aeronautics
B.S., University of Oklahoma, 1961

Charles Dyer Russell, Graduate Teaching Assistant, Institute Scholar, Chemistry
S.B., Massachusetts Institute of Technology, 1957

Jack Saltiel, Graduate Teaching Assistant, Institute Scholar, Chemistry
B.A., Rice University, 1960

Stuart Blackton Savage, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.Eng. (Hons.), McGill University, 1960; M.S., California Institute, 1961

Samuel Marvin Savin, National Science Foundation Fellow, Geology
B.A., Colgate University, 1961

Stanley Arthur Sawyer, National Defense Education Act Fellow, Graduate Teaching Assistant, Mathematics
B.S., California Institute, 1960

Richard Allan Schapery, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., Wayne State University, 1957; M.S., California Institute, 1958

Joseph Emil Scheibe, Jr., Graduate Teaching Assistant, Institute Scholar, Biology
A.B., University of California, 1960

David Lawrence Schleicher, Graduate Teaching Assistant, Institute Scholar, Geology
B.S., The Pennsylvania State University, 1959

Louis Vincent Schmidt, Ford Foundation Fellow, Institute Scholar, Aeronautics
B.S., California Institute, 1946; M.S., 1948; Ae.E., 1950

Robert James Schneider, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.S., Washington University, 1961
86 Graduate Appointments

Steven Emanuel Schwarz, Howard Hughes Fellow, Electrical Engineering
B.S., California Institute, 1959; A.M., Harvard College, 1960; M.S., California Institute, 1961

Richard Anthony Scott, Gillette-Paper Mate Fellow, Engineering Science
B.Sc. University College (Cork), 1957; M.Sc., 1960

Philip Arthur Seeger, Graduate Research Assistant, Institute Scholar, Physics
B.A., Rice University, 1958

George Andrew Seielstad, Graduate Research Assistant, Institute Scholar, Physics
A.B., Dartmouth College, 1959

George August Sellers, Graduate Teaching Assistant, Institute Scholar, Geology
B.S., The Pennsylvania State University, 1959; M.S., California Institute, 1961

Edwin Charles Seltzer, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., California Institute, 1959

Lionel Sydney Senhouse, Jr., Howard Hughes Fellow, Physics
B.M.E., College of the City of New York, 1955; M.S., University of California (Los Angeles), 1957

Edward Joseph Seppi, General Electric Company Fellow, Physics
B.S., Brigham Young University, 1952; M.S., University of Idaho, 1956

Kenneth Lee Servis, Graduate Teaching Assistant, Laws Scholar, Chemistry
B.S., Purdue University, 1961

William Lewis Shackleford, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Engineering Science
B.E., Yale University, 1959; M.S., California Institute, 1960

Usha Balvantrai Shah, Graduate Research Assistant, Institute Scholar, Chemistry
B.S., Khalsa College (Bombay), 1961

Lawrence Fred Shampine, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Mathematics
B.S., California Institute, 1961

Wesley Loren Shanks, National Science Foundation Fellow, Physics
B.S., California Institute, 1960

David H. Sharp, National Science Foundation Fellow, Physics
A.B., Princeton University, 1960

Robert Victor Sharp, Graduate Teaching Assistant, Institute Scholar, Geology
B.S., California Institute, 1956; M.S., 1961

Neil Rolfson Sheeley, Jr., Graduate Research Assistant, Institute Scholar, Physics
B.S., California Institute, 1960

Harvey Kenneth Shepard, National Science Foundation Fellow, Physics
B.S., University of Illinois, 1960

Yun-Yuan Shi, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., National Taiwan University, 1955; M.Sc., Brown University, 1958

Fred Ichiro Shimabukuro, Graduate Research Assistant, Institute Scholar, Electrical Engineering
S.B., Massachusetts Institute of Technology, 1956; S.M., 1956

Stanton Allen Shiple, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
B.S.M.E., Oregon State College, 1960; M.S., California Institute, 1961

Jon Hardy Shirley, Graduate Teaching Assistant, Institute Scholar, Physics
A.B., Middlebury College, 1957

William Keith Shubert, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.S., California Institute, 1961

Michael Stewart Shumate, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.S., Purdue University, 1955; M.S.E., 1956

Alex Shumka, Graduate Research Assistant, Institute Scholar, Electrical Engineering
B.A.Sc., University of Toronto, 1957; M.S., California Institute, 1958

Harris Julian Silverstone, National Science Foundation Fellow, Chemistry
A.B., Harvard College, 1960
George Warren Simon, *Space Technology Laboratories Fellow, Physics*
A.B., Grinnell College, 1955; M.S., California Institute, 1961

Robert Edmund Singleton, *Graduate Teaching Assistant, Institute Scholar, Engineering Science*
B.S., North Carolina State College, 1960

William Alex Sinoff, *Graduate Research Assistant, Institute Scholar, Mathematics*
B.S., California Institute, 1960

Ralph Vencil Skarda, Jr., *National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Mathematics*
B.A., Pomona College, 1961

Lionel Joseph Skidmore, *Space Technology Laboratories Fellow, Electrical Engineering*
B.S., Tulane University, 1957; M.S., 1959

Erik Jaak Hendrik Slachmuylders, *Belgian-American Foundation Fellow, Institute Scholar, Aeronautics*
B.W.E.ir, Rijksuniversiteit-Gent, 1958; Electromech Eng., 1960

Michael Elmer Slater, *Graduate Research Assistant, Murray Scholar, Mechanical Engineering*
B.S., University of California (Los Angeles), 1958; M.S., California Institute, 1961

Richard Kanne Sloan, *Institute Scholar, Physics*
B.S., The Pennsylvania State University, 1954; M.S., California Institute, 1956

Earnest Eugene Smith, *Graduate Research Assistant, Institute Scholar, Physics*
B.A., La Sierra College, 1960

John Robert Smith, *Graduate Teaching Assistant, Rutherford Scholar, Electrical Engineering*
B.S., California Institute, 1961

Lewis Lofsky Smith, *Graduate Teaching Assistant, Van Maanen Scholar, Astronomy*
B.A., University of California, 1960; M.S., California Institute, 1961

Frank Thomas Snively, *National Science Foundation Fellow, Physics*
B.S., Antioch College, 1959; M.S., California Institute, 1961

Furman Yates Sorrell, Jr., *Graduate Teaching Assistant, Institute Scholar, Aeronautics*
B.S., North Carolina State College, 1960; M.S., California Institute, 1961

Frank William Spaid, *National Science Foundation Cooperative Fellow, Mechanical Engineering*
B.S., Oregon State College, 1959; M.S., California Institute, 1961

Walter Albert Specht, Jr., *Howard Hughes Fellow, Electrical Engineering*
B.S., California Institute, 1957

William Dean Squire, *Coates Scholar, Electrical Engineering*
B.S., California Institute, 1950; M.S., 1960

John Charles Stansel, *Alfred P. Sloan Foundation Fellow, Mechanical Engineering*
B.S., University of Utah, 1960

John Paul Stenbit, *Graduate Teaching Assistant, Mobil Oil Scholar, Electrical Engineering*
B.S., California Institute, 1961

Himan Sternlicht, *Graduate Research Assistant, Institute Scholar, Chemistry*
B.S., Columbia University, 1958

Robert Farrell Stewart, *U.S. Public Health Service Fellow, Chemistry*
B.A., Carleton College, 1958

Alan Jerome Stratton, *Graduate Research Assistant, Dobbins Scholar, Geology*
S.B., Massachusetts Institute of Technology, 1961

James Henry Strauss, Jr., *Graduate Teaching Assistant, Institute Scholar, Biology*
B.S., Saint Mary's University, 1960

F. William Studier, *Graduate Teaching Assistant, Institute Scholar, Biology*
B.S., Yale University, 1958

Peter Rick Sumner, *National Science Foundation Fellow, Chemistry*
B.S., Antioch College, 1961
88 Graduate Appointments

Raynold A. Svenson, Graduate Teaching Assistant, Hanson Scholar, Electrical Engineering
B.S., Michigan College of Mining and Technology, 1961

Donald Gary Swanson, Graduate Research Assistant, Institute Scholar, Physics
B.Th., Northwest Christian College, 1958; B.S., University of Oregon, 1958; M.S., California Institute, 1961

Jerold Lindsay Swedlow, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., California Institute, 1957; M.S., Stanford University, 1960

Masaaki Takahashi, Kureha Chemical Industrial Company Fellow, Chemistry
B.S., Tohoku University, 1955

Richard Michael Talman, Graduate Teaching and Research Assistant, Institute Scholar, Physics
B.A., University of Western Ontario, 1956; M.A., 1957

Ivo Tammaru, Schlumberger Foundation Fellow, Physics
B.S., California Institute, 1959

Viviane Claude Tatin, ARCS Scholar, Aeronautics
Ing.d'Aéronautique, Ecole Nationale Supérieure de l'Aéronautique (Paris), 1961

Ta-liang Teng, Graduate Teaching Assistant, Dobbins Scholar, Geology
B.S., National Taiwan University, 1959

André-Jacques Tesnière, Institute Scholar, Mechanical Engineering
Dipl. INSTN, Institut Polytechnique (Grenoble), 1959; M.S., California Institute, 1961

Henry Archer Thiessen, National Science Foundation Fellow, Physics
B.S., California Institute, 1961

Donal Diepen Thomas, National Science Foundation Fellow, Chemistry
B.S., University of California, 1960

Mitchell Thomas, Jr., Graduate Research Assistant, Institute Scholar, Engineering Science
B.A., Harvard College, 1958; M.S., University of Illinois, 1959

Thomas Ross Thompson, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S.A.E., Purdue University, 1955; M.S.A.E., 1957

Alan Morton Title, Graduate Teaching Assistant, Institute Scholar, Physics
A.B. (Hons), University of California (Los Angeles), 1959; M.S., Columbia University, 1960

M. Nafi Toksoz, Turkish Mineral Research and Development Institute Fellow, Graduate Research Assistant, Institute Scholar, Geology
Geoph.Eng., Colorado School of Mines, 1958; M.S., California Institute, 1960

Harry Warren Townes, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Mechanical Engineering
B.S., Brown University, 1959; M.S., California Institute, 1960

Richard Ripley Tracy, Institute Scholar, Aeronautics
B.S., California Institute, 1952; M.S., 1957

Laurence Munro Trafton, Graduate Teaching Assistant, Institute Scholar, Astronomy
B.S., California Institute, 1960; M.S., 1961

John Burgess Trenholme, Graduate Teaching Assistant, Clinedinst Scholar, Materials Science
B.S., California Institute, 1961

John Michael Trischuk, Graduate Teaching Assistant, Dobbins Scholar, Physics
B.E., McGill University, 1961

Wai Keung Tso, United States Steel Foundation Fellowship, Civil Engineering
B.Sc.(Eng.), University of London, 1959; M.S., California Institute, 1960

Nicholas John Turro, Jr., National Science Foundation Fellow, Chemistry
B.A., Wesleyan University, 1960

Thomas Janney Tyson, Graduate Teaching Assistant, Murray Scholar, Aeronautics
B.S., California Institute, 1954; M.S., University of California, 1958
Harris Ellsworth Ulery, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.A., Grinnell College, 1959

John Clayton Urey, *U.S. Public Health Service Fellow, Graduate Teaching Assistant, Institute Scholar, Biology*
B.A., Swarthmore College, 1960

Charles William Van Atta, *Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Aeronautics*
B.S.E., University of Michigan, 1957; M.S.E., 1958

Lorin Lee Vant-Hull, *Graduate Research Assistant, Institute Scholar, Physics*
B.S., University of Minnesota, 1954; M.S., University of California (Los Angeles), 1956

Suryanarayana Rao Varanasi, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*
B.E., University College of Engineering (Waltair, India), 1960; M.S., California Institute, 1961

Janis Vasilevskis, *Graduate Teaching Assistant, Institute Scholar, Chemistry*
B.S., University of California, 1958

Giulio Vitale Samuele Venezian, *Graduate Teaching Assistant, Institute Scholar, Engineering Science*

George Charpentier Vlases, *National Science Foundation Fellow, Graduate Teaching Assistant, Aeronautics*
B.S., The Johns Hopkins University, 1958; M.S., California Institute, 1959

Joseph Louis Vogl, Jr., *Graduate Research Assistant, Institute Scholar, Physics*
A.B., Columbia College, 1957; M.S., California Institute, 1959

Richard Bernard Wade, *Graduate Research Assistant, Institute Scholar, Mechanical Engineering*

William Gerard Wagner, *Howard Hughes Fellow, Physics*
B.S., California Institute, 1958

Neng-Ming Wang, *Graduate Teaching Assistant, Institute Scholar, Engineering Science*
B.S., National Taiwan University, 1955; M.S., University of Texas, 1958

Yui-Loong Wang, *Graduate Research Assistant, Institute Scholar, Chemical Engineering*
B.S., Taiwan College of Engineering, 1956; M.S., California Institute, 1958

John Watson, *Graduate Teaching Assistant, Institute Scholar, Geology*
B.S., University of Oklahoma, 1954; M.S., 1959; M.S., California Institute, 1961

Kenneth Watson, *Graduate Research Assistant, Institute Scholar, Geology*
B.A., University of Toronto, 1957; California Institute, 1959

Martin Cameron Watson, *Alfred P. Sloan Foundation Fellow, Electrical Engineering*
B.S.E., Princeton University, 1961

Ronald Watson, *Ford Foundation Fellow, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering*
B.S.(M.E.), Illinois Institute of Technology, 1952; M.S., California Institute, 1953

Donald Harris Webb, *Graduate Research Assistant, Institute Scholar, Physics*
B.S., Michigan State College, 1953; M.S., University of California (Los Angeles), 1955

Ned Conder Webb, *U.S. Rubber Company Foundation Fellow, Chemistry*
B.A., Vanderbilt University, 1959

Robert William Weinman, *National Science Foundation Fellow, Physics*
B.E.Ph., Cornell University, 1960

Robert Avrum Weisberg, *Graduate Teaching Assistant, Institute Scholar, Biology*
A.B., Harvard College, 1958

Mariana Weissmann, *University of Buenos Aires Fellow, Chemistry*
Licenciada en ciencias fisico-matematicas, University of Buenos Aires, 1957

Maurice Whelan, *Graduate Teaching Assistant, T. S. Brown Scholar, Electrical Engineering*
B.E., University College (Cork), 1960
George McClelland Whitesides, National Science Foundation Fellow, Chemistry
A.B., Harvard College, 1960

Donald Martin Wiberg, Bendix Aviation Corporation Fellow, Mechanical Engineering
B.S., California Institute, 1959; M.S., 1960

Jack Milton Widholm, U.S. Public Health Service Fellow, Graduate Teaching Assistant, Biology
B.S., University of Illinois, 1961

Dennis Roland Wik, Graduate Teaching Assistant, Institute Scholar, Geology
B.S., Beloit College, 1960

John Fergus Wilkinson, National Defense Education Act Fellow, Mathematics
B.S., California Institute, 1961

Jack Milton Widholm, U.S. Public Health Service Fellow, Graduate Teaching Assistant, Biology
B.S., University of Illinois, 1961

Dennis Roland Wik, Graduate Teaching Assistant, Institute Scholar, Geology
B.S., Beloit College, 1960

John Fergus Wilkinson, National Defense Education Act Fellow, Mathematics
B.S., California Institute, 1961

Douglas Warren Willett, National Defense Education Act Fellow, Mathematics
B.S., South Dakota School of Mines and Technology, 1959

Robert Woodrow Wilson, Institute Scholar, Physics
B.A., Rice University, 1957

Thomas Henry Wirth, Graduate Teaching Assistant, Institute Scholar, Chemistry
A.B., Cornell University, 1959

Franklin Bruce Wolverton, National Science Foundation Fellow, Graduate Teaching Assistant, Physics
B.S., University of Michigan, 1961

James Sui-Wing Wong, Graduate Teaching Assistant, Institute Scholar, Mathematics
B.S., Baylor University, 1960

Po Kee Wong, Graduate Teaching Assistant, Institute Scholar, Mechanical Engineering
B.Sc., Taiwan Provincial Cheng Kung University, 1956; M.Sc., University of Utah, 1961

David Eldon Wood, National Science Foundation Fellow, Chemistry
B.S., Oklahoma State University, 1960; M.S., California Institute, 1961

Joe William Woodward, Allied Chemical Corporation Fellow, Chemical Engineering
B.S., Texas Agricultural and Mechanical College, 1960; M.S., California Institute, 1961

Joseph Richard Wrobel, Murray Scholar, Mechanical Engineering
B.S., Carnegie Institute of Technology, 1958; M.S., Cornell University, 1960

Francis Taming Wu, Graduate Research Assistant, Roese Scholar, Geology
B.S., National Taiwan University, 1959

Jain-Ming Wu, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.S., National Taiwan University, 1955; M.S., California Institute, 1959

Ying-Chu Lin Wu, Graduate Teaching Assistant, Institute Scholar, Aeronautics
B.B., National Taiwan University, 1955; M.S., Ohio State University, 1959

Daniel Lewis Wulff, National Science Foundation Fellow, Chemistry
B.S., California Institute, 1958

Michael Jeffrey Yarus, Arthur McCallum Fellow, Institute Scholar, Biology
B.A., Johns Hopkins University, 1960

Harold Thomas Yura, National Science Foundation Fellow, Physics
B.S., California Institute, 1959

Clyde Stewart Zaidins, National Science Foundation Cooperative Fellow, Graduate Teaching Assistant, Physics
B.S., California Institute, 1961

Robert Eugene Zartman, National Science Foundation Fellow, Geology
B.S., The Pennsylvania State University, 1957; M.S., California Institute, 1959

Jonas Stasys Zmuidzinas, Graduate Teaching Assistant, Institute Scholar, Physics
B.S., Indiana Technical College, 1958; M.S., California Institute, 1959

John Zoltek, Jr., U.S. Public Health Service Trainee, Civil Engineering
B.C.E., The City College of New York, 1960; M.S., California Institute, 1961

George Zweig, Graduate Research Assistant, E. N. Brown Scholar, Physics
B.S., University of Michigan, 1959
The California Institute Associates are a group of public-spirited citizens, interested in the advancement of learning, who were incorporated in 1926 as a non-profit organization for the purpose of promoting the interests of the California Institute of Technology. Information concerning the terms and privileges of membership can be secured from the Secretary of the California Institute, Room 108 Throop Hall.

Officers

Simon Ramo
PRESIDENT

W. Herbert Allen
VICE-PRESIDENT

Samuel F. Bowlby
VICE-PRESIDENT

Alexander King
SECRETARY

Preston Hotchkis
TREASURER

Herbert H. G. Nash
ASSISTANT SECRETARY—ASSISTANT TREASURER

Directors

W. Herbert Allen
Gordon A. Alles
Lloyd L. Austin
Thomas Beyrle
Samuel F. Bowlby
Ernest A. Bryant
Frank R. Capra
William Clayton
Leon W. Delbridge
Jerome K. Doolan
E. T. Foley
John S. Griffith
Herbert B. Holt
Preston Hotchkis
Willard W. Keith
Dan A. Kimball
Alexander King
John R. Mage
Stuart O'Melveny
Simon Ramo
Billings K. Ruddock

Advisory Committee

James R. Page,* CHAIRMAN

John E. Barber
Lee A. DuBridge

J. S. Fluor
Robert L. Minckler

Membership Committee

Samuel F. Bowlby, CHAIRMAN

Died July 21, 1962
Members

Fred S. Albertson
George W. H. Allen
W. Herbert Allen
Gordon A. Alles
Mrs. Gordon A. Alles
Lloyd L. Austin
John B. F. Bacon
William J. Bailey
Franklin Baldwin
Mrs. Franklin Baldwin
Mrs. Russell H. Ballard
F. M. Banks
Allyn H. Barber
John E. Barber
Mrs. Harry J. Bauer
S. D. Bechtel
Garner A. Beckett
Arnold O. Beckman
Mrs. Arnold O. Beckman
Elmer Belt
Mrs. Russell Bennett
Mrs. William C. Beschorman
Thomas Beyrle
Miss Eleanor M. Bissell
Mrs. E. J. Blacker
G. A. Bleyle, Jr.
Mrs. Edward W. Bodman
Otis Booth
Samuel F. Bowlby
Victor von Borosini
Mrs. Rebecca F. Boughton
Mrs. Carl F. Braun
John G. Braun
Mrs. James R. Brehm
Mrs. Lawrence B. Brooks
Ernest A. Bryant
William Norris Bucklin, Jr.
William H. Burgess
Mrs. Carleton F. Burke
Richard J. Burke
T. S. Burnett
Mrs. R. R. Bush
Mrs. Robert W. Campbell
Frank R. Capra
Coolidge Carter
Norman Chandler
Edward R. Chilcott
Mrs. Alfred B. Clark
Miss Lucy Mason Clark
William Clayton
Mrs. William Clayton
Arthur M. Clifford
Henry H. Clifford
Mrs. George I. Cochran
Fred H. Cole
John C. Cosgrove
Mrs. Hamilton H. Cotton
Mrs. Margaret R. Craig-McKerrow
Shannon Crandall
Shannon Crandall, Jr.
Lady William Charles Crocker
Homer D. Crotty
Richard Y. Dakin
Justin Dart
W. Thomas Davis
Mrs. Addison B. Day
Mrs. Mark Justin Dees
Leon W. Delbridge
Mrs. E. B. de Surville
Mrs. Donald R. Dickey
Franklin H. Donnell
Jerome K. Doolan
Thornton G. Douglas
George W. Downs
Henry Dreyfuss
Lee A. DuBridge
Mrs. Harry L. Dunn
E. E. Duque
Mrs. John H. Eagle
Lloyd R. Earl
Hubert Eaton
C. Pardee Erdman
John H. Esbenshade
Henry O. Eversole
Leonard K. Firestone
Mrs. John H. Fisher
Mrs. Herbert Fleishhacker
Mrs. Thomas Fleming
J. S. Fluor
Philip S. Fogg
E. T. Foley
Albert E. Foote
Patrick J. Frawley, Jr.
George E. Frazer
Mrs. Benjamin E. Page
Mrs. James R. Page
Mrs. I. Graham Pattinson
Ralph E. Phillips
Mrs. June Braun Pike
Mrs. Clarence B. Piper
Mrs. William M. Prindle
Mrs. Charles H. Prisk
W. F. Prisk
Simon Ramo
Burton C. Rawlins
Richard S. Rheem
Will Richeson, Jr.
Bernard J. Ridder
Mrs. Alden G. Roach
Harold Roach
Mrs. Harry W. Robinson
Albert B. Ruddock
Mrs. Albert B. Ruddock
Billings K. Ruddock
Merritt K. Ruddock
Mrs. Robert O. Schad
Mrs. Howard J. Schoder
Mrs. Richard J. Schweppe
Homer T. Seale
Frank R. Seaver
Peter V. H. Serrell
Leroy B. Sherry
Herman V. Shirley
Alfred P. Sloan, Jr.
Dana C. Smith
Ralph L. Smith
Howard G. Smits
Mrs. Charles A. Smolt
Mrs. Keith Spalding
Mrs. Silsby M. Spalding
Herbert Speth
E. G. Starr
David H. Steinmetz, III
Mrs. Dillon Stevens
Ron Stever
Mrs. Charles H. Strub
Elbridge H. Stuart
Mrs. Reese H. Taylor
Mrs. John Treanor
Edward E. Tuttle
Edward R. Valentine
Mrs. W. L. Valentine
William W. Valentine
J. Benton Van Nuys
Howard G. Vesper
Harry J. Volk
Richard R. Von Hagen
Mrs. Thomas W. Warner
Mrs. Gurdon W. Wattles
Robert Welles
George S. Wheaton
J. Robert White
R. J. Wig
James W. Wilkie
Leighton A. Wilkie
Robert J. Wilkie
Lawrence A. Williams
P. G. Winnett
Dean E. Wooldridge
Mrs. Archibald B. Young
INDUSTRIAL ASSOCIATES

The Industrial Associates was established in 1949 to provide a practical channel for communications and intellectual interchange between the scientists and engineers of industry and the faculty of the Institute. Companies with a strong research interest have been attracted by this plan. Features of the program are early distribution of research reports, special conferences, and an exchange of visits by faculty and company scientists. The membership fees make up a significant part of the unrestricted income available for the support of faculty salaries and research.

Inquiries should be directed to the Executive Director, Office for Industrial Associates.

The membership as of September 1, 1962, was as follows:

Aerojet-General Corporation
Beckman Instruments, Inc.
Bell & Howell Research Center
Bell Telephone Laboratories, Inc.
The Boeing Company
Burroughs Corporation
California Research Corporation
Campbell Soup Company
Carnation Company
Continental Oil Company
Douglas Aircraft Company, Inc.
Eastman Kodak Company
E. I. du Pont de Nemours and Company, Inc.
Ford Motor Company
The Garrett Corporation
General Dynamics Corporation
General Electric Company
General Motors Corporation
Giannini Controls Corporation
Gulf Research and Development Company
Hercules Powder Company
Hughes Aircraft Company
International Business Machines Corporation
International Minerals and Chemical Corporation
Litton Industries, Inc.
Lockheed Aircraft Corporation
Marathon Oil Company
North American Aviation, Inc.
Pan American Petroleum Corporation
Phelps Dodge Corporation
The Procter & Gamble Company
Richfield Oil Corporation
Shell Oil Company
Socony Mobil Oil Company, Inc.
Space Technology Laboratories, Inc.
Standard Oil Company of California
The Superior Oil Company
Texaco Inc.
Thompson Ramo Wooldridge Inc.
Union Carbide Corporation
Union Oil Company of California
United States Steel Corporation (Columbia-Geneva Steel Division and Consolidated Western Steel Division)
Westinghouse Electric Corporation
Section II

GENERAL INFORMATION

THE California Institute of Technology is an independent, privately supported and privately controlled institution, officially classed as a university, carrying on undergraduate and graduate instruction and research, principally in the various fields of science and engineering.

The primary purpose of the undergraduate school of the California Institute of Technology, as stated by the Trustees, is “to provide a collegiate education which will best train the creative type of scientist or engineer so urgently needed in our educational, governmental, and industrial development.” It is believed that this end will be more readily attained at the Institute because of the contacts of its relatively small group of undergraduate students with the members of its relatively large research staff. Advancement in understanding is best acquired by intimate association with creative workers who are, through research and reflection, extending the boundaries of knowledge.

The Institute offers two four-year undergraduate courses, one in Engineering and the other in Science, both leading to the degree of Bachelor of Science and both planned so that interchange between them is not unduly difficult. For the first year, the work of all undergraduates is identical. Differentiation between these two courses begins with the second year. The Engineering course is of a general fundamental character, with a minimum of specialization in the separate branches of engineering. It includes an unusually thorough training in the basic sciences of physics, chemistry, and mathematics, as well as the professional subjects common to all branches of engineering. With minor exceptions, the student does not concentrate in his chosen field until the fourth year. The Engineering course also includes a large proportion of cultural studies, time for which is secured by eliminating the more narrowly particularized subjects. Such a curriculum, it is hoped, will provide a combination of the fundamental scientific training with a broad human outlook. This is, in fact, the type of collegiate education endorsed by leading engineers—a training which avoids technical narrowness on the one hand and broad superficiality on the other.

The course in Science affords, even more fully, an intensive training in physics, chemistry, and mathematics. In the third and fourth years optional studies are included which permit some measure of specialization in a chosen field of science. Instruction is also provided in French, German and Russian, with the object of giving the student a sufficient reading knowledge to follow the scientific and technical literature in those languages. The Science course includes the same proportion of cultural studies as the Engineering course, and for the same reason—to enlarge the student’s mental horizon beyond the limits of his immediate professional interest and thus better qualify him to realize his opportunities and fulfill his responsibilities as a citizen and a member of his community.

The inclusion in the curriculum of a large proportion of non-scientific and
non-technical subjects is one of the fundamental elements in the Institute’s educational policy. The purpose which these studies is meant to achieve has already been indicated. Under the general designation of the Humanities, they include literature and composition, history and government, economics, philosophy, and psychology. To them the student devotes about one-fourth of his time during his undergraduate years (and, if he proceeds for the degree of Master of Science he continues with elective subjects in the Humanities throughout his fifth year). Formal instruction in the Humanities is supplemented by lectures by, and opportunities for contact with, distinguished scholars who are attracted to Pasadena by the opportunities for research at the Huntington Library and Art Gallery. In addition to these academic and semi-academic pursuits, the Institute encourages a reasonable participation in student activities of a social, literary, or artistic nature, such as student publications, debating, dramatics, and music; and all undergraduates are required to take regular exercise, preferably in the form of intercollegiate or intramural sports. In short, every effort is made in the undergraduate section of the Institute to carry on a well-rounded, well-integrated program which will not only give the student sound training in his professional field but will also develop character, breadth of view, general culture, and physical well-being.

In the graduate section the Institute offers courses leading to the degree of Master of Science, which normally involves one year of graduate work; the engineer’s degree in any of the branches of engineering, with a minimum of two years; and the degree of Doctor of Philosophy. In all the graduate work, research is strongly emphasized, not only because of its importance in contributing to the advancement of science and thus to the intellectual and material welfare of mankind, but also because research activities add vitality to the educational work of the Institute. Graduate students constitute a comparatively large portion (about 46 percent) of the total student body. Engaged themselves on research problems of varying degrees of complexity, and taught by faculty members who are also actively engaged in research, they contribute materially to the general atmosphere of intellectual curiosity and creative activity which is engendered on the Institute campus.

In order to utilize Institute resources most effectively, two general lines of procedure are followed. First, the Institute restricts the number of fields in engineering and science in which it offers undergraduate and graduate study, believing that it is better to provide thoroughly for a limited number of curricula than to risk diffusion of personnel, facilities, and funds in attempting to cover a wide variety of fields. Second, and in line with this policy of conservation of resources, the student body is strictly limited to that number which can be satisfactorily provided for. The size of the undergraduate group is limited by the admission of 180 freshmen each September. Admission is granted, not on the basis of priority of application, but on a careful study of the merits of each applicant, including the results of competitive entrance examinations, high school records, and interviews by members of the Institute Staff. Applicants for admission with advanced standing from other institutions and for admission to graduate study are given the same careful scrutiny. These procedures result, it is believed, in a body of students of exceptionally high ability. A high standard of scholarship is also maintained, as is appropriate for students of such high competence.
Historical Sketch

Pasadena is at the foot of the San Gabriel Mountains, 15 miles from Los Angeles. In the foreground, the Caltech campus.

HISTORICAL SKETCH

The California Institute of Technology, as it has been called since 1920, developed from a local school of arts and crafts, founded in Pasadena in 1891 by the Honorable Amos G. Throop and named, after him, Throop Polytechnic Institute. It had at first been called Throop University, but the title was soon considered too pretentious. The Institute included, during its first two decades, a college, a normal school, an academy, and, for a time, an elementary school and a commercial school. It enjoyed the loyal support of the citizens of Pasadena, and by 1908 the Board of Trustees had as members Dr. Norman Bridge, Arthur H. Fleming, Henry M. Robinson, J. A. Culbertson, C. W. Gates, and Dr. George Ellery Hale. It was the dedication, by these men, of their time, their brains, and their fortunes that transformed a modest vocational school into a university capable of attracting to its faculty some of the most eminent of the world's scholars and scientists. A statement in The Throop Institute Bulletin of December 1908 shows the situation at this time and the optimism of the friends of the Institute:

"Although Throop Institute requires from $80,000 to $90,000 a year to pay its operating expenses and meet its current obligations, the financial condition of the school was never sounder than at present. Its revenues are not sufficient to pay its expenses, but good friends are each year found willing and this confidence in its work and mission that its officers and trustees are pressing forward toward a realization of larger plans for the Institute."

These larger plans were the vision of George Ellery Hale, astronomer and first director of the Mount Wilson Observatory, who foresaw the development in Pasadena of a distinguished institution of engineering and scientific research. Hale well knew that a prime necessity was modern, well-equipped
laboratories, but he stressed to his fellow-trustees that the aim was not ma­
chines, but men. “We must not forget,” he wrote in 1907, “that the greatest
engineer is not the man who is trained merely to understand machines and
apply formulas, but is the man who, while knowing these things, has not failed
to develop his breadth of view and the highest qualities of his imagination. No
creative work, whether in engineering or in art, in literature or in science, has
been the work of a man devoid of the imaginative faculty.”

The realization of these aims meant specializing, so the Trustees decided
in 1908 to separate the elementary department, the normal school and the
academy, leaving only a college of technology which conferred Bachelor of
Science degrees in electrical, mechanical, and civil engineering.

In 1910 Throop Polytechnic Institute moved from its crowded quarters in
the center of Pasadena to a new campus of twenty-two acres on the south­
eastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie.
The president, Dr. James A. B. Scherer, and his faculty of 16 members,
opened the doors to 31 students that September. When, on March 21, 1911,
Throop Polytechnic Institute moved from its crowded quarters in
the center of Pasadena to a new campus of twenty-two acres on the south­
eastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie.
The president, Dr. James A. B. Scherer, and his faculty of 16 members,
opened the doors to 31 students that September. When, on March 21, 1911,
Theodore Roosevelt delivered an address at Throop Institute, he declared,
“I want to see institutions like Throop turn out perhaps ninety-nine of every
hundred students as men who are to do given pieces of industrial work better
than any one else can do them; I want to see those men do the kind of work
that is now being done on the Panama Canal and on the great irrigation proj­
ects in the interior of this country—and the one hundredth man I want to see
with cultural scientific training.”

It would have surprised Roosevelt to know that within a decade the little
Institute, known after 1914 as Throop College of Technology, would have
again raised its sights, leaving to others the training of mere efficient techni­
cians and concentrating its own efforts on Roosevelt’s “hundredth man.” On
November 29, 1921, the Trustees declared it to be the express policy of the
Institute to pursue scientific researches of the greatest importance and at the
same time, “to continue to conduct thorough courses in engineering and pure
science, basing the work of these courses on exceptionally strong instruction
in the fundamental sciences of mathematics, physics, and chemistry; broad­
ening and enriching the curriculum by a liberal amount of instruction in such
subjects as English, history, and economics; and vitalizing all the work of the
Institute by the infusion in generous measure of the spirit of research.”

Perhaps some causes of this change were the rapid growth of southern Cali­
fornia between 1911 and 1921, the springing up everywhere of high schools
and vocational schools which relieved Throop of some of its responsibilities,
and the increasing public interest in scientific research as the implications of
modern physics became better known. But the immediate causes of the change
in the Institute at Pasadena were men. George Ellery Hale still held to his
dream. Arthur Amos Noyes, Professor of Physical Chemistry and former Act­
ing President of the Massachusetts Institute of Technology, served part of
each year as Professor of General Chemistry and Research Associate from
1913 to 1919, when he resigned from M.I.T. to devote full time to Throop
as Director of Chemical Research. In a similar way Robert Andrews Millikan
began, in 1916-17, to spend a few months a year at Throop as Director of
Physical Research. In 1921, when Dr. Norman Bridge agreed to provide a
research laboratory in physics, Dr. Millikan resigned from the University of
Chicago and became administrative head of the Institute as well as director of the Norman Bridge Laboratory. The name of the Institute was changed in 1920 to its present one.

The great period of the Institute's life began, then, under the guidance of three men of vision—Hale, Noyes, and Millikan. They were distinguished research scientists, and they soon attracted graduate students. In 1920 the enrollment was 9 graduate students and 359 undergraduates under a faculty of 60; a decade later there were 138 graduate students, 510 undergraduates, and a faculty of 180. At the present time there are about 700 undergraduates, 600 graduate students, and a faculty of about 450.

The Institute also attracted financial support from individuals, corporations and foundations. In January 1920, the endowment had reached half a million dollars. In February of that year it was announced that $200,000 had been secured for research in chemistry and a like amount for research in physics. Other gifts followed from Trustees and friends, southern Californians, who could now feel pride in the Institute as well as hope. The Southern California Edison Company provided a high-voltage laboratory, with the million-volt Sorensen transformer. Philanthropic foundations bearing the names of Carnegie, Rockefeller, and Guggenheim came forth with needed help when new departments or projects were organized.

In 1923 Millikan received the Nobel Prize in Physics. (Within two years, if anyone had known where to look, he could have found four future Nobel Laureates on the campus). He had attracted to the Institute such men as Charles Galton Darwin, Paul Epstein, and Richard C. Tolman. In 1924 the Ph.D. degree was awarded to nine candidates.

It was inevitable that the Institute would enlarge its field; it could not continue to be merely a research and instructional center in physics, chemistry, and engineering. But the Trustees pursued a cautious and conservative policy, not undertaking to add new departments except when the work done in them would be at the same high level as that in physics and chemistry. In 1925 a gift of $25,000 from the Carnegie Corporation of New York made possible the opening of a department of instruction and research in geology. A seismological laboratory was constructed, and Professors John P. Buwalda and Chester Stock came from the University of California to lead the work in the new division. Later gifts, especially
from Mr. and Mrs. Allan C. Balch and the gift of the Arms and Mudd laboratories, contributed further to the establishment of the geological sciences at Caltech.

In 1928 the California Institute began its program of research and instruction in biology. There had been a chair of biology, named for Charles Frederick Holder, in the old Throop Institute, but it was not until the efforts of the C.I.T. trustees, the General Education Board, the Carnegie Institution of Washington, and William G. Kerckhoff were combined that a program of research and teaching at the highest level was inaugurated. Thomas Hunt Morgan became the first chairman of the new Division of Biology and a member of the Executive Council of the Institute. Under Morgan's direction the work in biology developed rapidly, especially in genetics and biochemistry. Morgan received the Nobel Prize in 1933.

The Guggenheim Graduate School of Aeronautics was founded at the Institute in the summer of 1926 and the laboratory finished in 1929, but courses in theoretical aerodynamics had been given at the Institute for many years by Professors Harry Bateman and P. S. Epstein. As early as 1917 Throop Institute had had a wind tunnel in which, the catalog proudly boasted, constant velocities of 4 to 40 miles an hour could be maintained, "the controls being very sensitive." The new program, under the leadership of Theodore von Kármán, included graduate study and research at the level of the other scientific work at the Institute, and GALCIT (Guggenheim Aeronautical Laboratory at C.I.T.) was soon a world-famous research center in aeronautics.

In 1928 George Ellery Hale and his associates at the Mount Wilson Observatory developed a proposal for a 200-inch telescope and attracted the interest of the General Education Board in providing $6,000,000 for its construction. The Board proposed that the gift be made to the California Institute and the Institute agreed to be responsible for the construction and operation. The huge instrument was erected on Palomar Mountain, and the Mount Wilson and Palomar Observatories are now operated jointly through
an agreement between the Institute and the Carnegie Institution of Washington. Teaching and research in astronomy and astrophysics thus became a part of the Institute program.

Although the emphasis upon the humanities or liberal arts as an important part of the education of every scientist and engineer was traditional even in the Throop College days, a reiterated insistence upon this principle was made when Hale, Noyes, and Millikan created the modern Caltech. In 1942, when a five-year engineering course leading to the M.S. degree was offered, the humanities requirement was included. In 1925 William Bennett Munro, Chairman of the Division of History, Government and Economics at Harvard, joined the Institute staff, and soon became a member of the Executive Council. In 1928 Mr. and Mrs. Joseph B. Dabney gave the Dabney Hall of Humanities, and friends of the Institute provided an endowment of $400,000 for the support of instruction in humanistic subjects. Later Mr. Edward S. Harkness added a gift of $750,000 for the same purpose.

Largely on the initiative of Henry M. Robinson the California Institute Associates were organized in 1925. These men and women, now numbering 240, are the successors of those early dedicated pioneers who saw in Throop College the potentiality of becoming a great and famous institution. The Institute Associates, by their continued support, have played a vital part in the Institute's progress. In 1928 Mr. and Mrs. Joseph B. Dabney gave the Dabney Hall of Humanities, and friends of the Institute provided an endowment of $400,000 for the support of instruction in humanistic subjects. Later Mr. Edward S. Harkness added a gift of $750,000 for the same purpose.

For the five years beginning with the summer of 1940, the Institute devoted an increasingly large part of its personnel and facilities to the furthering of national defense and the war effort. The Institute's work during this period fell for the most part into two main categories: special instructional programs, and research on the development of the instrumentalities of war. The first included participation in the Engineering, Science and Management War Training Program, in which a total of over 24,000 students were enrolled in Institute-supervised courses: advanced meteorology for Army Air Force cadets; advanced work in aeronautics and ordnance for Army and Navy officer personnel; and the provision of instruction (as well as housing and subsistence) for a unit of the Navy V-12 Engineering Specialists. The research and development work was carried on for the most part under nonprofit contracts with the Office of Scientific Research and Development. These contracts had a total value of more than $80,000,000 and at their peak involved the employment of more than 4000 persons. Rockets, jet propulsion, and anti-submarine warfare were the chief fields of endeavor. The Jet Propulsion Laboratory in the upper Arroyo Seco continues, under Institute management, a large-scale program of research. It was operated under contract with the Department of the Army until 1958 when it was transferred to the newly established National Aeronautics and Space Administration.

In 1945 Robert A. Millikan retired as chairman of the Executive Council but served as vice chairman of the Board of Trustees until his death in 1953. Dr. Lee A. DuBridge became President of the California Institute on September 1, 1946.
Today the Institute has 8746 alumni scattered all over the world, many eminent in their fields of engineering and science. Five of them have received Nobel prizes: Carl D. Anderson (B.S. '27, Ph.D. '30), Edwin M. McMillan (B.S. '27, M.S. '29), Linus Pauling (Ph.D. '25), William Shockley (B.S. '32) and Donald A. Glaser (Ph.D. '50).

As the Institute has developed in effectiveness and in prestige it has attracted a steady flow of gifts for buildings, for endowment, and for current operations. The gifts invested in plant now total over $38,000,000 and those invested in endowment over $50,000,000.

In recent years new developments have taken place in all of the divisions. In 1948 the Palomar Observatory and the 200-inch Hale telescope were dedicated. In 1949 the Earhart Plant Research Laboratory was completed and in 1950 a new engineering building. In 1951 a cosmic ray laboratory was built and in the next year a synchrotron was constructed for the study of atomic nuclei. In 1954 the generosity of the alumni and of the late Scott Brown, a member of the Associates, provided a gymnasium and swimming pool. In 1955 the completion of the Norman W. Church Laboratory for Chemical Biology pointed to new activities in an important field of science. 1957 saw the completion of the Eudora Hull Spalding Laboratory of Engineering, an important addition to the facilities available for instruction and research in chemical and electrical engineering, and a new student health center, the gift of Mrs. Archibald Young in memory of her husband who was long an Institute Associate. A new radio astronomy observatory—one of the finest in the world—was completed in the Owens Valley in 1959.

In February 1958 the Trustees announced the launching of a drive to secure $16,100,000 to finance 18 needed buildings and an enlarged faculty salary fund. The goal was later raised and by April 1962 the pledges to this campaign totaled over $19,350,000. The first unit, a physical plant building, was completed in May 1959; and construction was completed by June 1961 of a new mathematics and physics building, the gift of the Alfred P. Sloan Foundation; of a new laboratory of molecular biology, the gift of Dr. Gordon A. Alles (B.S. '22, Ph.D. '26) and the U. S. Public Health Service; of the Campbell plant research laboratory, the gift of the Campbell Soup Company and the U.S. Public Health Service; the W. M. Keck Engineering Laboratories; three undergraduate student houses (the Page, Lloyd, and Ruddock Houses); and the Harry Chandler Dining Hall.

Olive Walk, which bisects the campus
During 1961-62, there were completed four graduate houses (the Keck, Mosher-Jorgensen, Marks and Braun Houses), the Firestone Flight Sciences Laboratory (gift of the Firestone Tire and Rubber Company) and the Karman Laboratory of Fluid Mechanics and Jet Propulsion (gift of the Aerojet-General Corporation). The P.G. Winnett Student Center was completed in the summer of 1962. Construction will begin soon on the Robert A. Millikan Library (gift of Dr. Seeley G. Mudd) and the Arnold O. Beckman Auditorium.

The Industrial Relations Center

The Industrial Relations Center was established in 1939 through special gifts from a substantial number of individuals, companies, and labor unions and is maintained by gifts from Donors and annual contributions from Sponsors. The Center concentrates on research and teaching in the field of employer-employee relationships; it is guided in this program by the Committee on the Industrial Relations Center, consisting of Trustees and Faculty.

The Center provides a variety of services to its Sponsors in return for their regular financial support: (1) It conducts research on economic, psychological, social, and other related problems pertaining to employer-employee relationships. Special emphasis has been given to employee benefits through the work of the Benefits and Insurance Research Section. (2) The Center assists representatives of Sponsors, who participate in special conferences and workshops, to develop and improve specific personnel programs for use in their companies. (3) It counsels with representatives of Sponsors, on request, concerning individual company problems of management and personnel administration. (4) The Center maintains a library of materials on industrial relations and management, with emphasis on the personnel practices of many companies. Reference assistance is available. (5) The Center also assists Sponsors in the development and self-development of (a) supervisors and other line or operating management at various levels and (b) members of the personnel administrative staff. Many of these meetings are arranged by the Management Development Section.

Each of these services supplements, and is supplemented by, the other services. As a result of its activities, the Center issues a variety of publications including bulletins, circulars, and research monographs. In its work the Center adheres to its basic policy of not duplicating unnecessarily the work of other schools and organizations.

One of its special services is conducting employee opinion polls for specific companies. The individual surveys have proved of value to organizations of various sizes in many industries. The general results supplement the other research and teaching activities.

The Center participates in the education of engineering and science students of the California Institute of Technology, emphasizing the fundamentals of supervision and working with people.

Detailed information about the specific services of the Center and the fees involved can be secured from the Director of the Industrial Relations Center, Culbertson Hall.

The Benefits and Insurance Research Section

In recognition of the growing importance of employee benefit and insurance programs in industrial relations, the Benefits and Insurance Research
Section was established in 1955 as a part of the Industrial Relations Center. The Section is financed through special gifts from a large number of companies interested in supporting a program of objective research and instruction in this field. In its special area the work of the Section parallels closely the program of activities and services developed by the Industrial Relations Center.

Detailed information about the specific activities and services of the Section can be secured from the Director of the Industrial Relations Center or the Research Director of the Benefits and Insurance Research Section, Culbertson Hall.

The Management Development Section
The increasing complexity of business operations has emphasized the fact that a manager must not only know how to do the work being supervised but must also know how to supervise—a separate and distinct function. The expanding demand for training in the knowledge and skills required for supervision caused the establishment of the Management Development Section in 1957 as a part of the Industrial Relations Center.

This Section offers training in the field of management in general and in the specialized field of personnel administration. A wide range of courses is presented: on campus or off campus, full-time or part-time, for representatives of a variety of companies or specially designed for the management of a specific company. The courses do not carry academic credit.

Detailed information about the courses, conferences, and other services available through this Section can be secured from the Management Development Section, Culbertson Hall.

Buildings and Facilities

Throop Hall, 1910. The administration building; erected with funds supplied by a large number of donors, and named for the Honorable Amos G. Throop, founder of Throop Polytechnic Institute from which the California Institute of Technology developed.

Gates and Crellin Laboratories of Chemistry: first unit, 1917; second unit, 1927; third unit, 1937. The first two units were the gift of Messrs. C. W. Gates and P. G. Gates of Pasadena; the third unit was the gift of Mr. and Mrs. E. W. Crellin of Pasadena.

Culbertson Hall, 1922. Named in honor of Mr. James A. Culbertson of Pasadena, Vice President of the Board of Trustees, 1908-1915.

Norman Bridge Laboratory of Physics: first unit, 1922; second unit, 1924; third unit, 1925. The gift of Dr. Norman Bridge of Los Angeles, President of the Board of Trustees of the Institute, 1896-1917.

Alfred P. Sloan Laboratory of Mathematics and Physics, 1923. Formerly the High-Voltage Research Laboratory erected with funds provided by the Southern California Edison Company. Rebuilt in 1960 with funds provided by the Alfred P. Sloan Foundation.

Heating Plant, 1926. Erected with funds provided in part by Dr. Norman Bridge and in part from other sources.
Buildings and Facilities

DABNEY HALL OF THE HUMANITIES, 1928. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

GUGGENHEIM AERONAUTICAL LABORATORY, 1929. Erected with funds provided by the Daniel Guggenheim Fund for the Promotion of Aeronautics. A substantial addition was erected in 1947.

WILLIAM G. KERCKHOFF LABORATORIES OF THE BIOLOGICAL SCIENCES: first unit, 1928; second unit, 1939; annex, 1948. The gift of Mr. and Mrs. William G. Kerckhoff of Los Angeles.

DOLK PLANT PHYSIOLOGY LABORATORY, 1930. Named in memory of Herman E. Dolk, Assistant Professor of Plant Physiology from 1930 until his death in 1932.

ATHENAEUM, 1930. A clubhouse for the use of the California Institute Associates and the staffs of the California Institute, the Huntington Library, and the Mount Wilson Observatory. The gift of Mr. and Mrs. Allan C. Balch of Los Angeles, President of the Board of Trustees, 1933-1943.

UNDERGRADUATE HOUSES, 1931.

Blacker House. The gift of Mr. and Mrs. R. R. Blacker of Pasadena.

Dabney House. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

Fleming House. Erected with funds provided by some twenty donors, and named in honor of Mr. Arthur H. Fleming of Pasadena, President of the Board of Trustees of the Institute, 1917-1933.

Ricketts House. The gift of Dr. and Mrs. Louis D. Ricketts of Pasadena.

CENTRAL ENGINEERING MACHINE SHOP, 1931. Erected with funds provided by the International Education Board and the General Education Board. Formerly the Astrophysical Instrument Shop until the completion of the 200-inch Hale Telescope for Palomar Observatory.

W. K. KELLOGG RADIATION LABORATORY (Nuclear Physics), 1932. The gift of Mr. W. K. Kellogg of Battle Creek, Michigan.

HENRY M. ROBINSON LABORATORY OF ASTROPHYSICS, 1932. Erected with funds provided by the International Education Board and the General Education Board, and named in honor of Mr. Henry M. Robinson of Pasadena, member of the Board of Trustees, 1907-1937, and of the Executive Council of the Institute.

SYNCHROTRON LABORATORY, 1933. Erected with funds provided by the International Education Board and the General Education Board. Following completion of the 200-inch Hale Telescope, this building was converted into the Synchrotron Laboratory.

CHARLES ARMS LABORATORY OF THE GEOLOGICAL SCIENCES, 1938. The gift of Mr. and Mrs. Henry M. Robinson of Pasadena, in memory of Mrs. Robinson's father, Mr. Charles Arms.

SEELEY W. MUDD LABORATORY OF THE GEOLOGICAL SCIENCES, 1938. The gift of Mrs. Seeley W. Mudd of Los Angeles, in memory of her husband.
Clark Greenhouse, 1940. The gift of Miss Lucy Mason Clark of Santa Barbara.

Franklin Thomas Laboratory of Engineering: first unit, 1945; second unit, 1950. Funds for the first unit were allocated from the Eudora Hull Spalding Trust with the approval of Mr. Keith Spalding, Trustee. Named in honor of Dean Franklin Thomas, Professor of Civil Engineering and first Chairman of the Division of Engineering, 1924 to 1945.

Cosmic Ray Laboratory, 1952.

Scott Brown Gymnasium, 1954. Erected with funds provided by a trust established by Mr. Scott Brown of Pasadena and Chicago, a member and director of the California Institute Associates.

Norman W. Church Laboratory for Chemical Biology, 1955. Erected with funds provided through gift and bequest by Mr. Norman W. Church of Los Angeles, a member of the California Institute Associates.

Eudora Hull Spalding Laboratory of Engineering, 1957. Erected with funds allocated from the Eudora Hull Spalding Trust.

Archibald Young Health Center, 1957. The gift of Mrs. Archibald Young of Pasadena, in memory of her husband, a member and director of the California Institute Associates.

Physical Plant Building and Shop, 1959. Erected with funds provided by many donors to the Caltech Development program.

Campbell Plant Research Laboratory, 1960. Erected with funds given by the Campbell Soup Company of Camden, New Jersey, and by the Health Research Facilities Branch of the National Institutes of Health, Bethesda, Maryland.

Gordon A. Alles Laboratory for Molecular Biology, 1960. Erected with the gift of Dr. Gordon A. Alles of Pasadena, Research Associate in Biology at the Institute, an alumnus and a member of the California Institute Associates; and with funds provided by the Health Research Facilities Branch of the National Institutes of Health.

Undergraduate Houses, 1960. Erected with funds provided by The Lloyd Foundation and other donors to the Caltech Development Program. Lloyd House. Named in memory of Mr. Ralph B. Lloyd and his wife Mrs. Lulu Hull Lloyd of Beverly Hills. He was a member of the Board of Trustees, 1939-1952.

Page House. Named in honor of Mr. James R. Page of Los Angeles, a member of the Board of Trustees from 1931 to 1962 and Chairman from 1943 to 1954.
Ruddock House. Named in honor of Mr. Albert B. Ruddock of Santa Barbara, Chairman of the Board of Trustees from 1954 to 1961.

Harry Chandler Dining Hall, 1960. The gift of the Chandler family, the Pfaffinger Foundation and the Times-Mirror Company of Los Angeles.

Graduate Houses, 1961.

Braun House. Erected with funds provided by the trustees of the Carl F. Braun Trust Estate in his memory.

Keck House. The gift of Mr. William M. Keck, Jr., of Holmby Hills.

Marks House. The gift of Dr. David X. Marks of Los Angeles.

Mosher-Jorgensen House. The gift of Mr. Samuel B. Mosher of Los Angeles and Earle M. Jorgensen of Los Angeles. Mr. Jorgensen is a member of the Board of Trustees.

Winnett Student Center, 1962. The gift of Mr. P. G. Winnett of Los Angeles, a member of the Board of Trustees.

Beckman Auditorium (under construction). The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman, an alumnus, was a member of the Institute’s faculty from 1928 to 1939 and is now a member of the Board of Trustees.

Libraries

The General Library, as the center of the Institute library system, houses the administrative office, which serves nine departmental libraries located in as many buildings on the campus. The departmental libraries house the collection of books, periodicals, and basic reference works in aeronautics, astronomy and astrophysics, biology, chemistry, chemical engineering, geology, humanities, industrial relations, and physics. The General Library houses the collections in mathematics and engineering, as well as the master catalog for the entire system. The bookstacks throughout the libraries are open to all readers. The collections constitute strictly a working library, including subscriptions to more than 3000 periodicals.

Off-Campus Facilities

Kresge Seismological Laboratory, 1928, and Donnelley Seismological Laboratory, 1957 (of the Division of the Geological Sciences), North San Rafael Avenue, Pasadena.

The second laboratory was the gift of Mr. and Mrs. C. Pardee Erdman of Santa Barbara, The Kresge Foundation of Detroit, Michigan, and the James...
Irvine Foundation of San Francisco; and named in honor of Mrs. Erdman's father, Mr. Reuben H. Donnelley.

WILLIAM G. KERCKHOFF MARINE BIOLOGICAL LABORATORY, Corona del Mar, 1930.

JET PROPULSION LABORATORY, 4800 Oak Grove Drive, Pasadena, 1944. Owned and sponsored by the National Aeronautics and Space Administration and operated by the Institute.

PALOMAR OBSERVATORY, San Diego County, 1948. Owned by the Institute and, with the Mount Wilson Observatory, operated jointly by the Carnegie Institution of Washington and the Institute.

RADIO ASTRONOMY OBSERVATORY, near Bishop, 1958.
The Rockefeller Boards provided in 1928 for the construction by the Institute of an astronomical observatory on Palomar Mountain, equipped with a 200-inch reflecting telescope, 48-inch and 18-inch Schmidt wide-angle telescopes and other auxiliary instruments, together with an astrophysical laboratory on the Institute campus. The purpose of this observatory is to supplement, not to duplicate, the facilities of the Mount Wilson Observatory of the Carnegie Institution of Washington, which, while not a part of the California Institute, is located even closer to Pasadena than is Palomar Mountain. The increased light-gathering power of the 200-inch telescope permits further studies of the size, structure, and motion of the galactic system; of the distance, motion, radiation, composition, and evolution of the stars; the interstellar gas; the distance, motion, and nature of remote nebulae; and of many phenomena bearing directly on the constitution of matter. The 48-inch Schmidt has made possible a complete survey of the sky as well as an attack upon such problems as the structure of clusters of nebulae, the luminosity function of nebulae and absolutely faint stellar systems, extended gaseous nebulae, and the stellar contents of the Milky Way. These two unique instruments supplement each other as well as the telescopes on Mount Wilson; the one reaches as far as possible into space in a given direction, while the other photographs upon a single plate an entire cluster of distant nebulae or a star cloud in our own galaxy.

The Mount Wilson and Palomar Observatories constitute a unique and unprecedented concentration of scientific facilities in astronomy. Outstanding scientific talent is present both in the field of astronomy and in the neighboring fields of physics and mathematics. The California Institute of Technology and the Carnegie Institution of Washington have recognized the advantages implicit in the creation of a great astronomical center in which a unitary scientific program would be pursued under highly favorable circumstances that would attract distinguished investigators to collaborate with the staff of
the observatories in scientific matters, and that would draw young men of
great ability to graduate studies where they might enjoy the inspiration of
leading minds and familiarize themselves with powerful tools of exploration.
For this purpose a plan for the unified operation of the two observatories, in
which they function as a single scientific organization under the direction of
Dr. I. S. Bowen, was approved by the Trustees of the two institutions. Under
this plan all the equipment and facilities of both observatories are made avail­
able for the astronomical investigations of the staff members of the combined
observatories and the unified research program is paralleled by undergraduate
and graduate training in astronomy and astrophysics in which members of the
Staff of Mount Wilson Observatory join with the Institute Faculty.

In 1956 work started in radio astronomy and advanced study and research
in this field are now under way. The first instrument was a 32-foot paraboloid
for 21-cm research. Two precision, 90-foot diameter steerable paraboloids
suitable for high frequencies are now in operation at a field station near Bishop.
The two are used together as an interferometric radio telescope for exact posi­
tion finding. This is one of the most advanced installations in this new and
rapidly growing field. The radio astronomy group works in close cooperation
with the optical astronomers in Pasadena; the program of study in the two
fields is essentially the same, except for specialized advanced courses.

As a result of the cooperation possible over a broad range of astronomy,
astrophysics, and radio astronomy, unusual opportunities exist at the Califor­
nia Institute for advanced study and research. The instructional program is
connected with a broad and thorough preparation in physics, mathematics
and relevant subjects, as well as instruction in astronomy, radio astronomy,
and astrophysics.
Biology

UNDERGRADUATE AND GRADUATE WORK

Biology is today one of the most rapidly expanding and exciting of the sciences. Advances of a spectacular kind are being made in our understanding of living things. This is in large part so because it has been found possible to apply the methods, concepts, and approaches of mathematics, physics and chemistry to the investigation of such biological problems as the manner in which molecules, genes, and viruses multiply themselves, the nature of enzyme action and of enzymatic pathways, the mechanisms of growth and development, and the nature of nerve activity, brain function and behavior. There is great and increasing demand for experimental biologists, and qualified individuals will find opportunities for challenging work in basic research and in the applied fields of medicine, agriculture, and chemical industry.

Because of the preeminent position of the California Institute of Technology in both the physical and biological sciences, students at the Institute have an unusual opportunity to be introduced to modern biology. The undergraduate option is designed to give the student an understanding of the basic facts, techniques and logic of biology as well as a solid foundation in physical science. Emphasis is placed on the general and fundamental properties of living creatures, thus unifying the traditionally separate fields of botany, zoology, microbiology and so on. The undergraduate option serves as a basis for graduate study in any field of experimental biology or for admission to the study of medicine.

The undergraduate course for premedical students is essentially the same as that for biology students and is intended as a basis for later careers in research as well as in the practice of medicine. It differs in some respects from premedical curricula of other schools; however, it has been quite generally accepted as satisfying admission requirements of medical schools. Slight modifications in the curriculum may be required for admission to certain medical schools or in cases in which the student wishes to try to complete admission requirements in three years instead of four. The student should consult with the premedical adviser about this.
Graduate work leading to the Ph.D. degree is chiefly in the following fields: biochemistry, biophysics, cell biology, developmental biology, genetics, molecular biology, neurophysiology, plant physiology, psychobiology, and virology. These represent the fields in which active research is now going on in the Division. The emphasis in graduate work is placed on research. This is supplemented by courses and seminars in advanced subjects aimed at developing the student's insight and critical ability as an investigator.

PHYSICAL FACILITIES

The campus biological laboratories are housed in three buildings, the William G. Kerckhoff Laboratories of the Biological Sciences, the Gordon A. Alles Laboratory for Molecular Biology and the Norman W. Church Laboratory of Chemical Biology. The Alles Laboratory links the Kerckhoff and Church Laboratories at all floor levels. The three laboratories contain classrooms and undergraduate laboratories, a biology library, an annex housing experimental animals, and numerous laboratories equipped for biological, biochemical, biophysical, and physiological research at the graduate and doctoral level. The constant temperature equipment includes rooms for the culturing of the Institute's valuable collection of mutant types of Drosophila and Neurospora and complete facilities for plant and animal tissue culture.

Adjacent to the campus the Plant Research Center consists of the Campbell Plant Research Laboratory, the Earhart Plant Research Laboratory and the Dolk and Clark Greenhouses. In the Earhart Laboratory all the elements of climate, such as light, temperature, humidity, wind, rain, and gas-content of air can be controlled simultaneously. These laboratories offer the opportunity to study plants under different synthetic climatic conditions, yet with reproducibility of experimental results.

About 50 miles from Pasadena, at Corona del Mar, is the William G. Kerckhoff Marine Laboratory. The building houses several laboratories for teaching and research in marine zoology, embryology, and physiology. It is equipped with its own shop, has boats and tackle for collecting marine animals, and running sea-water aquaria for keeping them. The proximity of the marine station to Pasadena makes it possible to supply the biological laboratories with living material for research and teaching. The fauna at Corona del Mar and at nearby Laguna Beach is exceptionally rich and varied, and is easily accessible.
Selected freshmen are permitted to do honors research in chemistry

CHEMISTRY AND CHEMICAL ENGINEERING

The laboratories of chemistry consist of four adjacent units. Gates Laboratory and Gates Annex are the gift of Messrs. C. W. Gates and P. G. Gates. Crellin Laboratory, which was completed in 1937, affords space approximately equal to that of the first two units and is the gift of Mr. and Mrs. E. W. Crellin. The Norman W. Church Laboratory for Chemical Biology, completed in 1955, is shared equally with the Division of Biology.

The first three units include laboratories and other facilities for undergraduate and graduate instruction and research in inorganic, analytical, physical, and organic chemistry. Church Laboratory is used primarily for research on the applications of chemistry to biological and medical problems. These four laboratories provide space for about 150 graduate students and postdoctoral workers.

The chemical engineering facilities are located in the Eudora Hull Spalding Laboratory of Engineering and in the adjoining Chemical Engineering Laboratory. These laboratories are well equipped for instruction in chemical engineering and for research programs involving studies of the phase relations and thermodynamic properties of fluids at moderately high pressures and temperatures, reaction kinetics, the transfers of material and energy in fluid systems, and the structure of liquids.

UNDERGRADUATE WORK

There are two undergraduate options in the Division, one in Chemistry and the other in Chemical Engineering, and the curricula are the same for the first two years. Study in these options leads, especially when followed by graduate
work, to careers in teaching and research in colleges and universities, in re­
search in government and industry, in operation and control of manufacturing
processes, and in management and development positions in chemical industry.

The first-year general chemistry course, which is taken by all freshman
students, emphasizes fundamental principles and their use to systematize de­
scriptive chemistry. The laboratory work in the first two terms is essentially
quantitative analysis, but is designed to train the student to plan, execute, and
critically interpret experiments involving quantitative measurements of various
physical quantities. The third-term laboratory work involves a system of quali­
tative and semi-quantitative analysis and is used to extend and organize the
student’s knowledge of inorganic chemistry.

In the second year the two options are identical. There is a basic course
covering the properties and reactions of organic compounds and a laboratory
course in which fundamental manipulative techniques are acquired through
the preparation of important types of pure organic compounds by useful gen­
eral reactions. In addition there are elective courses which can be used by the
student to enlarge his understanding of other fields of science and engineering.

Throughout the third year both the Chemistry and Chemical Engineering
Options require a basic course in physical chemistry, as well as courses in
analytical chemistry and physical chemistry laboratory. This is the year, how­
ever, where the requirements of the options begin to diverge. The Chemistry
Option provides time for some of the elective courses described on page 227,
whereas the Chemical Engineering Option requires professional courses which
include chemical engineering thermodynamics, engineering mathematics, and
introductory electronics.

In the fourth year the Chemistry Option has no required professional
courses but permits specialization by electives of an advanced nature. The
Chemical Engineering curriculum contains courses in industrial chemistry,
applied mechanics, chemical engineering operations, and chemical engineer­
ing laboratory, as well as electives in engineering and science.

Undergraduate research is emphasized in both options and students are
encouraged even in the freshman year to participate in research in association
with staff members. Over the past years these researches have resulted in a
significant number of scientific contributions.

Chemical engineers discuss a
problem in thermal transport
GRADUATE WORK

The degree of Master of Science is offered in both Chemistry and Chemical Engineering. All masters' programs at the Institute require at least 27 units of Humanities courses. In chemistry at least 40 units of research and an acceptable thesis are required; graduate courses in the student's field of interest complete the requirements. In chemical engineering there are advanced professional courses and an intensive laboratory course in engineering measurements and research methods; the remaining time is available for elective studies in either science or engineering.

Programs for study and research leading to the degree of Doctor of Philosophy are offered in the various fields of chemistry and chemical engineering and also in fields related to other scientific areas such as chemical biology, geochemistry, and chemical physics. Some of the fields of research in which members of the Divisional staff and their students are engaged are listed on pages 267 and 273-274.

GEOL OGY

The Division of Geological Sciences is closely allied with the other active and creative fields of science and engineering at Caltech. Accordingly, a favorable intellectual atmosphere exists for education and research in geology, geobiology, geochemistry, geophysics and aspects of space science. The geographic position and geological setting of the Institute are nearly ideal for students and research workers, who can derive materials, ideas, and inspiration from the wide variety of easily accessible field environments. The staff as listed on an earlier page of this catalog represents a variety of allied and integrated interests and is active in both teaching and research.

Physical facilities, both natural and man-made, are excellent. All the classroom instruction and most of the laboratory research in geology and geochemistry, as well as part of that in geophysics, are carried on in the Arms and Mudd Laboratories. These are modern, five-story buildings which were specifically designed for these activities and to provide office space for the staff and students. They also house the Division Library; paleontologic, rock, and mineral collections; a laboratory for lunar and planetary studies; organic constituents laboratory; spectrographic, X-ray and X-ray fluorescent equipment; wet chemical laboratories; and facilities for rock and mineral analyses, sedimentation studies, thin and polished section work, and other requirements for comprehensive studies in the earth sciences. A new suite of laboratories for mineral separation and analyses is available for student use.

Extensive facilities are provided for the application of techniques of nuclear chemistry to problems in the earth sciences. These facilities include chemical laboratories for trace-element studies, a silicate analysis laboratory, and mass spectrometric and counting facilities for isotopic work. Available equipment includes mass spectrometers, emission counters, an induction furnace, and extensive mineral separation facilities in addition to the usual geological and chemical items.

Favorable opportunity for study of dynamic aspects of paleontology and evolution as revealed by morphology, ecology, and biogeochemistry is pro-
Field work on an Alaskan Glacier

Field class at the bottom of the Grand Canyon

Instrument panel for a mass spectrometer
vided by the combination of personnel, reference collections, and modern geochemical tools and techniques available here. Biologic principles and processes, past and present, of significance to geology may be interpreted from experimentation and studies at the Kerckhoff Marine laboratory at Corona del Mar, operated under the auspices of the Division of Biology.

The Seismological Laboratory of the California Institute, with ample space and excellent facilities, including a computer and extensive shops in the Donnelley and Kresge laboratories, is located about three miles west of the campus on crystalline bedrock affording firm foundation for the instrument piers and tunnels. The central laboratory, together with seventeen outlying auxiliary stations in southern California—built and maintained with the aid of cooperating companies and organizations—constitutes an outstanding center for education and research in seismology. Other phases of geophysical training and investigation are carried on in the regular campus buildings.

Conditions for field study and research in the earth sciences in southern California are excellent. A great variety of rock types, geologic structures, active geologic processes, physiographic forms, and geologic environments occur within convenient reach of the Institute. The relatively mild climate permits field studies throughout the entire year; consequently year-around field training is an important part of the divisional program.

The student body is purposely kept small and usually consists of no more than 50 graduate students and 15-20 undergraduates. The small size of the student group and large size of the staff give a highly favorable ratio of students to staff and result in close associations and contacts which enhance the value of the educational program.

UNDERGRADUATE WORK

The aim of the undergraduate program in the Geological Sciences is to provide thorough training in basic geological disciplines and, wherever possible, to integrate the geological studies with and build upon the courses in mathematics, physics, chemistry, and biology taken during the earlier years at the Institute. Special emphasis is also placed on field work because it provides first-hand experience with geological phenomena that can never be satisfactorily grasped or understood solely from classroom or laboratory treatment. Options are offered in geology (including paleontology and paleoecology), geophysics, and geochemistry. Sufficient flexibility in electives is provided to permit a student to follow lines of special interest in related scientific or engineering fields. Research in pertinent aspects of science in space is increasing. Men who do well in the basic sciences and at the same time have a compelling curiosity about the earth and its natural features are likely to find their niche in the geological sciences, especially if they possess a flexible and imaginative mind that enables them to grapple with complex problems involving many variables. Most students majoring in the earth sciences now find further training at the graduate level highly desirable, even necessary.

Men trained in the earth sciences find employment in research, teaching, and a wide variety of other professional activities. Many work for the petroleum industry both in the field and in the laboratory on theoretical as well as applied problems. Some eventually become administrators and
executives. Mining companies, railroads, large utilities, and other organizations engaged in development of natural resources, employ men trained in the geological sciences, as do a number of Federal and state bureaus, such as the U.S. Geological Survey and the Bureau of Reclamation.

GRADUATE WORK
The number of courses required within the Division for an advanced degree is held to a minimum to permit individuality and flexibility in the various programs. Facilities are available for research and study in such subjects as geochemistry, geophysics, seismology, paleoecology, paleontology, petrology, geomorphology, glaciology, structural geology, stratigraphy, sedimentation, tectonophysics, mineral deposits, and space sciences.

The Division is especially interested in graduate students who have a sound and thorough training in physics, chemistry, biology and mathematics as well as geology. Applicants with majors in these subjects and with a strong interest in the earth sciences will be given equal consideration for admission and appointment with geology majors.

MATHEMATICS
UNDERGRADUATE WORK
The four-year undergraduate program in mathematics leads to the degree of Bachelor of Science. The purpose of the undergraduate option is to give the student an understanding of the broad outlines of modern mathematics, to stimulate his interest in research, and to prepare him for later work, either in pure mathematics or allied sciences. Unless a student has done exceptionally well in his freshman and sophomore years, he should not contemplate specializing in mathematics. An average of at least "B" in his mathematics courses is expected of a student intending to major in mathematics.

Since the more interesting academic and industrial positions open to mathematicians require training beyond a bachelor's degree, the student who expects to make mathematics his profession must normally plan to continue, either here or elsewhere, with graduate work leading to the degree of Doctor of Philosophy. The undergraduate should bear this in mind in choosing his course of study. In particular he is urged to include at least one year, and preferably two years, of language study in his program. Overloads in course work are strongly discouraged; students are advised instead to deepen and supplement their course work by independent reading. The excellent mathematics library with its large collection of journals is housed in the general library in the Norman Bridge Laboratory. In addition, there is a reference library of duplicate books and periodicals located on the third floor of the Sloan Laboratory for Mathematics and Physics. Books, not on reserve for special courses, may be borrowed from the general library. Current periodicals may be consulted in either library.

Normally the undergraduate will have joined the option by the beginning of his sophomore year. He is required to take the course Ma 5 abc during his second year. Students transferring from another option at the end of the sophomore year who have not as yet taken this course will take it as their selected course in mathematics during their junior year concurrently with
Ma 108, and will take two selected courses in Mathematics during their senior year.

The schedule of courses in the undergraduate mathematics option is flexible. It enables the student to adapt his program to his needs and mathematical interests and gives him the opportunity of becoming familiar with creative mathematics early in his career. Each term during his junior and his senior year the student will normally take 18 units of courses in mathematics, including the required course Ma 108. These courses are chosen from the subjects of instruction listed under A in Section VI of this catalog. The courses Ma 102, 104, 105, 109, 112, 116 are recommended to juniors and seniors. The other courses demand more maturity and prerequisites. They are recommended to seniors only.

GRADUATE WORK

Graduate work in mathematics is planned to give the student a broad knowledge of classical and modern mathematics and to stimulate him to do creative and independent work. The normal course of study leads to the Ph.D. degree and requires three or four years. Exceptional ability and graduate work done elsewhere may shorten this time.

Entering graduate students are normally admitted directly to the Ph.D. program. A master’s degree is awarded in exceptional cases. General requirements are listed under A and B of Section IV. The program of study for a master’s degree must include 27 or more units of graduate humanities electives, at least 135 units of graduate course work in mathematics, and the submission of a thesis. The thesis requirement may be waived at the discretion of the department.

The general Institute requirements for the Ph.D. degree are listed in Section IV under A and D. Additional requirements for mathematics are found on pages 211-212; they give information on placement examinations, admission to candidacy and final examinations.

Courses. The graduate courses which are offered are listed in Section VI. They are divided in three categories. The courses numbered between 100 and 199 are basic graduate courses open to all graduate students. The course Ma 108 is the fundamental course in Analysis. It is a prerequisite to most courses and its equivalent is expected to be part of the undergraduate curriculum of the entering graduate student. The basic course in Algebra, Ma 120, presupposes an undergraduate introductory course in modern algebra similar to Ma 5 abc. Particular mention is made of Ma 190. It is a seminar required of all first year graduate students and restricted to them. It is intended to stimulate independent work, to train students in the presentation of mathematical ideas and to develop an independent critical attitude.

The courses in the second category are numbered between 200 and 299. They are usually given in alternate years. The 300 series includes the more special courses, the research courses and the seminars. They are given on an irregular basis depending on demand and interest.

The program of a first year graduate program, in addition to the elementary seminar Ma 190, will consist as a rule of two or three 100-series courses. The student is reminded of the language requirements and of the require-
ments for a subject minor or a general minor. It is advisable for a student to satisfy these requirements as early as possible. In particular, the student should fill out early the form listing his intended courses outside of mathematics and secure approval for this part of his plan of study.

Beginning at the latest with the second year the student will be expected to begin his independent research work and be strongly encouraged to participate in seminars.

Research. Although supervision and guidance will be provided by members of the staff of the Institute, the thesis research including the choice of a topic is the responsibility of the student. Proper guidance can be given in about any field in pure or applied mathematics and is not restricted to the immediate interests of the staff in mathematics. These include: group theory, matrix theory, lattice theory; algebraic and analytic theory of numbers; topology; and in analysis: differential equations, asymptotic expansions, special functions, functional analysis, mathematical problems of classical mathematical physics and applied mathematics.

A program in Applied Mathematics is being organized as a joint program of the Divisions of Mathematics, Physics, and Astronomy and the Division of Engineering and Applied Science. The course of study will lead to the Ph.D. degree and is expected to require three or four years. This program is aimed at those students with a background in mathematics, physics, or engineering who wish to obtain a thorough training and to develop their research ability in applied mathematics.

A special bulletin containing details of the applied mathematics program will be published in the fall of 1962. Interested students should write to the Graduate Office of the Institute for further information.

Financial Aid. Besides the help provided by the nationwide fellowship programs, financial assistance may be provided by tuition scholarships and research or teaching assistantships. A scholarship and an assistantship may be held concurrently. The teaching duties required of an assistant are light enough to allow the student to carry a full program of study.
PHYSICS

UNDERGRADUATE WORK

The distinctive feature of the undergraduate work in physics at the California Institute is the creative atmosphere in which the student at once finds himself. This results from the combination of a large and very productive graduate school with a small and carefully selected undergraduate body.

In order to provide the thorough training in physics required by those who are going into scientific or engineering work, two full years of general physics are required of all students. This first course in physics introduces modern ideas at the beginning of the first year and develops these along with the principles of classical mechanics and electricity as they apply to the dynamics of particles. More complex problems including the mechanics of continuous media, electromagnetic fields and atomic structure will be treated in the second year. Those who desire to major in physics take during their junior and senior years intensive courses that provide a more than usually thorough preparation for graduate work. The curriculum provides for the teaching of classical and modern physics in parallel from the first year through the entire undergraduate course of study. Elective courses during the junior and senior years provide flexibility which enables the student to select a program to fit his individual requirements. Many of the undergraduate students who elect physics are given also an opportunity to participate in some of the thirty to sixty research projects which are always under way and the graduate seminars are open to undergraduates at all times.

GRADUATE WORK

Graduate students working toward the Ph.D. degree should complete the requirements for admission to candidacy for the doctor's degree as soon as possible (see page 211). The courses required to be passed either regularly or by examination provide an unusually thorough grounding in the fundamentals of physics, and the student learns to use these principles in the solution of problems. After the first year of graduate work, students with special
technical training will find it comparatively easy to obtain part-time work during the summer on one or another research projects in physics. Students so employed are also expected to register for 15 or more units of research.

The Norman Bridge Laboratory of Physics is equipped to carry on research in most of the principal fields of physics. An addition to this laboratory has been especially constructed for the work in cosmic rays and the study of elementary particles. Special facilities for research in nuclear physics are also provided in the W. K. Kellogg Radiation Laboratory which is equipped with three electrostatic generators and a variety of auxiliary equipment. A 12-Mev tandem electrostatic accelerator is installed in the Alfred P. Sloan Laboratory of Mathematics and Physics, which also contains laboratories for the investigation of the properties of matter at temperatures down to the milli-degree range. The Synchrotron Laboratory houses an electron accelerator which is now operating at energies up to 1.5 billion electron volts. Work in high-energy physics bridges the gap between the nuclear physics research in the Kellogg and Sloan Laboratories and the cosmic ray and elementary particle investigations that have been carried on for many years in the Norman Bridge Laboratory. Special facilities are available in the Norman Bridge Laboratory for the precision investigation of X-rays and gamma rays and the study of beta ray spectra. Opportunities for study in theoretical physics in any one of a number of fields are particularly good for a limited number of students whose ability and background qualify them for theoretical work.

The student either may select his own problem in consultation with the department or may work into some one of the research projects already under way.

There is a general seminar or research conference each week which is regularly attended by all research workers and graduate students. In addition, a weekly theoretical seminar is conducted for the benefit of those interested primarily in mathematical physics and there are several seminars on special fields of work such as nuclear physics, X-rays, and high energy physics.

For graduates in physics the main outlets are positions in colleges and universities, in the research laboratories of the government, and in the increasing number of industrial research laboratories of the country. There is at present a continuing demand for physicists in the National Defense activities of the government, and many graduates are engaged in such work.

In order to make it possible for students to carry on their researches even after they have satisfied the requirements for the Ph.D. degree, a number of post-doctoral research fellowships are available.
The 1.5 billion-volt Caltech synchrotron is used to study the photoproduction of mesons and hyperons from the proton and neutron.
"The four-year Undergraduate Course in Engineering," as prescribed in the Educational Policies of the Institute, "shall be of general, fundamental character, with a minimum of specialization in the separate branches of engineering. It shall include an unusually thorough training in the basic sciences of physics, chemistry, and mathematics, and a large proportion of cultural studies."

The Course is designed to give the greatest possible flexibility as preparation for graduate study and for professional practice. The Course involves four years of study leading to the degree of Bachelor of Science. The first year is common for all students at the Institute. At the end of this year a student who elects Engineering is assigned an advisor in his general field of interest and together they develop a program of study for the next three years. This program includes the Institute-wide requirements in physics, mathematics and humanities and an additional, or third year, of advanced mathematics. Beyond these specifications the student and his advisor choose from a wide range of engineering and science electives to build a solid foundation for the kind of engineering activity toward which the student aims. For most students, graduate study in a specialized branch of engineering will be the goal. These men may wish to elect some foreign language also as graduate preparation. For others, immediate industrial work is the objective, and ultimately administration. Such students will be able to build a course of study from specialized professional courses and more general engineering science subjects suitable for more immediate engineering practice. Among such professional courses are a number which are nominally graduate subjects but which may be elected by undergraduates with adequate preparation.

The engineering curriculum is thus extremely flexible and a student will be advised to seek breadth as well as reasonable concentration in a technical area. No one rigidly prescribed curriculum can serve the needs of all students. Nor do the traditional curricula of the specialized branches of engineering properly reflect the interdisciplinary character of modern engineering. Consequently the California Institute of Technology has adopted a single engineering curriculum strong in the sciences and humanities with great flexibility of choice among the engineering sciences. This four-year bachelor's program leads logically toward graduate study in some specialized engineering field. It recognizes the increasing national growth in graduate engineering education and through good counseling and elective freedom builds an adequate preparation.

Graduate study and research opportunities in engineering exist in aeronautics, applied mechanics, chemical, civil, electrical, mechanical engineering, and materials science, with courses broadly outlined, leading to advanced degrees. An inter-divisional program in Applied Mathematics is being organized as explained on page 123. The courses leading to the degree of Master of Science normally require one year of work following the bachelor's degree and are
designated to prepare the engineer for professional work of more specialized and advanced nature. A sixth year leads to the degree of Aeronautical Engineer, Civil Engineer, Electrical Engineer or Mechanical Engineer. In addition, advanced work is offered in Aeronautics, Applied Mechanics, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Materials Science, and Engineering Science leading to the degree of Doctor of Philosophy. In all phases of the graduate program students are encouraged to include in their courses of study a considerable amount of work outside of their specialized fields, particularly in mathematics and physics.

The Division of Engineering includes those curricula and facilities which are a part of the options of Civil, Electrical, Mechanical Engineering, Aeronautics, Applied Mechanics, Materials Science, and Engineering Science in which degrees designated with these options are given. In addition, the division includes subjects and research facilities in which no specific degree is offered, but which form a part of a student's course of study or are available to him as optional work. These subjects are hydraulics and hydrodynamics, jet propulsion, nuclear energy technology, physical metallurgy and environmental health engineering. Some of the specialized laboratory facilities available for instruction and research are the various wind tunnels, the Computer Center, which includes the analog and digital computers, the Dynamics Laboratory, Nuclear Measurements Laboratory, and the several facilities for work in hydraulic structures, hydrodynamics, physical metallurgy and properties of materials, hydrology, water supply, and environmental health.
AERONAUTICS

The graduate school of Aeronautics and the Guggenheim Aeronautical Laboratory, widely known as the GALCIT, were established in 1928 at the California Institute with the aid of the Daniel Guggenheim Fund for the Promotion of Aeronautics. In 1948 a Jet Propulsion Center, to provide facilities for study in that field, was established by the Daniel and Florence Guggenheim Foundation (see pages 138-139). At about the same time an addition to the original Guggenheim Laboratory was constructed in an attempt to cope with the demands which twenty years of growth had imposed. The subsequent attainment of supersonic flight and the more recent opening of what has been called the "Space Age," by the first Russian and United States orbiting satellites, tremendously increased both the scope and the research facility requirements of the field involving both science and engineering which is here called Aeronautics. Generous donors have recently made it possible for the California Institute to more nearly satisfy the needs thus created. Both the Karman Laboratory of Fluid Mechanics and Jet Propulsion (a gift of the Aerojet-General Corporation) and the Firestone Flight Sciences Laboratory (donated by the Firestone Tire and Rubber Company) will be completed and occupied during the academic year 1961-62. Together with the original Guggenheim Laboratory, to which they are contiguous, they will constitute an integrated group of Graduate Aeronautical Laboratories in which the enlarged activities resulting from the extension of the aeronautical environment into space can adequately be accommodated. In particular the Jet Propulsion Center will for the first time be able to concentrate its major activities in the Karman Laboratory rather than having its work scattered in several Institute buildings as has been necessary in the past. The Karman laboratory also contains extensive facilities for researches in true hydrodynamics (using water as the fluid) which have long been a part of the Institute's program. The staffs to be housed in this group of laboratories are actively engaged in the fields of Aeronautics, Jet Propulsion, Hydrodynamics, Space Flight, and the allied sciences. The following are the major areas in which postgraduate instruction and advanced research are currently concentrated:

1) Fluid mechanics including classical hydrodynamics and aerodynamics; turbulence; stochastic and molecular approaches; hypersonic and rarefied gas flows including the effects of very high temperatures; magnetohydrodynamics and plasma physics.

2) Solid mechanics relating to the properties of materials; statics and dynamics of elastic, plastic and viscoelastic bodies; fracture; finite strains; elastic waves; thermal stress; shell theory.

3) Performance, structural mechanics, and flight dynamics of aircraft and spacecraft, including air and space vehicle performance, stability and control with the associated aerodynamic, propulsive, and environmental inputs; multistage rocket performance; aeroelasticity; orbital mechanics, trajectories, reentry mechanics and thermodynamics.

4) Jet and rocket propulsion of aircraft and spacecraft (see pp. 138-139 for details).
In all four of the above areas primary emphasis is placed on the underlying mathematics, physics, and chemistry and to their application to the solution of the scientific and engineering problems involved.

The group of Graduate Aeronautical Laboratories contains very complete and diversified facilities in support of the above program. The 200 m.p.m., 10-foot diameter wind tunnel which has been in continuous service for over 30 years continues to be a valuable tool for low speed research and model testing. The fluid mechanics laboratory contains several smaller wind tunnels and a considerable amount of special apparatus and equipment suitable for the study of basic problems connected with turbulent flows. The problems of transonic, supersonic, and hypersonic flows may be investigated in other wind tunnels specifically designed for such purposes. In these tunnels velocities up to 10 times the speed of sound can be attained. Shock tubes, plasmajets, and other special items of laboratory apparatus are available for studies of extreme temperature, rarefied gas, and magnetohydrodynamic effects. The solid mechanics laboratories contain standard and special testing machines for research in aircraft and spacecraft structures. Fatigue machines are also available as is photoelastic equipment for the study of stress distribution by optical methods. Special apparatus, including very high speed cameras is used in studies of elastic waves, and stress propagation. The laboratory facilities for jet propulsion and hydrodynamics are described in the sections on the Jet Propulsion Center and on Hydrodynamics starting on page 138. The laboratories also include excellent shop and library facilities, conference and study rooms, in addition to the usual lecture halls and offices.

Another activity which had its origin at the GALCIT, and with which the Aeronautics and Jet Propulsion groups continue to maintain close contact, is the Jet Propulsion Laboratory which has a staff of some 3300 persons of whom about 1000 are professional engineers and scientists. The JPL is owned and supported by the National Aeronautics and Space Administration and is administered by the Institute. Its primary responsibility is the "development of operations of spacecraft for lunar and interplanetary exploration," which includes an extensive supporting research program on the fundamental problems of jet propulsion, missiles, and space vehicles, with emphasis on supersonic aerodynamics, fuels and combustion, high-temperature materials, rocket motor design, and electronic instrumentation for telemetry and missile guidance. Among the experimental facilities are: two supersonic wind tunnels (a 20-inch tunnel capable of speeds of 4.8 times the velocity of sound and a 21-inch hypersonic wind tunnel capable of speeds of 7 to 9 times sound velocity); over a dozen rocket and thermal jet test cells, large laboratories devoted to space sciences, refractory materials, hydraulics, instrumentation, chemistry, combustion, heat transfer; and high speed digital and analog computers. The Laboratory extends the use of these facilities to properly accredited Institute students who are doing thesis work.

The facilities of the Institute are available to students working towards advanced degrees, and to qualified workers who wish to carry out researches in the fields outlined above. In some cases the off-campus facilities can also be made for such purposes. A few fellowships can be granted to selected students.
As in the fields of physics, chemistry, and mathematics, emphasis is placed primarily upon the development of graduate study and research; but provision has also been made in the four-year undergraduate course for work leading to such graduate study and research. This affords a broad and thorough preparation in the basic science and engineering upon which aeronautics rests.

The graduate courses may be taken either by students who have completed a four-year course at the Institute, or by students from other colleges who have had substantially the same preparation. The field of aeronautics is so many-sided that a student who has completed the undergraduate course either in engineering or in applied science will be admitted to the fifth-year course. The sixth-year work, however, may be taken only by students who have completed the fifth-year course at the Institute or who have had substantially the same preparation elsewhere.

Still more advanced study and research are offered for the degree of Doctor of Philosophy. This degree is given under the same general conditions as those that obtain in the other courses offered at the Institute.

Applied Mathematics

For information about the planned program in Applied Mathematics see page 123.

Applied Mechanics

Advanced instruction and research leading to the degrees of Master of Science and Doctor of Philosophy in Applied Mechanics is offered in such subjects as Mechanical Vibrations, Structural Dynamics, Earthquake and Blast Effects on Structures, Wave Propagation in Solids, Shell Theory, Theoretical and Experimental Analysis of Stress and Strain in Real and Ideal Solids, Dynamic Instrumentation, and certain subjects in the fields of Hydrodynamics, Propulsion, Heat Transfer, and Nuclear Energy applications. In addition, certain areas of Applied Mechanics are strongly emphasized by the Graduate School of Aeronautics as described in the separate section of Aeronautics.

Research studies in these areas which will illustrate current interests include: non-linear vibrations, randomly excited mechanical systems, shock and vibration tests of multi-degree-of-freedom systems, energy dissipation in structures, dynamic structural analysis and design for earthquake and blast loads, effects of local geology and soil conditions on strong earthquake ground motion, vibrations and buckling of shells, wave propagation in bars and plates, fracture mechanics in metals and polymers, heat transfer to fluids near the critical point, hydrodynamic interactions of submicroscopic particles, and non-Newtonian behavior of dilute solutions of macromolecules. For related research activities in the areas of Aeronautics, Hydrodynamics and Jet Propulsion see the separate sections so designated.

The work for the degree of Master of Science in Applied Mechanics consists of three terms of formal instruction in basic courses in applied science. Students are given considerable latitude in selecting these courses, in consultation with the staff, and are encouraged to elect basic courses in Mathe-
matics and Physics as well as courses in other options of the Division of Engineering. Students who have completed four-year B.S. programs in undergraduate options such as Applied Mechanics, Engineering Science, Applied Physics, Physics, Mathematics, or engineering options having a strong background in applied mathematics, will in general be eligible to apply for admission to M.S. candidacy status.

The degree of Doctor of Philosophy in Applied Mechanics will ordinarily involve a sixth year of specialized advanced courses and research, plus at least one additional year on a comprehensive thesis research project. Such study and research programs are individually planned to fit the interests and background of the student.

In addition to the regular facilities of the Division of Engineering, such as the extensive analog and digital computing facilities of the Computing Center, and the special facilities for studies in solid and fluid mechanics of the Graduate Aeronautical Laboratories, certain special facilities have grown up in connection with Applied Mechanics activities. The Dynamics Laboratory is well equipped with a good selection of basic instrumentation for Shock and Vibration testing and measurement, and the Earthquake Engineering Research Laboratory contains specialized equipment for the analysis of complex transient loading problems, and for the recording and analysis of strong-motion earthquakes. Several special purpose electric analog computers of both the direct and the electronic differential analyzer type are available in these laboratories. Other specialized laboratories which might be mentioned include Heat Transfer Laboratory, which contains a forced convection heat transfer loop, and the Laboratory of Microhydrodynamics and Rheology, with equipment for precision viscosimetry and studies of streaming birefringence.

CHEMICAL ENGINEERING
(See pages 116-118)

CIVIL ENGINEERING

In civil engineering instruction is offered leading to the degrees of Master of Science, Civil Engineer, and Doctor of Philosophy.

The fifth year of study at the Institute is organized to be a logical continuation of the first four years of study. The emphasis during the first four years at the Institute is on the basic subjects in science and engineering. In particular, strong emphasis is placed on physics, mathematics, and solid and fluid mechanics. The fifth year of study involves more specialized engineering subjects but the student is not encouraged to overspecialize in one particular field of civil engineering.

Greater specialization is provided by the work for the engineer's and for the doctor's degree. The candidate for these degrees is allowed wide latitude in selecting his program of studies, and is encouraged to elect related course work of advanced nature in the basic sciences. The engineer's degree of Civil Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis
on research than is appropriate to the degree of Doctor of Philosophy. Research leading to a thesis is required for the engineer's degree and for the doctor's degree.

In some instances a student who has not specialized in civil engineering as an undergraduate will be admitted for graduate study in that field if he intends to pursue a program of study leading toward the Civil Engineer or Ph.D. degree. As preparation for advanced study and research, a good four-year undergraduate program in mathematics and the sciences may be substituted for a four-year undergraduate engineering course with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his program in consultation with a member of the faculty. In some cases, the student may be required to make up deficiencies in undergraduate work. However, in every case the student will be urged to take some courses which will broaden his understanding of the overall field of civil engineering, as well as courses in his specialty. Most graduate students are also required to take further work in applied mathematics.

The general areas of civil engineering in which advanced work is offered are (1) structural engineering and applied mechanics, (2) soil mechanics and foundation engineering, (3) hydraulics: hydrodynamics, hydraulic engineering and hydrology, and (4) environmental health engineering. Emphasis is placed on the application of mathematics and basic scientific principles to the solution of civil engineering problems, and the student is discouraged from depending on handbooks and empirical formulas.

Excellent research facilities are available to qualified graduate students in all the fields above. Facilities for structural engineering and soil mechanics are located in the Thomas Laboratory of Engineering. Hydraulic research is carried on in the Laboratory of Hydraulics and Water Resources which is located in the W. M. Keck Engineering Laboratories and is described in detail under the section on Hydrodynamics below. The Laboratory for Environmental Health Engineering is also located in the W. M. Keck Engineering Laboratories, and some of this work is closely integrated with the research work in hydraulics and water resources.

In recent years, graduate students and members of the staff have pursued a variety of research programs such as analysis of structures subjected to dynamic loadings (such as earthquakes); compaction of soil by vibration; design criteria for various hydraulic structures; investigation of laws of sediment transportation by streams and settling in sedimentation tanks; water quality criteria; and sterilization of sewage.

Electrical Engineering

In electrical engineering instruction is offered leading to the degrees of Master of Science, Electrical Engineer, and Doctor of Philosophy.

Electrical engineering affords opportunity for many choices of life work relating to research, design, production, operation, and management. Some phases of these activities and the commercial semi-technical phases of the electrical industry require only the preparation of the four-year course, but the better, or more normal, preparation for an electrical engineering career
requires the completion of the five-year course leading to the degree of Master of Science.

The instruction pattern for electrical engineering is therefore designed on a five-year basis, the fifth-year courses being open to qualified students who have completed the four-year engineering course for the Bachelor of Science degree from the Institute, or have had substantially the same preparation in other colleges.

Other fields of endeavor call for a knowledge of mathematics, physics and electrical engineering in excess of that obtainable in the five-year curricula. To meet this need the Institute has provided courses of graduate study and research in electrical engineering leading to the degrees of Electrical Engineer and Doctor of Philosophy. These courses provide for advanced work in the application of mathematical analysis and physical laws to mechanical and electrical problems and may be taken by a limited number of exceptional students who have completed the five-year electrical engineering course at the Institute or by students from other colleges who have substantially the same preparation.

The distinctive features of undergraduate work and graduate work in electrical engineering at the California Institute of Technology are the creative atmosphere in which the student finds himself and the large amount of physics and mathematics courses included in the engineering curricula. The graduate work in electrical engineering in particular brings graduate students into close touch with research men and current problems.
Of the several electrical engineering laboratories at the California Institute, the Computing Center, the Solid State Physics Laboratories, and the Electromagnetic Radiation Laboratory are outstanding:

The Computing Center provides comprehensive facilities for research and instruction in the development of data processing systems and their application to the solution of complex mathematical problems in engineering and science. The Computing Center itself is set up as a general campus-wide facility. The Center contains a large-scale, direct analog computer, a Burroughs 220 digital computer, and an LGP-30 digital computer. Also, an IBM 7090 digital computer is available.

A new IBM system consisting of a 7090 and a 7040 computer is being planned for the expanded Center operation in 1963.

Electrical Engineering research in this area ranges from switching theory, switching circuit instrumentation, engineering analysis, and advanced programming. There is also a newly created joint research program with the Biology Division on the nervous system and sensory perception as these biological systems relate to engineering and data processing systems.

The Electromagnetic Radiation Laboratories are devoted to theoretical and experimental studies of electromagnetic radiation phenomena. They provide facilities for the investigation of basic problems arising from recent developments in antenna theory and design, quantum electronics, and plasma physics. Theoretical research now in progress includes topics in the mathematical theory of diffraction, wave propagation and oscillations in plasmas, fundamental laser research, artificial dielectrics, and surface wave antennas. Experimental work in progress includes the generation, propagation and detection of coherent optical radiations, the study of magnetohydrodynamics, and microwave interactions with plasmas.

The Solid State Physics Laboratories are involved principally, but not exclusively in the understanding of thin films. Facilities are available for the making of thin films by vacuum evaporation and electrodeposition. Research now in progress concerns tunneling phenomena in thin dielectric layers and transmission characteristics of superconducting thin films. The nature of flux reversal and anisotropy in thin magnetic films is being investigated as well as the interaction between magnetic materials and microwaves. Other investigations are involved with semiconductor devices and their applications to modern electronic circuits.

A Servomechanism Laboratory has been established for instruction and research on feedback control systems. The facilities of this laboratory provide excellent opportunities for research leading to all graduate degrees. One important feature is an electric analog computer suitable for general mathematical analysis and detailed studies of control system components in a complete system. Other laboratories and equipment for research work in electronics, communications, information theory and circuit synthesis are available.

Engineering Science

Advanced programs of study leading to the degree of Master of Science and Doctor of Philosophy in Engineering Science are offered by the Di-
vision of Engineering. These programs are designed to meet the needs of currently developing fields of engineering and applied science that are not emphasized in already established engineering disciplines. The general requirements for advanced degrees in Engineering Science are similar to those in the other fields of engineering and include for the doctorate the completion of satisfactory thesis research. The program for the Master of Science degree in Engineering Science is described on page 240. The fields of study may include such topics as fluid mechanics, reactor physics, plasma physics, combustion and other application of modern physics and chemistry to engineering.

Note: Students who have majored in physics, mathematics or engineering science as undergraduates and who are applicants for AEC Special Fellowships in Nuclear Science and Engineering should apply for admission to graduate study in this option.

Materials Science

The Division of Engineering offers programs of study leading to the degrees of Master of Science and Doctor of Philosophy in Materials Science. Graduate courses and research on solids is offered in the following general fields:

1. Electrical Properties
2. Magnetic Properties
3. Mechanical Properties
4. Dynamical Properties
5. Alloy Systems
6. Radiation Effects
7. Fracture Mechanics

Study for the degree of Master of Science in Materials Science ordinarily will consist of three terms of course work totaling at least 140 units. The student is allowed considerable freedom in choosing his courses. However, he should consult with one or more of the members of the Faculty Advisory Committee to ensure that he selects a sequence of courses suitable to his background and plans for future work. Formal thesis work is not required, although laboratory courses are provided as elective courses so that the student can utilize the basic equipment and techniques employed in a variety of research fields.

Work toward the degree of Doctor of Philosophy in Materials Science usually requires a minimum of two years following completion of the Master's degree program. Ordinarily, at least one year of this time is devoted to research work leading to a doctorate thesis. The course work and thesis work are planned by the student and his advisory committee so as to fit best the background and interests of the student.

Ample facilities are available for education and research in materials science. Current research activities include: Properties of thin metallic and insulating films, anisotropy with respect to magnetic and electrical properties, electron transport processes, relationship between mechanical properties and structure, fracture and fatigue damage in metals and polymers, behavior of
Instruction in mechanical engineering is offered leading to the degrees of Master of Science, Mechanical Engineer, and Doctor of Philosophy.

The general program of instruction in mechanical engineering is organized on a five-year basis in which the fifth-year schedule is open to qualified students who have completed the four-year engineering course for the Bachelor of Science degree from the Institute, or have had substantially the same preparation in other colleges. The first four years at the Institute are concerned with basic subjects in science and engineering and in the humanities. The fifth year, therefore, is somewhat more specialized, with options in general mechanical engineering, jet propulsion, physical metallurgy, or nuclear engineering. A schedule of subjects is specified for each of these fifth-year options which may be modified by petition to the faculty in mechanical engineering to satisfy the special interest of the student.

Greater specialization is provided by the work for the engineer's or doctor's degree. The student is allowed considerable latitude in selecting his course of subjects, and is encouraged to elect related course work of advanced character in the basic sciences. The engineer's degree of Mechanical Engineer is considered as a terminal degree for the student who wishes to obtain advanced training more highly specialized than is appropriate to the degree of Doctor of Philosophy. Research work leading to a thesis is required for the engineer's degree and for the doctor's degree.

Facilities for advanced work in Mechanical Engineering are provided in five general areas: (1) hydrodynamics, (2) design, mechanics, and dynamics, (3) physical metallurgy and mechanics of materials, (4) thermodynamics and heat power, and (5) nuclear energy. Extensive facilities are available in hydrodynamics as described on page 139. A Dynamics Laboratory is provided for the study of problems in vibration, transient phenomena in mechanical systems, and experimental stress analysis by means of special mechanical and electronic equipment. Instruction and research in materials science including physical metallurgy is carried on in the Laboratory of Engineering Materials occupying two floors of the W. M. Keck Engineering Laboratories. Extensive laboratory facilities have been developed for the study of mechanics of materials, particularly under conditions of dynamic loading, which are located in a special laboratory. Work in the field of thermodynamics and heat power is implemented by laboratories containing internal combustion engines and heat-transfer apparatus. Work is in progress on certain phases of gas turbines which provides problems and facilities research in this field.

An additional activity of interest to all advanced students in engineering is the Analysis Laboratory. This laboratory is built around an analog computer, which merges the various interests in applied mechanics, applied mathematics, and electrical engineering in the solution of problems. The
computer is valuable not only for the solution of specific research problems but also as research in itself in the development of new elements to extend the usefulness of the computer to more general mathematical analysis.

Close connections are maintained by the mechanical engineering staff with the many industries and governmental research agencies in the area which provide new, basic problems and facilities for study and research in the broad field of mechanical engineering.

Jet Propulsion

During 1948 at the California Institute of Technology, a Jet Propulsion Center was established by the Daniel and Florence Guggenheim Foundation. This Center was created specifically to provide facilities for postgraduate education and research in jet propulsion and rocket engineering, with particular emphasis on peace-time uses: to provide training in jet propulsion principles, to promote research and advanced thinking on rocket and jet-propulsion problems, and to be a center for peace-time commercial and scientific uses of rockets and jet propulsion. The Guggenheim Jet Propulsion Center is a part of the Division of Engineering of the California Institute of Technology. All instruction in the Guggenheim Center is on the graduate level.

The solution of the engineering problems in jet propulsion requires new techniques as well as drawing on the knowledge and practice of the older branches of engineering, in particular mechanical engineering and aeronautics. Thus it is appropriate that the program of instruction include material from both of these engineering fields. In general, students entering the course work in jet propulsion will have had their undergraduate preparation in mechanical engineering or aeronautics, but the courses are also available to students whose preparation has been in applied mechanics, engineering science, or physics. The complete program of instruction in jet propulsion for first year graduate students is available to those candidates for the degree of Master of Science in mechanical engineering electing the jet propulsion option. Candidates for the degree of Master of Science in aeronautics may
take some of the courses in jet propulsion as electives. Candidates for the degree of Aeronautical Engineer or Mechanical Engineer may elect an option in jet propulsion for more advanced courses and research in this field.

Students admitted to work for the degree of Doctor of Philosophy in aeronautics, applied mechanics, engineering science, or mechanical engineering may take part of their courses of instruction in jet propulsion and choose a research problem in jet propulsion as a thesis topic. The degree of Doctor of Philosophy does not carry a designation specifying the field of jet propulsion.

The Jet Propulsion Center will be located in the new Kármán Laboratory of Fluid Mechanics and Jet Propulsion upon its completion during the coming academic year. Facilities for experimental research are available to students working toward advanced degrees. Particle flows in rocket nozzles, heat transfer to the electrodes of plasma accelerators, emissivities of gases at very high temperature, and unsteady flame theory represent a few of the topics that are currently under investigation.

Hydrodynamics

Instruction and research in hydrodynamics and hydraulic engineering are concerned with various subjects which complement other Institute work in fluid mechanics. Current interest in this field include, for example, water waves, hydrodynamics of submerged or floating bodies, physics of cavitation, jets, and cavity flows, flows of stratified fluids, turbulence and diffusion, open channel flow, sediment transportation, and flow through porous media. No specific degree in hydrodynamics is given; however, advanced students working in this field may select enrollment and obtain degrees in Applied Mechanics, Civil Engineering, Mechanical Engineering or Engineering Science, depending upon their field of interest. The laboratories described below provide excellent facilities for graduate student research.

Hydraulic Machinery Laboratory. The purpose of this laboratory is to carry out basic research in the hydrodynamics of centrifugal and axial flow turbomachines and components thereof. The facilities include basins, dynamometers, pumps, venturis and calibrating tanks.

Hydrodynamics Laboratory. This laboratory is located in the von Karman Laboratory of Fluid Mechanics and Jet Propulsion. It contains three major experimental facilities—the high speed water tunnel, the free surface water
The high-speed water tunnel has a closed working section 14 inches in diameter and an alternate two-dimensional working section 6 by 30 inches, in which a maximum flow velocity of 100 feet per second can be obtained. The free-surface water tunnel can provide a maximum velocity of 27 feet per second in a working section 20 by 20 inches and 8 feet in length. The ambient pressure in the launching tank can be controlled down to 1/11 atmospheric pressure for modeling water entry and underwater trajectories.

Hydraulic and Water Resources Laboratory. The recently completed W. M. Keck Engineering Laboratories building provides space for an expanded basic research program in various phases of fluid mechanics and hydraulic engineering related to development and control of water resources. The facilities include three recirculating tilting flumes for research in open channel flow and sediment transport (one is 130 feet long with cross section 43 inches wide by 24 inches deep; another is 60 feet long, and the third is 40 feet long); two fixed flumes for studies of boundary layer growth at low velocity, density currents, and flow in hydraulic structures; a low turbulence water tunnel; special tanks and circulation systems needed in research; and miscellaneous equipment for a variety of student laboratory experiments. Research projects are an integral part of the academic program and are carried out by the faculty, and by graduate students as thesis projects.
One of the distinctive features of the California Institute is its emphasis upon the humanistic side of the curriculum. The faculty is in thorough sympathy with this aim and gives full support to it. Every student is required to take in each of his four undergraduate years one or more humanistic courses. These courses in the Division of the Humanities include the subjects English and foreign literatures, European and American history, philosophy and social ethics, economics (including industrial relations), and government. All of them are so planned and articulated that the student obtains a solid ground and not merely the superficial acquaintance which is too often the outcome of a free elective system. The standards of intellectual performance in these studies are maintained on the same plane as in the professional subjects.

Ample quarters for the work in humanities are provided in Dabney Hall, which was given to the Institute in 1928 by Mr. and Mrs. Joseph B. Dabney of Los Angeles as an evidence of their interest in the humanities program of the Institute and their desire to support it. Besides the usual class and lecture rooms, Dabney Hall of the Humanities contains a divisional library and reading room, offices for members of the humanities faculty, a public affairs room, and a student lounge which opens upon a walled garden of olive trees.

In connection with the acceptance of the gift of Dabney Hall, a special fund of $400,000 for the support of instruction in the humanistic fields was subscribed by several friends of the Institute. In 1937 Mr. Edward S. Harkness gave the Institute an additional endowment fund of $750,000 for the same purpose.

In addition to the regular staff of the Institute, scholars from other institutions give instruction or lectures in the Division of the Humanities. The proximity of the Huntington Library, with its unique opportunities for research in literature, history and economics, is assurance that the instruction given at the Institute in these fields will continue in the future, as in the past, to be strengthened by the association of visiting scholars.
Student Life

Student Houses. The seven undergraduate Student Houses are situated on both sides of the Olive Walk near the eastern end of the campus. The original four—Blacker, Dabney, Fleming, and Ricketts—were built in 1931 from the plans of Mr. Gordon B. Kaufmann in the Mediterranean style to harmonize with the adjacent Athenaeum. The other three, designed by Smith Powell and Morgridge and generally consistent in appearance with the older group, were completed in 1960, and are named Page, Lloyd, and Ruddock. Each of the seven is a separate unit with its own dining room and lounge, providing accommodations for about seventy-five students.

All seven Houses have their own elective officers and are given wide powers in the matter of arranging their own social events, preserving their own traditions, and in promoting the general welfare. The immediate supervision of the activities of each House is the responsibility of the House Resident Associate, generally a graduate student or unmarried faculty member. All Houses are under the general supervision and control of a member of the faculty known as the Master of the Student Houses.

Since the demand for rooms may exceed the supply, newly entering students are advised to file room applications with the Master of Student Houses immediately upon being notified by the Dean of Admissions of admittance to the Institute. All freshmen are expected to live in the Houses. Those who have reason to believe they should live elsewhere should discuss the matter with the Dean of Freshmen. Students failing to obtain admission to the Student Houses, who wish to avoid commuting, can find comfortable rooms for rent in private homes near the Institute campus.

Off-Campus Housing. The Housing Office, 208-A Throop, maintains a file of listings for rooms, apartments, and houses. Assistance will be given upon arrival, but no arrangements or reservations can be accomplished in advance.
The Student Houses are pleasantly located in the east campus.
If specific information is desired, it should be requested through this office, and not through the office of the Master of Student Houses.

Interhouse Activities. The presidents and vice presidents of the Student Houses make up the Interhouse Committee, which determines matters of general policy for all seven Houses. While each sponsors independent activities, there is at least one joint dance held each year. The program of intramural sports is also carried on jointly. At present it includes touch football, softball, cross-country, swimming, basketball, tennis, track, and volleyball.

Interhouse Scholarship Trophy. A trophy for annual competition in Scholarship among the seven Student Houses has been provided by an anonymous donor. With the approval of the donor the trophy has been designated as a memorial to the late Colonel E. C. Goldsworthy who was Master of the Student Houses and commemorates his interest and effort in the field of undergraduate scholarship.

"**ASCIT.**" The undergraduate students are organized as the "Associated Students of the California Institute of Technology, Incorporated," (ASCIT). All students pay the student-body fees and are automatically members of this organization, which deals with affairs of general student concern and with such matters as may be delegated to it by the faculty. Membership in the corporation entitles each student to (a) admission to all regular athletic or forensic contests in which Institute teams participate, (b) one vote in each corporate election, and (c) the right to hold a corporate office. The executive body of the ASCIT corporation is the Board of Directors, which is elected by the members in accordance with the provisions of the By-Laws. The Board interprets the By-Laws, makes awards for athletic and extra-curricular activities, authorizes expenditures from the corporation funds, and exercises all other powers in connection with the corporation not otherwise delegated.
The Honor System is the fundamental principle of conduct for all students. More than merely a code applying to conduct in examinations, it extends to all phases of campus life. It is the code of behavior governing all scholastic and extra-curricular activities, all relations among students, and all relations between students and faculty. The Honor System is the outstanding tradition of the student body, which accepts full responsibility for its operation. The Board of Control, which is composed of elected representatives from each of the seven Houses, is charged with interpreting the Honor System. If any violations should occur, the Board of Control investigates them and recommends appropriate disciplinary measures to the Deans.

Faculty-Student Relations. Faculty-student coordination and cooperation with regard to campus affairs is secured through periodic joint meetings of the Faculty Committee on Student Relations and certain student body officers and elected representatives. These conferences serve as a clearing house for suggestions as to policy organization, etc., originating with either students or faculty.

Option Advisors. Each member of the three undergraduate upper classes is assigned to an Option Advisor, a faculty member in the option in which the student is enrolled. The advisor interests himself in the student's selection of optional courses, progress toward his degree, and, eventually, in assisting the student toward satisfactory placement in industry or in graduate school. Normally, the association between student and advisor, which is primarily professional, is established before the beginning of the sophomore year and continues through graduation.

Athletics. The California Institute maintains a well-rounded program of athletics and as a member of the Southern California Intercollegiate Athletic Conference, schedules contests in nine sports with the other members of the Conference—Occidental, Pomona, Redlands, Whittier and Claremont-Harvey Mudd—as well as with many other neighboring colleges. In addition, the Caltech Sailing Club sails a fleet of Institute-owned dinghies based at Los Angeles Harbor.
The California Institute Athletic Field, of approximately twenty-three acres, includes football field, standard track, baseball stadium, and championship tennis courts. The Scott Brown Gymnasium and the Alumni Swimming Pool, completed in 1954, provide attractive modern facilities for intercollegiate, intramural, or recreational competition in badminton, basketball, volleyball, swimming, and water polo. Funds for the pool were contributed by the Alumni of the California Institute; construction of the gymnasium was made possible through a bequest of Scott Brown.

The Institute sponsors an increasingly important program of intramural athletics. There is spirited competition among the seven Houses for the possession of three trophies. The Interhouse Trophy is awarded annually to the group securing the greatest number of points in intramural competition during the year. The Varsity and Freshman Rating Trophy is presented to the group having the greatest number of men participating in intercollegiate athletics. The third trophy, "Discobolus," is a bronze replica of Myron's famous statue of the discus thrower. It is a challenge trophy, subject to competition in any sport and remains in the possession of one group only so long as that group can defeat the challengers from any of the other groups.

Student Body Publications. The publications of the student body include a weekly paper, the *California Tech*; an annual; a literary magazine; and a student handbook, which gives a survey of student activities and organizations and serves as a campus directory. These publications are staffed entirely by undergraduates. Through them ample opportunity is provided for any student who is interested in obtaining valuable experience not only in creative writing, art work, and in the journalistic fields of reporting and editing, but in the fields of advertising and business management as well.

Musical Activities. The Institute provides qualified directors and facilities for a band and glee club. A series of chamber music concerts is given on Sunday evenings in the lounge of Dabney Hall. The Musicale is an organization which encourages interest and appreciation for classical recordings. The extensive record library of the Institute provides opportunity for cultivation of this interest and for the presentation of public programs. From a special loan library, records may be borrowed for students' private use.

Student Societies and Clubs. There is at the Institute a range of undergraduate societies and clubs wide enough to satisfy the most varied interests. The American Institute of Electrical Engineers, the American Society of Civil Engineers, and the American Society of Mechanical Engineers all maintain active student branches.

The Institute has a chapter (California Beta) of Tau Beta Pi, the national scholarship honor society of engineering colleges. Each year the Tau Beta Pi chapter elects to membership students from the highest ranking eighth of the junior class and the highest fifth of the senior class.

The Institute also has a chapter of Pi Kappa Delta, the national forensic honor society. Members are elected annually from students who have represented the Institute in intercollegiate debate, or in oratorical or extempore speaking contests.
Special interests and hobbies are provided for by the Chemistry, Mathematics, and Physics Clubs, the Radio, Sailing, and Ski Clubs. The Christian Fellowship Group, Christian Science Group, Episcopal Group and the Newman Club are organized on the basis of religious interests. The Inter-Nations Association is composed of foreign students from various countries, as well as interested Americans. Its object is to make the students’ stay at Caltech more valuable by introducing them to Americans, their customs and way of life. Conferences, weekly teas, and trips to points of interest in the vicinity are among the activities.

Student Shop. The Student Shop is housed in the new Winnett Student Center. It was equipped by the Institute, largely through donations and is operated by the students under faculty supervision. It has no connection with regular Institute activities, and exists only as a place where qualified students may work on private projects that require tools and equipment not otherwise available. All students are eligible to apply for membership in the Student Shop; applications are acted on by a governing committee of students. Members who are not proficient in power tools are limited to hand tools and bench work; however, instruction in power tools will be given as needed. Yearly dues are collected to provide for maintenance and replacement.

Speech Activities. Practical training in public speaking is the keynote of the Institute’s forensic program. A variety of experiences ranging from intercollegiate debate tournaments to local speech events can be had by all who wish to improve their abilities. Debaters take part in an average of six intercollegiate tournaments during the year. These tournaments, including extemporaneous speaking, oratory, impromptu speaking and discussion, comprise such events as the Western Speech Association tournament, the regional Pi Kappa Delta tournament, and the annual Caltech invitational debate tournament held at the Institute. Bi-annually the Institute is represented at the National Pi Kappa Delta Speech tournament. Local activities include the annual Conger Peace Prize oration contest, and the interhouse speech contest for the Lincoln trophy. Student toastmasters’ clubs, panels, and students competing for public speaking prizes of the national engineering societies are given guidance.

Y.M.C.A. The California Institute Y.M.C.A. is a service organization whose purpose is to supplement a technical and scientific education with a program emphasizing social and religious values. The “Y” is one of the most active student organizations on the campus and welcomes as members all students taking an active part in its regular program of activities. The program includes weekly luncheons, clubs, discussion groups which bring speakers representing many interests to the campus, forums and lectures, student-faculty firesides, intercollegiate conferences, and work with local church groups. It also sponsors an annual freshman tea dance. The “Y” services to the student body include a used textbook exchange, a loan fund, an all-year calendar of student events and the use of the lounge and offices. Friends of the Institute “Y” have provided a residence near the campus for the executive secretary, especially built to accommodate informal meetings of discussion groups.
Bookstore. The Student Store serving students, faculty and staff is located on the ground floor of the Winnett Center. The store, which is owned and operated by the Institute, carries a complete stock of required books and supplies, many reference books and many extra-curricular items—athletic supplies, stationery, fountain pens, etc. Net income from operation of the store is used for undergraduate scholarships and for payment of a dividend to the Associated Students for student body activities.

AIR FORCE RESERVE OFFICERS
TRAINING CORPS

The California Institute sponsors an Air Force ROTC squadron. Career officers of the U.S. Air Force staff the Department of Air Science to provide the instruction essential for commissioning students who complete the four-year program in the Air Force Reserve, with up to one-third being offered regular commissions. Participation is voluntary for the first two years, called the Basic Course. The Advanced Course, given during the junior and senior years, is offered to those who complete the Basic Course, qualify physically and mentally, and who are willing to sign an agreement to accept a commission and serve on active duty for a period of four years. Graduates are assigned to engineering or scientific work in the Air Force, or if physically qualified, may apply for pilot or navigator training. A special provision is made for sending an engineer or a scientist to graduate school as his first military assignment if he states that he intends to pursue an Air Force career.

In addition to the academic work described on page 254 weekly training is given in drill, ceremonies, and leadership. Field trips to nearby Air Force bases such as Edwards and Vandenberg, and to the Air Force Academy, give Basic cadets the insight needed to decide for themselves the merits of a service career. The squadron also sponsors a drill and a rifle team. These voluntary activities provide opportunities for leadership and entertainment. Cadets make several trips to meets in the western United States.

Deferral from Selective Service may be granted if required. The Air Force furnishes books and uniforms, as well as a ration allowance of $240.00 per year, to the Advanced Course cadets.
Section III

INFORMATION AND REGULATIONS FOR THE GUIDANCE OF UNDERGRADUATE STUDENTS

REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING

The undergraduate school of the California Institute of Technology is not coeducational and applications are accepted from men students only. The academic year consists of one twelve-week term and two eleven-week terms extending from late September until the middle of June. There are no summer sessions, except that graduate students are permitted to register for summer research. Undergraduates are admitted only once a year—in September. All undergraduates at the California Institute are expected to carry the regular program leading to the degree of Bachelor of Science in the option of their choice. Special students who wish to take only certain subjects and are not seeking a degree cannot be accepted.

ADMISSION TO THE FRESHMAN CLASS

The freshman class of 180 men is selected from the group of applicants on the basis of (a) high grades in certain required high school subjects, (b) results of the College Entrance Examination Board tests, and (c) recommendation forms, and a personal interview when this is feasible. The specific requirements in each of these groups are described below. An application fee of $10 is due at the time an application for admission is submitted. No application will be considered until this fee is paid. The fee is not refundable whether or not the applicant is admitted or cancels his application, but it is applied on the first term bills of those who are admitted and who register in September.

APPLICATION FOR ADMISSION

Two applications are needed. One, for admission, is made on a form furnished by the California Institute on request, and is returned directly to the Institute together with an application fee of $10. The other, to take examinations, may be secured by writing to the College Entrance Examination Board either in Los Angeles or Princeton (see below).

Completed admission application blanks and the $10 application fee must reach the Admissions Office not later than February 15, 1963. (Application to take entrance examinations must be made directly to the College Board at an earlier date, for which see page 151.)

Applicants living outside of the United States must submit their credentials by November 1, 1962.

Transcripts of records covering three and a half years of high school should be submitted as soon as the grades of the first semester of the senior year are
available but not later than March 1, 1963. Those attending schools which operate on the quarter system should submit records covering the first three years and the first quarter of the senior year. They must also arrange for a supplementary transcript showing the grades for the second quarter to be sent as soon as possible. Applicants must be sure to list in space provided on the application blank all the subjects they will take throughout the senior year.

Arrangements to take the tests must be made by writing to the College Entrance Examination Board in advance of the closing dates and according to the instructions listed below.

HIGH SCHOOL CREDITS
Each applicant must be thoroughly prepared in at least fifteen units of preparatory work, each unit representing one year's work in a given subject in an approved high school at the rate of five recitations weekly. Each applicant must offer all of the units in Group A and at least five units in Group B.

Group A: English ... 3
Mathematics .. 4
Physics ... 1
Chemistry .. 1
United States History and Government 1

Group B: Foreign Languages, Shop, additional English, Geology, Biology or other Laboratory Science, History, Drawing, Commercial subjects, etc. .. 5

The three units of English are a minimum and four units are strongly recommended.

The four-year program in mathematics should cover the principal topics of first-year algebra, intermediate algebra, trigonometry, and plane geometry, preferably including the basic notions of solid geometry. An introduction to elementary analytic geometry and the calculus is desirable but not necessary.

The Admissions Committee recommends that the applicant's high school course include at least two years of foreign language, a year of geology or biology, basic elementary shop work, and as much extra instruction in English grammar and composition as is available in the high school curriculum.

ENTRANCE EXAMINATIONS
In addition to the above credentials, all applicants for admission to the freshman class are required to take the following examinations given by the College Entrance Examination Board: the Scholastic Aptitude Test (morning program); the afternoon program consisting of achievement tests in advanced mathematics and any two of the following: physics, chemistry, English. Note that the Scholastic Aptitude and the Advanced Mathematics tests must be taken, and that the choice lies only among physics, chemistry, and English of which two must be taken. No substitution of other tests can be permitted.

For admission in September, 1963 the Scholastic Aptitude Test and achievement tests must be taken no later than the January 12 College Board Test date. It is important to note that no applicant can be considered in 1963 who has not taken the required tests by January 12, but tests taken on any prior date are acceptable. No exception can be made to the rule that all applicants
must take these tests and no substitution of other tests for those listed above can be permitted.

Full information regarding the examinations of the College Entrance Examination Board is contained in the Bulletin of Information which may be obtained without charge by writing to the appropriate address given below. The tests are given at a large number of centers, but should any applicant be located more than 65 miles from a test center, special arrangements will be made to enable him to take the tests nearer home.

Applicants who wish to take the examinations in any of the following states, territories, or foreign areas should address their inquiries by mail to College Entrance Examination Board, P.O. Box 27896, Los Angeles 27, California:

Alaska Nevada Province of British Columbia
Arizona New Mexico Province of Manitoba
California Oregon Province of Saskatchewan
Colorado Utah Republic of Mexico
Hawaii Washington Australia
Idaho Wyoming Pacific Islands, including
Montana Province of Alberta Japan and Formosa

Candidates applying for examination in any state or foreign area not given above should write to College Entrance Examination Board, P.O. Box 592, Princeton, New Jersey.

Each examination application submitted for registration must be accompanied by the examination fee of $5 for the Scholastic Aptitude Test and $8 for the three Achievement Tests. Please note that the examination fee is not sent to the California Institute, but to the appropriate College Board office. The application fee of $10 is the only fee sent to the California Institute at the time an application is made.

All examination applications and fees should reach the appropriate office of the Board not later than the dates specified below.

For examination centers located

In the United States, Canada, the Canal Zone, Mexico, or the West Indies, applications must be received by November 3
In Europe, Asia, Africa, Central and South America, and Australia, applications must be received by October 13

To take tests on

December 1, 1962 November 3
January 12, 1963 December 15

Candidates are urged to send in their examination applications and fees to the Board as early as possible, preferably at least several weeks before the closing date, since early registration allows time to clear up possible irregularities which might otherwise delay the issue of reports. Under no circumstances will an examination application be accepted if it is received at a Board office later than one week prior to the date of examination. No candidate will be permitted to register with the supervisor of an examination center at any time. Only properly registered candidates, holding tickets of admission to the centers at which they present themselves, will be admitted to the tests. Requests
for transfer of examination center cannot be considered unless these reach the Board office at least one week prior to the date of the examination.

Please note that requests to take the examinations and all questions referring exclusively to the examinations are to be sent to the College Entrance Examination Board at the appropriate address as given above, and not to the California Institute.

PERSONAL INTERVIEWS AND RECOMMENDATION FORMS
By March 1, recommendation forms will be sent out for each applicant who has an application on file. These forms are sent directly to the principal or headmaster of the school which the applicant is attending, with the request that they be filled out and returned directly to the California Institute. These recommendation forms provide valuable information on candidates. The College Board scores, the last of which will be received by about February 15, provide further important data. Since, however, there are many more applicants to the California Institute than our facilities can accommodate, as much information as possible is desired on each candidate for admission. Wherever preliminary information shows that an applicant has a chance of gaining admission, an attempt is made to hold a personal interview with him at the school he is attending. It is not possible to visit all of the schools involved; but if a personal interview cannot be held, this in no way prejudices an applicant’s chances of admission. The applicant has no responsibility with regard to the personal interview unless and until he receives a notice giving the time and date when a representative will visit his school. These visits occur between March 1 and April 6.

NOTIFICATION OF ADMISSION
Final selections will ordinarily be made and the applicants notified of their admission or rejection well before May 1, which is the date before which most College Board member colleges have agreed that they will not require any candidate to give final notice of acceptance of admission or of a scholarship. Upon receipt of a notice of admission an applicant should immediately send in the registration fee of $10. In the event of subsequent cancellation of application, the registration fee is not refundable unless cancellation is initiated by the Institute. Places in the entering class will not be held after May 1, if the applicant could reasonably be expected to have received notice at least ten days before this date. Otherwise, places will be held not more than ten days after notification. When the registration fee has been received, each accepted applicant will be sent a registration card which will entitle him to register, provided his physical examination is satisfactory. The registration card should be presented at Dabney Hall Lounge on the date of registration.

Checks or money orders should be made payable to the California Institute of Technology.

EARLY DECISION PLAN
The Institute will consider a few outstanding candidates who wish to make the California Institute their first choice under an early decision plan. Such candidates must have taken the required College Board tests by the end of their junior year or at the following August administration, must have an excellent school record, and must have the thorough backing of their high school.
An applicant for admission under the early decision plan must have his credentials on file by October 1 of his senior year. He will be notified by December 15 whether he has been accepted. An accepted applicant is then expected to withdraw all applications to other colleges. An applicant who is not accepted under the early decision plan will be considered without prejudice for admission at the regular time in April.

ADVANCED PLACEMENT PROGRAM

A number of high schools and preparatory schools offer selected students the opportunity to accelerate and to take in the senior year one or more subjects which are taught at the college level and cover the material of a college course. The College Entrance Examination Board gives each year in May a set of Advanced Placement examinations covering this advanced work. The regulations governing Advanced Placement at the California Institute in the subjects concerned are as follows:

Chemistry. The freshman chemistry course at the Institute now contains much material formerly given in the sophomore year and not usually covered in advanced placement courses in the schools. For this reason all freshmen must take the first term work (Chemistry 1 a). Those who took the College Board Advanced Placement examination in Chemistry and received a score of 5 or 4 and who received a grade of B or better in Chemistry 1 a may be excused from the lecture portion the last two terms if the advanced course they took in school covered the substantial equivalent of the work given here in these terms. They may also be excused from the laboratory portion of Chemistry 1 bc if they have covered the substantial equivalent, but it is less likely that they will have done so. Anyone who feels that prior to entrance he has covered the equivalent of the freshman chemistry but who has not taken the College Board Advanced Placement examination may take the California Institute transfer examination in chemistry covering the work of the freshman year. Units from which a student has been excused by reason of advanced placement courses must be made up before graduation and may be taken in any subject offered in any division for which the student has the necessary prerequisites, except that those who wish to major in chemistry or chemical engineering may be required to make up the units by additional work in chemistry.

English. No advanced placement or credit will be given in English because the freshman course at the Institute (En 1 abc) is an advanced course of a level formerly (before 1959-60) given in the junior year.

History. An entering freshman may be excused from freshman history (H 1 abc: History of European Civilization) on the basis of a one-year college-level course, completed with a high mark, and a high score in the College Advanced Placement examination in that subject; units must be made up by Advanced Placement in any of the Senior Humanities Electives. He may be excused from sophomore history and government (H 2 abc: History and Government of the United States) on the same basis; units must be made up by Advanced Placement in any of the Senior Humanities Electives. (Note: Because of a California State law requiring colleges to give instruction in the Constitutions of the United States and of the State of California, it will be nec-
Mathematics. An entering freshman who has achieved a sufficiently high score on the College Board Advanced Placement test in Mathematics will be sent during the summer a questionnaire concerning the advanced work in mathematics which he has taken. If an entering freshman believes that he has covered the equivalent of the first-year mathematics but has not taken the College Board Advanced Placement test he may take the California Institute transfer mathematics examination covering the first-year work. On the basis of the College Board test or the transfer examination and of the information in the questionnaire he may be placed in a special mathematics section which will cover some topics of the freshman course not usually touched on in advanced placement courses and will cover in addition the material of the first two terms of the sophomore year (Mathematics 2 ab). He will then take the third term sophomore work (Mathematics 2 c) in either the first or third terms of the sophomore year. In exceptional cases an entering freshman may be placed immediately in the sophomore course (Mathematics 2 abc). The special mathematics course in the freshman year is taken in place of the regular freshman Mathematics 1 abc and upon successful completion of this special course full credit is given for Mathematics 2 ab. Those who are permitted to enter immediately the sophomore Mathematics 2 abc will receive full credit for Mathematics 1 abc.

Physics. As currently organized, the required course in physics in the freshman year, Ph 1 abc, contains so little that might duplicate material in advanced placement work elsewhere, that for the time being it is not contemplated that any advanced placement in physics will be given to entering freshmen.

NOTE: The Advanced Placement tests are in no way a substitute for the College Board Aptitude and Achievement Tests at the ordinary high-school level required for admission. The latter are the only tests considered in granting freshman admission. After admission those who offer advanced credits and examinations will be considered for credit and advanced placement in the subjects involved.

PHYSICAL EXAMINATION

Prior to final acceptance for admission, each applicant is required to submit a report of physical examination on a form which will be sent him at the time he is notified of admission. It is the applicant's responsibility to have this form filled out by a Doctor of Medicine (M.D.) of his own choosing. Admission is tentative pending such examination, and is subject to cancellation if the results of the examination are unsatisfactory. (See page 168.)

Vaccination and a standard two-injection tetanus innoculation (or booster shot if appropriate) are required at the time of the examination. Students will not be admitted unless the physical examination form bears evidence of such vaccination and innoculation.

Students who have been on leave of absence for three terms or more must submit reports of a physical examination under the same conditions as for new students.
SCHOLARSHIPS AND LOANS

For information regarding scholarships for entering freshmen see pages 175-182. Note that there is a distinction between Honors at Entrance and scholarship grants and that the latter are awarded on the basis of financial need as well as high standing on the entrance examinations. No one can be considered for a scholarship grant who has not sent in a scholarship form according to the instructions on page 175. In computing need the California Institute uses the figure of $2900 as covering all expenses of an academic year for those who live on campus or wherever they must pay for board and lodging. This figure includes tuition, board and lodging, books and supplies, incidental fees and dues and about $300 for personal expenses. To this figure is added an allowance for travel between Pasadena and the student’s home. The travel allowance varies with the distance involved but in no case exceeds $400 for one academic year. The figure of $2150 is used for the expenses of those who live at home or with relatives or friends to whom they pay nothing for board and lodging. This figure includes the items listed above with the exception of board and lodging and with the addition of allowances for commuting expense and lunches. For further information on tuition and other costs and on loans and the deferred payment plan see pages 171-174.

NEW STUDENT CAMP

All undergraduate students entering the Institute for the first time, either as freshmen or as transfer students, are required to attend the New Student Camp as part of the regular registration procedure. This meeting occupies three days of registration week preceding the fall term, and is usually held at Camp Radford, a large well-equipped camp owned by the city of Los Angeles and located in the San Bernardino mountains east of Redlands.

A large number of faculty members and student leaders attend the camp. During the three-day program the new students hear what life at the Institute is like. They learn what is expected of them and what aids are available to them to help them live up to these expectations. Because of the comparatively small student body and the pressure of work once academic activity starts, it is important both to the student and to the Institute that new students become, at the very beginning, part of a homogeneous group sharing a common understanding of purpose and a common agreement on intellectual and moral standards. The three days at the camp afford the best possible opportunity for achieving this necessary unity.

STUDENTS’ DAY

The California Institute holds an annual invitational Students’ Day on the first Saturday in December of each year. This popular event is conducted by invitation to allow a more intimate view of the work in the laboratories of science and engineering with the hope that this contact will assist the high school student in his choice of a future career. Science students and their teachers are invited, upon nomination by secondary schools throughout southern California, to view exhibits of the work in the various divisions of the Institute and to attend selected demonstration lectures given by students and faculty members. Student life on the campus is an important feature of Students’ Day with the undergraduate student body serving as host and responsible for the actual operation under the direction of a joint faculty-student committee. To avoid
overcrowding at the exhibits and lectures it is necessary to limit attendance at this event to those who have been selected by their schools and whose names have been sent to the Students’ Day Committee in advance.

AIR FORCE ROTC
For details of admission to the AFROTC see page 149.

Admission to Upper Classes by Transfer from Other Institutions
The Institute admits to its upper classes (i.e., sophomore year and beyond) a limited number of able men who have made satisfactory records at other institutions of collegiate rank. In general only students whose grades, especially those in mathematics and science, are above average can expect to be permitted to take the entrance examinations.

A student who is admitted to the upper classes pursues a full course in engineering or in one of the options in science, leading to the degree of Bachelor of Science. The Institute has no special students. Men are admitted either as freshmen in accordance with the regulations set forth on pages 150-153 or as upperclassmen in the manner described below. Those who have pursued college work elsewhere, but whose preparation is such that they have not had the substantial equivalent of the freshman courses in English, mathematics, and physics, will be classified as freshmen and should apply according to the instructions on pages 150-153. They may, however, receive credit for the subjects which have been completed in a satisfactory manner.

An applicant for admission as a transfer student must write to the Office of Admissions of the California Institute stating his desire to transfer, his choice of engineering or one of the options in science, and the number of years of college he will have completed by the date of transfer. At the same time he must present a transcript of his record to date showing in detail the character of his previous training and the grades received both in high school and college. If the college transcript does not list subjects and grades for high school work, the applicant must see that his high school sends the Admissions Office a transcript of this work. After the transcripts have been evaluated by the Admissions Office, an application blank will be sent provided the grades and subjects on the transcripts meet the transfer requirements.

Please note that an application blank is not sent until the transcripts have been received and evaluated, and that the applicant must write a letter giving the information outlined in the preceding paragraph. Transcripts are held in the files until such a letter is received.

Application blanks must be on file in this office by April 1. Transcripts should, therefore, be sent no later than March 15. Applicants living in foreign countries must have applications and transcripts on file by March 1 at the latest and should understand that no information with regard to acceptance or rejection can be sent before June 20.

Applicants who are enrolled in a college at the time applications are made do not ordinarily complete the academic year until May or June. Such applicants should make sure that a list of subjects being taken during the final semester is included in the transcript sent for evaluation and that a supplementary transcript showing the grades for the final semester is sent at the end of the academic year as soon as these grades are available. All transfer
applicants must arrange to have sent in their scores on the Scholastic Aptitude Test (SAT) of the College Entrance Examination Board. If they have taken the SAT in previous years, these scores will be acceptable; but applicants must instruct the College Board (see address on page 152) to send the scores to the Institute. If the SAT has not been taken previously, it must be taken by the March 3 series at the latest. College Board Achievement Tests are not required of transfer applicants.

In addition, before their admission to the upper classes of the Institute, all students are required to take entrance examinations in mathematics, physics, and English composition covering the work for which they desire credit, except that in addition an examination in chemistry is required of those desiring to major in chemistry or chemical engineering. Students must offer courses, both professional and general, substantially the same as those required in the various years at the Institute (see pages 220-234) or make up their deficiencies as soon as possible after admission.

It is not possible to answer general questions regarding the acceptability of courses taken elsewhere. The nature of the work at the Institute is such as to demand that all courses offered for credit be scrutinized individually. Even when a transcript of record is submitted it is not always possible to tell whether the courses taken are equivalent to the work at the Institute. In case the standard of the work taken elsewhere is uncertain, additional examinations may be required before the question of credit is finally determined.

Applicants are advised to read the descriptions of the freshman and sophomore courses, particularly those in physics, mathematics, and chemistry, and to note that the work in freshman mathematics includes differential and integral calculus, vector algebra and infinite series. If an entering sophomore has not had the last two topics he will enroll in a special section of the sophomore mathematics course. Note also the references to freshman and sophomore chemistry on page 157.

The Institute is presently making a radical revision of its basic two-year course in physics which is required of all students. The new course will be a course in Classical and Modern Physics in which the emphasis will be on modern ideas and applications, to be introduced to the student as early as possible. The revised first-year course was given for the first time in 1961-62 and covers kinematics, the Lorentz transformation, nonrelativistic and relativistic particle mechanics, electric and magnetic forces, Rutherford scattering, planetary motion, harmonic motion, geometrical optics, kinetic theory, thermodynamics, and black body radiation. Students wishing to transfer into the sophomore class, therefore, will be expected to have covered material not found in the ordinary freshman physics course. Unless a student can demonstrate proficiency in most of the areas covered by Physics 1 abc, he would probably do well to wait for another year and apply for admission as a junior.

It is felt that the regular two-year program in physics at other colleges, although the sequence of topics may be different, will enable a good applicant to deal adequately with our physics test for admission to the junior level.

Two examinations of a comprehensive character are offered in each of the three subjects, mathematics, physics, and chemistry. One examination in each subject covers the work of the first year, the other examination that of the first and second years. Representative examination papers will be sent to
approved applicants upon request. The English examination covers composition only and is the same, regardless of the level at which the applicant is seeking admission. The Institute courses for which those admitted will receive credit will be determined by the Committee on Admission to Upper Classes and the departments concerned on the basis of the applicants’ previous records and of the results of their examinations.

It is not possible to give definite assurance that a transfer student entering the sophomore year will graduate in three years or that one entering as a junior will graduate in two years. Much depends on the amount and nature of the credit granted at the time a student registers in September and on the possibility of fitting deficiency make-ups into the regular schedule.

Applications will not be considered unless the applicant has had the substantial equivalent of the mathematics, physics, and English courses given at the California Institute at the first-year level for sophomore standing, and at the first- and second-year levels for junior standing in the option of the applicant’s choice.

The first-year chemistry course at the California Institute differs from those given at many other colleges because of the inclusion of a substantial amount of quantitative analysis in the laboratory work. A transfer student who has had a one-year college course in inorganic chemistry and qualitative analysis will be considered to have met the first year chemistry requirements provided, of course, that his grades have been satisfactory, except that those wishing to major in biology, chemistry, or geology will be required to take certain portions of freshman chemistry if they have not had the equivalent laboratory work elsewhere.

The transfer examination in chemistry is required only of those wishing to major in chemistry or chemical engineering. For admission to the sophomore year this examination will cover general chemistry and qualitative analysis. The examination for admission to the third year is a comprehensive test covering general chemistry, qualitative and quantitative analysis. Transfer students entering the junior year in chemistry will be able to take the sophomore organic chemistry course during their first year at the Institute.

No application fee is charged in the case of transfer students, but only those whose records are good will be permitted to take the tests. Applicants should not come to the Institute expecting to be admitted to the examinations, without first receiving definite permission to take them.

The schedule for the examinations for admission to upper classes, September 26, 1963, is as follows:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Duration</th>
<th>Time</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>3 hours</td>
<td>1:00 P.M.</td>
<td>May 10, 1963</td>
</tr>
<tr>
<td>English</td>
<td>1 hour</td>
<td>9:00 A.M.</td>
<td>May 11, 1963</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2 hours</td>
<td>10:30 A.M.</td>
<td>May 11, 1963</td>
</tr>
<tr>
<td>Physics</td>
<td>3 hours</td>
<td>2:00 P.M.</td>
<td>May 11, 1963</td>
</tr>
</tbody>
</table>

No other examinations for admission to upper classes will be given in 1963.

Applicants residing at a distance may take the examinations under the supervision of their local college authorities, provided definite arrangements are made well in advance. Arrangements for examinations in absentia should
Transfer Admissions

include a letter to the Dean of Admissions from the person directing the tests stating that the required supervision will be given.

The attention of students planning to transfer to junior standing is called to the fact that, until they have satisfactorily completed three full terms of residence at the Institute, they are subject to the same scholastic requirements as are freshmen and sophomores (see pages 163-167). In addition, they should note that to be permitted to register for any science or engineering options during their junior and senior years they must meet the scholastic requirements of the divisions concerned (see page 165).

Physical examinations and vaccination are required as in the case of students entering the freshman class (see page 155). Admission is conditional upon a satisfactory report on the physical examination.

Transfer students are required to pay a registration fee of $10 upon notification of admission to the Institute. In the event of subsequent cancellation of application, the registration fee is not refundable unless cancellation is initiated by the Institute. Transfer students are expected to attend the New Student Camp for information on which see page 156.

Scholarship grants for transfer students are awarded on the same basis as are those for freshmen: namely, high standing on the entrance examinations and demonstrated financial need. To secure consideration for a scholarship, a transfer student must file a special form which will be sent on request and must be completely filled out by the parent or guardian responsible for the applicant's support. This form must reach the Admissions Office no later than April 15, and no applicant will be considered for a scholarship grant who does not have such a form on file here by that date.

THE 3-2 PLAN

Arrangements exist between the California Institute and certain liberal arts colleges, whereby students enrolled in these liberal arts colleges may follow a certain prescribed course for the first three years and then transfer into the third year of the engineering option at the Institute without further formality provided that they have the unqualified recommendation of the officials at the liberal arts college which they are attending. After satisfactorily completing in two years at the Institute all the remaining work required for a bachelor's degree in engineering, they will be awarded a Bachelor of Arts degree by the college from which they transferred and a Bachelor of Science degree by the California Institute. Application for admission at the freshman level under this plan should be made to the liberal arts college.

The list of colleges with which these arrangements exist is as follows:

Bowdoin College, Brunswick, Maine
Grinnell College, Grinnell, Iowa
Occidental College, Los Angeles, California
Ohio Wesleyan University, Delaware, Ohio
Pomona College, Claremont, California
Reed College, Portland, Oregon
Wesleyan University, Middletown, Connecticut
Whitman College, Walla Walla, Washington
REGISTRATION REGULATIONS

<table>
<thead>
<tr>
<th>Registration Dates</th>
<th>Payable Fees</th>
<th>Instruction Begins</th>
</tr>
</thead>
</table>

For Second and Third Term dates refer to the Academic Calendar on page 4.

FEES FOR LATE REGISTRATION

Registration is not complete until the student has personally turned in the necessary registration and class assignment cards for a program approved by his registration officer and has paid his tuition and other fees. A penalty fee of four dollars is assessed for failure to register on the scheduled date, and a similar fee is assessed for failure to pay fees within the specified dates. These requirements apply to all three terms.

SPECIAL STUDENTS

Applicants who wish to take a special program without working toward a degree are not accepted for undergraduate admission. Registered undergraduates who register for programs which make it appear that they are no longer candidates for a B.S. degree may be refused further registration by the Undergraduate Academic Standards and Honors Committee.

CHANGES OF REGISTRATION

All changes in registration must be reported to the Registrar’s Office by the student. Such changes are governed by the last dates for adding or dropping courses as shown on the Institute calendar. A grade of F will be given in any course for which a student registers and which he does not either complete satisfactorily or drop. A course is considered dropped only after the student has turned in to the Registrar’s Office a drop card properly filled out and signed by the instructor concerned and any other required persons. A student may not at any time withdraw from a course which is required for graduation in his option without permission of one of the Deans. Senior students must also have the approval of the Registrar before dropping any course. A student may not withdraw from a course after the last date for dropping courses without, in addition to his instructor’s consent, the approval of the Curriculum Committee. A student may, with the consent of the instructor concerned, add a course after he has completed his regular registration provided the addition does not bring the total units for which he is registered above 58 including Physical Education or ROTC. To carry excess units he must obtain the recommendation of his Departmental Advisor and the approval of the Undergraduate Academic Standards and Honors Committee (see page 167). A student may not add a course after the last date for adding courses without, in addition to his instructor’s consent, the approval of the Undergraduate Academic Standards and Honors Committee. Registration for added courses is complete only after a student has turned in to the Registrar’s Office an add card properly filled out and signed by the instructor concerned. No credit will be given for a course for which a student has not properly registered.
GENERAL REGULATIONS
Every student is expected to attend all classes and to satisfy the requirements in each of the courses in such ways as the instructor may determine.

Students are held responsible for any carelessness, willful destruction, or waste. At the close of the year, or upon the severance of their connection with any part of the work of the Institute, students are required to return immediately all locker keys and other Institute property.

It is taken for granted that students enter the Institute with serious purpose. The moral tone is exceptionally good; the honor system prevails in examinations, and in all student affairs. A student who is known to be engaging in immoral conduct or exercising a harmful influence on the student life of the Institute may be summarily dismissed, whatever be his scholastic standing.

AUDITING OF COURSES
Persons not regularly enrolled in the Institute may, with the consent of the instructor in charge of the course and the Chairman of the Division concerned, be permitted to audit courses upon payment of a fee in the amount of $25.00 per term, per lecture hour. Registration cards for auditing of courses by such persons may be obtained in the Registrar’s Office. Regularly enrolled students and members of the Institute staff are not charged for auditing. “Auditing” cards are not required, but the instructor’s consent is necessary in all cases. No grades for auditors are turned in to the Registrar’s Office and no official record is kept of the work done.
Scholastic Grading

The following system of grades is used to indicate the character of the student’s work in his various subjects of study: “A” excellent, “B” good, “C” satisfactory,* “D” poor, “E” conditioned, “F” failed, “Inc” incomplete. In addition, Grades of A+ and A−, B+ and B−, C+ and C−, and D+ may, where appropriate, be used for undergraduates only.

In certain designated courses (see page 164), the grade of “P” indicating Pass may be given, but it is not counted in computing the grade-point average of an undergraduate student. The grade of “H” is given for satisfactory completion of freshman honor elective courses and is likewise not used in computing the grade-point average.

“Conditions” indicate deficiencies that may be made up without actually repeating the subject. A grade of “D” is given when the work is completed. The grade “incomplete” is given only in case of sickness or other emergency which justifies non-completion of the work at the usual time. An “incomplete” will be recorded only if the reasons for giving it are stated by the instructor on a form which will be sent with each grade sheet and only if, in the opinion of the appropriate committee (Undergraduate Academic Standards and Honors Committee for undergraduates, and Graduate Study for graduate students), the reasons justify an incomplete. If, in the opinion of the committee, the incomplete is not justified, a condition will be recorded.

An incomplete or a condition in any term’s work must be removed during the next term in residence by the date fixed for the removal of conditions and incompletes. Each student receiving such grades should consult with his instructor at the beginning of his next term in residence. Any condition or incomplete not so removed becomes a failure automatically unless otherwise recommended in writing to the Registrar by the instructor prior to the date for removal of conditions and incompletes.

“Failed” means that no credit will be recorded for the course. The units, however, count in computing the student’s grade-point average. He may register to repeat the subject in a subsequent term and receive credit without regard to his previous grade, the new grade and units being counted as for any other course. In special cases the Undergraduate Academic Standards and Honors Committee may, with the instructor’s approval, authorize the completing of a failed course by three 3-hour examinations, the units and new grade being recorded as in the case of repeating the subject. The original “F” and units for the course remain on the record and are counted in computing the grade-point average.

Scholastic Requirements

All undergraduates and Master of Science candidates are required to meet certain scholastic standards as outlined below. In addition, students who have been reinstated after having failed to make the required number of credits in the junior year are subject to these scholastic requirements in the senior year.

Each course in the Institute is assigned a number of units corresponding to the total number of hours per week devoted to that subject, including class-
work, laboratory, and the normal outside preparation.* Credits are awarded on the basis of the number of units multiplied by four if the grade received is “A,” three if “B,” two if “C,” and one if “D”; thus, a student receiving a grade of “B” in a twelve-unit course receives 36 credits for his course. For the assignment of credits to undergraduate grades with plus or minus designations, see the following table.

<table>
<thead>
<tr>
<th>No. of Units</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B-</th>
<th>C+</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>18</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>22</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>24</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>43</td>
<td>39</td>
<td>35</td>
<td>30</td>
<td>26</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>56</td>
<td>51</td>
<td>47</td>
<td>42</td>
<td>37</td>
<td>33</td>
<td>28</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Credits are not given for work in physical education. The following system of grades is used: P denotes Passed, H denotes Intercollegiate Team Participation and F denotes Failed.

Grade-point average is computed by dividing the total number of credits earned in a term or an academic year by the total number of units taken in the corresponding period. Units for which a grade of “F” has been received are counted, even though the “F” may have subsequently been removed (see above). Units and credits in military subjects taken by Air Force ROTC students are counted in computing grade-point average. Physical education units, and units for honor elective courses are not included in computing grade-point average. A grade of Pass may be given for courses bearing a number 200 or greater, for Ph 172, for research conferences and undergraduate research, and is not used in computing the grade-point average.

Ineligibility for registration. Any undergraduate student or Master’s candidate is ineligible to register for another term:
(a) If he fails during any one term to obtain a grade-point average of at least 1.4.
(b) If he fails to obtain a grade-point average of at least 1.9 for the academic year. A student who has completed at least three full terms of residence at the Institute and has been registered for his senior or Master’s year shall no longer be subject to the requirement that he make a grade-point

*The units used at the California Institute may be reduced to semester hours by multiplying the Institute units by the fraction 2/9. Thus a twelve-unit course taken throughout the three terms of an academic year would total thirty-six Institute units or eight semester hours. If the course were taken for only one term, it would be the equivalent of 2.6 semester hours.
average of at least 1.9 for the academic year. Seniors and Master’s candidates are subject to the requirement, however, that they must receive a grade-point average of at least 1.4 each term to be eligible for subsequent registration. (Special note should be made of the graduation requirement described on page 166.)

(c) Any undergraduate student, including Seniors, who has been reinstated and who fails to make a grade-point average of at least 1.9 for the following term is ineligible to register.

(d) An undergraduate student is ineligible to register for any term if he fails during the preceding term to remove a deficiency in physical education from an earlier term.

A student ineligible for registration because of failure to meet the requirements stated in the preceding paragraphs may, if he desires, submit immediately to the appropriate Dean a petition for reinstatement, giving any reasons that may exist for his previous unsatisfactory work and stating any new conditions that may lead to better results. Each such application will be considered on its merits. If this is the first such occurrence the Dean can, after consultation with the student and examination of his record, reinstate him or at the Dean’s discretion refer special cases to the Undergraduate Academic Standards and Honors Committee. A reinstated student who again fails to fulfill the scholastic requirements for registration must petition the Undergraduate Academic Standards and Honors Committee through the appropriate Dean. In any case the student may, if he wishes, appear before the committee and may at the discretion of the Dean be required to appear. A second reinstatement will be granted only under very exceptional conditions.

Deficiency. Any freshman whose grade-point average during a term falls between 1.4 and 1.9 must obtain the approval of the Dean of Freshmen before registering. Any upperclassman whose grade-point average during a term falls between 1.4 and 1.9 shall receive the usual letter of warning that his work is below the satisfactory minimum, but he shall not be required to obtain the approval of the Dean of Students before registering.

Leave of Absence. Leave of absence involving non-registration for one or more terms must be sought by written petition. Such leave up to one year can be granted by the appropriate Dean for a student whose grade-point average is 2.3 or more. Other petitions should be addressed to the Undergraduate Academic Standards and Honors Committee, and the student must indicate the length of time and the reasons for which absence is requested. In case of brief absences from any given exercise, arrangements must be made with the instructor in charge.

Departmental regulations. Any student whose grade-point average (credits divided by units) is less than 1.9 in the subjects listed under his division*

*The curriculum of the Institute is organized under six divisions, as follows:
Division of Biology.
Division of Chemistry and Chemical Engineering.
Division of Engineering and Applied Science.
Division of Geological Sciences.
Division of Humanities.
Division of Physics, Mathematics and Astronomy.
may, at the discretion of his department, be refused permission to continue the work of that option. (See note at head of each option in schedules of undergraduate courses, for special departmental applications of this rule.) Such disbarment, however, does not prevent the student from continuing in some other option provided permission is obtained, or from repeating courses to raise his average in his original option.

Graduation requirement. To qualify for graduation a student must complete the prescribed work in one of the options with a passing grade in each required subject and with a grade-point average of 1.90. A grade of "F" in an elective course need not be made up, provided the student has received passing grades in enough other accepted units to satisfy the minimum total requirements of his option. In addition to the above requirement, a member of the Air Force ROTC unit must satisfactorily complete the basic course unless relieved of this obligation by the Air Force. If a member of the AFROTC has entered the advanced course or if he has at any time at the California Institute secured deferment under Selective Service by reason of his membership in the AFROTC, he must satisfactorily complete the AFROTC course and must accept a commission in the Air Force if one is offered unless excused from these obligations by action of the Air Force.

Graduation in the normally prescribed time. Any undergraduate student who fails to complete the requirements for graduation at the end of the normally prescribed time must petition the Undergraduate Academic Standards and Honors Committee for approval to register for further work.

Residence Requirement. All transfer students who are candidates for the Bachelor of Science degree must complete at least one full year of residence in the undergraduate school at the Institute immediately preceding the completion of the requirements for graduation. At least ninety of the units taken must be in subjects in professional courses. A full year of residence is interpreted as meaning the equivalent of registration for three terms of not less than 49 units each.

Honor standing. At the close of each academic year the Committee on Undergraduate Academic Standards and Honors awards Honor Standing to fifteen or twenty students in each of three classes remaining in residence. These awards are based on the scholastic records of the students. A list of these students attaining Honor Standing on the basis of their academic records 1961-62 appears on page 333.

Graduation with honor. Graduation with honor will be granted a student who has received on the average throughout his course 130 credits per term which result from grades of "A" and "B" exclusively, provided also that he achieves such an average in the senior year. In addition, a student may be graduated with honor under joint recommendation of his division and the Committee on Undergraduate Academic Standards and Honors with the approval of the Faculty.

Term examinations will be held in all subjects unless the instructor in charge of any subject shall arrange otherwise. No student will be exempt from these examinations. Permission to take a term examination at other than
the scheduled time will be given only in the case of sickness or other emergency and upon the approval of the instructor in charge and of one of the Deans. A form for applying for such permission may be obtained in the Registrar’s Office. Another form must be filled out when conflicts exist in a student’s examination schedule. It is the student’s responsibility to report the conflict to the instructor in charge of one of the conflicting examinations and to request the instructor to leave a copy of the examination in the Registrar’s Office to be given at the time and place scheduled for conflict examinations.

Excess or fewer than normal units. Undergraduates who wish to register in any term for more than 58 units inclusive of Physical Education or Air Science must obtain the recommendation of the Option Advisor and the approval of the Undergraduate Academic Standards and Honors Committee. Master’s candidates, see page 190. Petitions to carry excess units will not be accepted later than the last day of pre-registration.

Registration for fewer than 33 units must be approved by the Undergraduate Academic Standards and Honors Committee. See page 187 for graduate students.

Freshman honor electives. A freshman with a grade-point average for the previous term greater than 1.9 may, in the second or third term, undertake one “Honor Elective” (3 units) in one field, providing he earned at least a B—the previous term in the prescribed course in the chosen field, or obtains the approval of the instructor in such course. If satisfactory work is done, a grade of “H” will be recorded and three units of credit will be allotted on the record; however, these units will not be included in computing the grade-point average.

Selection of course and option. Students who wish to enter one of the options in science must select their options and notify the Registrar’s Office thereof shortly before the close of the freshman year. Students who wish to enter the engineering course must also notify the Registrar’s Office thereof shortly before the close of the freshman year and should select some specialty in engineering.

Graduation in two different options. Students who wish to receive a second degree of Bachelor of Science in another option are required to have one additional year of residence (three terms of study involving at least 45 units per term) beyond the first Bachelor of Science degree.

Candidacy for the Bachelor’s Degree

A student must file with the Registrar a declaration of his candidacy for the degree of Bachelor of Science on or before the first Monday of November preceding the date at which he expects to receive the degree. His record at the end of that term must show that he is not more than 21 units behind the requirement in the regular work of his course as of that date. All subjects required for graduation, with the exception of those for which the candidate is registered during the last term of his study, must be completed by the second Monday of May preceding commencement.
STUDENT HEALTH AND PHYSICAL EDUCATION

PHYSICAL EDUCATION

All undergraduate students, except members of the Air Force ROTC, are required to participate in some form of physical training for at least one hour a day three days a week. This requirement may be satisfied by engaging in organized sports, which include both intercollegiate and intramural athletics, or by regular attendance at physical education classes. Men who drop Air Force ROTC are required to register for Physical Education immediately.

Men may be excused from the requirement of physical education by petitioning the Physical Education and Athletics Committee for such excuse (1) because of physical disability, (2) when they become 24 years of age, or (3) can show credit for 12 terms of physical education at the college level. It is the responsibility of students who wish to be excused and who are eligible under this ruling to make application for excuse at the Athletic Office.

For Graduate Students there is no required work in physical education, but opportunities are provided for recreational exercise.

STUDENT HEALTH

PHYSICAL EXAMINATION AND VACCINATION

All admissions, whether graduate or undergraduate, are conditional until a report of physical examination is received and approved by the Director of Student Health. See page 155. Required are smallpox vaccination, tetanus immunization and tuberculosis testing, all within six months of matriculation.

THE DISPENSARY AND INFIRMARY

The Archibald Young Health Center is located on Arden Road, 50 feet south of California Boulevard. The services offered by the dispensary are available to graduate and undergraduate students; and faculty for emergency care and innoculations. The service offered to employees is for on-the-job injuries and innoculations. Only graduate and undergraduate students (and male employees for emergencies) are admitted to the infirmary. Ten beds are maintained and six emergency beds are available in the infirmary.

The staff consists of attending physicians, retained consultants, and nurses. A medical consultant in radiological safety is on the consulting staff. Diagnostic psychiatric and psychologic service is provided with limited treatment opportunity. Long term or cases requiring sanitarium care are referred to private outside physicians.

The infirmary is operated twenty-four hours a day, seven days a week during the academic year except during holidays (Thanksgiving, Christmas and spring recesses). The dispensary is open during the academic year from 9 a.m. to 5 p.m. Monday through Friday, and 9 a.m. to noon on Saturday. During the vacation periods, a somewhat restricted dispensary service is offered.

General office medical care is provided, minor emergency surgery is performed, and complete laboratory facilities are available at the dispensary through the Pasadena Clinical Laboratory. Close cooperation is maintained with medical specialists in all fields within Pasadena. The services of these
doctors are used freely in maintaining high standards of modern medical care. The medical services do not include optometric or dental care.

EMERGENCY HEALTH SERVICES

Over and above the routine medical services available to students at the Health Center, the Institute maintains and supervises a fund to assist both undergraduate and graduate students in meeting the costs of emergency medical, surgical, and hospitalization services in case of an accident or illness. The funds that allow the Institute to support this phase of its health program are derived from the Emergency Health Fund to which the following regulations appertain:

1. The sum of ten dollars of the student’s tuition is annually credited to a special account. The Institute, as the custodian, invests these funds and credits the Emergency Health Fund with the income earned. The Fund will not be used for any other purpose than for the payment of the student’s medical, surgical, and hospital expenses, including infirmary charges. Whether a case is one within the scope of the Fund will be decided by the Medical Director in consultation with the Health Committee.

Whenever the expenses for emergency care in any one fiscal year are less than the total deposited in the account for that year, the balance remaining shall be kept in the Fund, and shall remain invested. A balance kept over from one year will be used to render emergency medical and surgical aid to students in later years. The Fund is now stabilized at near $20,000.

2. The Fund is not, in general, applicable to accidents, as distinguished from other emergency medical conditions, which occur away from the grounds of the Institute, unless these occur during authorized activities of the Institute.

3. Each student is insured up to $500 in case of an accident suffered while on Institute property or while engaged in a recognized Institute activity. This coverage is provided by a policy contracted by the Institute and financed by the Emergency Health Fund.

4. The Fund does not cover conditions requiring treatment which arise during the vacation period.

5. The Fund does not cover conditions which existed at the time of admission to the Institute; nor does it cover chronic disease conditions which may develop while the student is at the Institute.

6. The Fund does not cover injuries incurred in connection with authorized intercollegiate athletics. However, the Department of Physical Education maintains two insurance plans, one for lesser and one for major expense, both for intercollegiate athletic participants.

7. The Fund does not provide for the families of graduate or undergraduate students.

8. The maximum that has been allowed from the Fund for any one illness or injury is $250, but the Fund is not obligated to pay this maximum, nor is
there any obligation to pay for such expenses beyond the available balance of the Fund. The Health Committee reviews each case with the Medical Director and determines the amount of assistance to be granted from the Fund.

ELIGIBLE EXPENSES

1. The cost of a student's stay in the infirmary is charged to the Emergency Health Fund.

2. The costs of all medical and surgical services and hospitalization which need to be secured outside of the infirmary and dispensary are the responsibility of the student, although the Fund may help defray these costs.

3. Accidents occurring off the campus and out of the jurisdiction of the Institute (e.g., non-authorized athletics or automobile accidents) may be cared for in the infirmary but the charges will be borne by the student.

4. Medical services not falling within the purview of the Institute's health program may be obtained by students on a non-profit basis at the infirmary. A schedule of charges for cost of medicines, injections, and laboratory work is posted in the dispensary.

SUMMER HEALTH COVERAGE

All students, undergraduate and graduate, registered for summer work for academic credit are charged a health fee of $7.50 per student. The fee makes the student eligible for (1) the benefits of the Emergency Health Fund on the same basis as during the regular academic year (Fall Registration to Spring Commencement), and (2) the extended protection of accident insurance coverage, up to $500, over the same summer period.

The only students exempt from paying this mandatory fee are graduate students who pay regular tuition during the summer months.

During the summer vacation, graduate and undergraduate students who are not registered for summer work pay a fee of $2.00 per visit to the Health Center, plus cost of medicine and laboratory services.

RESPONSIBILITY OF THE STUDENT

The responsibility for securing adequate medical attention in any contingency, whether an emergency or not, is solely that of the student, whether the student is residing on or off campus. Apart from providing the opportunity for consultation and treatment at the dispensary and infirmary as described above, the Institute bears no responsibility for providing medical attention.

Any expenses incurred in securing medical advice and attention in any case are entirely the responsibility of the student, except as specified above.
UNDERGRADUATE EXPENSES

For freshmen applying for admission, there is a $10.00 Application Fee, not refundable, but applicable upon registration, to the Tuition Fee.

For freshmen and transfer students, there is a $10.00 Registration Fee payable upon notification of admission. Not refundable if admission cancelled by applicant.

ANNUAL EXPENSE SUMMARY

- **Tuition (3 terms) 1962-63**: $1,575.00
- **General Deposit**: 25.00
- **Student Body Dues**: 19.00
- **Subscription to *California Tech***: 1.50

Books and Supplies (approx.)

- 80.00

Student House Living Expenses (21 meals per week)

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board</td>
<td>$560.00</td>
</tr>
<tr>
<td>Room</td>
<td>365.00 925.00</td>
</tr>
<tr>
<td>Dues</td>
<td>21.00 946.00</td>
</tr>
</tbody>
</table>

Total: 2,646.50

The following is a list of undergraduate student expenses at the California Institute of Technology for the Academic Year 1962-63, together with the dates on which the various fees are due. These charges are subject to change at the discretion of the Institute.

First Term

- **Sept. 20, 1962:**
 - General Breakage Deposit: $25.00
 - Tuition: 525.00
 - Board and Room: 335.00

- **Incidental Fees:**
 - Associated Student Body Dues: 5.50
 - Subscription to *California Tech* for 1962-63: 1.50
 - Total: 7.00
 - Student House Dues: 7.00

Second Term

- **January 2, 1963**
 - Tuition: 525.00
 - Board and Room: 297.00

- **Incidental Fees:**
 - Associated Student Body Dues: 6.75
 - Student House Dues: 7.00

Third Term

- **March 25, 1963**
 - Tuition: 525.00
 - Board and Room: 293.00

- **Incidental Fees:**
 - Associated Student Body Dues: 6.75
 - Student House Dues: 7.00

1. There are a few large rooms available which will rent for $425.00 per year. Rates for room and board subject to revision prior to beginning of any term upon notice to student.
Tuition Fees for fewer than normal number of units:

- Over 32 units Full Tuition
- 32 to 25 units $400.00 per term
- 24 to 10 units $16.00 per unit per term
- Minimum per term $160.00

Auditor's Fee (page 162)
$25.00 per term, per lecture hour

Withdrawals: Students withdrawing from the Institute during the first three weeks of a term, for reasons deemed satisfactory to the Institute, are entitled to a refund of tuition fees paid, less a reduction of 20% and a pro rata charge for time in attendance. No portion of the Student Body Dues, or subscription to California Tech, is refundable upon withdrawal at any time.

Associated Student Body Fee. The Associated Student Body Fee of $19.00 is payable by all undergraduate students. This fee is used for the support of athletics, the BIG T, and any other student activity that the Board of Directors of the Associated Students of the California Institute of Technology, may deem necessary. The subscription to the student newspaper, California Tech, $1.50 per year, is collected from every undergraduate.

General Deposit. Each student is required to make a general deposit of $25, to cover possible loss and/or damage of Institute property. Upon his graduation or withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Student Houses. Students in the Houses must supply their own blankets but bed linens and towels are furnished and laundered by the Institute.

Application for rooms in the Student Houses may be made by addressing the Master of Student Houses (see page 142).

Special Fees. Students taking the Spring Field Trip in Geology (Ge 122) and the Summer Field Geology course (Ge 123) are charged for travel at an estimated rate of one cent per automobile mile plus reasonable subsistence expense.

The fee for auditing courses (see page 162) is $25.00 per term, per lecture hour.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are delinquent may be refused registration for the term following that in which the delinquency occurs. Students who have not made satisfactory arrangements regarding bills due and other indebtedness to the Institute by the date of graduation will be refused graduation.

Although the Institute charges full tuition for over 32 units, the Veterans Administration allows the following subsistence percentages: 25% for 10 through 20 units per term; 50% for 21 through 29; 75% for 30 through 41; and 100% for 42 and over. See footnote page 219.

Pro rata refunds are allowed students who are drafted (not volunteers) at any time in the term provided the period in attendance is insufficient to entitle student to receive final grades.
Loans. Loans are available to members of all undergraduate classes including entering freshmen, who need such aid to continue their education. They are made upon application subject to the approval of the Scholarships and Financial Aid Committee and the extent of the available funds. There are two sources of loan funds and the conditions governing each are described below.

1. California Institute loan funds are available in amounts not to exceed $750 in any one year and a maximum of $3000 during undergraduate residence. No interest is charged and no repayment of principal is required during undergraduate residence as long as residence is continuous (the term "residence" includes the usual vacation periods). For those who do not go on to graduate school, repayment commences after the graduation of their class and is at the rate of $50 per month including simple interest at 4 percent per annum on the unpaid balance. For those who go on to graduate school at Caltech or elsewhere no later than the fall following their class's graduation, interest is charged at the rate of 3 percent per annum, but no payment on principal is required until the final advanced degree is earned provided that the borrower remains in continuous residence. After the final degree has been earned, repayment commences at the rate of $50 per month including interest at 4 percent on the unpaid balance. If the borrower withdraws from undergraduate or graduate registration at any time before receiving the last degree for which he has been working, the total amount owed the Institute becomes due and payable at once, unless the Scholarships and Financial Aid Committee agrees to some exception to this rule.

It is inadvisable for foreign students from countries with seriously adverse rates of exchange to borrow more than they can repay from savings (after taxes) out of salaries earned in the United States. The Federal Government grants a maximum extension of only 18 months on students' visas for holders who engage in full-time commercial employment after they take their degrees. For practical purposes, this means that total indebtedness may not exceed $1,000.

2. Federal loans under the National Defense Education Act are available in amounts not to exceed $1000 for any individual in a single year up to a total of $5000. The borrower must demonstrate financial need, must be an above average student and must be willing to sign a loyalty oath and an affidavit that he neither believes in, is a member of or supports any organization that advocates overthrow of the United States government by violence or any illegal or unconstitutional means. No interest is charged on these loans nor is any repayment of principal required until one year after the final degree has been earned. At that time repayment commences and interest is charged at the rate of 3 percent per annum on the unpaid balance.

To the extent of available funds students who wish to borrow and who meet the stipulated requirements will be given their choice of the foregoing sources of loans.

Deferred Payment Plan. In addition to loans there is available a plan under which any student in good standing may defer up to $1000 of his college bills each year to a total of $4000 and may pay the deferred portion in installments after his graduation. The sum of $39.00 a year is added to the deferred por-
tion and represents the premiums on a life insurance policy in the amount of any balance due the Institute under this plan. The insurance policy covers the life of the student for the duration of the obligation, and during the four undergraduate years it covers in addition the life of the parent or guardian responsible for the student’s support. Interest on the amount deferred is charged at the rate of 5½ percent per annum payable quarterly. The interest is the only payment made on this plan during the undergraduate years. The interest payments are as follows: during freshman year $42.82, sophomore year $99.90, junior year $157.00, senior year $214.08. Commencing November 1 following his class’s graduation the student commences repayment on the deferred portion at the rate of $55 a month including interest at 6 percent on the unpaid balance. For those who go on to graduate school more favorable repayment arrangements may be made for the duration of graduate work. As in the case of loans, the total of any balance owed the Institute under this plan becomes due and payable at once if continuous residence is not maintained unless in the opinion of the Scholarships and Financial Aid Committee some exception to this rule should be made.

Loans and the Deferred Payment Plan may be used in combination but the total that may be borrowed or deferred may not exceed $1300 in any year (maximum of $5200).

Entirely aside from loans and the Deferred Payment Plan a student may arrange with the business office to pay his college bills monthly rather than at the beginning of each term as is customary. No interest is charged on such monthly payments, but arrangements with the business office must be made in advance.
SCHOLARSHIPS, STUDENT AID AND PRIZES

1. FRESHMAN HONORS AND SCHOLARSHIP GRANTS

In order that appropriate awards may be made to students as they most de­serve or need them, the California Institute makes a clear distinction between recognition of academic honor and achievement and recognition of need for financial assistance. This distinction is made with two types of awards: Honors at Entrance and Scholarship Grants.

HONORS AT ENTRANCE

In recognition of distinguished academic achievement Honors at Entrance are awarded to the top ten percent of those admitted to the freshman class. They are awarded without regard to financial need, and carry no monetary grant. No application for consideration for Honors at Entrance is needed.

FRESHMAN SCHOLARSHIP GRANTS

The recipients of scholarship grants are selected by the Freshman Admissions Committee from the candidates who have stood sufficiently high on the entrance examinations, and have otherwise satisfied the entrance requirements of the Institute, and have submitted a Parent’s Confidential Statement (see below).

Scholarship grants are awarded to the extent of available funds where financial need is demonstrated. Awards are made on the basis of all the information available in regard to the applicants—the results of their examinations, their high school records and recommendations, the statements submitted as to their student activities and outside interests, and the result of personal interviews where these are possible. A list of scholarship grants will be found on pages 177 to 182.

The California Institute uses the uniform scholarship grant application that has been adopted by many colleges in the United States. All applications for scholarship grants where financial need exists must be made on this form. The form, called a Parent’s Confidential Statement, may be obtained in nearly all cases at the school where the applicant is attending. If his school does not have a supply, he should write to the College Scholarship Service at one of the College Entrance Examination Board offices, the addresses of which are given on page 152. The form is put out by the College Scholarship Service of the College Board and is to be returned directly to the appropriate office of the College Board (see page 152) and not to the California Institute. Space is provided on the form for the applicant to indicate that he wishes a copy sent to the California Institute and to such other colleges as he may desire. A fee of three dollars is charged by the service for sending a copy of the form to one college, and an additional two dollars each for copies sent to additional colleges. This fee must accompany the form when it is returned to the College Board office.

Parent’s Confidential Statement forms must be sent to the appropriate College Board office not later than February 15 of the year in which admission is desired. All applicants who have submitted this form by the above date are considered for scholarship grants. It is not necessary to apply for any particular scholarship by name.
HONORARY SCHOLARSHIPS

In addition to the above, there are three honorary awards which carry stipends. The Sloan Scholarships, the General Motors College Scholarships, and the Regional Scholarships described below are given without consideration of financial need. All applicants for admission are automatically considered for the Sloan and General Motors College Scholarships. Candidates for Regional Scholarships are nominated by the principals or headmasters of their schools. Only when need exists is it necessary to file a *Parent's Confidential Statement* in connection with these awards.

STATE AND NATIONAL SCHOLARSHIP AWARDS

Candidates for freshman scholarships are urged to make exhaustive inquiry of their school advisers and to watch their school bulletin boards for announcements of scholarship contests the winners of which may use the awards at the college of their choice. The State of California, for example, awards such scholarships annually to residents of the state who wish to attend a college within the state. Residents of the State of California who request financial aid will be penalized in consideration for scholarship grants if they do not apply for California State scholarships, provided their test scores indicate that they would have won a State award had they applied. Among the nationwide awards are the National Merit Scholarships, the General Motors National Scholarships, and the Westinghouse Talent Search Awards. Applicants in need of financial assistance should enter any such contest for which they are eligible in addition to applying for California Institute Scholarship grants. While duplicate awards will not be given beyond the actual extent of need, the more sources to which a candidate applies the greater are his chances of receiving scholarship assistance.

REGULATIONS AND RENEWALS

Recipients of honorary scholarships and of scholarship grants are expected to maintain a satisfactory standing in their academic work during the year for which the scholarship is granted. If the recipient fails to maintain such an academic standing, or if, in the opinion of the Scholarships and Financial Aid Committee, the recipient in any other way fails to justify the confidence placed in him, the Committee may cancel the scholarship for the balance of the academic year. Recipients of scholarships which run for more than one year are in general expected to maintain a rank in the upper half of the class. The amount of the award carried by these scholarships may be increased or decreased at the beginning of any year if the financial need has changed. Freshmen who receive scholarship awards for the freshmen year only will be considered for scholarship aid in subsequent years on the basis of need according to the regulations in the following paragraph.

2. UPPERCLASS SCHOLARSHIPS

Sophomores, juniors, and seniors are considered for scholarships if need is demonstrated and if throughout the preceding year they have carried at least the normal number of units required in their respective options, and if they have completed the preceding academic year with a grade-point average of at least 2.0. Awards are made in order of rank in class to the extent of the
funds available. Most awards are for full or part tuition. When individual scholarships carry amounts in excess of full tuition that fact is noted in the list of scholarships below. A student who ends the academic year with a grade-point average of 2.0 or higher and who wishes to apply for a scholarship grant for the next year should obtain a scholarship form from the Admissions Office in March. This form is to be filled out by the student and his parents (or guardian) and returned to the Admissions Office by May 1. No one will be considered for a scholarship grant unless a scholarship form completely filled out and signed by parents (or guardian) is submitted by the proper date. If a scholarship applicant feels that his parents should no longer be responsible for his support he may attach an explanatory note to the form, but the form must be filled out.

It is expected that students to whom awards are made will maintain a high standard of scholarship and conduct. Failure to do so at any time during the school year may result in the termination of the award.

3. SCHOLARSHIP FUNDS

Funds for Freshman and Upperclass Scholarships are provided in large part from the special scholarship funds named below. Where the amount of a grant is not specified, there is a certain total sum available each year to be distributed among several scholarship holders in any proportion. Grants from these funds are usually for full tuition, or less if the need of the recipient is less. It is not necessary to apply for any particular scholarship by name. Applicants for admission who have a Parent's Confidential Statement on file will be considered for the best award to which their relative need and standing on the entrance examinations entitle them. For Honorary Scholarships see above.

Alumni Scholarships: The Alumni Association of the California Institute provides scholarships covering full tuition to be awarded to entering freshmen. The recipients of these scholarships can expect to receive this amount for four years provided their conduct and grades continue to be satisfactory.

ARCS Foundation (Achievement Rewards for College Scientists) of Los Angeles: The ARCS Foundation established a fund for the award of several undergraduate and graduate scholarships.

R. C. Baker Foundation Scholarship: The R. C. Baker Foundation of Los Angeles has established a fund for undergraduate engineering scholarships in 1962-63.

Edward C. Barrett Scholarship: Friends of Edward C. Barrett, who for forty-one years was Secretary of the California Institute, established in his name a scholarship to be awarded annually to an undergraduate student.

Bechtel Foundation Scholarships: The Bechtel Foundation of San Francisco provided funds for two scholarships to be awarded to juniors or seniors in engineering.

Meridan Hunt Bennett Scholarships and Fellowships: Mrs. Russell M. Bennett of Minneapolis, in January 1946, made a gift of approximately $50,000 to the Institute to constitute the Meridan Hunt Bennett Fund as a
memorial to her son, Meridan Hunt Bennett, a former student at the Institute. The income of this fund is to be used to maintain scholarships which shall be awarded to undergraduate and graduate students of the Institute, the holders of such scholarships to be known as Meridan Hunt Bennett Scholars.

Blacker Scholarships: Mr. and Mrs. Robert Roe Blacker of Pasadena, in 1923, established the Robert Roe Blacker and Nellie Canfield Blacker Scholarship and Research Endowment Fund. A portion of the income of this fund, as determined by the Board of Trustees, may be used for undergraduate scholarships.

C. F. Braun and Company Scholarships: C. F. Braun and Company of Alhambra, California, established three scholarships of $1000 each to be awarded to entering freshmen. In selecting candidates preference will be given to those who indicate that they wish to pursue a course in engineering.

California Scholarship Federation Scholarship: The California Institute each year awards a scholarship to a C.S.F. member who is also a seal-bearer provided that such a candidate is available who has met the Institute's requirements for a freshman scholarship grant. Sealbearer status must be verified by the C.S.F. adviser at the time of submitting the regular application for a scholarship grant.

Chisholm Scholarship: Mr. William Duncan Chisholm made provision for an annual scholarship to be awarded to an undergraduate.

Class of 1927 Scholarship: The Class of 1927 established the Class of 1927 Scholarship Endowment Fund. The income from this fund is to be used for an undergraduate scholarship.

Crellin Scholarships: Mrs. Amy H. Crellin made provision for annual scholarships to be awarded to undergraduates.

Crown Zellerbach Foundation Scholarships: The Crown Zellerbach Foundation of San Francisco provides two scholarships of $1200 each for juniors or seniors majoring in a science option.

Cyprus Mines Corporation Scholarships: The Cyprus Mines Corporation of Los Angeles gave $1000 to be used for undergraduate scholarships.

Dabney Scholarships: Mrs. Joseph B. Dabney made provision for annual scholarships to be awarded at the discretion of the Institute to members of the undergraduate student body. The recipients are designated Dabney Scholars.

Douglas Aircraft Company Scholarship: The Douglas Aircraft Company of Los Angeles made provision for a $1500 scholarship to be awarded to a junior or senior in engineering or physics, in that order of preference.

Drake Scholarships: Mr. and Mrs. A. M. Drake of Pasadena made provision for an annual scholarship available for a graduate of the high schools of St. Paul, Minnesota, and a similar annual scholarship available for a graduate of the high school of Bend, Oregon. If there are no such candidates, the Institute may award the scholarships elsewhere. Mr. and Mrs. Drake, by a Trust Agreement of July 23, 1927, also established the Alexander McClurg Drake and Florence W. Drake Fellowship and Scholarship Fund, the income of which may be used for fellowships and scholarships as determined by the Board of Trustees of the Institute.

Robert S. and Nellie V. H. Dutton: Mrs. Robert S. Dutton established a fund the interest from which is used for undergraduate scholarships.
Garrett Corporation Scholarships: The Garrett Corporation of Los Angeles gave $3000 for scholarships to be awarded to juniors or seniors majoring in engineering or chemical engineering, and to fifth-year students in mechanical engineering and chemical engineering.

General Motors Corporation Scholarship: The General Motors Corporation established a scholarship at the California Institute to be awarded to an entering freshman. The award may range from a prize scholarship of $200 for a student not in need of financial assistance to an amount as high as $2000 a year depending on need. Holders of this scholarship may expect it to be renewed in each of the three upperclass years provided the holder's grades and conduct remain satisfactory.

The Gnome Club Scholarship: The alumni of the Gnome Club established at the California Institute a scholarship to be awarded to a student in the junior class.

Goodyear Scholarship: The Goodyear Foundation, Inc., of Akron, Ohio, established a scholarship of $1000 to be awarded to a junior or senior in engineering who may be interested in a career in business or industry.

Graham Brothers Foundation Scholarship: The Graham Brothers Foundation of Long Beach made possible the award of a scholarship.

Harriet Harvey and Walter Humphry Scholarships: Miss Harriet Harvey and Mrs. Emily A. Humphry made provision for two scholarships. The first of these, the Harriet Harvey Scholarship, is to be awarded preferably to a well-qualified candidate from the state of Wisconsin. If there is no such candidate the Institute may award the scholarship elsewhere. The second, the Walter Humphry Scholarship, is to be awarded preferably to a well-qualified candidate from the state of Iowa. If there is no such candidate, the Institute may award the scholarship elsewhere.

Robert Haufe Memorial Scholarship: This scholarship is supported by a fund established in 1950 by Mr. and Mrs. J. H. Haufe as a memorial to their son, Robert Haufe.

The Holly Scholarship: The Holly Manufacturing Company has established a half-tuition scholarship to be awarded to a senior in the engineering option.

Walter Humphry Scholarships: Mr. Walter Humphry established a fund the interest from which is used for undergraduate scholarships.

The International Nickel Company Scholarship: The International Nickel Company of New York established a scholarship of $1900 a year for a student studying engineering or geology. The award is made to a student entering the freshman year and he may expect it to be renewed for each of the three upperclass years provided his grades and conduct remain satisfactory.

Earle M. Jorgensen Scholarship: Mr. Earle M. Jorgensen made possible the award of two scholarships.

J. B. Keating Scholarships: Mr. John B. Keating has made possible the award of two scholarships for undergraduate juniors or seniors.

Kennecott Copper Corporation Scholarship: The Kennecott Copper Corporation has given a $1000 scholarship for a junior or senior student majoring in chemical engineering.

Ladish Company Scholarships: The Ladish Company is providing a scholarship in the amount of $350.
Lockheed National Engineering Scholarship: The Lockheed Aircraft Corporation of Burbank, California, established a scholarship covering tuition and certain other expenses totaling $2100 a year. This scholarship is to be awarded to an entering freshman who indicates that he intends to pursue a course in engineering. The recipient of this scholarship may expect to continue to receive this award during each of the three upperclass years, provided that his grades and conduct remain satisfactory.

Management Club of California Institute of Technology Scholarship: The Management Club at the Institute established a tuition scholarship to be awarded to an undergraduate student in one of the three upper classes.

Mayr Foundation Scholarships: The George H. Mayr Foundation of Beverly Hills granted funds for a number of undergraduate scholarships. Not open to freshmen.

Mobil International Oil Company Scholarship: The Mobil International Oil Company gave a scholarship for an undergraduate majoring in geology.

Seeley Mudd Scholarships: The Seeley W. Mudd Foundation of Los Angeles provided funds for scholarships to cover non-tuition expenses of students in the geology option.

David Lindley Murray Educational Fund: Mrs. Katherine Murray of Los Angeles, by her will, established the David Lindley Murray Educational Fund, the income to be expended in assisting worthy and deserving students to obtain an education, particularly in engineering courses.

Neely Enterprises Scholarships: Neely Enterprises gave $2000 for scholarships for sophomore students majoring in physics or engineering whose homes are in Arizona, California, Nevada or New Mexico.

Frances W. Noble Scholarship: This scholarship has been established from funds given to the Institute by Mrs. Frances W. Noble.

La Verne Noyes Scholarship: Under the will of La Verne Noyes of Chicago, funds are provided for paying the tuition, in part or in full, for deserving students needing this assistance to enable them to procure a university or college training. This is to be done without regard to differences of race, religion or political party, but only for those who shall be citizens of the United States of America and either: first, shall themselves have served in the army or navy of the United States of America in the war into which our country entered on the 6th of April, 1917, and were honorably discharged from such service, or second, shall be descended by blood from someone who has served in the army or navy of the United States in said war, and who either is still in said service or whose said service in the army or navy was terminated by death or an honorable discharge. The recipients are designated La Verne Noyes Scholars.

Pasadena Optimists Club Scholarship Endowment Fund: The Pasadena Optimists Club gave a fund the interest from which is to be used for undergraduate scholarships.

Edgar H. Pfizger Scholarship Fund: Mr. Edgar H. Pfizger established, by gift and bequest, a fund the income from which is to be used for undergraduate scholarships.

Phillips Foundation Scholarship: The Charlotte Palmer Phillips Foundation of New York established a four-year scholarship to be awarded to an entering freshman, with no restriction as to major field of study.
Procter and Gamble Scholarship: The Procter and Gamble Fund provided for two four-year undergraduate scholarships in the amount of $1700 a year each. These four-year awards are open to entering freshmen only.

Radio Corporation of America Scholarship: The Radio Corporation of America provided funds for an undergraduate scholarship for 1961-62 in the amount of $800. Freshmen are not eligible for this award.

Rayonier Foundation Scholarship: The Rayonier Foundation is providing two scholarships of $500 each for undergraduates majoring in chemical engineering or engineering.

Regional Prize Scholarships: A Regional Prize Scholarship is awarded to one entering freshman student each year in each of seven regions in the United States. The scholarship carries a stipend of $1400 for the freshman year. Regional Scholarships are an academic honor and are awarded, without regard to financial need, on the basis of high scholastic grades, high scores on the College Board Examinations required for admission, the recommendations of teachers and principals or headmasters, and on the result of a personal interview with a member of the Admissions Committee. To be eligible to compete for these scholarships an applicant must be nominated by the principal or headmaster of his school and must be attending school in one of the following regions: Region I: California; Region II: Idaho, Montana, Oregon, Washington, Wyoming; Region III: Arizona, Colorado, Nevada, New Mexico, Texas, Utah; Region IV: Illinois, Iowa, Minnesota, Missouri, Nebraska, Wisconsin; Region V: Indiana, Michigan, Ohio; Region VI: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region VII: Delaware, Maryland, New Jersey, New York, Pennsylvania. Nomination forms will be sent on request to principals or headmasters of schools in these regions.

Alfred P. Sloan National Scholarships: The Alfred P. Sloan Foundation of New York established at the California Institute a minimum of six scholarships to be awarded to entering freshmen without restriction as to the field of study to be pursued. Original selection of the holders of these scholarships is made without regard to financial need. Once selection has been made, awards will range from a prize scholarship of $200 per year for students not in need of financial assistance to amounts as high as $2000 per year to those whose need warrants such consideration. Holders of these scholarships may expect them to be renewed in each of the three upperclass years provided the holder's grades and conduct remain satisfactory.

Standard Oil Company of California Scholarships: The Standard Oil Company of California provided a scholarship for an undergraduate majoring in chemical engineering and another scholarship for an undergraduate majoring in engineering.

Elizabeth Thompson Stone Scholarship: Miss Elizabeth Thompson Stone of Pasadena established, in her will, a scholarship known as the Elizabeth Thompson Stone Scholarship.

William W. Stout Scholarship Endowment Fund: Mr. William W. Stout established a scholarship fund the interest from which is to be used for undergraduate scholarships.

Superior Oil Company Scholarship: The Superior Oil Company of Los Angeles established a four-year scholarship in the amount of $1700 each
year. Preference is given to a student interested in geology or chemical engineering as applied to the petroleum industry.

Ray Tenhoff Memorial Scholarship: Donated by the Society of Experimental Test Pilots in honor of its first president. This scholarship provides up to $1000, depending on need, to be awarded to a student entering the junior class in engineering or physics, in that order of preference. The holder of this scholarship may expect it to be renewed for his senior year, provided holder's grades and conduct remain satisfactory.

Texaco Scholarships: Texaco Inc. is providing for one or more scholarships to be awarded to juniors or seniors majoring in a field of engineering or science that would prepare them for a career in the petroleum industry.

Timken-Sturgis Foundation Scholarship: The Timken-Sturgis Foundation of San Diego made possible the award of one or more undergraduate scholarships.

Western Electronic Manufacturers Association Scholarship: Western Electronic Manufacturers Association of Los Angeles provided for one or more scholarships for junior and senior students in engineering. The purpose of these scholarships is to promote interest in the electronics field.

Claudia Wheat Scholarship: Mr. C. A. Wheat established a full-tuition scholarship in memory of his wife. The award goes to an entering freshman, and preference is given to a graduate of Alhambra High School in Alhambra, California.

Brayton Wilbur–Thomas G. Franck Scholarship: Mr. Brayton Wilbur and Mr. Thomas G. Franck of Los Angeles established the Brayton Wilbur–Thomas G. Franck Scholarship Fund, the income to be used for a scholarship for a deserving student at the Institute.

In addition to the foregoing named scholarships, there is a Scholarship Endowment Fund made up of gifts from various donors.

Of the scholarship donors listed above the following include with their scholarship gifts an unrestricted grant to the Institute's general funds to help defray educational costs in excess of that portion covered by tuition.

The R. C. Baker Foundation
Crown Zellerbach Foundation
Cyprus Mines Corporation
Douglas Aircraft Company, Inc.
Garrett Corporation
General Motors Corporation, College Plan
Goodyear Foundation, Inc.
Graham Brothers Foundation
Kennecott Copper Corporation
Lockheed Leadership Fund
Mobil Oil Company
The Procter & Gamble Fund
Radio Corporation of America
Alfred P. Sloan Foundation
The Superior Oil Company
Texaco Inc.
4. STUDENT AID LOAN FUNDS

Institute Loan Funds (see page 173)

Thanks to funds presented by a number of generous donors, the Institute is enabled to lend money to many students who, without aid, could not complete their education. Each fund is administered according to the wishes of the donor, but in general, as outlined on pages 173-174. Borrowers must be making satisfactory progress toward their degrees; and, in general, preference is given to students who have earned part of their expenses. The Institute Loan Funds are named as follows:

- The Gustavus A. Axelson Loan Fund
- The Olive Cleveland Fund
- The Hosea Lewis Dudey Loan Fund
- The Dudley Foundation Loan Fund
- The Claire Dunlap Loan Fund
- Ford Foundation Loan Fund
- Susan Baker Geddes Loan Fund
- The Roy W. Gray Fund
- The Raphael Herman Loan Fund
- The Vaino A. Hoover Student Aid Fund
- The Howard R. Hughes Student Loan Fund
- The Thomas Jackson Memorial Fund
- The Ruth Wydman Jarmie Loan Fund
- Eugene Kirkeby Loan Fund
- The Gustav D. Koehler Loan Fund
- The Frank W. Lehan Loan Fund
- The John McMorris Memorial Loan Fund
- The James K. Nason Memorial Loan Fund
- The Noble Loan and Scholarship Fund
- The James R. Page Loan Fund
- The Sloan Foundation Loan Fund
- The Albert H. Stone Educational Fund

National Defense Student Loan Program (see page 173)

All students are eligible to apply for loans from these limited funds provided they are: citizens or permanent residents of the United States; meeting the Institute's academic standards and standards of conduct; and are recommended by the Scholarships and Financial Aid Committee. Students with superior grades take precedence over others.

A student may apply for a maximum of $1000 a year for five years. Beginning one year after he has completed his education, he pays 3 percent interest per year on the unpaid balance of his loan. He pays no interest as long as he is a full-time student, nor if he is serving in the armed forces (maximum three years).

Applicants must show evidence of need (statement of family income and resources, personal resources, and an estimated annual budget); sign an oath of allegiance and an affidavit disclaiming belief or membership in subversive
organizations; and (if applicant is under 21) obtain signature of parent or guardian to the effect that he has read the application.

DEFERRED PAYMENT PLANS FOR TUITION
See detailed information on pages 173-174.

STUDENT EMPLOYMENT
The Institute tries to help students to find suitable employment when they cannot continue their education without thus supplementing their incomes. The requirements of the courses at the Institute are so exacting, however, that under ordinary circumstances students who are entirely or largely self-supporting should not expect to complete a regular course satisfactorily in the usual time. It is highly inadvisable for freshman students to attempt to earn their expenses. Students wishing employment are advised to write, before coming to the Institute, to the Director of Placements.

PLACEMENT SERVICE
The Institute maintains a Placement Office under the direction of a member of the Faculty. With the services of a full-time staff, this office assists graduates and undergraduates to find employment.

During the second and third terms, schedules are arranged for students to be interviewed by representatives of organizations who visit the campus. Students, both graduate and undergraduate, wanting part-time employment during the school year or during vacations, should register at the Placement Office. Assistance will be given whenever possible in securing employment for summer vacations. Alumni who are unemployed or desire improvement in their positions should register at the Placement Office.

A large number of brochures published by industrial organizations and Government agencies are available. These show placement opportunities in the fields of science and engineering. The Director of Placements is always available for consultation and guidance on placement problems.

It should be understood that the Institute assumes no responsibility in obtaining employment for its graduates, although the Placement Office will make every effort to find employment for those who wish to make use of this service.

PRIZES

THE FREDERIC W. HINRICHs, JR., MEMORIAL AWARD
The Board of Trustees of the California Institute of Technology established the Frederic W. Hinrichs, Jr., Memorial Award in memory of the man who served for more than twenty years as Dean and Professor at the Institute. In remembrance of his honor, courage, and kindness, the award bearing his name is made annually to the senior who, in the judgment of the undergraduate Deans, throughout his undergraduate years at the Institute has made the greatest contribution to the welfare of the student body and whose qualities of character, leadership, and responsibility have been outstanding. At the discretion of the Deans, more than one award or none may be made in any year. The award, presented at Commencement without prior notification, consists of $100 in cash, a certificate, and a suitable memento.
THE CONGER PEACE PRIZE
The Conger Peace Prize was established in 1912 by the Reverend Everett L. Conger, D.D., for the promotion of interest in the movement toward universal peace, and for the furtherance of public speaking. The annual income from $1,000 provides for a first and second prize to be awarded at a public contest and announced at Commencement. The contest is under the direction of representatives of the Division of the Humanities.

THE MARY A. EARL MCKINNEY PRIZE IN ENGLISH
The Mary A. Earl McKinney Prize in English was established in 1946 by Samuel P. McKinney, M.D., of Los Angeles. Its purpose is to cultivate proficiency in writing. The terms under which it is given are decided each year by the faculty in English. It may be awarded for essays submitted in connection with regular English classes, or awarded on the basis of a special essay contest. The prize consists of cash awards and valuable books.

THE DON SHEPARD AWARD
Relatives and friends of Don Shepard, class of 1950, have provided an award in his memory. The award is presented to a student, the basic costs of whose education have already been met but who would find it difficult, without additional help, to engage in extracurricular activities and in the cultural opportunities afforded by the community. The recipient, an upperclassman, is selected on the basis of his capacity to take advantage of and to profit from these opportunities rather than on the basis of his scholastic standing.

THE AMERICAN CHEMICAL SOCIETY PRIZE
A prize of $250 is awarded each year in connection with the annual high school contest of The American Chemical Society, Southern California Section. The prize goes to the highest ranking man in the contest who applies, is admitted, and registers at the California Institute in the fall following his senior high school year, provided that the candidate does not rank below the top five in the contest.

THE DAVID JOSEPH MACPHERSON PRIZE IN ENGINEERING
The David Joseph Macpherson Prize in Engineering was established in 1957 by Margaret V. Macpherson in memory of her father, a graduate of Cornell University in Civil Engineering, class of 1878.

A prize of $100 is awarded annually to the graduating senior in engineering who best exemplifies excellence in scholarship. The winning student is selected by a Faculty Committee of three, appointed annually by the Chairman of the Division of Engineering.
Section IV

INFORMATION AND REGULATIONS FOR THE GUIDANCE OF GRADUATE STUDENTS

A. GENERAL REGULATIONS

I. REQUIREMENTS FOR ADMISSION TO GRADUATE STANDING

1. The Institute offers graduate work leading to the following degrees: Master of Science after a minimum of one year of graduate work; the degrees of Aeronautical Engineer, Civil Engineer, Electrical Engineer, Geological Engineer, Geophysical Engineer, and Mechanical Engineer, after a minimum of two years of graduate work; and the degree of Doctor of Philosophy.

2. To be admitted to graduate standing an applicant must in general have received a bachelor's degree representing the completion of an undergraduate course in science or engineering substantially equivalent to one of the options offered by the Institute. He must, moreover, have attained such a scholastic record and, if from another institution, must present such recommendations as to indicate that he is fitted to pursue with distinction advanced study and research. In some cases examinations may be required.

3. Application for admission to graduate standing should be made to the Dean of Graduate Studies, on a form obtained from his office. Admission to graduate standing will be granted only to a limited number of students of superior ability, and application should be made as early as possible. Women students are admitted only in exceptional cases. In general, admission to graduate standing is effective for enrollment only at the beginning of the next academic year. If the applicant's preliminary training has not been substantially that given by the four-year undergraduate options at the Institute, he may be admitted subject to satisfactory completion of such undergraduate subjects as may be assigned. Admission sometimes may have to be refused solely on the basis of limited facilities in the department concerned. Students applying for assistantships or fellowships (see page 214) need not make separate application for admission to graduate standing, but should submit their applications before February 15. For requirements in regard to physical examination, see pages 155 and 168.

4. Admission to graduate standing does not of itself admit to candidacy for a degree. Application for admission to candidacy for the degree desired must be made as provided in the regulations governing work for the degree.

5. Foreign students who are admitted to graduate standing may be required to confine their work during their first term of residence to undergraduate courses when this is necessary in order to familiarize them with American teaching methods and vernacular English.
II. GRADUATE RESIDENCE

One term of residence shall consist of one term's work of not fewer than 45 units of advanced work in which a passing grade is recorded. If fewer than 45 units are successfully carried, the residence will be regarded as shortened in the same ratio; but the completion of a larger number of units in any one term will not be regarded as increasing the residence. See pages 190, 192, 196 for special requirements for residence.

Graduate students will be required to carry at least 36 units during each of their first three terms of attendance at the Institute.

Graduate students expecting to receive a degree will be required to maintain their admission status until the degree is obtained, either by continuity of registration or on the basis of approved leave of absence. In case of lapse in graduate standing, readmission must be sought before academic work may be resumed or the degree may be conferred.

Graduate students are encouraged to continue their research during the whole or a part of the summer, but in order that such work may count in fulfillment of the residence requirements, the student must file a registration card for such summer work in the office of the Registrar between May 15 and June 15. Students who are registered for summer research will not in general be required to pay tuition for the research units, but will be required to pay minimum tuition of $160 if Ph.D. or engineer's degree thesis requirements are completed during the summer.

A graduate student who undertakes activities related to the Institute (studies, research, and assisting or other employment) aggregating more than 62 hours per week must receive prior approval therefor from the Dean of Graduate Studies. Petition forms for this purpose may be obtained from the Registrar, and must carry the recommendation of the student's major department before submission to the Graduate Office.

A graduate student will be considered to be ineligible for registration at the beginning of his second term at the Institute unless his photograph for the Registrar's record card is affixed thereto, or a certification from the photographer is obtained to show that such photograph is in course of preparation on the date of registration. The Registrar provides the opportunity to have these photographs made, without cost to the student, on the registration days of the first and second terms of each year. Photographs taken for this purpose at other times are provided by the student at his own expense.

III. GRADES IN GRADUATE COURSES

1. Term examinations are held in all graduate courses unless the instructor after consultation with the Chairman of the Division, shall arrange otherwise. No student taking a course for credit shall be exempt from these examinations when they are held.

2. Grades for all graduate work are reported to the Registrar's office at the close of each term.

3. The following system of grades is used to indicate class standing in graduate courses: "A" excellent, "B" good, "C" satisfactory, "D" poor, "E" conditioned, "F" failed, "Inc" incomplete. In addition to these grades, which are to be interpreted as having the same significance as for undergraduate courses (see page 164), the grade "P," which denotes passed,
may be used at the discretion of the instructor, in the case of seminar or other work which does not lend itself to more specific grading. In graduate research, only the grades "P" and "F" are given.

IV. TUITION FEES

The tuition charge for all students registering for graduate work is currently $1575 per academic year, payable in three installments at the beginning of each term. Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Except by specific action of the Committee on Graduate Study, graduate students will be required to register for at least 36 units during each of their first three terms of attendance at the Institute. A graduate student who is registered for 36 or more units is classed as a full-time graduate student. Students desiring permission to register for fewer than 33 units should petition therefor on a blank obtained from the Registrar. If reduced registration is permitted, the tuition is at the rate of $400 a term for 32 to 25 units, and at the rate of $16 a unit for fewer than 25 units, with a minimum of $160.00 a term. Additional tuition will be charged to students registering for special courses made available to them, which are not part of the normal educational facilities of the Institute.

The payment of tuition by graduate students is required (a) without reference to the character of the work of the student, which may consist in the prosecution of research, in independent reading, or in the writing of a thesis or other dissertation, as well as in attendance at regular classes; (b) without reference to the number of terms in which the student has already been in residence; and (c) without reference to the status of the student as an appointee of the Institute, except that members of the academic staff of rank of Instructor or higher are not required to pay tuition.

The tuition includes the cost of the routine medical services available to students at the Health Center, as well as the sum of ten dollars which is credited annually to the Emergency Health Fund (see page 169). A summer accident fee of $7.50 must be paid by graduate students who register for summer work (see page 170). Each graduate student is required to make a general deposit of $25 to cover any loss of, or damage to Institute property used in connection with his work in regular courses of study. Upon completion of his graduate work, or upon withdrawal from the Institute, any remaining balance of the deposit will be refunded.

No degrees are awarded until all bills due the Institute have been paid. In regard to fellowships and assistantships, see page 214 of this catalog. In addition, to students of high scholastic attainments there may be awarded graduate scholarships covering the whole or a part of the tuition fee. For such students loans also may be arranged, for which application should be made to the Scholarships and Financial Aid Committee.

Graduate students are eligible to borrow from certain funds under the jurisdiction of the Committee on Student Aid, provided that they meet the same conditions that apply to undergraduate loans.
GRADUATE EXPENSES

Tuition (3 terms) 1962-63 $1,575.00
General Deposit .. 25.00 $1,600.00
Books and Supplies (approx.) 80.00
Graduate House Living Expenses (see page 213 for details)
Room—$382.50 to $585.00 per Academic Year
Meals—Available at the Chandler Dining Hall
or the Athenaeum (members only)

First Term
September 24, 1962
Tuition .. 525.00
General Deposit 25.00
(see page 172)

Second Term
January 2, 1963
Tuition .. 525.00

Third Term
March 25, 1963
Tuition .. 525.00

*Summer Accident Insurance Fee 7.50

Tuition fees for fewer than normal number of units:
Over 32 units Full Tuition\(^1\)
32 to 25 units $400.00 per term
24 to 10 units $16.00 per unit per term
Minimum per term $160.00
Auditor's Fee (page 162) $25.00 per term, per lecture hour

Withdrawals: Students withdrawing from the Institute during the first three weeks of a term, for reasons deemed satisfactory to the Institute, are entitled to a refund of tuition fees paid, less a reduction of 20\% and a pro rata charge for time in attendance.\(^2\)

B. REGULATIONS CONCERNING WORK FOR THE DEGREE OF MASTER OF SCIENCE

I. GENERAL REQUIREMENTS

To receive the degree of Master of Science the student must complete in a satisfactory way the work indicated in the schedule of fifth-year courses (see pages 235-248) as well as in the schedule of the four-year course in science or in engineering, except that, in the case of students transferring from other institutions, equivalents will be accepted in subjects in which the student shows by examination or otherwise that he is proficient, and except in so far as substitutions may be approved by special vote of the committee in charge.

Senior students at the Institute desiring to return for a fifth year should consult with the faculty in the field in which they expect to do their major work, and apply for admission to work towards the master's degree on a form obtained from the Dean of Graduate Studies. Such students will be

\(^1\) An Accident Insurance Fee of $7.50 will be charged to all students taking summer research.

\(^2\) Although the Institute charges full tuition for 32 units, the Veterans Administration allows the following subsistence percentages: 25\% for 10 through 20 units per term; 50\% for 21 through 29; 75\% for 30 through 41; and 100\% for 42 and over.

\(^2\) Pro rata refunds are allowed students who are drafted (not volunteers) at any time in the term provided the period in attendance is insufficient to entitle student to receive final grades.
expected to present satisfactory scholarship qualifications, and to have demonstrated a capacity for doing advanced work.

All programs of study and applications for admission to candidacy for the degree of Master of Science shall be in the charge of the Curriculum Committee; and recommendations to the Faculty for the award of the degree shall be made by this committee, all such actions being taken in general after consideration of recommendations by the department concerned.

A student before entering upon work for the degree of Master of Science should, after consultation with the department concerned, submit a plan of study, and make application to the committee in charge for acceptance as a candidate for that degree. Application forms for admission to candidacy for these degrees may be obtained from the Registrar, and must be submitted not later than the sixth week of the academic year in which the degree is to be granted.

II. REGISTRATION

1. The regulations governing registration and student responsibilities as given for undergraduate students on pages 161-162 of the catalog apply also to students working toward the master's degree.

2. Before registering, the graduate student should consult with members of the department in which he is taking his work to determine the studies which he can pursue to the best advantage.

3. A student will not receive credit for a course unless he is properly registered, and at the first meeting of each class should furnish the instructor with a regular assignment card for the course, obtained on registration.

4. Students registering for more than 50 units but fewer than 63 units in any term must have the approval of their department. Registration for more than 62 units must in addition have the approval of the Dean of Graduate Studies.

5. In the case of a student registered for the degree of Master of Science and holding a position as a graduate assistant, the actual number of hours per week required by his teaching or research services shall be deducted from the total number of units for which he might otherwise register. This number of units shall be determined by his department.

III. SCHOLASTIC REQUIREMENTS

1. A minimum of 140 units of graduate residence at this Institute is required for the master's degree, but specific departmental requirements often exceed this number. All or any part of this residence may be acquired prior to the completion of the work for the bachelor's degree provided a total of fifteen terms of acceptable college work equivalent to 45 units per term is completed. Courses used to fulfill requirements for the bachelor's degree may not be counted as graduate residence. A student will not, in general, be admitted to graduate standing until he has completed work equivalent to that required for the bachelor's degree.

2. Scholastic requirements for undergraduate students (see page 163) also apply to students working toward the master's degree. In meeting the graduation requirements on page 166, the following rule will apply for master's degree candidates: only those courses shown on the candidacy
blank and approved by the department representative shall be counted in figuring the grade-point average. Students who become ineligible to register, having failed to meet the scholastic requirements stated on pages 163-165 of the catalog, may submit to the Dean of Graduate Studies a petition for reinstatement. This petition should have the endorsement of the department in which the student is registered. The Dean of Graduate Studies will pass on this petition if he concurs with the departmental recommendation; otherwise the petition will be referred to the Committee on Graduate Study for final action. Changes on the candidacy blank which are not initialed by the proper authority are not to be recognized. No course which appears on the candidacy blank and for which the candidate is registered may be removed after the last date for dropping courses as listed in the catalog.

3. Students admitted to work toward the degree of Master of Science who have completed the senior year at the Institute are subject to the same regulations as are seniors, as listed on pages 163-165.

4. Students admitted to work toward the degree of Master of Science who have completed their undergraduate work at other institutions are subject to the scholastic regulations applying to new transfer students as listed on pages 157-160.

5. Students admitted to work toward the master's degree in the Division of Chemistry and Chemical Engineering are required to take placement examinations. See page 238.

6. Students admitted to work toward the degree of Master of Science in Electrical Engineering must take placement examinations to be used as a guide in selecting the proper course of study. These examinations are given on Friday of the week preceding registration. These examinations will cover essentially the content of the courses given to seniors in the Engineering Division, EE 101 a, b and EE 115 a, b. In addition, the examination will cover the field of physical electronics. This examination has no bearing on a student's admission to graduate school. It is simply to assist the faculty in evaluating the individual's undergraduate training. Notices of this examination are sent well in advance of the examination date.

7. A written placement examination is required of incoming graduate students in the Division of Geological Sciences. For details see page 206. Candidates for the master's degree in the Division of Geological Sciences should familiarize themselves with, and are expected to meet, certain special requirements concerning basic sciences and field geology. Detailed information on these requirements may be obtained from the Division Secretary.

8. Students admitted to work toward the master's degree in the Division of Physics, Mathematics and Astronomy are required to take placement examinations to be used as a guide in selecting the proper course of study. See page 209.

IV. THESIS

In the case of a required thesis two final copies must be filed with the Division concerned ten days before the degree is to be conferred. Instructions for the preparation of theses may be obtained from the respective departments.
C. REGULATIONS CONCERNING WORK FOR THE ENGINEER'S DEGREE

1. The work for an engineer's degree must consist of advanced studies and research in the field appropriate to the degree desired. It must conform to the special requirements established for the degree desired and should be planned in consultation with the members of the faculty concerned. Advanced studies are defined on page 186. Regulations governing registration will be found on page 194. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a new application to continue graduate work toward the desired degree. Students who have received an engineer's degree will not in general be admitted for the doctor's degree.

2. Residence. At least six terms of graduate residence (as defined on page 187) subsequent to a baccalaureate degree equivalent to that given by the California Institute are required for an engineer's degree. Of these, at least the last three terms must be at the California Institute. It must be understood that these are minimum requirements, and students must often count on spending a somewhat longer time in graduate work.

To qualify for an engineer's degree, a student must complete the work prescribed by his supervising committee with a grade-point average of at least 1.90, considering the grade of P as being equivalent to C and excluding grades for research. Work upon research and the preparation of a thesis must constitute no fewer than 55 units. More than 55 units may be required by certain departments and the student should determine the particular requirements of his department when establishing his program.

In the case of a student registered for work toward an engineer's degree, and holding a position as graduate assistant or other Institute employee, the actual number of hours per week required by his teaching or research services shall be deducted from the total number of units for which he might otherwise register. This number of units shall be determined by his department.

3. Admission to Candidacy. Before the end of the second week of the first term of the academic year in which the student expects to receive the degree he must file in the office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. Upon receipt of this application, the Dean, in consultation with the chairman of the appropriate division, will appoint a committee of three members of the faculty to supervise the student's work and to certify to its satisfactory completion. One of the members of the committee must be in a field outside of the student's major field of study. The student should then consult with this committee in planning the details of this work. The schedule of his work as approved by the committee shall be entered on the application form and shall then constitute a requirement for the degree. Changes in the schedule will not be recognized unless initialed by the proper authority. No course which appears on the approved schedule and for which the applicant is registered may be removed after the last date for dropping courses as listed in the catalog.

The student will be admitted to candidacy for the degree when his supervising committee certifies: (a) That all the special requirements for the
desired degree have been met, with the exception that certain courses of not more than two terms in length may be taken after admission to candidacy; (b) That the thesis research has been satisfactorily started and probably can be finished at the expected time.

Such admission to candidacy must be obtained by mid-term of the term in which the degree is to be granted.

4. Thesis. At least two weeks before the degree is to be conferred, each student is required to submit to the Dean of Graduate Studies a ribbon copy, a reproduced copy, and the vellum of a satisfactory individual thesis describing his research, including a one-page digest or summary of the main results obtained. In form, the thesis must satisfy the requirements for theses for the degree of Doctor of Philosophy. (See page 197.)

The use of “classified” research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the Dean of Graduate Studies before the research is undertaken.

Before submitting his thesis, the candidate must obtain written approval of it by the chairman of the division and the members of his supervising committee, on a form obtained from the office of the Dean of Graduate Studies.

5. Examination. At the option of the department representing the field in which the degree is desired a final examination may be required. This examination would be conducted by a board to be appointed by the candidate’s supervising committee.

Special Requirements for the Degree of Electrical Engineer. To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor’s degree on page 204, except that a grade of D in Ph 131 abc is acceptable.

Special Requirements for the Degree of Mechanical Engineer. Each student admitted to work for the degree of Mechanical Engineer shall be required to take an oral placement examination given by the faculty in mechanical engineering before his registration. The results will be used as a guide in planning the student’s work.

Not less than a total of 55 units of this work shall be for research and thesis, the exact number of units to be left to the discretion of the supervising committee appointed by the Dean of Graduate Studies. The courses shall be closely related to mechanical engineering, and the specific courses to be taken and passed with a grade of “C” or better by each candidate shall be determined by the supervising committee, but must include an advanced course in Mathematics or Applied Mathematics, such as AM 125 abc, Ph 129 abc, acceptable to the Faculty in Mechanical Engineering.

A list of possible courses from which a program of study may be organized will be found on page 247.
D. REGULATIONS CONCERNING WORK FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

I. GENERAL REGULATIONS

The degree of Doctor of Philosophy is conferred by the Institute primarily in recognition of breadth of scientific attainment and of power to investigate scientific problems independently and efficiently, rather than for the completion of definite courses of study through a stated period of residence. The work for the degree must consist of scientific research and the preparation of a thesis describing it, and of systematic studies of an advanced character primarily in science or engineering. In addition, the candidate must have acquired the power of expressing himself clearly and forcefully both orally and in written language, and he must satisfy the foreign language requirements.

Subject to the general supervision of the Committee on Graduate Study, the student's work for the degree of Doctor of Philosophy is specifically directed by the department in which he has chosen his major subject. Each student should consult his department concerning special divisional and departmental requirements. See pages 198-213.

With the approval of the Committee on Graduate Study, any student studying for the doctor's degree whose work is not satisfactory may be refused registration at the beginning of any term by the department in which the student is doing his major work.

II. REQUIREMENTS FOR ADMISSION TO WORK FOR DOCTOR'S DEGREE

With the approval of the Committee on Graduate Study, students are admitted to graduate standing by the department in which they choose their major work toward the doctor's degree. In some cases, applicants for the doctor's degree may be required to register for the master's or engineer's degree first. These degrees, however, are not general prerequisites for the doctor's degree. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a new application to continue graduate work toward the desired degree. Students who have received an engineer's degree will not in general be admitted for the doctor's degree.

During the second or third term of work toward the engineer's degree, a student may apply for admission to work toward the doctor's degree. If this admission is granted, his admission for the engineer's degree will be cancelled.

III. REGISTRATION

1. Students are required to register and file a program card in the Registrar's office at the beginning of each term of residence, whether they are attending regular courses of study, carrying on research or independent reading only, writing a thesis or other dissertation, or utilizing any other academic service.

2. Before registering, the student should consult with members of the department in which he is taking his major work to determine the studies which he can pursue to the best advantage.
3. A student will not receive credit for a course unless he is properly registered. At the first meeting of each class he should furnish the instructor with a regular assignment card for the course, obtained on registration. The student himself is charged with the responsibility of making certain that all grades to which he is entitled have been recorded.

4. The number of units allowed for a course of study or for research is so chosen that one unit corresponds roughly to one hour a week of work throughout the term, for a student of superior ability.

5. In registering for research, students should indicate on their program card the name of the instructor in charge, and should consult with him to determine the number of units to which the proposed work corresponds. At the end of the term the instructor in charge shall decrease the number of units for which credit is given in case he feels that the progress of the research does not justify the full number originally registered for.

6. Registration, with at least minimum tuition (see page 172), is required for the term or summer period in which the requirements for the Ph.D. degree are completed, including either the final examination or submission of thesis. Registration with minimum tuition will be allowed for at most one term.

7. Graduate students studying for the doctor's degree who are devoting their whole time to their studies will be allowed to register for not more than 60 units in any one term. (See pages 190, 192 with reference to total work load of graduate students.)

IV. GENERAL REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

1. Major and minor program of study. The work for the doctor's degree must consist of scientific research and advanced studies in some branch of science and engineering, called the major program of study; and of additional advanced work outside of this branch, called the minor program of study. The minor program of study will be at the option of the student, either a general minor or a subject minor.

Advanced studies include courses with numbers of 100 or over. However, only in approved cases is graduate residence credit given for such courses when they are required in the undergraduate option corresponding to the student's major field. No residence credit is given for courses with numbers under 100 when they constitute prerequisites to the student's minor subject courses. Credit in the amount to be determined by the Committee on Graduate Study may be allowed for other courses with numbers under 100 when they are outside the student's major field.

(a) General minor. The work will consist of at least 45 units of advanced work in one or more disciplines in the humanities or science or engineering other than that of the major subject. The choice and scope of this work must be approved by the division in charge of the major subject, on a form obtainable from the Graduate Office.

(b) Subject minor. The work is concentrated in one discipline, including at least 45 units of advanced work in this discipline, and must be comprehensive enough to give the student a fundamental knowledge of it. The minor subject may be in the humanities or in any discipline listed on pages 198-212, under special requirements adopted by the various divisions of the Institute. The
Doctor's Degree

A program must be approved by both major and minor divisions on a form obtainable from the Graduate Office. The candidate will be examined on this work (see page 197). A student who has satisfied the requirements for such a minor program of study will be given recognition for this work by explicit mention on his Ph.D. diploma of the minor subject or minor subjects if the requirements have been satisfied in more than one discipline.

2. Residence: At least three academic years of residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for the doctor's degree. Of this at least one year must be in residence at the Institute. It should be understood that these are minimum requirements, and students must usually count on spending a somewhat longer time in residence. However, no student will be allowed to continue work toward the doctor's degree for more than 15 terms of graduate residence, nor more than 18 registrations for full- or part-time academic work except by special action of the Committee on Graduate Study. In either case graduate study taken elsewhere will be counted when residence credit at the Institute has been allowed. (See page 187 regarding summer registration for research.)

Graduate students will be permitted only by special arrangement made in advance to conduct all or a portion of their research in the field, in government laboratories, or elsewhere off the campus. In order that such research be counted in fulfillment of residence requirements the graduate student must file in advance a registration card for this work. The work must be carried out under the direct supervision of a member of the Institute staff. The number of units to be credited for such work shall be determined by the Dean of Graduate Studies in consultation with the chairman of the division in which the student is carrying his major work; and a recommendation as to the proportion of the full tuition to be paid for such work shall be made by the Dean to the Vice President in charge of Business Affairs.

A student whose undergraduate work has been insufficient in amount or too narrowly specialized, or whose preparation in his special field is inadequate, must count upon spending increased time in work for the degree.

3. Admission to Candidacy: On recommendation of the Chairman of the Division concerned, the Committee on Graduate Study will admit a student to candidacy for the degree of Doctor of Philosophy after he has been admitted to work toward the doctor's degree and been in residence at least one term thereafter; has satisfied the several departments concerned by written or oral examination or otherwise that he has a comprehensive grasp of his major and minor subjects as well as of subjects fundamental to them; has fulfilled the language requirements; has shown ability in carrying on research with a research subject approved by the chairman of the division concerned; and has initiated a program of study approved by his major department and, if needed, by his minor department. For special departmental regulations concerning admissions to candidacy, see pages 198-213. Members of the Institute staff of rank higher than that of Assistant Professor are not admitted to candidacy for a higher degree.

A regular form, to be obtained from the Dean of Graduate Studies, is provided for making application for admission to candidacy. Such admission to candidacy must be obtained before the beginning of the fourth academic
year after admission to graduate standing at the Institute. A student not ad­mitted to candidacy at that time must petition through his division to the Dean of Graduate Studies for permission to register for further work.

4. Language requirements. To be admitted to candidacy for the degree of Doctor of Philosophy a student must have a good reading knowledge of at least two foreign languages chosen among French, German and Russian. With the permission of the department concerned and the Dean of Graduate Studies, another modern language may be substituted for one of these languages. As soon as possible after beginning their graduate study, students are urged to consult with the department of languages to determine the best means of satisfying these requirements early. The language requirements in either or both of the approved languages can be met in one of three ways:

 1. To pass language examinations. Examinations in French and German are given three times a year. The dates are announced on the calendar on pages 4, 5.

 II. To pass with a grade of B- or better one of the following courses: L 1 abc in French, L 35 in German, or L 51 a in Russian.

 III. With the approval of the department of languages, to complete a translation project. A knowledge of the fundamentals of the language is presupposed in such a case.

5. Examination. During his course of study every doctoral candidate shall be examined broadly and orally on his major subject, the scope of his thesis and its significance in relation to his major subject, and if the candidate has a subject minor, on the subject of that program. These examinations, subject to the approval of the Committee on Graduate Study, may be taken at such time after admission to candidacy as the candidate is prepared, except that they must take place at least two weeks before the degree is to be conferred.

The examinations may be written in part, and may be subdivided into parts or given all at one time at the discretion of the departments concerned. The examination relating to the subject minor need not be included in the final examination. It may be given at a time to be determined by agreement between the minor and the major departments. The student must petition for these examinations on a form obtained from the Dean of Graduate Studies. For special departmental regulations concerning candidacy and final examinations, see pages 198-213.

6. Thesis. Two weeks before the degree is to be conferred, the candidate is required to submit to the Dean of Graduate Studies a ribbon copy, a reproduced copy, and the vellum of a satisfactory thesis describing his research. For special departmental regulations concerning theses, see pages 198-213.

With the approval of the department concerned, a portion of the thesis may consist of one or more articles published jointly by the candidate and members of the Institute staff or others. In any case, however, a substantial portion of the thesis must be the candidate's own exposition of his work. For regulations regarding use of "classified" material, see page 193.

Regulations and directions for the preparation of theses may be obtained from the office of the Dean of Graduate Studies, and should be followed carefully by the candidate.
Before submitting his thesis to the Dean of Graduate Studies, the candidate must obtain approval of it by the Chairman of his Division and the members of his examining committee. This approval must be obtained in writing on a form which will be furnished at the office of the Dean. The candidate himself is responsible for allowing sufficient time for the members of his committee to examine his thesis.

V. SPECIAL REQUIREMENTS FOR THE DOCTOR'S DEGREE

In agreement with the general requirements for the doctor's degree adopted by the Committee on Graduate Study, as set forth in IV, page 195, the various Divisions of the Institute have adopted the following supplementary regulations.

DIVISION OF BIOLOGY

1. Aims and Scope of Graduate Study in Biology. Graduate students in Biology come with very diverse undergraduate preparation—majors in physics, chemistry and mathematics as well as in biology and its various branches. The aims of the graduate program are to provide, for each student, depth of experience and competence in his particular chosen major specialty; perception of the nature and values of biology as a whole; sufficient strength in the basic sciences to allow him to continue self-education after his formal training has been completed and keep in the forefront of his changing field; and the motivation and training to serve that field productively through a long career. In accordance with these aims the graduate study program in Biology leading to the Doctor's degree will include the following parts: (a) The major program which is to provide the student with early and intense original research experience in a discipline of biology of his own choice, supplemented with advanced course work and independent study in this discipline; (b) the minor program, designed to provide him with professional insight into a discipline outside his major one and consisting of specialized course work, or course work and a special research program; and as a rule (c) a program of course work in advanced subjects, designed to provide him with a well-rounded and integrated training in biology and the appropriate basic sciences, and adjusted to his special interests and needs. (b) and (c) may include supervised, independent study. An individual program will be recommended to each student when he meets with his advisory committee (see section 4).

2. Admission. Applicants are expected to meet the following minimal requirements: Mathematics through calculus, general physics, organic chemistry, physical chemistry, and biology approximately equaling the content of two of the following courses: Bi 3 (Plant Biology), Bi 10 (Animal Biology) and Bi 9 (Cell Biology). Students with deficient preparation in one or more of these categories may be admitted but required to remedy their deficiencies in the first years of graduate training, no graduate credit being granted for such remedial study. This will usually involve taking the courses in the categories in which the student has deficiencies. In certain instances, however, deficiencies may be corrected by examinations following independent or supervised study apart from formal courses.

3. Placement Examinations. All students admitted to graduate work towards the Ph.D. in the Division of Biology are required either to take place-
ment examinations in two of the following areas: cell biology, plant biology, animal biology; or to pass or have passed two of the equivalent courses (Bi 3, Bi 10, Bi 9), with a grade of B- or better. These examinations or courses must be taken before the end of the first year of graduate study.

4. Advisory Committee. During the week preceding registration for the first term, each entering student confers with his Advisory Committee. The committee consists of a chairman and three other members of the faculty representing diverse fields of biology. The committee will advise the student of deficiencies in his training; will design a remedial study program where necessary; and will recommend an individual study program of advanced course work in accordance with item (c), section 1. The committee will also be available for consultation and advice throughout his graduate study. Its chairmanship and constitution may, however, change as the student ascertains the subject of his specialization or changes it. Such changes are readily made.

5. Teaching Requirements for Graduate Fellows. A graduate student who holds a national fellowship to do graduate work in the Division of Biology may be assigned to give limited assistance in teaching undergraduate courses if his advisory committee considers it to be of value for him to gain teaching experience.

6. Major Subjects of Specialization. A student may pursue major work leading to the Doctor’s degree in the Division of Biology in any of the following disciplines:

- Biochemistry
- Biophysics
- Cell Biology
- Developmental Biology
- Genetics
- Molecular Biology
- Neurophysiology
- Plant Physiology
- Psychobiology
- Virology

7. Minor Subjects. A student majoring in one of the above disciplines may elect to take a minor in any of the following ways, subject to the approval of his advisory committee: (a) a subject minor in another discipline of biology, which must be markedly different in content and techniques from the major; (b) a subject minor in another division of the Institute, or (c) a general minor consisting of not less than 45 units of advanced course work in one or more disciplines in the humanities, sciences (other than biology), or engineering. When a student takes a subject minor, his degree designates the disciplines of his major and minor (e.g., Biophysics and Psychobiology or Virology and Chemistry). When he takes a general minor, his degree designates only his major discipline (e.g., Biochemistry or Neurophysiology).

A student majoring in another division of the Institute may, with the approval of the Biology Division and his major Division, elect a subject minor in any one of the disciplines listed in section 6, or a combination of these disciplines.

8. Admission to Candidacy. To be recommended by the Division of Biology for admission to candidacy for the Doctor’s degree, the student must have demonstrated his ability to carry out original research and have passed, with a grade of B or better, the candidacy examination in his major.
With regard to his minor: (a) A student who elects to take a subject minor in the Biology Division is required to pass a candidacy examination in the minor field with a grade of B or better; (b) in case the minor is taken outside the Biology Division, the student is required to fulfill the minor requirements of the outside Division and of the Institute.

9. Final Examination and Thesis. A final oral examination covering principally the work of the thesis will be held at least two weeks before the degree is to be conferred. The original typed copy of the thesis, the vellum copy, and two reproduced copies must be submitted at least two weeks before the date of the final examination. One of the two reproduced copies is retained by the Division Library. The examining committee will consist of such individuals as may be recommended by the Chairman of the Division and approved by the Dean of Graduate Studies.

DIVISION OF CHEMISTRY AND CHEMICAL ENGINEERING

1A. Chemistry. During the week preceding General Registration for the first term of graduate study, graduate students admitted to work for the Ph.D. degree will be required to take written placement examinations in the fields of inorganic chemistry and organic chemistry (on Monday), and physical chemistry (on Tuesday). These examinations will cover their respective subjects to the extent that these subjects are treated in the undergraduate chemistry option offered at this Institute and in general will be designed to test whether the student possesses an understanding of general principles and a power to apply these to specific problems, rather than a detailed informational knowledge. Graduate students are expected to demonstrate a proficiency in the above subjects not less than that acquired by abler undergraduates. Students who have demonstrated this proficiency in earlier residence at this Institute may be excused from these examinations.

In the event that a student fails to show satisfactory performance in any of the placement examinations he will be required to register for a prescribed course, or courses, in order to correct the deficiency promptly. In general no graduate credit will be allowed for prescribed undergraduate courses. If the student’s performance in the required course or courses is not satisfactory he will not be allowed to continue his graduate studies except by special action of the Division of Chemistry and Chemical Engineering on receipt of his petition to be allowed to continue.

To be recommended for candidacy for the doctor’s degree in chemistry the applicant, in addition to demonstrating his understanding and knowledge of the fundamentals of chemistry, must give satisfactory evidence of his proficiency at a higher level in that field of chemistry elected as his primary field of interest and approved by the Division of Chemistry and Chemical Engineering. In general the applicant will be required to pass an oral examination and to submit to his examining committee one week prior to his examination (1) a written progress report giving evidence of his industry and ability in research and of his power to present his results in clear, concise language and with discrimination as to what is essential in scientific reports, and (2) three propositions (as described under 5 below) which the applicant is prepared to defend during his oral examination.
In the event that any of the candidate’s propositions is found to be unsatisfactory he will not be recommended for candidacy at that time, but will be required to submit and defend a set of new or revised propositions at an examination to be taken at least three terms prior to his final examination.

A student admitted to work for the Ph.D. degree in chemistry who fails to satisfy the Division’s requirements for candidacy by the end of his fifth term of graduate residence at the Institute will not be allowed to register in a subsequent academic year except by special permission of the Division of Chemistry and Chemical Engineering.

1B. Chemical Engineering. The requirements in chemical engineering are essentially the same as those in chemistry except that the placement examinations will be required in the fields of engineering thermodynamics of one-component systems (on the Wednesday before registration), the unit operations of chemical engineering including fluid flow topics (on Thursday), and either industrial chemistry (on Monday) or physical chemistry (on Tuesday). Students who have in earlier residence at this Institute demonstrated proficiency in the subjects covered by the placement examinations may be excused from them.

The Division’s requirements for candidacy in chemical engineering are to be completed by the end of the student’s fifth term of graduate residence at the Institute. The candidacy examination covers thermodynamics, chemical engineering unit operations, physical chemistry, and industrial chemistry.

2. It is expected that the applicant will have studied mathematics and physics substantially to the extent that these subjects are covered in the required undergraduate courses in the student’s field of interest. In case the applicant’s training is not equivalent to this, the Division of Chemistry and Chemical Engineering may prescribe additional work in these subjects before recommending him as a candidate.

3. The units of study offered to satisfy a minor requirement are to consist in general of graduate courses other than research; however the Division of Chemistry and Chemical Engineering may, by special action, permit up to one-half of these units to consist of appropriate research. If a student elects a minor program of study of the general type, 45 units or more of advanced work are required and must represent an integrated program approved by the Division; for students in Chemistry it must consist of courses other than chemistry; for students in Chemical Engineering it must consist of courses other than chemical engineering. A grade of C or better is required in these courses.

4. The candidate must submit to the Chairman of the Division of Chemistry and Chemical Engineering four copies of his thesis, in final form (the original copy, a copy on vellum, and two copies reproduced from the vellum), at least two weeks before the date of his final examination. Three copies are returned to the candidate after his examination.

5. The final examination will consist in part of the candidate’s oral presentation and defense of a brief résumé of his research and in part of the defense of a set of propositions prepared by the candidate.
Five propositions are required. In order to obtain diversity with respect to subject matter not more than two shall be related to the immediate area of the candidate's thesis research. Each proposition shall be stated explicitly and the argument presented in writing with adequate documentation. Propositions of exceptional quality presented at the time of the candidacy examination may be included among the five submitted at the time of the final examination.

The propositions, prepared by the candidate himself, should display his originality, breadth of interest, and soundness of training; the candidate will be judged on his selection and formulation of the propositions as well as on his defense of them. It is recommended that the candidate begin the formulation of his set of propositions early in his course of graduate study.

A copy of the set of propositions in final form must be submitted as part of each copy of the thesis to the Chairman of the Division of Chemistry and Chemical Engineering at least two weeks before the date set for the examination.

6. Graduate students taking chemistry as a subject minor shall complete a program of study which in general shall include Ch 125 or Ch 144 or Ch 148-149 and one or more graduate courses in chemistry so selected as to provide an understanding of at least one area of chemistry. The total number of units shall not be less than 45, and a grade of C or better in each course included in the program will be required.

DIVISION OF ENGINEERING

1. Aeronautics. In general, a graduate student is not admitted to work for the doctor's degree in aeronautics until he has completed at least 20 units of research in his chosen field. Thus, upon completion of his fifth year's work, he will be admitted to work towards the engineer's degree. If his course work and research during the sixth year show that he is capable of carrying on work at the doctorate level and if he satisfactorily passes a qualifying oral examination, he may then be admitted to work towards the doctor's degree. Upon being admitted to work towards the doctor's degree, his admission to work for the engineer's degree will be cancelled.

To be recommended for candidacy for the doctor's degree in aeronautics the applicant must pass one of the following subjects with a grade of C or better:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>Ph 129</td>
<td>Methods of Mathematical Physics</td>
</tr>
<tr>
<td>Ph 108 abc</td>
<td>Theoretical Mechanics</td>
</tr>
</tbody>
</table>

and two of the following subjects:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae 210 abc</td>
<td>Fundamentals of Solid Mechanics</td>
</tr>
<tr>
<td>Ae 201 abc</td>
<td>Fundamentals of Fluid Mechanics</td>
</tr>
<tr>
<td>JP 121 abc</td>
<td>Rockets and Air Breathing Engines</td>
</tr>
</tbody>
</table>

If any of the above subjects were taken elsewhere than at the Institute, the candidate may be required to pass special examinations indicating an equivalent knowledge of the subject.
2. **Applied Mechanics.** To be recommended for candidacy for the Ph.D. degree in Applied Mechanics, the student must, in addition to the general Institute requirements:

a. Complete 12 units of research.

b. Complete not less than 50 units of advanced courses arranged by the student in conference with his advisor and approved by the faculty in Applied Mechanics. If any course submitted for candidacy was taken elsewhere than at the Institute, the student may be required to pass special examinations indicating a satisfactory knowledge of the subject.

c. Pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, acceptable to the faculty in Applied Mechanics. Such course shall be in addition to requirement (b) above.

d. Pass a three-hour oral examination on his major subject, and if the student has a subject minor, examination on the subject of that program shall be included.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his specialized field of research.

A student majoring in another branch of engineering, or another division of the Institute, may, with the approval of the faculty in Applied Mechanics, elect a discipline in the field of Applied Mechanics as a minor subject, consisting of a group of courses that differ markedly from the major subject of study or research.

3. **Civil Engineering.** Before the end of the second year of graduate residence the student must pass a Ph.D. qualifying oral examination, demonstrating his knowledge of the field of civil engineering. The examination will include, but will not be limited to, presentation and defense of two or three propositions which should be controversial or unresolved topics in civil engineering for which there is more than one point of view. At least eight weeks before the examination the student must submit a list of his propositions for approval. Furthermore, ten days before the examination the student must present (a) a brief exposition of the arguments for each of his propositions (2 to 6 pages each), and (b) a brief statement of his proposed thesis research.

To be recommended for admission to candidacy the applicant must (a) pass the qualifying examination described above, (b) submit a satisfactory written progress report on his thesis research, (c) pass the courses required for the M.S. degree, and other advanced courses as required by the staff, and (d) pass at least 27 units of course work in advanced mathematics such as AM 125, Ph 129, or satisfactory substitution. For a student whose program is more closely related to the sciences of biology or chemistry than physics, AM 113 and AM 116 or Ma 112 will be an acceptable substitution for the mathematics requirement.

Minor. The purpose of the minor program of study in Civil Engineering is to broaden the student's outlook by acquainting him with subject matter out-
side his major field and by introducing him to different approaches to problems closely related to his field. The student may follow either a subject minor or a general minor. For a subject minor, the work must be outside the Division of Engineering. For a general minor, at least a portion of the work should preferably be outside the Division, but none of it shall include any of those courses in the fifth-year Civil Engineering schedule of courses which are usually taken by M.S. candidates in Civil Engineering. The choice of program must be approved by the student’s advisor and the faculty in Civil Engineering.

4. Electrical Engineering. In general, a graduate student is not admitted to work for the doctor’s degree in Electrical Engineering until he has received a degree of Master of Science or equivalent. If his course work and research during the 5th year show that he is capable of carrying on work at the doctorate level and if he satisfactorily passes a qualifying oral examination, he may then be admitted to work towards the doctor’s degree.

Note: For students entering with a Bachelor of Science degree, placement examinations are required (see page 191).

To be recommended for candidacy the applicant must satisfactorily complete 18 units of research in his field of interest and pass the following subject with a grade of C or better:

\[
\text{Ph 131 abc} \quad \text{Electricity and Magnetism}
\]

and one of the following subjects:

\[
\begin{align*}
\text{Ma 108 abc} & \quad \text{Advanced Calculus} \\
\text{AM 125 abc} & \quad \text{Engineering Mathematical Principles} \\
\text{Ph 129 abc} & \quad \text{Methods of Mathematical Physics}
\end{align*}
\]

An applicant may also satisfy any of the course requirements described above by taking an examination in the subject with the instructor in charge. Every examination of this type will cover the whole of the course specified and the student will not be permitted to take it either in parts (e.g. term by term) or more than twice.

Students working toward the doctorate are required to take three oral examinations. The first of these, which is normally given during the fifth year, may be waived at the discretion of the faculty. The second, normally taken in the third term of the second year of graduate study, must be taken prior to admission to candidacy and covers broadly his major field and his minor program of study. The third, which is taken after admission to candidacy, covers his doctorate thesis and its significance in and its relation to his major field. This final examination will be given not less than one month after the thesis has been presented in final form and prior to its approval.

5. Engineering Science. The program of study leading to advanced degrees in Engineering Science must be approved by the Engineering Science Committee. To be recommended for candidacy for the Ph.D. degree in Engineering Science the student must complete at least 12 units of research and pass a comprehensive candidacy examination, in addition to the general Institute requirements. The candidate must submit a satisfactory thesis and take a final examination. The final examination will cover the thesis and fields related to it.

6. Materials Science. To be recommended for candidacy for the Ph.D. de-
Doctor's Degree 205

gree in Materials Science, the student must, in addition to the general Institute requirements:

a. Complete 12 units of research.

b. Complete not less than 50 units of advanced courses arranged by the student in conference with his advisor and approved by the faculty in Materials Science. If any course submitted for candidacy was taken elsewhere than at the Institute, the student may be required to pass special examinations indicating a satisfactory knowledge of the subject.

c. Pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, acceptable to the faculty in Materials Science. Such course shall be in addition to requirement (b) above.

d. Pass a three-hour oral examination on his major subject, and if the student has a subject minor, examination on the subject of that program shall be included.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his specialized field of research.

A student majoring in another branch of engineering, or another division of the Institute, may, with the approval of the faculty in Materials Science, elect a discipline in the field of Materials Science as a minor subject, consisting of a group of courses that differ markedly from the major subject of study or research.

7. Mechanical Engineering. To be recommended for candidacy for the Ph.D. degree in Mechanical Engineering, the student must, in addition to the general Institute requirements:

a. Complete 12 units of research.

b. Complete not less than 50 units of advanced courses arranged by the student in conference with his advisor and approved by the faculty in Mechanical Engineering. If any course submitted for candidacy was taken elsewhere than at the Institute, the student may be required to pass special examinations indicating a satisfactory knowledge of the subject.

c. Pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, acceptable to the faculty in Mechanical Engineering. Such course shall be in addition to requirement (b) above.

d. Pass a three-hour oral examination on his major subject, and if the student has a subject minor, examination on the subject of that program shall be included.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his specialized field of research.

A student majoring in another branch of engineering, or another division of the Institute, may, with the approval of the faculty in Mechanical Engineering, elect a discipline in the field of Mechanical Engineering as a minor subject, consisting of a group of courses that differ markedly from the major subject
of study or research. Such a group may consist of fluid mechanics, thermodynamics, jet propulsion, physical metallurgy, or nuclear energy.

Division of the Geological Sciences

The following statement summarizes the regulations governing the doctorate program. A circular which provides more detail on these matters is available upon request at the Division Office.

1. **Placement Examinations.** Applications for admission to graduate study in the Division of Geological Sciences should be supported by a report of the student's score on both the aptitude test and the advanced test in geology of the Graduate Record Examination. This is not an absolute requirement but compliance is strongly urged. On Wednesday, Thursday and Friday of the week preceding registration for his first term of graduate work, the student will be required to map a small field area and to take written placement examinations covering basic aspects of the earth sciences and including elementary physics, mathematics, chemistry, and biology. These examinations will be used to determine the student's understanding of basic scientific principles and his ability to apply these principles to specific problems. It is not expected that he possess detailed informational knowledge, but it is expected that he demonstrate a degree of proficiency not less than that attained by abler undergraduate students at the California Institute. A student who has demonstrated proficiency in earlier residence at the Institute may be excused from these examinations.

The student's past record and his performance in the placement examinations will be used to determine whether he should register for certain undergraduate courses. Any deficiencies must be corrected at the earliest possible date. All students who do not demonstrate adequate proficiency in mathematics will be required to register for Ge 108 in their first year of graduate residence.

Each member of the Division faculty serves as an advisor to a small number of graduate students. Each graduate student will be notified, prior to his arrival, as to who his advisor is to be, and prior to registration day in the fall the student should seek the counsel of his advisor in planning his program for the first term.

Well qualified graduate students are encouraged to apply for National Science Foundation Fellowships, but each student should consult with his advisor prior to making application for, seeking a renewal of, or terminating such a fellowship.

It is the wish of the Division that its graduate students become productively research-minded as early as possible. To that end it is strongly recommended that each student register for not less than 10 units of research in two out of the first four terms of residence. Each of these terms of research shall be under the direction of different staff members. Guidance in arranging for research should be sought from that student's advisor and from individual members of the staff. The primary objective is to communicate to the students the excitement of discovery based on original investigations. An important by-product can be the formulation of propositions for the Ph.D. oral examination or even an orientation toward Ph.D. thesis research.
2. Field Requirement. Many problems in the earth sciences require for their solution an understanding of field techniques and field relations. All students in the Division of Geological Sciences will therefore be required to pursue at least a minimal program of study in field geology; a program which develops a competence in the solution of field problems equivalent to that achieved in Ge 120 abc. In general, all entering graduate students should expect to take at least one year of field geology during his first year at the Institute, or to take Ge 123 during the first summer. Graduate students majoring in geology in general will be required to take more than the minimal one-year program; the equivalent of the undergraduate field geology program (Ge 120 abc, Ge 121 abc, Ge 123) at the Institute being the basic requirement.

Students who exhibit exceptional ability in physics and mathematics and whose program of study and research is devoted strictly to problems unrelated to surface or subsurface geology or to the characteristics of rocks and geological relations as they can be observed in the field may be excused from the minimal program of study in field geology. Individual decisions on these matters are made by a special committee appointed by the Division Chairman upon request of the student's advisor.

3. Major Subject. The work for the doctorate in the Division of the Geological Sciences shall consist of advanced studies and of research in some discipline in the geological sciences which will be termed the “major subject” of the candidate. The Division will accept as major subjects any of the disciplines listed herewith, provided that the number of students working under the staff members in that discipline does not exceed the limit of efficient supervision.

- Geology
- Geobiology
- Geochemistry
- Geophysics

4. Minor Requirement. The purpose of the minor requirement is to give diversification of training and a broadening of outlook. It should involve basic approaches, techniques, and knowledge distinct from those of the major subject. The Division prefers to have its students satisfy the minor requirement by work in other divisions of the Institute as prescribed on pages 195-196 of this catalog. However, the student may propose a subject minor in one of the four fields listed in section 3 above, that is different from the major subject, or he may include Geology Division courses within a minor program of general type, if they are pertinent to an intelligently integrated program. However, Ch 124 ab will ordinarily not be acceptable toward the 45 units of minor work. These proposals are subject to review and approval by the Division and the Dean of Graduate Studies.

5. Requirements for Ph.D.

In Geochemistry: In addition to the general Institute and Division requirements, the candidate for the Ph.D. in geochemistry must have as a minimum the equivalent of the courses that are required for the undergraduate curriculum in Geochemistry. The candidate will be expected to take a minimum of 45 units of advanced courses in Chemistry and Geochemistry. These same
courses cannot be presented to satisfy the requirements for a minor or for a distributed minor.

Substitution for courses equivalent to the undergraduate requirement may be permitted by the Division upon petition. The natures of the substitutions that are permitted will depend upon the abilities and interests of the student.

In Geophysics: Ph.D. candidates in geophysics are required to take and pass with a grade of C or better Ph 129 abc plus 45 units selected from the following: Ph 131, Ph 201, Ph 202, Ph 205, Ph 212, Ph 218, Ph 219, Ph 227, Ph 235, Ma 105, Ma 118, Ma 185, Ma 211, Ma 280, Ch 223, and Ch 225. This list is not exhaustive but does give the student an idea of the acceptable level. Mature students may satisfy any or all of these requirements by examinations.

6. Admission to Candidacy. An otherwise qualified student is eligible for admission to candidacy for the doctorate in the Division of the Geological Sciences as soon as he has passed his qualifying oral examination. This examination will consist of the oral defense of a set of propositions prepared by the candidate. The propositions should be from 3 to 5 in number and about half of them should relate to the branch of earth sciences of major interest to the candidate. The remaining propositions should cover aspects of the sciences in fields other than that of the major interest. As prepared by the candidate himself, each proposition should represent his grasp of the basic features and his critical evaluation of a significant scientific point or question. The entire group of propositions should display scholarship, originality, and breadth of interest. A clear statement of the basic problem and of the candidate’s specific approach to, or evaluation of, it should be incorporated in a succinct paragraph for each proposition. Candidates in Geology should realize that propositions based on field investigations are just as acceptable as those arising from laboratory work, or theoretical deductions. The candidate will be judged upon his selection and formulation of the propositions and upon his defense of them. In addition the examining committee will ask questions designed to evaluate his basic background in the earth sciences and allied fields as related to the propositions and to determine his capabilities in applying fundamental scientific principles to specific problems.

A copy of a list of propositions which has been drawn from past qualifying examinations is on file in the Division office, for student reference. This list is offered as a guide to satisfactory form and treatment rather than as a yardstick for choice of subject matter and originality.

Three copies of the propositions should be filed in the office of the Division of the Geological Sciences, not later than midterm of the fifth term of graduate residence, for approval by the core members of the Qualifying Examination Committee in consultation with other members of the staff (see page 197). An examining committee will then be appointed and a date will be set for the examination which is mutually agreeable to those concerned. The list of propositions, as approved by the core committee, must be filed by the candidate in the Division office at least two weeks in advance of the date set for the examination.
A candidate may register for as much as 15 units of research, or advanced study under appropriate staff members to gain time, and advice toward the preparation of his propositions. This will enable him to carry a normal load of 45 units during the term in which he takes his examination.

A student admitted to work for the Ph.D. degree who fails to satisfy the Division's requirements for candidacy by the end of his fifth term of residence will not be allowed to register in a subsequent academic year except by special permission of the Division of the Geological Sciences. Successful completion of the qualifying examination is a necessary step in admission to candidacy. The remaining steps are outlined on page 196, item 3.

7. Thesis and Paper for Publication. The doctoral candidate must complete his thesis and submit it in final form by May 10 of the year in which the degree is to be conferred. A first draft of the thesis must be submitted by March 1 of the year in which it is proposed to take the degree. The candidate must also prepare a paper for publication embodying the results of his thesis work in whole or in part. He should consult with the member of the staff supervising the major research on the choice of subject and on the scope of the paper.

8. Final Examination. The final oral examination for the doctorate will be scheduled following submission of the thesis and, in conformity with an Institute regulation, it must be scheduled at least two weeks before the degree is to be conferred.

DIVISION OF PHYSICS, MATHEMATICS AND ASTRONOMY

1. MAJOR AND MINOR FIELDS

The disciplines offered by the Division in which major or minor work may be undertaken, as specified on page 195, are Astronomy, Mathematics, and Physics.

2. PHYSICS

a. Placement Examinations. On Thursday and Friday preceding the beginning of instruction for his first term of graduate study, a student admitted to work for an advanced degree in physics is required to take placement examinations to be used as a guide in selecting the proper course of study. These examinations will cover material treated in Electricity and Magnetism; Theoretical Mechanics; Atomic and Nuclear Physics, and Advanced Calculus approximately as covered in Ph 107, Ph 108, Ph 112, and Ma 108. In general, they will be designed to test whether the student possesses an understanding of general principles and a power to apply these to concrete problems, rather than detailed informational knowledge. In cases in which there is a clear basis for ascertaining the status of the entering graduate student, the placement examinations may be waived.

If the placement examinations reveal a need for courses prerequisite to those listed in section c, the student will be required to register for a prescribed course or courses. If he does not obtain grades of C or better in these courses he will be allowed to continue his graduate studies only by special permission of the Physics Department Graduate Committee.
b. **Course Groups.** In the statements below of courses required for the oral candidacy examination, admission to candidacy, and recommendation for the Ph.D. degree, the courses are divided into groups as follows:

GROUP I, REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 129</td>
<td>Methods of Mathematical Physics</td>
<td>18</td>
</tr>
<tr>
<td>Ph 205</td>
<td>Principles of Quantum Mechanics</td>
<td>18</td>
</tr>
<tr>
<td>Ph 209</td>
<td>Electromagnetism and Electron Theory</td>
<td>27</td>
</tr>
</tbody>
</table>

GROUP II, ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 131</td>
<td>Electricity and Magnetism</td>
</tr>
<tr>
<td>Ph 201</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>Ph 203</td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>Ph 204</td>
<td>Low Temperature Physics</td>
</tr>
<tr>
<td>Ph 207</td>
<td>X- and Gamma-rays</td>
</tr>
<tr>
<td>Ph 217</td>
<td>Spectroscopy</td>
</tr>
<tr>
<td>Ph 220</td>
<td>Introduction to Solid State Physics</td>
</tr>
<tr>
<td>Ph 227</td>
<td>Thermodynamics, Statistical Mechanics and Kinetic Theory</td>
</tr>
<tr>
<td>Ph 230</td>
<td>Elementary Particle Theory</td>
</tr>
<tr>
<td>Ph 231</td>
<td>High Energy Physics</td>
</tr>
<tr>
<td>Ph 234</td>
<td>Topics in Theoretical Physics</td>
</tr>
<tr>
<td>Ph 236</td>
<td>Relativity Theory</td>
</tr>
<tr>
<td>Ay 131</td>
<td>Astrophysics I</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Ay 132</td>
<td>Astrophysics II</td>
</tr>
</tbody>
</table>

Since the purpose of the Group II course requirements is to broaden the student's knowledge of physics and acquaint him with material outside his own field of specialization, no more than 18 units of any given course may be counted toward any requirement for courses in Group II.

The student is expected to obtain a grade of C or better in each of his courses. If he obtains grades below C in the courses of Group I and those courses he elects from Group II, or in the courses presented to fulfill the requirements for 45 units in a discipline other than physics, or in the oral candidacy examination, the Physics Department Graduate Committee will review the student's entire record, and if it is unsatisfactory, will refuse permission for him to continue work for the Ph.D.

c. **Oral Candidacy Examination:** Prior to the oral candidacy examination, a student must have taken at least 18 units of research and should have passed (or passed the written candidacy examination in) 45 units of the courses listed in Group I and in 27 units of the courses in Group II. The requirement for 18 units of research may be waived if the student has clearly demonstrated his familiarity with research in a particular field. The oral candidacy examination will cover those subjects in physics and the minor subject with which the student may be expected to have gained familiarity through course work, independent study, and laboratory research. It may also include material from the advanced undergraduate courses required of physics majors at the California Institute. At the discretion of the examining committee this examination may be supplemented by a written examination and, in special cases, may be broken off early without reaching any decision, adjourning to a later date.
Candidates who have selected a minor subject must pass a special oral examination in their minor subject. It is the responsibility of the candidate to make arrangements for this examination. It should be held as soon as possible after completion of the required course work in the minor.

d. Admission to Candidacy. To be recommended for candidacy for the Ph.D. degree in physics, a student must, in addition to the general Institute requirements, pass (or pass the written candidacy examinations in) all 63 units of Group I and 36 units of Group II, pass the Physics oral candidacy examination, and be accepted for thesis research by a staff member.

A student, admitted to work toward the Ph.D. degree, who does not satisfy the Division requirements for 63 units of Group I, 36 units of Group II, and the Physics oral candidacy examination by the end of the second year of graduate study at the Institute will not be allowed to register in a subsequent academic year without special permission of the Physics Department Graduate Committee. When a student is required to take courses prerequisite to those listed in section b, this committee ordinarily will grant at that time a suitable extension of the time allowed to complete the candidacy requirements.

e. Further requirements for the Ph.D. degree. In order to be recommended for the Ph.D. degree, each candidate must, in addition to the requirements for candidacy and the general Institute requirements for a Ph.D. degree, pass satisfactorily the 63 units from Group I and a total of 54 units from Group II. In addition to these requirements, the student will normally take other advanced courses, particularly in his field of specialization. In general a student will find it desirable to continue his graduate study and research for two years after admission to candidacy.

A final examination will be given not less than one month after the thesis has been presented in final form. This examination will cover the thesis topic and its relation to the general body of knowledge of physics.

The candidate himself is responsible for completing his thesis early enough to allow the fulfillment of all Division and Institute requirements, having due regard for the impossibility of scheduling by the Division of more than one final oral examination per day.

f. Subject Minor. A subject minor program (see page 195) in Physics will be approved by the minor division if it includes Ph 112 abc and 18 units of Physics courses from Groups I and II, excluding Ph 129 ab, Ay 131 ab, Ay 132 ab, and any specified course in Physics required for the major.

3. MATHEMATICS

a. Each new graduate student admitted to work for an advanced degree in mathematics will be given an informal interview on Thursday or Friday of the week preceding the beginning of instruction in the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him in mapping out a course of study. The work of the student during the first year will include independent reading and/or research.

b. To be recommended for candidacy for the degree of Doctor of Philosophy in Mathematics the applicant must satisfy the general requirements and
pass an oral candidacy examination. This examination will be held at the end of the first term of the second year of graduate study. The student will choose two among the three major fields of mathematics (Algebra, Analysis, Geometry). The candidacy examination will cover (a) the fundamentals of the two chosen fields and (b) the independent work done by the candidate during his first year. At the discretion of the department this examination may be supplemented by a written examination. The department may in special cases change the date of the candidacy examination.

c. In the course of his studies the candidate for the degree of Doctor of Philosophy must pass the equivalent of a full year’s course in each of the three major fields of mathematics with a grade of C or better in each term (except that no grade requirements are made for a course taken in the last year). A candidate may satisfy any of these course requirements by passing an examination covering the full course in question.

d. On or before the first Monday in April of the year in which the degree is to be conferred, a candidate for the degree of Doctor of Philosophy must deliver a typewritten or printed copy of his completed thesis, in final form, to his supervisor. The department will assign to the candidate, immediately after the submission of his thesis, a topic of study outside his field of specialization. During the next four weeks the candidate is expected to assimilate the basic methods and the main results of the assigned topic with the aim of recognizing the direction of further research in this field.

e. The final oral examination in mathematics will be held as closely as possible four weeks after the date the thesis has been handed in. It will cover the thesis and fields related to it and the assigned topic of study.

f. Candidates who have selected a subject minor must pass a special examination in their minor subject. It is the responsibility of the candidate to make arrangements for this examination. It should be held as soon as possible after admission to candidacy and completion of the course-work in his minor subject.

4. ASTRONOMY

The Placement Examinations in Physics, page 208, Section 2a, covering the material of Ph 107, Ph 108, Ph 112, and an additional oral examination in astronomy, covering the material in Ay 2, will be required of first-year students. Their goal is to ascertain whether the student’s background of atomic and nuclear physics, mathematical physics, and astronomy is sufficiently strong to permit advanced study in these subjects.

To be recommended for candidacy for the doctor's degree in astronomy the applicant must complete satisfactorily (a) 18 units of research, Ay 142, (b) pass with a grade of C or better, or by special examination Ay 131 ab, Ay 132 ab, Ay 133 a, Ay 210, and Ay 211, and (c) a satisfactory program, approved by the Department in fields which will depend on the student’s specialty. Students in radio astronomy may substitute Ay 133 b or Ay 134 for the required course Ay 132 b.

The student’s program during the first two years of graduate study should include a minimum of 63 units of advanced subjects in physics; for those students specializing in radio astronomy or in applied astronomical electronics,
advanced courses in electrical engineering and applied mechanics can be substituted. This program of study must be planned, and approved by the Department, during the first year.

For admission to candidacy an oral examination will be given covering the entire field of study. Special permission will be required for further registration if the candidacy course requirements and the oral examination are not satisfactorily completed by the end of the second year of graduate work.

A final draft of the thesis must be submitted at least six weeks before the commencement at which the degree is to be conferred. At least two weeks after submission of the thesis the student will be examined orally on the scope of his thesis and its relation to current research in astronomy.

LIVING ACCOMMODATIONS FOR GRADUATE STUDENTS

Housing Facilities. The Institute has four resident houses providing single rooms for 160 male graduate students. These handsome and comfortable residences, located on the campus, were donated by William M. Keck, Jr., Samuel B. Mosher and Earle M. Jorgensen, David X. Marks Foundation, and the family of Carl F. Braun. The rates per academic year vary from $382.50 to $585.00, depending upon the accommodations and services provided. During the summer only, rooms may be rented on a month-to-month basis. Complete information may be obtained and reservations made by writing to the Office of Student Houses, California Institute of Technology.

The Athenaeum has a limited number of rooms available for women graduate students. Information about membership and rates may be obtained from The Athenaeum, 551 South Hill Avenue, Pasadena.

There are no facilities available on the campus at present for married graduate students. They should write to the Housing Office, 208-A Throop Hall, for assistance in finding suitable accommodations in the community.

Dining Facilities. Graduate students are privileged to join the Athenaeum (Faculty Club), which affords the possibility of contact not only with fellow graduate students but also with others using the Athenaeum, including the Associates of the Institute, distinguished visitors, and members of the professional staffs of the Mount Wilson Observatory, the Huntington Library, and the California Institute.

The Chandler Dining Hall, located on the campus, is open daily from 7 A.M. to 11 P.M., serving breakfast, lunch, dinner, and late snacks cafeteria style.

FINANCIAL ASSISTANCE

The Institute offers in each of its divisions a number of fellowships, scholarships, and graduate assistantships. In general, scholarships carry tuition grants; assistantships, cash stipends; and fellowships often provide both tuition and cash grants. Graduate assistants are eligible to be considered for scholarship grants.

Forms for making application for fellowships, scholarships, or assistantships may be obtained on request from the Dean of Graduate Studies. In using these forms it is not necessary to make separate application for ad-
mission to graduate standing. These applications should reach the Institute by February 15. Appointments to fellowships, scholarships, and assistantships are for one year only; and a new application must be filed each year by all who desire appointments for the following year, whether or not they are already holders of such appointments.

GRADUATE ASSISTANTSHIPS
Graduate Assistants devote during the school year not more than fifteen hours a week to teaching, laboratory assistance, or research of a character that affords them useful experience. This time includes that required in preparation and in marking note-books and papers, as well as that spent in classroom and laboratory. The usual assistantship assignment calls for fifteen hours per week at most and ordinarily permits the holder to carry a full graduate residence schedule as well.

GRADUATE SCHOLARSHIPS AND FELLOWSHIPS*
Institute Scholarships: The Institute offers a number of tuition scholarships to graduate students of exceptional ability who wish to pursue advanced study and research.

Cole Fellowships: The income from the Cole Trust, established by the will of the late Mary V. Cole in memory of her husband, Francis J. Cole, is used to provide three fellowships annually, one in each of the following fields: electrical engineering, mechanical engineering, and physics. The recipients are designated as Cole Fellows.

Drake Scholarships: The income from the Drake Fund, provided by the late Mr. and Mrs. Alexander M. Drake, is used to maintain scholarships in such numbers and amounts as the Board of Trustees determines. Graduate students who are recipients from this fund are designated as Drake Scholars.

Blacker Scholarships: The Robert Roe Blacker and Nellie Canfield Blacker Scholarship Endowment Fund, established by the late Mr. R. R. Blacker and Mrs. Blacker, provides in part for the support of graduate men engaged in research work. The recipients are designated as Blacker Scholars.

Henry Laws Scholarships: The income from a fund given by the late Mr. Henry Laws is used to provide scholarships for research in pure science, preferably in physics, chemistry, and mathematics. The recipients are designated as Henry Laws Scholars.

Caroline W. Dobbins Scholarships: The income from the Caroline W. Dobbins Scholarship Fund, provided by the late Mrs. Caroline W. Dobbins, is used to maintain scholarships at the Institute. Graduate student recipients are designated as Caroline W. Dobbins Scholars.

Meridan Hunt Bennett Scholarships: The scholarships for graduate students are granted from the Meridan Hunt Bennett Fund as stated on pages 177-178.

Bridge Fellowship: The late Dr. Norman Bridge provided a fund, the income of which is used to support a research fellowship in physics. The recipient is designated as the Bridge Fellow.

*Fellows receiving grants equivalent to tuition and $1000 or more per academic year are permitted to accept employment or other appointment from the Institute during the academic year only with special approval of the Dean of Graduate Studies.
Frederick Roeser Scholarship: This scholarship is granted from the Frederick Roeser Loan, Scholarship, and Research Fund. The recipient is designated as the Roeser Scholar.

David Lindley Murray Scholarships: The income from the David Lindley Murray Educational Fund is used in part to provide scholarships for graduate students. The recipients are designated as Murray Scholars.

Edith Newell Brown Scholarships: The income from the Edith Newell Brown Fund is used to maintain scholarships for graduate students. The recipients are designated as Edith Newell Brown Scholars.

Theodore S. Brown Scholarships: The income from the Theodore S. Brown Fund is used to maintain scholarships for graduate students. The recipients are designated as Theodore S. Brown Scholars.

Clarence J. Hicks Memorial Fellowship in Industrial Relations: This fellowship is supported by a fund made available by Industrial Relations Counselors, Inc., and other contributors. The fellowship is granted to a graduate student who undertakes some studies in industrial relations, as approved by the Director of the Industrial Relations Section.

Lucy Mason Clark Fellowship: This fellowship, in the field of plant physiology, is supported by a fund contributed by Miss Lucy Mason Clark.

Van Maanen Fellowship: One or more pre-doctoral or post-doctoral fellowships are provided in the department of astronomy from the Van Maanen Fund. The recipients are known as Van Maanen Fellows.

Royal W. Sorensen Fellowship: The income from a fund created in honor of Royal W. Sorensen is used to provide a fellowship or a scholarship for a student in electrical engineering.

Von Kármán Scholarship Fund: Given by Dr. William Bollay for scholarships for sons or daughters of Aerophysics Development Corporation employees. The recipients are designated as von Kármán Scholars.

Ray G. Coates Scholarship: Provided by the income from a bequest made by the late Mrs. Alice Raymond Scudder Coates, to maintain a scholarship for a student of physics. The graduate student recipient is designated as Ray G. Coates Scholar.

ARCS Foundation (Achievement Rewards for College Scientists) of Los Angeles: The ARCS Foundation has established a fund for the award of several graduate and undergraduate scholarships.

Earle C. Anthony Scholarship: A fund has been established by Mr. Earle C. Anthony for scholarships for graduate students.

Elbert G. Richardson Scholarship and Fellowship Fund: The income of this fund is used to maintain scholarships and fellowships for graduate students.

Eben G. Rutherford Scholarship Fund: The income derived from this fund is used for graduate scholarships.

Samuel H. and Dorothy Breed Clinedinst Foundation: The income of this fund is designated for graduate scholarship aid.

SPECIAL FELLOWSHIPS AND RESEARCH FUNDS

In addition to the National Science Foundation, the Department of Health, Education and Welfare, the Institute for Defense Analyses, the National
Aeronautics and Space Administration, the Woodrow Wilson Foundation, and
the Ford Foundation, the following corporations, foundations, and individuals
contribute funds for the support of Graduate Fellowships which are adminis­
tered by the Institute: Allied Chemical and Dye Corporation, American
Society for Testing Materials, R. C. Baker Foundation, Barry Wright Cor-
poration, Bendix Aviation Corporation, The Boeing Company, California
Research Corporation, Consolidated Electrodynamics Corporation, Convair,
Corning Glass Works Foundation, Douglas Aircraft Company, Dow Chemi-
cal Company, E. L. duPont de Nemours and Company, Eastman Kodak
Company, Electro-Optical Systems, Inc., Fluor Foundation, Garrett Corpora-
tion, General Atomic, General Electric Foundation, Librascope Division of
General Precision, Inc., Gillette-Paper Mate Manufacturing Company, Law-
rence A. Hanson Foundation, Hughes Aircraft Company, International Busi-
ness Machines Corporation, International Nickel Company, Inc., Kaiser
Aluminum & Chemical Corporation, Kennecott Copper Corporation, Paul E.
Lloyd, Lockheed Leadership Fund, Arthur McCallum Fund, Mobil Oil Com-
pany, Pacific Scientific Company, Pan American Petroleum Foundation, Inc.,
Radio Corporation of America, Rand Corporation, Richfield Oil Corpo-
ration, Schlumberger Foundation, Shell Companies Foundation, Alfred P. Sloan
Foundation, Space Technology Laboratories, Standard Oil Company of Cali-
fornia, Stauffer Chemical Company, Stauffer Foundation, John Stauffer,
Tektronix Foundation, Union Carbide Corporation, United States Rubber
Company, United States Steel Foundation.

A number of governmental units, industrial organizations, educational
foundations, and private individuals have contributed funds for the support
of fundamental researches related to their interests and activities. These
funds offer financial assistance to selected graduate students in the form of
graduate research assistantships.

Daniel and Florence Guggenheim Fellowships in Jet Propulsion: These
are fellowships established with the Guggenheim Jet Propulsion Center by
the Daniel and Florence Guggenheim Foundation for graduate study in
jet propulsion.

AEC Special Fellowships in Nuclear Science and Engineering: These fel-
lowships are made available and are administered by the Atomic Energy
Commission to support study in the general field of nuclear energy technol-
ogy. The California Institute is a participating school at which AEC Fellows
may pursue graduate study. See Nuclear Energy Option in Mechanical

POST-DOCTORAL FELLOWSHIPS

A number of government agencies, foundations, societies, and companies
support fellowships for the encouragement of further research by men who
hold the doctor's degree. These grants usually permit choice of the institu-
tion at which the work will be done, and include, among others, those adminis-
tered by the National Research Council, Rockefeller Foundation, John
Simon Guggenheim Memorial Foundation, Commonwealth Fund, American
Chemical Society, Bell Telephone Laboratories, E. I. du Pont de Nemours
and Company, Merck and Company, Inc., American Cancer Society, the
Atomic Energy Commission, the U. S. Public Health Service, the National Science Foundation, the National Foundation, and other government agencies, as well as various foreign governments. Applications for such fellowships should in general be directed to the agency concerned.

Institute Research Fellowships: The Institute each year appoints as Research Fellows a number of men holding the degree of Doctor of Philosophy who desire to pursue further research work. Applications for these appointments, as well as for other special fellowships listed below, should be made on forms provided by the Institute. These forms, which should be filed with the Dean of the Faculty, may be obtained either from his office or from the Chairman of the Division in which the applicant wishes to work.

Gosney Fellowships: In 1929, Mr. E. S. Gosney established and endowed the Human Betterment Foundation. Following the death of Mr. Gosney in 1942, the Trustees of this Foundation transmitted the fund to the California Institute for the study of biological bases of human characteristics. The Trustees of the Institute have, for the present, set the income aside for the establishment of Gosney Fellowships. These are post-doctoral research fellowships, the conditions being similar to those of Guggenheim Fellowships. The stipend varies with the experience of the Fellow.

Harry Bateman Research Fellowship: In honor of Professor Harry Bateman, the Institute offers a research fellowship in pure mathematics to a candidate holding the doctorate. The recipient will devote the major part of his time to research, but will be expected to teach one course in mathematics. The appointment is normally made for one year, but may be renewed for a second year.

Arthur Amos Noyes Fellowships: Dr. Arthur Amos Noyes, for many years Professor of Chemistry and Director of the Gates and Crellin Laboratories of Chemistry, left most of his estate to the Institute to constitute a fund to be known as the "Noyes Chemical Research Fund." The purpose of this fund, as stated in his will, is to provide for the payment of salaries or grants to competent persons who shall have the status of members of the staff of the Institute, and shall devote their time and attention mainly to the execution at the Institute of experimental and theoretical researches upon the problems of pure science (as distinct from those of applied science) in the field of chemistry. Dr. Noyes further provided that "no portion of the income of said fund shall be used for the payment of tuition fees, nor for scholarships or fellowship grants to persons still registered as students, or in general for the education of persons as to existing knowledge; but on the contrary the whole thereof shall be used for promoting, in the manner aforesaid in the field aforesaid, the search for new or more exact knowledge by persons who have completed their period of formal study and are devoting at least one-half of their working time to scientific investigations."

Millikan Fellowship: Established by Dr. Robert A. and Greta B. Millikan. Post-doctoral fellowship in the field of physical sciences, the recipients to be known as Millikan Fellows.

Richard Chace Tolman Fellowship: A fellowship in theoretical physics established in honor of Dr. Tolman, late Professor of Physical Chemistry and Mathematical Physics.
INSTITUTE GUESTS

Members of the faculties of other educational institutions, including research appointees already holding the doctor's degree, who desire to carry on special investigations, may be invited to make use of the facilities of the Institute provided the work they wish to do can be integrated with the overall research program of the Institute and does not overcrowd its facilities. Arrangement should be made in advance with the chairman of the division of the Institute concerned. Such guests are given official appointment as Research Fellows, Senior Research Fellows, Research Associates, Visiting Associates, or Visiting Professors and thus have faculty status during their stay at the Institute.
Section V

SCHEDULES OF THE COURSES

The school year is divided into three terms. The number of units assigned in any term to any subject represents the number of hours spent in class, laboratory, and preparation per week. In the following schedules, figures in parentheses denote hours in class (first figure), hours in laboratory (second figure), and hours of outside preparation (third figure).1

Besides the subjects shown in the course schedules, students are required to take either military or physical education2 in each term of the four school years.

KEY TO ABBREVIATIONS

<table>
<thead>
<tr>
<th>Aeronautics</th>
<th>Ae</th>
<th>English</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Science</td>
<td>AS</td>
<td>Geology</td>
<td>Ge</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>AM</td>
<td>History and Government</td>
<td>H</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Ay</td>
<td>Hydraulics</td>
<td>Hy</td>
</tr>
<tr>
<td>Biology</td>
<td>Bi</td>
<td>Jet Propulsion</td>
<td>JP</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>ChE</td>
<td>Languages</td>
<td>L</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Ch</td>
<td>Mathematics</td>
<td>Ma</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>CE</td>
<td>Mechanical Engineering</td>
<td>ME</td>
</tr>
<tr>
<td>Economics</td>
<td>Ec</td>
<td>Philosophy</td>
<td>Pl</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>EE</td>
<td>Physical Education</td>
<td>PE</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>Gr</td>
<td>Physical Metallurgy</td>
<td>PM</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>ES</td>
<td>Physics</td>
<td>Ph</td>
</tr>
</tbody>
</table>

1The units used at the California Institute may be reduced to semester hours by multiplying the Institute units by the fraction of 2/9. Thus a twelve-unit course taken throughout the three terms of an academic year would total thirty-six Institute units or eight semester hours. If the course were taken for only one term, it would be the equivalent of 2.6 semester hours.

Note to Veteran Students: Inasmuch as subsistence allowances for Veterans are based on total "standard semester hours of credit for a semester, or their equivalent," it must be borne in mind that 1½ Institute terms are equivalent to one semester. Therefore, for purposes of determining your subsistence entitlement each term multiply total Institute units by 2/9 (to reduce to semester hours per term) and then by 1½ (to evaluate your course in terms of semester hours per semester). This is more simply accomplished by multiplying total units for the term by ¼.

2See page 168 for rule regarding excuses from physical education.
FIRST YEAR, ALL OPTIONS

The subjects listed below are taken by all students during their first year. Differentiation into the various options begins in the second year.\(^1\)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 1 abc</td>
<td>Calculus, Vector Algebra, Analytic Geometry (4-0-8)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>Kinematics, Particle Mechanics, and Electric Forces (4-3-5)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ch 1 abc</td>
<td>General and Quantitative Chemistry (3-6-3)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>En 1 abc</td>
<td>English Literature (3-0-3)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gr 1 abc</td>
<td>History of European Civilization (2-0-3)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PE 1 abc</td>
<td>Basic Graphics (0-3-0)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education (0-3-0)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PI 1</td>
<td>Introduction to Philosophy</td>
<td>H 7</td>
<td>Modern and Contemporary Germany</td>
<td></td>
</tr>
<tr>
<td>PI 2</td>
<td>Logic</td>
<td>H 8</td>
<td>Modern and Contemporary Russia</td>
<td></td>
</tr>
<tr>
<td>PI 3</td>
<td>Contemporary European Philosophies</td>
<td>H 15</td>
<td>Europe Since 1914</td>
<td></td>
</tr>
<tr>
<td>PI 4</td>
<td>Ethics</td>
<td>H 16</td>
<td>American Foreign Relations</td>
<td></td>
</tr>
<tr>
<td>PI 5</td>
<td>Psychology</td>
<td>H 17</td>
<td>The Far West and the Great Plains</td>
<td></td>
</tr>
<tr>
<td>En 8</td>
<td>Contemporary English and European Literature</td>
<td>H 19</td>
<td>Modern America</td>
<td></td>
</tr>
<tr>
<td>En 9</td>
<td>American Literature</td>
<td>H 21</td>
<td>Medieval England</td>
<td></td>
</tr>
<tr>
<td>En 10</td>
<td>Modern Drama</td>
<td>H 22</td>
<td>Modern Britain</td>
<td></td>
</tr>
<tr>
<td>En 11</td>
<td>Literature of the Bible</td>
<td>H 23</td>
<td>Modern War</td>
<td></td>
</tr>
<tr>
<td>En 12</td>
<td>Technical Report Writing</td>
<td>H 25</td>
<td>Political Parties and Pressure Groups</td>
<td></td>
</tr>
<tr>
<td>En 13</td>
<td>Modern Poetry</td>
<td>H 26</td>
<td>The Political Novel</td>
<td></td>
</tr>
<tr>
<td>En 14</td>
<td>Seminar in Literature</td>
<td>H 27</td>
<td>Individual and Society in America</td>
<td></td>
</tr>
<tr>
<td>L 5</td>
<td>French Literature</td>
<td>H 30</td>
<td>Modern India and Pakistan</td>
<td></td>
</tr>
<tr>
<td>L 40</td>
<td>German Literature</td>
<td>H 35</td>
<td>Seminar in Foreign Area Problems</td>
<td></td>
</tr>
<tr>
<td>Ec 48</td>
<td>Introduction to Industrial Relations</td>
<td>H 124</td>
<td>National Security</td>
<td></td>
</tr>
<tr>
<td>Ec 104</td>
<td>Government Regulation</td>
<td>H 125</td>
<td>African Studies</td>
<td></td>
</tr>
<tr>
<td>Ec 124</td>
<td>Economic Problems of Underdeveloped Areas</td>
<td>H 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ec 125</td>
<td>Technical Cooperation</td>
<td>H 150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Honor electives (3 units) to be given second and third terms. See page 167.

\(^2\)AFROTC students will substitute AS 1 abc (2-1-1) for PE 1 abc.
Attention is called to the fact that any student whose grade-point average is less than 1.9 in the subjects listed under his division may, at the discretion of his department, be refused permission to continue the work of that option. A fuller statement of this regulation will be found on page 165.

<table>
<thead>
<tr>
<th>SECOND YEAR</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>12</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>12</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>6</td>
</tr>
<tr>
<td>Ay 1</td>
<td></td>
</tr>
<tr>
<td>Electives (see below)</td>
<td>15-19</td>
</tr>
</tbody>
</table>

Sophomore electives should include at least 27 units of science and engineering courses. At least 18 units of science and engineering electives shall be in subjects other than mathematics or physics. It is desirable for a student to acquire as broad as possible a background in other related fields of science or engineering.

<table>
<thead>
<tr>
<th>THIRD YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 7 abc</td>
</tr>
<tr>
<td>Ph 107 abc</td>
</tr>
<tr>
<td>Ph 111 abc</td>
</tr>
<tr>
<td>Ay 2 abc</td>
</tr>
<tr>
<td>PE 3 abc²</td>
</tr>
<tr>
<td>Electives (see below)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOURTH YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ec 4 ab</td>
</tr>
<tr>
<td>H 5 abc</td>
</tr>
<tr>
<td>Ph 108 abc</td>
</tr>
<tr>
<td>Ph 112 abc</td>
</tr>
<tr>
<td>PE 4 abc⁴</td>
</tr>
<tr>
<td>Electives (see below)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suggested Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 1 Physical Geology (4-2-3)</td>
</tr>
<tr>
<td>Bi 1 Elementary Biology (3-3-3)</td>
</tr>
<tr>
<td>EE 5 Introductory Electronics (3-0-6)</td>
</tr>
<tr>
<td>Ma 5 abc Introduction to Abstract Algebra (3-0-6)</td>
</tr>
<tr>
<td>AM 8 abc Mechanics of Solids I (3-0-6)</td>
</tr>
<tr>
<td>ME 17 ab Thermodynamics (3-0-6)</td>
</tr>
<tr>
<td>L 32 abc Elementary German (4-0-6)</td>
</tr>
<tr>
<td>L 35 Scientific German (4-0-6)</td>
</tr>
<tr>
<td>L 50 abc Elementary Russian (4-0-6)</td>
</tr>
<tr>
<td>L 1 ab Elementary French (4-0-6)</td>
</tr>
<tr>
<td>AM 95 ab⁵ Engineering Mathematics (4-0-8)</td>
</tr>
<tr>
<td>or</td>
</tr>
</tbody>
</table>

The student may elect any course that is offered in any division in a given term, provided that he has the necessary prerequisites for that course. The following list contains some of the courses that are useful to work in various fields of astronomy.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 116</td>
<td>Complex Variables and Applications</td>
<td>12</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Ma 112</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 or 9</td>
</tr>
<tr>
<td>Ge 2</td>
<td>Geophysics</td>
<td>9</td>
</tr>
<tr>
<td>EE 1 abc</td>
<td>Basic Electrical Engineering (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>EE 2 ab</td>
<td>Basic Electrical Engineering Laboratory (0-3-0)</td>
<td>3</td>
</tr>
<tr>
<td>EE 101 abc</td>
<td>Electric Circuit Theory (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>EE 106 ab</td>
<td>Electronic Circuits (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 115 ab</td>
<td>Geometrical and Physical Optics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ma 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td>11</td>
</tr>
<tr>
<td>Ph 217</td>
<td>Spectroscopy (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 108 ab</td>
<td>Astronomical Instruments and Radiation</td>
<td>9</td>
</tr>
<tr>
<td>Ay 133</td>
<td>Radio Astronomy (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 131 ab</td>
<td>Stellar Atmospheres (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 132 ab</td>
<td>Stellar Interiors (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 141 abc</td>
<td>Research Conference in Astronomy (1-0-1)</td>
<td>2</td>
</tr>
</tbody>
</table>

AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.

AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.

For list of Humanities electives, see page 220.

AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

Students who plan to do graduate work in astronomy or radio astronomy should elect some of these courses during their third and fourth years, on consultation with their advisers.
Attention is called to the fact that any student whose grade-point average is less than 1.9 in the subjects listed under his division may, at the discretion of his department, be refused permission to continue the work of that option. A fuller statement of this regulation will be found on page 165.

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>12 12 12</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>6 6 6</td>
</tr>
<tr>
<td>PE 2 abc²</td>
<td>3 3 3</td>
</tr>
<tr>
<td>Electives</td>
<td>19 19 19</td>
</tr>
<tr>
<td></td>
<td>52 52 52</td>
</tr>
</tbody>
</table>

Electives

27 units of the electives must be in Science or Engineering.

The following Sophomore electives are recommended* for Biology majors:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 41 abc</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Ch 46 abc</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Bi 1</td>
<td>9</td>
</tr>
<tr>
<td>Bi 9</td>
<td>9</td>
</tr>
<tr>
<td>Non-Biology elective</td>
<td>9</td>
</tr>
</tbody>
</table>

* Biology majors not electing Ch 41 abc and Ch 46 abc in the second year are required to take these courses in the third year and postpone Bi 107 to the fourth year. Biology majors who have not elected Bi 1 and Bi 9 in the second year are expected to elect them or approved alternatives in the third or fourth year.

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 21 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>En 7 abc</td>
<td>8 8 8</td>
</tr>
<tr>
<td>Bi 107 abc</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Bi 3</td>
<td>12</td>
</tr>
<tr>
<td>Bi 10</td>
<td>. 12</td>
</tr>
<tr>
<td>PE 3 abc²</td>
<td>3 3 22</td>
</tr>
<tr>
<td>Electives</td>
<td>52 52 52</td>
</tr>
</tbody>
</table>

Electives

Electives, additional to those available in the sophomore year, may, with the approval of the student's advisor, be selected from the following:

Bi 114 Immunology (2-4-3) 9 . .
Bi 122 Genetics (3-3-4) 10 . .
Bi 126 Genetics of Microorganisms (2-4-4) 10 .
Bi 127 Biochemical Genetics (2-4-4) . 10 .
Bi 106 Embryology (2-6-4) . 12 .
Bi 20 Mammalian Anatomy and Histology (2-6-4) . 12 .
L 32 abc Elementary German (4-0-6) 10 10 10
L 50 abc Elementary Russian (4-0-6) 10 10 10

¹AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.

²AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.
FOURTH YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ec 4 ab</td>
<td>2 2 2</td>
</tr>
<tr>
<td>Bi 118</td>
<td>10 . .</td>
</tr>
<tr>
<td>*Bi 122</td>
<td>10 . .</td>
</tr>
<tr>
<td>PE 4 abc</td>
<td>3 3 3</td>
</tr>
<tr>
<td>Electives</td>
<td>12 32 38</td>
</tr>
<tr>
<td>Total</td>
<td>52 52 52</td>
</tr>
</tbody>
</table>

Electives

In addition to those listed for the third year:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 117</td>
<td>. . 9</td>
</tr>
<tr>
<td>Bi 129 ab</td>
<td>6 6 .</td>
</tr>
<tr>
<td>Ch 132</td>
<td>. . 6</td>
</tr>
<tr>
<td>Bi 214 abc</td>
<td>3 3 3</td>
</tr>
<tr>
<td>Bi 218</td>
<td>. . 9</td>
</tr>
<tr>
<td>Bi 220 abc</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Bi 230</td>
<td>. . 6</td>
</tr>
<tr>
<td>Bi 240 abc</td>
<td>. . 6</td>
</tr>
<tr>
<td>Bi 241 abc</td>
<td>. . 6</td>
</tr>
<tr>
<td>Bi 260</td>
<td>. . x</td>
</tr>
<tr>
<td>Bi 109</td>
<td>. . x</td>
</tr>
<tr>
<td>Bi 22</td>
<td>x or x or x</td>
</tr>
</tbody>
</table>

Any advanced course offered by other Divisions subject to approval by the student's advisor.

3. AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

4. For list of Humanities electives, see page 220.

*Required of Biology majors unless Bi 22 or Bi 122 has been taken earlier.
Any student of the Chemical Engineering Option whose grade-point average in the required chemistry and chemical engineering subjects of any year is less than 1.9 will be admitted to the required chemistry and chemical engineering subjects of the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

SECOND YEAR
(Identical with the Chemistry Option)

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 2 abc</td>
<td>History and Government of the United States</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Calculus, Vectors, and Differential Equations</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electricity, Optics, and Modern Physics</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Basic Organic Chemistry</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ch 46 abc</td>
<td>Basic Organic Chemistry Laboratory</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>in Science and/or Engineering</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Units per Term

<table>
<thead>
<tr>
<th>Units</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 7 abc</td>
<td>Advanced Literature</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ec 4 ab</td>
<td>Economic Principles and Problems</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Quantitative Analysis</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Physical Chemistry</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 26 ab</td>
<td>Physical Chemistry Laboratory</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>ChE 63 abc</td>
<td>Chemical Engineering Thermodynamics</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>AM 95 ab</td>
<td>Engineering Mathematics</td>
<td>12</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>EE 5</td>
<td>Introductory Electronics</td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PE 3 abc</td>
<td>Physical Education</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Units per Term

<table>
<thead>
<tr>
<th>Units</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>51</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 abc</td>
<td>Public Affairs</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ChE 61 ab</td>
<td>Industrial Chemistry</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AM 8 ac</td>
<td>Mechanics of Solids</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ChE 66 abc</td>
<td>Chemical Engineering Operations</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ChE 67 ab</td>
<td>Chemical Engineering Laboratory</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6-10</td>
<td>6-10</td>
<td>6-10</td>
</tr>
<tr>
<td>PE 4 abc</td>
<td>Physical Education</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Units per Term

<table>
<thead>
<tr>
<th>Units</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>50-54</td>
<td>50-54</td>
<td>50-54</td>
</tr>
</tbody>
</table>

1. No more than 9 units in chemical engineering and no units in chemistry courses may be elected.
2. If ChE 80 units are to be used as electives in the Chemical Engineering Option, a thesis must be submitted in duplicate before May 10 of the year of graduation and be approved by the research director.
3. AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in third term.
4. AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.
5. For list of Humanities electives, see page 220.
6. These elective units must be approved by the advisor. If Ch 41 abc and Ch 46 abc have not been taken, they must be substituted in place of these electives.
7. AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.
CHEMISTRY OPTION
(For First Year see page 220)

Any student of the Chemistry Option whose grade-point average in the required chemistry subjects of any year is less than 1.9 will be admitted to the required chemistry subjects of the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

SECOND YEAR
(Identical with the Chemical Engineering Option)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 2 abc</td>
<td>History and Government of the United States</td>
<td>6</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Calculus, Vectors, and Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electricity, Optics, and Modern Physics</td>
<td>12</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Basic Organic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Ch 46 abc</td>
<td>Basic Organic Chemistry Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education</td>
<td>3</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 7 abc</td>
<td>Advanced Literature</td>
<td>8</td>
</tr>
<tr>
<td>Ec 4 ab</td>
<td>Economic Principles and Problems</td>
<td>6</td>
</tr>
<tr>
<td>L 32 abc</td>
<td>Elementary German</td>
<td>10</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Quantitative Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Physical Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>Ch 26 ab</td>
<td>Physical Chemistry Laboratory</td>
<td>8</td>
</tr>
<tr>
<td>Ch 90</td>
<td>Oral Presentation</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>8-12</td>
</tr>
<tr>
<td>PE 3 abc</td>
<td>Physical Education</td>
<td>3</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 abc</td>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>36-40</td>
</tr>
<tr>
<td>PE 4 abc</td>
<td>Physical Education</td>
<td>3</td>
</tr>
</tbody>
</table>

1Any courses in science and engineering for which the student has the required prerequisites are acceptable, but no more than 9 units in chemical engineering and no units in chemistry may be elected.
2If Ch 80 units are to be used as electives in the Chemistry Option, a thesis must be submitted in duplicate before May 10 of the year of graduation and be approved by the research director.
3AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.
4May be taken in either third or fourth year.
5In addition to approved elective courses listed on page 227 any science and engineering course will be accepted if approved by the advisor. If Ch 41 abc and Ch 46 abc have not been taken, they must be substituted in place of these electives.
6AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.
7For list of Humanities electives see page 220.
8Approved elective courses listed on page 227.
9AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in the first term and H 16 (3-0-6) in the second term.
Approved Elective Courses for Third and Fourth Years in the Chemistry Option

The choice of electives must include courses which require a total of 18 units of laboratory work (for example, Ch 16, Instrumental Analysis (0-6-2) requires 6 units of laboratory) or a total of 36 units of research (Ch 80). These elective laboratory units can be accumulated throughout the undergraduate years. Other courses may be taken as electives provided they are in science or engineering subjects and are approved by the advisor. Students must meet any prerequisites required by a course.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 13 abc</td>
<td>Inorganic Chemistry (2-0-4)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Ch 16</td>
<td>Instrumental Analysis (0-6-2)</td>
<td>8</td>
</tr>
<tr>
<td>Ch 80</td>
<td>Chemical Research (units to be arranged)</td>
<td></td>
</tr>
<tr>
<td>Ch 81</td>
<td>Special Topics in Chemistry (units to be arranged)</td>
<td></td>
</tr>
<tr>
<td>Ch 117</td>
<td>Electroanalytical Chemistry (2-0-2)</td>
<td></td>
</tr>
<tr>
<td>Ch 118 ab</td>
<td>Electroanalytical Chemistry Laboratory (0-6-0)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Ch 125 abc</td>
<td>Introduction to Chemical Physics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 127 abc</td>
<td>Radioactivity and Isotopes (2-0-4)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Ch 129</td>
<td>Surface and Colloid Chemistry (3-0-5)</td>
<td></td>
</tr>
<tr>
<td>Ch 130</td>
<td>Photochemistry (2-0-4)</td>
<td></td>
</tr>
<tr>
<td>Ch 144 abc</td>
<td>Advanced Organic Chemistry (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 148 abc</td>
<td>Characterization of Organic Compounds (2-0-2)</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Ch 149 abc</td>
<td>Laboratory in Characterization of Organic Compounds (0-6-0)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>ChE 61 ab</td>
<td>Industrial Chemistry (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 63 abc</td>
<td>Chemical Engineering Thermodynamics (3-0-6; 2-0-4)</td>
<td>9 6 9</td>
</tr>
<tr>
<td>ChE 65</td>
<td>Economics of Chemical Technology (1-0-8)</td>
<td></td>
</tr>
<tr>
<td>ChE 66 abc</td>
<td>Chemical Engineering Operations (3-0-9)</td>
<td>12 12 12</td>
</tr>
<tr>
<td>ChE 68</td>
<td>Introductory Chemical Engineering Kinetics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>ChE 80</td>
<td>Undergraduate Research (units to be arranged)</td>
<td></td>
</tr>
<tr>
<td>ChE 170</td>
<td>Chemical Process Dynamics (2-0-7)</td>
<td></td>
</tr>
<tr>
<td>Ph 107 abc</td>
<td>Electricity and Magnetism (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 108 abc</td>
<td>Theoretical Mechanics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 111 abc</td>
<td>Structure of Matter (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 112 abc</td>
<td>Atomic and Nuclear Physics (4-0-8)</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)</td>
<td>12 12 12</td>
</tr>
<tr>
<td>AM 95 ab</td>
<td>Engineering Mathematics (4-0-8)</td>
<td></td>
</tr>
<tr>
<td>AM 102 abc</td>
<td>Applied Nuclear Physics (2-0-4)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Bi 107 abc</td>
<td>Biochemistry (3-0-7; 3-3-4; 3-5-2)</td>
<td>10 10 10</td>
</tr>
<tr>
<td>Bi 110</td>
<td>General Microbiology (3-4-5)</td>
<td></td>
</tr>
<tr>
<td>Bi 127</td>
<td>Biochemical Genetics (3-4-3)</td>
<td></td>
</tr>
<tr>
<td>Ge 3</td>
<td>Mineralogy (3-3-3)</td>
<td></td>
</tr>
<tr>
<td>Ge 30</td>
<td>Introduction to Geochemistry (3-0-7)</td>
<td></td>
</tr>
<tr>
<td>Ge 151</td>
<td>Laboratory Techniques in the Earth Sciences (0-5-0)</td>
<td>5</td>
</tr>
<tr>
<td>L 35</td>
<td>Scientific German (4-0-6)</td>
<td>10</td>
</tr>
</tbody>
</table>

May be taken first and second or second and third terms.
Attention is called to the fact that any student whose grade-point average is less than 1.9 in the subjects listed under his division may, at the discretion of the faculty in Engineering, be refused permission to continue the work of that option. A fuller statement of this regulation will be found on page 165.

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Calculus, Vectors, & Differential Equations (4-0-8)</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electricity, Optics, and Modern Physics (3-3-6)</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>History and Government of the United States (2-0-4)</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education (0-3-0)</td>
</tr>
<tr>
<td>Science or Engineering Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives*</td>
<td>6-12</td>
</tr>
<tr>
<td>Total</td>
<td>48-54</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 7 abc</td>
<td>Advanced Literature (3-0-5)</td>
</tr>
<tr>
<td>AM 95 ab</td>
<td>Engineering Mathematics</td>
</tr>
<tr>
<td>AM 116</td>
<td>Complex Variables and Applications</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Introduction to Real & Complex Analysis (4-0-8)</td>
</tr>
<tr>
<td>PE 3 abc</td>
<td>Physical Education (0-3-0)</td>
</tr>
<tr>
<td>Electives*</td>
<td>25-31</td>
</tr>
<tr>
<td>Total</td>
<td>48-54</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 abc</td>
<td>Humanities Elective3 (3-0-6)</td>
</tr>
<tr>
<td>E 10 ab</td>
<td>Public Affairs (1-0-1)</td>
</tr>
<tr>
<td>or E 11 ab</td>
<td>Technical Presentations (1-0-1)</td>
</tr>
<tr>
<td>PE 4 abc</td>
<td>Physical Education (0-3-0)</td>
</tr>
<tr>
<td>Electives*</td>
<td>32-38</td>
</tr>
<tr>
<td>Total</td>
<td>48-54</td>
</tr>
</tbody>
</table>

1AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.

2AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.

3For list of Humanities electives, see page 220.

4AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

5Electives must be approved by the student's advisor. Ec 4 ab, 6 units each term, must be included in the electives for graduation. All courses for B.S. in Engineering must total at least 583 units.

Note 1: Every course listed on the approved course program of a student in the Engineering option must be completed satisfactorily before the student will be recommended for the Bachelor of Science degree. All changes in a student's course program must be approved in writing by the advisor.

Note 2: A student who plans to apply for graduate study at the Institute in some field of Engineering should, before choosing his electives, consult Sections IV and V of this catalog for specific requirements for admission to graduate study in this field.
Attention is called to the fact that any student whose grade-point average in freshman, and sophomore physics, chemistry, and mathematics is less than 1.9, may at the discretion of the Division of the Geological Sciences, be refused permission to register in the Geological Sciences Option. Furthermore, any student whose grade-point average is less than 1.9 in the subjects in the Division of Geological Sciences during any term may, at the discretion of the Division, be refused permission to continue in the Geological Sciences Option.

SECOND YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electricity, Optics, and Modern Physics (3-3-6)</td>
<td>12</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>History and Government of the United States (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Ge 1</td>
<td>Physical Geology (4-2-3)</td>
<td>9</td>
</tr>
<tr>
<td>Ge 3</td>
<td>Mineralogy (3-3-3)</td>
<td></td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education (0-3-0)</td>
<td>10</td>
</tr>
</tbody>
</table>

Electives (see suggested Electives listed below) * 10 18 9

<table>
<thead>
<tr>
<th>Units per Term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>52</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

*The following courses are suggested as being especially suitable for a balanced program of study. Different courses may be elected with the advice and consent of the student's advisor, but at least 18 units of electives must be taken outside of the Division.

Ch 14 Quantitative Analysis (2-6-2) 10
Bi 1 Elementary Biology (3-3-3) 9
Ge 2 Geophysics (3-0-6) 9
Ge 5 Geobiology (3-0-6) 9

Bi 10 Animal Biology is strongly recommended for those interested in paleontology.

AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.
THIRD YEAR

Common to All Options in the Division

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 7 abc</td>
<td>Advanced Literature</td>
<td>8</td>
</tr>
<tr>
<td>Ge 120 abc</td>
<td>Field Geology</td>
<td>10</td>
</tr>
<tr>
<td>PE 3 abc</td>
<td>Physical Education</td>
<td>3</td>
</tr>
</tbody>
</table>

AFROTC students will substitute AS 3 ab (4-1-3) and AS 3 c (0-1-2) for PE 3 abc (0-3-0); PI 7 (3-0-4) is required in the third term.

Geology and Geochemistry Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 104 a</td>
<td>Petrology, Igneous</td>
<td>8</td>
</tr>
<tr>
<td>Ge 104 b</td>
<td>Petrology, Sedimentary</td>
<td>10</td>
</tr>
<tr>
<td>Ge 104 c</td>
<td>Petrology, Metamorphic</td>
<td>7</td>
</tr>
<tr>
<td>Ch 24 ab</td>
<td>Physical Chemistry for Geologists</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Electives (select from electives listed below)</td>
<td>11</td>
</tr>
</tbody>
</table>

8 10 3 22 50

Add electives with advice and consent of advisor to bring load up to a minimum of 45 units but not to exceed the allowable limit. Ec 4 a, b must be included in the electives by or before the 4th year as it is an Institute requirement for graduation. Special attention is called to the opportunity to take L 32 abc or L 50 abc. Other desirable elective subjects include Ay 1, Bi 2 (for paleontologists), Ma 112, Ch 14, ChE 50, Hy 134, Hy 210 a, b, AM 8 abc, AM 110 a, CE 155 among others, provided student has proper prerequisites. Geochemists are urged to take Ch 21 abc and Ge 30 ab instead of Ch 24 ab. Students in geochemistry option are urged to register for Ge 30 ab as soon as is conveniently possible. A geochemist can also substitute other courses for Ge 104 c with the advice and consent of his advisor.

Summer Field Geology, Ge 123, 30 units, required after third year in Geology and Geochemistry Options.

Geophysics Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 107 abc</td>
<td>Electricity and Magnetism</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Electives (select from Electives listed below)</td>
<td>20</td>
</tr>
</tbody>
</table>

9 20 20 50

Add electives to bring unit load up to a minimum of 45 units but not to exceed the allowable limit, selected with the advice and consent of the advisor from the following courses for which prerequisites have been completed. Any Ge course, Ay 1, AM 95 abc, Ch 21 abc, EE 160, EE 140, Ma 108 abc, Ph 108 abc. Special attention is called to the opportunity to take L 32 abc or L 50 abc. Ec 4 ab must be elected by or before the 4th year as it is an Institute requirement for graduation.
FOURTH YEAR

Common to All Options in the Division

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary German (4-0-6)</td>
<td>10</td>
</tr>
<tr>
<td>Elementary Russian</td>
<td>0</td>
</tr>
<tr>
<td>Public Affairs (1-0-1)</td>
<td>2</td>
</tr>
<tr>
<td>Geology Club (1-0-0)</td>
<td>1</td>
</tr>
<tr>
<td>Physical Education (0-3-0)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>

(Select from selection listed on page 220)

Geology Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Field Geology (4-8-2; 0-8-2; 0-5-6)</td>
<td>14</td>
</tr>
<tr>
<td>Electives</td>
<td>9-11</td>
</tr>
</tbody>
</table>

Electives to be selected from any advanced courses in the Division of Geological Sciences or courses in other Science or Engineering Divisions. (See list under third year.) The elective courses must be approved by the student's advisor.

Geochemistry Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives (see statement immediately below)</td>
<td>25</td>
</tr>
</tbody>
</table>

A suitable program will be worked out by the student and his advisor. This program will include courses from the Chemistry and Geology options. For example: Ch 13 abc, Ch 127 ab, Ch 129, Ge 105, Ge 106 ab, and Ge 151 a.

Geophysics Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Mechanics (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>

Geology Electives: 7-10

General Electives: 7-10

Add other electives in Physics, Mathematics, Chemistry, Astronomy, or Engineering to bring unit load to a minimum of 45 units, but not to exceed the allowable limit. Elective courses must be approved by the student's advisor.

AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

\(^1\)
Attention is called to the fact that any student whose grade-point average is less than 1.9 in the subjects listed under the division may, at the option of his department, be refused permission to continue the work of that option. A fuller statement of this regulation will be found on page 165.

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>12</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>12</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>6</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>9</td>
</tr>
<tr>
<td>PE 2 abc¹</td>
<td>3</td>
</tr>
</tbody>
</table>

| Third Year | 51 | 51 | 51 |

Third Year	8	8	8
En 7 abc	12	12	12
Ec 4 ab	3	3	3
Ma 108 abc	9	9	9
PE 3 abc²	9	9	9

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>47-52</th>
<th>47-52</th>
<th>47-52</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 5 abc</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ec 4 ab</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PE 4 abc³</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Selected courses in Mathematics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives⁴</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Normally a junior will select 9 units each term and a senior 18 units each term in Mathematics. Sophomores who have not taken Ma 5 must take this course as juniors, postponing the selected course in Mathematics to the senior year. They are strongly advised to take one or preferably two full-year courses in languages.

¹AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.

²AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.

³AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

⁴An elective is any course in any subject other than Mathematics.

⁵For list of electives in the Humanities, see page 220.
Attention is called to the fact that any student whose grade-point average for any three consecutive terms is less than 1.9 in the subjects listed under his division may, at the discretion of his department, be refused permission to continue the work of that option. A more complete statement of this regulation will be found on page 165.

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc</td>
<td>Electricity, Fields, and Atomic Structure (4-3-5)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-8)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>H 2 abc</td>
<td>History and Government of the United States (2-0-4)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>Physical Education (0-3-0)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>15-19</td>
<td>15-19</td>
</tr>
</tbody>
</table>

Suggested Electives

The student may elect any course that is offered in any term, provided only that he has the necessary prerequisites for that course. The following subjects are suggested as being especially suitable for a well-rounded course of study.

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 5 abc</td>
<td>Introduction to Abstract Algebra (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ge 1</td>
<td>Physical Geology (4-2-3)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Bi 1</td>
<td>Elementary Biology (3-3-3)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ay 1</td>
<td>Introduction to Astronomy (3-1-5)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ME 1</td>
<td>Introduction to Design (0-9-0)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 3</td>
<td>Materials and Processes (3-3-3)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 17 ab</td>
<td>Thermodynamics (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 5</td>
<td>Introductory Electronics (3-0-6)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Basic Organic Chemistry (2-0-2)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ch 46 abc</td>
<td>Basic Organic Chemistry Laboratory (1-5-0)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>ChE 50</td>
<td>Applications of Chemistry (3-0-6)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>L 32 abc</td>
<td>Elementary German (4-0-6)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 107 abc</td>
<td>Electricity and Magnetism (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 111 abc</td>
<td>Structure of Matter (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>En 7 abc</td>
<td>Advanced Literature (3-0-5)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Electives</td>
<td>18-22</td>
<td>18-22</td>
<td>18-22</td>
</tr>
<tr>
<td>PE 3 abc</td>
<td>Physical Education (0-3-0)</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Suggested Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ge 165</td>
<td>General Geophysics (3-0-3)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ge 171</td>
<td>Applied Geophysics (4-2-4)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Bi 9</td>
<td>Cell Biology (3-3-3)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ay 2 abc</td>
<td>General Astronomy (3-3-3)</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

1 At least 27 units of sophomore electives shall be chosen from science and engineering courses of which at least 18 units shall be in science and engineering courses other than mathematics or physics.

2 AFROTC students will substitute AS 2 abc (2-1-1) for PE 2 abc. Sophomore AFROTC students may elect PI 7 (3-0-4) in the third term.

3 Students should note that EE 1 abc is prerequisite to most advanced electrical engineering courses, and that Ma 108 abc is prerequisite to most advanced mathematical courses.

4 AFROTC students will substitute AS 3 abc (4-1-3) for PE 3 abc.
Undergraduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 1 abc</td>
<td>Basic Electrical Engineering (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>EE 2 ab</td>
<td>Basic Electrical Engineering Laboratory (0-3-0)</td>
<td>.</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Physical Chemistry (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ch 26 ab</td>
<td>Physical Chemistry Laboratory (0-6-2)</td>
<td>8</td>
</tr>
<tr>
<td>Ph 115 ab</td>
<td>Geometrical and Physical Optics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 108 abc</td>
<td>Theoretical Mechanics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>L 35</td>
<td>Scientific German (4-0-6)</td>
<td>10</td>
</tr>
<tr>
<td>L 50 abc</td>
<td>Elementary Russian (4-0-6)</td>
<td>10</td>
</tr>
<tr>
<td>L 1 ab</td>
<td>Elementary French (4-0-6)</td>
<td>10</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 108 abc</td>
<td>Theoretical Mechanics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 112 abc</td>
<td>Atomic and Nuclear Physics (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Ec 4 ab</td>
<td>Economic Principles and Problems (3-0-3)</td>
<td>6</td>
</tr>
<tr>
<td>H 5 abc</td>
<td>Public Affairs (1-0-1)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Humanities elective†</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9-11</td>
</tr>
<tr>
<td>PE 4 abc</td>
<td>Physical Education (0-3-0)</td>
<td>3</td>
</tr>
</tbody>
</table>

Laboratory Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 77</td>
<td>Experimental Physics Laboratory</td>
<td>6-9</td>
</tr>
<tr>
<td>EE 7 abc</td>
<td>Experimental Techniques in Electrical Engineering (0-3-2)</td>
<td>5</td>
</tr>
<tr>
<td>Ph 172</td>
<td>Experimental Research in Physics (units as arranged with instructor)</td>
<td>.</td>
</tr>
</tbody>
</table>

Suggested Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 112</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 or 9</td>
</tr>
<tr>
<td>Ma 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td>.</td>
</tr>
<tr>
<td>Ma 137</td>
<td>Introduction to Lebesgue Integrals (3-0-6)</td>
<td>.</td>
</tr>
<tr>
<td>EE 101 abc</td>
<td>Electric Circuit Theory (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>EE 106 ab</td>
<td>Electronic Circuits (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>EE 107</td>
<td>Principles of Feedback (3-0-6)</td>
<td>.</td>
</tr>
<tr>
<td>Ph 129 abc</td>
<td>Methods of Mathematical Physics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 171</td>
<td>Reading and Independent Study in Physics</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>(units arranged, maximum 9 units per term)</td>
<td></td>
</tr>
<tr>
<td>Ph 172</td>
<td>Experimental Research in Physics (units arranged)</td>
<td>.</td>
</tr>
<tr>
<td>L 51 abc</td>
<td>Intermediate Russian (4-0-6)</td>
<td>10</td>
</tr>
</tbody>
</table>

†For list of Humanities electives, see page 220.

‡AFROTC students will substitute AS 4 ab (0-1-2) for PE 4 ab and AS 4 c (4-1-3) for PE 4 c. They must elect H 23 (3-0-6) in first term and H 16 (3-0-6) in second term.

‡A student may register for Ph 108 abc as a third-year elective only if he has attained an average grade of B+ or better in both Ph 2 abc and Ma 2 abc.
SCHEDULES OF FIFTH- AND SIXTH-YEAR COURSES

GRADUATE HUMANITIES ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 100 abc</td>
<td>Seminar in History and Government</td>
</tr>
<tr>
<td>En 100 abc</td>
<td>Seminar in Literature</td>
</tr>
<tr>
<td>Pl 100 abc</td>
<td>Philosophy of Science</td>
</tr>
<tr>
<td>Pl 101 abc</td>
<td>History of Thought</td>
</tr>
<tr>
<td>Pl 102 abc</td>
<td>Philosophy and Literature</td>
</tr>
<tr>
<td>Ec 100 abc</td>
<td>Business Economics</td>
</tr>
<tr>
<td>Ec 110</td>
<td>Industrial Relations</td>
</tr>
<tr>
<td>Ec 111</td>
<td>Business Cycles and Government Policy</td>
</tr>
<tr>
<td>Ec 112</td>
<td>Modern Schools of Economic Thought</td>
</tr>
<tr>
<td>Ec 126 abc</td>
<td>Economic Analysis and Policy (Seminar)</td>
</tr>
<tr>
<td>H 123</td>
<td>The Growth of Industrial Civilization</td>
</tr>
<tr>
<td>H 124</td>
<td>Seminar in Foreign Area Problems</td>
</tr>
<tr>
<td>Ec 124</td>
<td>Economics of Underdeveloped Areas</td>
</tr>
<tr>
<td>H 125 abc</td>
<td>Seminar on National Security</td>
</tr>
<tr>
<td>Ec 104</td>
<td>Government Regulation</td>
</tr>
<tr>
<td>Ec 125</td>
<td>Technical Cooperation</td>
</tr>
<tr>
<td>H 150</td>
<td>African Studies</td>
</tr>
</tbody>
</table>

AERONAUTICS

FIFTH YEAR
(Leading to the Degree of Master of Science in Aeronautics)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humanities Electives</td>
<td>9-10</td>
</tr>
<tr>
<td>Ae 101 abc</td>
<td>Elements of Gasdynamics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 102 abc</td>
<td>Static and Dynamic Elasticity</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 103 abc</td>
<td>Performance and Flight Dynamics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 104 abc</td>
<td>Experimental Methods in Aeronautics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 104a and Ae 105 bc</td>
<td>Research Laboratory in Fluid Mechanics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 116, AM 113 ab</td>
<td>Complex Variable, Engineering Mathematics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 150 abc</td>
<td>Seminar</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

NOTE: The above program represents the minimum level of work for the M.S. degree in Aeronautics. If any of the subjects listed have been taken as an undergraduate, more advanced subjects may be substituted for them.

AERONAUTICS

SIXTH YEAR
(Leading to the degree of Aeronautical Engineer)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae 200 abc</td>
<td>Research in Aeronautics</td>
<td>20 20 20</td>
</tr>
<tr>
<td>Ae 201 abc</td>
<td>Fundamentals of Fluid Mechanics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 208 abc</td>
<td>Fluid Mechanics Seminar</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Ae 209 abc</td>
<td>Solid Mechanics Seminar</td>
<td>9 9 9</td>
</tr>
<tr>
<td>JP 290 abc</td>
<td>Jet Propulsion Seminar</td>
<td>48 48 48</td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles</td>
<td>9 9 9</td>
</tr>
</tbody>
</table>

48 48 48
APPLIED MECHANICS

FIFTH YEAR
(Leading to the degree of Master of Science in Applied Mechanics)

<table>
<thead>
<tr>
<th>Units per Term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Elective</td>
<td>9-10</td>
<td>9-10</td>
<td>9-10</td>
</tr>
<tr>
<td>AM 125 abc Engineering Mathematical Principles</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives, as below** (minimum total for year, 81 units)</td>
<td>27-30</td>
<td>27-30</td>
<td>27-30</td>
</tr>
</tbody>
</table>
| **Note that a total of 140 units is required for the M.S. degree. Courses not on the above list of suggestions may be elected with staff approval.**

Suggested Electives**

AM 101 abc Nuclear Reactor Theory	9	9	9
AM 103 ab Nuclear Engineering Laboratory	9	9	9
AM 110 abc Theory of Elasticity, etc.	6	6	6
AM 111 Experimental Stress Analysis	.	9	.
AM 130 abc Applications of Classical Theoretical Physics I	9	9	9
AM 140 Plasticity	6	.	.
AM 141 ab Wave Propagation in Solids	6	6	6
AM 150 abc Mechanical Vibrations	6	6	6
AM 155 Dynamic Measurements Laboratory	.	.	9
AM 160 Vibrations Laboratory	.	.	6
AM 174,6 Advanced Dynamics I, II	6	6	6
AM 180 Matrix Algebra	9	.	.
Ae 101 abc Elements of Gasdynamics	9	9	9
Ae 104 abc Experimental Methods in Aeronautics	9	9	9
Ae 105 bc Research Laboratory in Fluid Mechanics	9	9	9
Ae 210 abc Fundamentals of Solid Mechanics	9	9	9
Ae 216 Structural Dynamics	9	.	.
Ae 217 Aeroelasticity	.	.	9
CE 123 Dynamics of Structures	.	.	9
EE 181 ab Principles of Analog Computation	.	12	12
Hy 101 abc Fluid Mechanics	9	9	9
Hy 134 Flow in Porous Media	.	.	9
JP 121 abc Rockets and Air Breathing Engines	9	9	9
Ma 105 ab Introduction to Numerical Analysis	.	11	11
ME 126 Fluid Mechanics and Heat Transfer Laboratory	.	.	9
Ph 108 abc Theoretical Mechanics	9	9	9

*Students who have not had the equivalent of AM 95 ab (Engineering Mathematics) and AM 116 (Complex Variables and Applications) should replace AM 125 abc by AM 113 a, b and AM 116. With staff approval, AM 125 abc can be replaced by Ma 108 abc (Advanced Calculus), Ph 129 abc (Methods of Mathematical Physics), or other satisfactory substitute.

**Note that a total of 140 units is required for the M.S. degree. Courses not on the above list of suggestions may be elected with staff approval.
ASTRONOMY

FIFTH YEAR

(Leading to the degree of Master of Science in Astronomy)

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6)</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>9 or 10</td>
</tr>
<tr>
<td>2nd</td>
<td>9 or 10</td>
</tr>
<tr>
<td>3rd</td>
<td>9 or 10</td>
</tr>
</tbody>
</table>

Ay 131 ab, or Ay 132 ab (3-0-6)

and Ay 210, Ay 211 or Ay 133

Electives to total 47 to 50

Elective subjects program, to be approved by the department, from advanced subjects in astronomy and physics. Placement examination will be required. (See page 208, section 2(a). Ay 112, Ph 107, Ph 108, Ph 112 may be required of those students whose previous training in some of these subjects proves to be insufficient.

1 For list of Humanities electives, see page 235.

BIOLOGY

As nearly all biology majors are working for the doctor’s degree and following programs arranged by the students in consultation with members of the Division, no specific graduate curricula can be outlined.

CHEMICAL ENGINEERING

FIFTH YEAR

(Leading to the degree of Master of Science in Chemical Engineering)

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6)</th>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>9 or 10</td>
</tr>
<tr>
<td>2nd</td>
<td>9 or 10</td>
</tr>
<tr>
<td>3rd</td>
<td>9 or 10</td>
</tr>
</tbody>
</table>

ChE 167 abc Chemical Engineering Laboratory (0-15-0)

Electives3 at least 23 23 23

47-48 47-48 47-48

1 For list of Humanities electives, see page 235.

2 A student originally admitted to work toward the Ph.D. degree can substitute an equal amount of research, ChE 280, for all or part of this requirement, but must also submit a research report in thesis form and have it accepted by the chemical engineering faculty.

3 Elective subjects are to be approved by a member of the Division and must include AM 115 ab if equivalent has not been taken. A minimum of 27 units of these electives must be in advanced chemical engineering subjects, the remainder are to be chosen from other advanced subjects.

A minimum of 141 units of approved graduate subjects, with three terms of residence (at least 45 units per term), is required for the Master’s degree.

Students admitted for work toward the M.S. in Chemical Engineering will be required to take the placement examinations in engineering thermodynamics, the unit operations of chemical engineering, and industrial chemistry. If desired the student can substitute physical chemistry for industrial chemistry.
CHEMISTRY
FIFTH YEAR
(Learning to the degree of Master of Science in Chemistry)

During the week preceding General Registration for the first term of graduate study, graduate students admitted to work for the M.S. degree will be required to take written placement examinations in the fields of inorganic chemistry and organic chemistry (on Monday) and physical chemistry (on Tuesday). These examinations will cover their respective subjects to the extent that these subjects are treated in the undergraduate chemistry option offered at this Institute and in general will be designed to test whether the student possesses an understanding of general principles and a power to apply these to specific problems, rather than a detailed informational knowledge. Graduate students are expected to demonstrate a proficiency in the above subjects not less than that acquired by able undergraduates. Students who have demonstrated this proficiency in earlier residence at this Institute may be excused from these examinations.

In the event that a student fails to show satisfactory performance in any of the placement examinations he will be required to register for a prescribed course, or courses, in order to correct the deficiency promptly. In general no graduate credit will be allowed for prescribed undergraduate courses. If the student's performance in the required course or courses is not satisfactory he will not be allowed to continue his graduate studies except by special action of the Division of Chemistry and Chemical Engineering on receipt of his petition to be allowed to continue.

The needs of Chemistry majors vary so widely in specialized fields of this subject that no specific curricula can be outlined. Before registering for the first time, a candidate for the master's degree should consult a member of the Committee on Graduate Study of the Division.

A total of at least 27 units in the Humanities is required for a master's degree. Not fewer than 30 units of courses of science subjects chosen from advanced courses and not fewer than 40 units of Chemical Research must be offered for the master's degree. Two copies of a satisfactory thesis describing this research, including a one-page digest or summary of the main results obtained, must be submitted to the Chairman of the Division at least ten days before the degree is to be conferred. The copies of the thesis should be prepared according to the directions formulated by the Dean of Graduate Studies and should be accompanied by a statement approving the thesis, signed by the staff member directing the research and by the Chairman of the Committee on Graduate Study of the Division.

Candidates must satisfy the department of languages that they are able to read scientific articles in at least one of the following languages: German, French, or Russian.

CIVIL ENGINEERING
FIFTH YEAR
(Learning to the degree of Master of Science in Civil Engineering)

<table>
<thead>
<tr>
<th>1st Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Electives (3-0-6; 4-0-6)</td>
<td>9 or 10</td>
<td>9 or 10</td>
</tr>
<tr>
<td>CE 130 abc Civil Engineering Seminar (1-0-0)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electives (minimum total for year 108)</td>
<td>36-39</td>
<td>36-39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-50</td>
</tr>
</tbody>
</table>

Suggested Electives

(Courses are grouped into general areas for ready reference; however, the student is encouraged to select electives from several areas in order to avoid overspecialization).

STRUCTURES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 105</td>
<td>Advanced Strength of Materials (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>AM 106</td>
<td>Problems in Buckling (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>AM 110 abc</td>
<td>Elasticity (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>AM 111</td>
<td>Experimental Stress Analysis (1-6-2)</td>
<td>9</td>
</tr>
<tr>
<td>AM 150 abc</td>
<td>Mechanical Vibrations (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>CE 120 ab</td>
<td>Advanced Structural Analysis (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>CE 121</td>
<td>Analysis and Design of Structural Systems (0-9-0)</td>
<td>9</td>
</tr>
<tr>
<td>CE 123</td>
<td>Dynamics of Structures (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>CE 124</td>
<td>Special Problems in Structures (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>
SOIL MECHANICS
- **CE 105** Introduction to Soil Mechanics (2-3-4) ... 9
- **CE 115 ab** Soil Mechanics (3-0-6; 2-3-4) ... 9
- **CE 150** Foundation Engineering (3-0-6) ... 9

HYDRAULICS AND WATER RESOURCES
- **CE 155** Hydrology (3-0-6) .. 9
- **CE 160** Advanced Hydrology† ...
- **Hy 101 abc** Advanced Fluid Mechanics (3-0-6) .. 9
- **Hy 103 ab** Advanced Hydraulics (3-0-6) ... 9
- **Hy 103 c** Hydraulic Structures (3-0-6) .. 9
- **Hy 105** Analysis and Design of Hydraulic Projects† ...
- **Hy 121** Advanced Hydraulics Laboratory† ..
- **Hy 134** Flow in Porous Media (3-0-6) ... 9

ENVIRONMENTAL HEALTH ENGINEERING
- **CE 137 abc** Water Supply & Waste-Water Disposal (3-0-6; 1-6-2) ... 9
- **CE 138 abc** Sanitary Sciences (2-3-4) ... 9
- **CE 151 abc** Air Resources Engineering (2-3-4) ... 9
- **CE 152 ab** Environmental Radiation (2-3-4) .. 9
- **CE 153** Seminar in Environmental Health Engineering (2-0-1) ...
- **CE 156** Industrial Wastes (3-0-6) .. 9

APPLIED MATHEMATICS
- **AM 113 ab** Engineering Mathematics (4-0-8) ... 12
- **AM 116** Complex Variables & Applications (4-0-8) ... 12
- **AM 180** Matrix Algebra (3-0-6) .. 9
- **Ma 105 ab** Intro. to Numerical Analysis (3-2-6) ...
- **Ma 112** Elementary Statistics (3-0-6) ... 9

1†For list of Humanities electives, see page 235.
2Students who have not had AM 95 ab or its equivalent will be required to include AM 113 as part of their elective units.
3Electives must be approved by Civil Engineering faculty.
4Six or more units as arranged

ELECTRICAL ENGINEERING
FIFTH YEAR
(Leading to the degree of Master of Science in Electrical Engineering)

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6)†</th>
<th>9 or 10</th>
<th>9 or 10</th>
<th>9 or 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 220 abc Research Seminar in Electrical Engineering</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Three or more of the following electives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 132 abc Network Synthesis (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 140 abc Electric Communication (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 150 abc Electromagnetic Fields (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 164 abc Microwave Electronics and Circuits (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 165 ab Microwave Laboratory (1-3-2)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>EE 170 abc Feedback Control Systems (3-0-6; 3-3-6)</td>
<td>9</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>EE 180 Digital Computer Design (3-3-3)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 181 ab Principles of Analog Computation (3-3-6)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>EE 190 abc Advanced Electronics (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 191 abc Physics of Semiconductors and Semiconductor Devices (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 112 abc Atomic & Nuclear Physics (4-0-8)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Other electives as approved by Electrical Engineering Faculty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 129 abc Methods of Mathematical Physics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 131 abc Electricity and Magnetism</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 125 abc Engineering Mathematical Principles</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

1†For list of Humanities electives, see page 235.
SIXTH YEAR

(Leading to the degree of Electrical Engineer)

Special Requirements for the Degree of Electrical Engineer. To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor's degree on page 204, except that a grade of D in Ph 131 is acceptable.

ENGINEERING SCIENCE

(Leading to the degree of Master of Science in Engineering Science)

<table>
<thead>
<tr>
<th>Humanities Electives</th>
<th>1st</th>
<th>Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 125 abc Engineering Mathematical Principles</td>
<td>9</td>
<td>9 or 10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 129 abc Methods of Mathematical Physics</td>
<td>9</td>
<td>9 or 10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 130 abc Classical Theoretical Physics I</td>
<td>9</td>
<td>9 or 10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 131 abc Classical Theoretical Physics II</td>
<td>9</td>
<td>9 or 10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>JP 201 abc Physical Mechanics</td>
<td>9</td>
<td>9 or 10</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Add electives to bring total to 140 units. Electives must be approved by advisor.

GEOLOGY

FIFTH YEAR

Option leading to degree of Master of Science in Geology

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6) (select from electives listed on page 235)</th>
<th>1st</th>
<th>Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 100 Geology Club</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ge 121 abc Advanced Field Geology</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ge 123 Summer Field Geology (30 units)</td>
<td></td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 124 ab Physical Chemistry for Geologists</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add electives to bring total to 140 units. Electives must be approved by advisor.

Option leading to degree of Master of Science in Geophysics

<table>
<thead>
<tr>
<th>Humanities Elective (3-0-6; 4-0-6) (select from electives listed on page 235)</th>
<th>1st</th>
<th>Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 100 Geology Club</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ge 120 abc Elementary Field Geology</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ge 282 abc Geophysics-Geochemistry Seminar</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ph 107 abc Electricity and Magnetism</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ph 108 abc Theoretical Mechanics</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Add electives to bring total to 140 units. Electives must be approved by advisor.

Option leading to degree of Master of Science in Geochemistry

<table>
<thead>
<tr>
<th>Humanities Elective (3-0-6; 4-0-6) (select from electives listed on page 235)</th>
<th>1st</th>
<th>Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 100 Geology Club</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ge 104 abc Petrology</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ge 120 abc Elementary Field Geology</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ge 130 ab Introduction to Geochemistry</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ch 124 ab Physical Chemistry for Geologists</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Add electives to bring total to 140 units, including at least 30 additional units of advanced courses in Chemistry and Geochemistry, and at least 30 units of research in Geochemistry. Equivalent or previous courses may be substituted for Ge 104, Ge 120, Ge 130 ab, and Ch 124. Substitutions and Electives must be approved by advisor.

Only in exceptional cases will the Division permit a student to undertake work leading to an Engineer's Degree in the Geological Sciences. If such instances arise, a program of prescribed study will be worked out with each student on an individual basis. Students with limited experience in geological field work may be required to take all or a portion of Ge 120 abc as a prerequisite to Ge 121 abc or Ge 123. By approval of the Committee on Field Geology the field geology requirements may be satisfied by evidence of equivalent training obtained elsewhere.
MATERIALS SCIENCE
FIFTH YEAR
(Leading to the degree of Master of Science in Materials Science)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>1st Term</th>
<th>2nd Term</th>
<th>3rd Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-1)</td>
<td>9 or 10</td>
<td>9 or 10</td>
<td>9 or 10</td>
</tr>
<tr>
<td></td>
<td>Electives (Minimum total for year, 108 units)</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47-48</td>
<td>47-48</td>
<td>47-48</td>
</tr>
</tbody>
</table>

Electives (See Notes 1 and 2 below)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>1st Term</th>
<th>2nd Term</th>
<th>3rd Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae 102 abc</td>
<td>Static and Dynamic Elasticity (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ae 213</td>
<td>Fracture Mechanics (3-0-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ae 215</td>
<td>Theory of Finite Strains (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ae 219</td>
<td>Mechanics of Inelastic Materials (3-0-6)</td>
<td></td>
<td></td>
<td>Any term</td>
</tr>
<tr>
<td>Ae 221</td>
<td>Theory of Viscoelasticity (3-0-6)</td>
<td></td>
<td></td>
<td>Any term</td>
</tr>
<tr>
<td>Ae 222</td>
<td>Polymer Mechanics (3-0-6)</td>
<td></td>
<td></td>
<td>Any term</td>
</tr>
<tr>
<td>AM 101 abc</td>
<td>Nuclear Reactor Theory (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 102 abc</td>
<td>Applied Nuclear Physics (2-0-4)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AM 103 ab</td>
<td>Nuclear Engineering Laboratory (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 110 a</td>
<td>Introduction to the Theory of Elasticity (2-0-4)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 110 b</td>
<td>Theory of Plates and Shells (2-0-4)</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AM 110 c</td>
<td>Mechanics of Materials (2-0-4)</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>AM 111</td>
<td>Experimental Stress Analysis (1-6-2)</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 126 abc</td>
<td>Applied Engineering Mathematics (3-0-9)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>AM 130 abc</td>
<td>Applications of Classical Theoretical Physics I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 131 abc</td>
<td>Applications of Classical Theoretical Physics II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 140</td>
<td>Plasticity (2-0-4)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 141 ab</td>
<td>Wave Propagation in Solids (2-0-4)</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AM 150 abc</td>
<td>Mechanical Vibrations (2-0-4)</td>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AM 155</td>
<td>Dynamic Measurements Laboratory (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 121 ab</td>
<td>The Nature of the Chemical Bond (2-0-4)</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CE 115 ab</td>
<td>Soil Mechanics (3-0-6)</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>EE 162 abc</td>
<td>Physics of Electronic Devices (2-0-4)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>EE 190 abc</td>
<td>Advanced Electronics (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>EE 191</td>
<td>Physics of Semiconductor and Semiconductor Devices (3-0-6)</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ma 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td></td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ma 112</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 or 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 101 abc</td>
<td>Advanced Design (1-6-2)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 118 abc</td>
<td>Advanced Thermodynamics and Energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 126</td>
<td>Fluid Mechanics and Heat Transfer Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0-6-3)</td>
<td>.</td>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>ME 127</td>
<td>High Frequency Measurements in Fluids and Solids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2-6-1)</td>
<td>.</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ph 107 abc</td>
<td>Electricity and Magnetism (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 112 abc</td>
<td>Atomic and Nuclear Physics (4-0-8)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>PM 102</td>
<td>Pyrometry (1-6-2)</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PM 103 ab</td>
<td>Physical Metallurgy Laboratory (0-9-0) (0-6-0)</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PM 104</td>
<td>Photography (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For list of Humanities electives, see page 235.

Note 1: Students who have not had a course in Engineering Mathematics, Advanced Calculus, or the equivalent in their undergraduate work, are required to include AM 113 ab and AM 116 among the elective units.

Note 2: Substitution for electives listed above may be made with the specific approval of the faculty in Materials Science.
242 Graduate Courses

PM 105 Mechanical Behavior of Metals (2-0-4) 6 . .
PM 112 ab Advanced Physical Metallurgy (3-0-6) 9 9
PM 115 ab Crystal Structure and Properties of Metals and
Alloys (3-0-6) ... 9 9
PM 116 X-Ray Metallography Laboratory I (0-6-3) 9
PM 120 Physics of Solids (3-0-6) 9 . .

MATHEMATICS

As nearly all mathematics majors are working for the doctor's degree and follow
programs arranged by the student in consultation with members of the Division, no
specific fifth year curriculum is outlined.

MECHANICAL ENGINEERING OPTION

FIFTH YEAR

(Leading to the degree of Master of Science in Mechanical Engineering)

<table>
<thead>
<tr>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

Electives (See Notes 1 and 2, page 243)

AM 101 abc Nuclear Reactor Theory (3-0-6)	9	9	9
AM 102 abc Applied Nuclear Physics (2-0-4)	6	6	6
AM 103 abc Nuclear Engineering Laboratory (1-6-2)	9	9	.
AM 110 a Introduction to the Theory of Elasticity (2-0-4)	6	.	.
AM 110 b Theory of Plates and Shells (2-0-4)	.	6	.
AM 110 c Mechanics of Materials (2-0-4)	.	.	6
AM 111 Experimental Stress Analysis (1-6-2)	.	.	9
AM 125 abc Engineering Mathematical Principles (3-0-6)	9	9	9
AM 126 abc Applied Engineering Mathematics (3-0-9)	12	12	12
AM 150 abc Mechanical Vibrations (2-0-4)	6	6	6
AM 155 Dynamic Measurements Laboratory (1-6-2)	9	.	.
AM 180 Matrix Algebra (3-0-6)	9	.	.
Hy 101 abc Advanced Fluid Mechanics (3-0-6)	9	9	9
JP 170 Jet Propulsion Laboratory (0-9-0)	.	.	9
Ma 105 ab Introduction to Numerical Analysis (3-2-6)	11	11	.
Ma 112 Elementary Statistics (3-0-6)	9	or	9
ME 101 abc Advanced Design (1-6-2)	9	9	9
ME 118 abc Advanced Thermodynamics and Energy			
Transfer (3-0-6)	9	9	9
ME 126 Fluid Mechanics and Heat Transfer Laboratory (0-6-3)	.	.	9
ME 127 High Frequency Measurements in Fluids and			
Solids (2-6-1)	.	9	.
Ph 107 abc Electricity and Magnetism (3-0-6)	9	9	9
PM 102 Pyrometry (1-6-2)	.	.	9
PM 104 Photography (1-6-2)	9	.	.

1For list of Humanities electives, see page 235.
MECHANICAL ENGINEERING
(JET PROPULSION OPTION)

FIFTH YEAR
(Leading to the degree of Master of Science in Mechanical Engineering)

<table>
<thead>
<tr>
<th>Units per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
</tr>
<tr>
<td>9 or 10</td>
</tr>
</tbody>
</table>

Electives (See Notes 1 and 2, page 246)

- **AM 101 abc** Nuclear Reactor Theory (3-0-6) 9 9 9
- **AM 102 abc** Applied Nuclear Physics (2-0-4) 6 6 6
- **AM 103 ab** Nuclear Engineering Laboratory (1-6-2) 9 9 .
- **AM 110 a** Introduction to the Theory of Elasticity (2-0-4) . 6 . .
- **AM 110 b** Theory of Plates and Shells (2-0-4) 6 .
- **AM 110 c** Mechanics of Materials (2-0-4) 6 .
- **AM 111** Experimental Stress Analysis (1-6-2) 9 .
- **AM 125 abc** Engineering Mathematical Principles (3-0-6) ... 9 9 9
- **AM 126 abc** Applied Engineering Mathematics (3-0-6) 9 9 9
- **AM 150 abc** Mechanical Vibrations (2-0-4) 6 6 6
- **AM 155** Dynamic Measurements Laboratory (1-6-2) 9 . .
- **AM 180** Matrix Algebra (3-0-6) 9 . .
- **Hy 101 abc** Advanced Fluid Mechanics (3-0-6) 9 9 9
- **JP 170** Jet Propulsion Laboratory (0-9-0) 9
- **JP 221 abc** Rocket Trajectories and Orbital Mechanics .. . 6 6 6
- **JP 240 a** Heat Transfer in Propulsion Systems—Radiative Heat Transfer (3-0-6) Any term
- **Ma 105 ab** Introduction to Numerical Analysis (3-2-6) ... 11 11
- **Ma 112** Elementary Statistics (3-0-6) 9 or 9 .
- **ME 101 abc** Advanced Design (1-6-2) 9 9 9
- **ME 118 abc** Advanced Thermodynamics and Energy Transfer (3-0-6) 9 9 9
- **ME 126** Fluid Mechanics and Heat Transfer Laboratory (0-6-3) 9
- **ME 127** High Frequency Measurements in Fluids and Solids (2-6-1) 9 .
- **Ph 107 abc** Electricity and Magnetism (3-0-6) 9 9 9
- **PM 102** Pyrometry (1-6-2) 9
- **PM 104** Photography (1-6-2) 9 .

1For list of Humanities electives, see page 235.
MECHANICAL ENGINEERING
(NUCLEAR ENERGY OPTION)

FIFTH YEAR

(Leading to the degree of Master of Science in Mechanical Engineering)

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6)</th>
<th>1st Units per Term</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc Seminar (1-0-1)</td>
<td>9 or 10</td>
<td>9 or 10</td>
<td>9 or 10</td>
</tr>
<tr>
<td>AM 101 abc Nuclear Reactor Theory (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 102 abc Applied Nuclear Physics (2-0-4)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Electives as below. See Notes 1 & 2, page 246 (minimum total for year 63) | 21 | 21 | 21 |

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM 103 ab Nuclear Engineering Laboratory (1-6-2)</td>
<td>9</td>
<td>9</td>
<td>.</td>
</tr>
<tr>
<td>AM 110 a Introduction to the Theory of Elasticity (2-0-4)</td>
<td>6</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>AM 110 b Theory of Plates and Shells (2-0-4)</td>
<td>.</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>AM 110 c Mechanics of Materials (2-0-4)</td>
<td>.</td>
<td>.</td>
<td>6</td>
</tr>
<tr>
<td>AM 111 Experimental Stress Analysis (1-6-2)</td>
<td>.</td>
<td>9</td>
<td>.</td>
</tr>
<tr>
<td>AM 125 abc Engineering Mathematical Principles (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 126 abc Applied Engineering Mathematics (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 155 Dynamic Measurements Laboratory (2-0-4)</td>
<td>9</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>AM 180 Matrix Algebra (3-0-6)</td>
<td>.</td>
<td>9</td>
<td>.</td>
</tr>
<tr>
<td>Hy 101 abc Advanced Fluid Mechanics (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>JP 170 Jet Propulsion Laboratory (0-9-0)</td>
<td>.</td>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>Ma 105 ab Introduction to Numerical Analysis (3-2-6)</td>
<td>11</td>
<td>11</td>
<td>.</td>
</tr>
<tr>
<td>Ma 112 Elementary Statistics (3-0-6)</td>
<td>9 or</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>ME 118 abc Advanced Thermodynamics and Energy Transfer (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ME 126 Fluid Mechanics and Heat Transfer Laboratory (0-6-3)</td>
<td>.</td>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>ME 127 High Frequency Measurements in Fluids and Solids (2-6-1)</td>
<td>.</td>
<td>9</td>
<td>.</td>
</tr>
<tr>
<td>Ph 107 abc Electricity and Magnetism (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PM 102 Pyrometry (1-6-2)</td>
<td>.</td>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>PM 104 Photography (1-6-2)</td>
<td>9</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PM 115 ab Crystal Structure and Properties of Metals and Alloys (3-0-6)</td>
<td>.</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PM 116 X-Ray Metallography and Laboratory I (0-6-3)</td>
<td>.</td>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>PM 120 Physics of Solids (3-0-6)</td>
<td>9</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

1For list of Humanities electives, see page 235.

2Ph 112 abc may be substituted for AM 102 abc, and the number of elective units for the year reduced to a minimum total of 45 units.
MECHANICAL ENGINEERING

(PHYSICAL METALLURGY OPTION)

FIFTH YEAR

(Leading to the degree of Master of Science in Mechanical Engineering)

<table>
<thead>
<tr>
<th>Humanities Electives (3-0-6; 4-0-6)</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc Seminar (1-0-1)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 110 a Introduction to the Theory of Elasticity (2-0-4)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PM 103 ab Physical Metallurgy Laboratory (0-9-0; 0-6-0)</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>PM 112 ab Advanced Physical Metallurgy (3-0-6)</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PM 116 X-Ray Metallography I (0-6-3)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives as below. See Notes 1 & 2, page 246

(minimum total for year 63) 21 21 21

47 or 48 47 or 48 47 or 48

Electives (See Notes 1 and 2, page 246)

AM 101 abc Nuclear Reactor Theory (3-0-6)	9
AM 102 abc Applied Nuclear Physics (2-0-4)	6
AM 103 ab Nuclear Engineering Laboratory (1-6-2)	9
AM 110 b Theory of Plates and Shells (2-0-4)	9
AM 110 c Mechanics of Materials (2-0-4)	9
AM 111 Experimental Stress Analysis (1-6-2)	9
AM 125 abc Engineering Mathematical Principles (3-0-6)	9
AM 126 abc Applied Engineering Mathematics (3-0-6)	9
AM 150 abc Mechanical Vibrations (2-0-4)	6
AM 155 Dynamic Measurements Laboratory (1-6-2)	9
Ch 226 abc Introduction to Quantum Mechanics with Chemical Applications (3-0-6)	9
Jp 170 Jet Propulsion Laboratory (0-9-0)	9
Ma 105 ab Introduction to Numerical Analysis (3-2-6)	11
Ma 112 Elementary Statistics (3-0-6)	9 or 9
ME 101 abc Advanced Design (1-6-2)	9
ME 118 abc Advanced Thermodynamics and Energy Transfer (3-0-6)	9
ME 126 Fluid Mechanics and Heat Transfer Laboratory (0-6-3)	9
ME 127 High Frequency Measurements in Fluids and Solids (2-6-1)	9
Ph 107 abc Electricity and Magnetism (3-0-6)	9
Ph 205 abc Principles of Quantum Mechanics (3-0-6)	9
PM 102 Pyrometry (1-6-2)	9
PM 104 Photography (1-6-2)	9

1. For list of Humanities electives, see page 235.
2. Students who have not had PM 115 a or the equivalent will take PM 115 a as one of the electives in the second term.
Notes applying to all options in Mechanical Engineering:

Note 1: Students who have not had a course in Engineering Mathematics, Advanced Calculus, or the equivalent in their undergraduate work are required to include AM 113 ab and AM 116 among the elective units.

Note 2: Substitutions for the scheduled electives may be made upon specific approval of the faculty in Mechanical Engineering. The following are examples of substitutions that have been made in some instances and may be used as a guide by those desiring to make substitutions:

- **AM 105** Advanced Strength of Materials, 6 units second term
- **AM 106** Problems in Buckling, 6 units third term
- **Ae 101 abc** Elements of Gasdynamics, 9 units each term
- **EE 101 abc** Electric Circuit Theory, 9 units each term
- **EE 106 ab** Electronic Circuits, 9 units first and second terms
- **EE 170 abc** Feedback Control Systems, 9 units each term
- **JP 121 abc** Rockets and Air Breathing Engines, 9 units each term
- **PM 105** Mechanical Behavior of Metals, 6 units first term
Specific requirements for the degree of Mechanical Engineer are given on page 193. The following list will suggest possible subjects from which a program of study may be organized:

Ae 201 abc Fundamentals of Fluid Mechanics
Ae 210 abc Fundamentals of Solid Mechanics
Ae 213 Fracture Mechanics
Ae 216 Structural Dynamics
AM 201 abc Advanced Reactor Theory
Ch 163 ab Chemical Engineering Thermodynamics
Ch 226 abc Introduction to Quantum Mechanics
Ch 227 abc The Structure of Crystals
Ch 229 Diffraction Methods of Determining the Structure of Molecules
Ch 262 abc Thermodynamics of Multi-Component Systems
Hy 200 Advanced Work in Hydraulic Engineering
Hy 201 abc Hydraulic Machinery
Hy 203 Cavitation Phenomena
Hy 210 ab Hydrodynamics of Sediment Transportation
Hy 300 Thesis
JP 203 abc Ionized Gas Theory
JP 212 ab Flame Theory and Combustion Technology
JP 240 ab Heat Transfer in Propulsion Systems
JP 250 abc Fluid Mechanics of Axial Turbomachines
ME 200 Advanced Work in Mechanical Engineering
ME 300 Thesis—Research
PM 103 ab Physical Metallurgy Laboratory
PM 112 ab Advanced Physical Metallurgy
PM 205 Theory of Mechanical Behavior of Metals
PM 217 X-Ray Metallography II
Ph 112 abc Atomic and Nuclear Physics
Ph 205 abc Principles of Quantum Mechanics
Ph 227 ab Thermodynamics, Statistical Mechanics, and Kinetic Theory

MECHANICAL ENGINEERING (JET PROPULSION OPTION)

SIXTH YEAR

(Leading to the degree of Mechanical Engineer)

<table>
<thead>
<tr>
<th>Units per Term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 280 abc</td>
<td>Jet Propulsion Research (Thesis)</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Electives</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

The list of subjects which could be chosen as electives for the sixth-year work is given above.
248 Graduate Courses

PHYSICS

FIFTH YEAR

(Leading to the degree of Master of Science in Physics)

<table>
<thead>
<tr>
<th>Units per Term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Electives (3-0-6; 4-0-6)²</td>
<td>9 or 10</td>
<td>9 or 10</td>
<td>9 or 10</td>
</tr>
<tr>
<td>Electives as below (At least 54 of these units must be from courses in Groups I and II as listed on page 210)</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>48 or 49</td>
<td>48 or 49</td>
<td>48 or 49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 107 abc</td>
<td>Electricity and Magnetism (3-0-3)¹</td>
<td>6</td>
</tr>
<tr>
<td>Ph 108 abc</td>
<td>Theoretical Mechanics (3-0-3)¹</td>
<td>6</td>
</tr>
<tr>
<td>Ph 112 abc</td>
<td>Atomic and Nuclear Physics¹</td>
<td>12</td>
</tr>
<tr>
<td>Ph 115 ab</td>
<td>Geometrical and Physical Optics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 129 abc</td>
<td>Methods of Mathematical Physics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 131 abc</td>
<td>Electricity and Magnetism (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 203 abc</td>
<td>Nuclear Physics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 205 abc</td>
<td>Principles of Quantum Mechanics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 207 abc</td>
<td>X- and Gamma-Rays (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 217</td>
<td>Spectroscopy (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)³</td>
<td>12</td>
</tr>
<tr>
<td>Ma 118 abc</td>
<td>Functions of a Complex Variable (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>

¹Prerequisite for most other fifth-year courses.
²For list of Humanities electives, see page 235.
³Prerequisite for Ma 118.

NOTE: With the department's approval, students who have the proper preparation may substitute other graduate courses in Electrical Engineering, Mathematics, or Physics for some of those listed above. Students who have received credit for Ph 131 abc, Ph 129 abc, or Ph 205 abc as undergraduates may use these credits towards a master of science degree provided they replace them with undergraduate credits in L 32 abc (4-0-6), or L 50 abc (4-0-6) earned during the fifth year.
Section VI

SUBJECTS OF INSTRUCTION

AERONAUTICS

ADVANCED SUBJECTS

Ae 101 abc. Elements of Gasdynamics. 9 units (3-0-6); each term. Prerequisites: Elementary Thermodynamics and Fluid Dynamics. The course is intended to give an integrated overall picture of modern gasdynamics and its relation to thermodynamics and kinetic theory. Topics covered include: Thermodynamics of perfect and real gases and gas mixtures; stationary and non-stationary channel flow; shock waves; Euler equations; concepts of vorticity and its relation to entropy and enthalpy distribution; small perturbation theory for subsonic and supersonic flows; viscosity and heat conduction effects; Couette flow and boundary layer concept; elements of kinetic theory. Text: Elements of Gasdynamics, Liepmann-Roshko. Instructors: Liepmann, Roshko.

Ae 102 abc. Static and Dynamic Elasticity. 9 units (3-0-6); each term. Prerequisites: AM 5, AM 8, AM 9. Fundamentals of applied elasticity with examples from aircraft, missile, and spacecraft structures. Exact solutions for two- and three-dimensional problems. Approximate methods of attack on complex problems including energy methods and analog techniques of various types. A concise review of vibration principles supplemented by engineering examples of structural components subjected to dynamic loads. Texts: Elasticity in Engineering, Sechler; Engineering Vibrations, Jacobsen and Ayre. Instructors: Sechler, Babcock.

Ae 104 abc. Experimental Methods in Aeronautics. 9 units (3-0-6); each term. The first term is devoted to the design and use of instruments. Fundamental principles involved in making precision measurements. Parameters governing the accuracy
of instruments. Instrumental and other methods of improving the accuracy of experimental data. The second term consists of experimentation in fluid mechanics. Measurements of the physical properties of fluids and fluid flows, with particular attention to low-speed aerodynamics, turbulence, and steady and non-steady gas dynamics. Examples demonstrate the use of analogies and flow visualization methods. The third term deals with experimental techniques in solid mechanics and applied elasticity. Experiments demonstrate the basic principles established in elasticity and show both the advantages and disadvantages of the experimental method. Solution of structural analysis problems by analog techniques. The analysis and presentation of experimental data are discussed. Text: *Theories of Engineering Experimentation*, Schenk. Instructors: Klein, Coles, Sechler.

Ae 105 bc *Research Laboratory in Fluid Mechanics. 9 units (2-3-4); second and third terms. Prerequisite: Ae 104 a and permission of instructor.* Introduction to experimental research for students who may wish to continue in this field. Closely supervised research covering problem formulation, shop practice, instrumentation and measuring technique, data interpretation, documentation, and technical writing. Instructor: Coles.

May be substituted for Ae 104 b, c by persons expecting to undertake thesis research in the area of fluid mechanics.

Ae 150 abc. Aeronautical Seminar. 1 unit (1-0-0); each term. Speakers from campus and outside research and manufacturing organizations discuss current problems and advances in aeronautics.

Ae 200 abc. Research in Aeronautics. Units to be arranged. Theoretical and experimental investigations in the following fields; aerodynamics, compressibility, fluid and solid mechanics, supersonic and hypersonic flow, aeroelasticity, structures, thermoelasticity, fatigue, photoelasticity. Instructors: Staff.

Ae 201 abc. Fundamentals of Fluid Mechanics. 9 units (3-0-6); each term. Prerequisites: Ae 101, AM 113, AM 116 or AM 125. Theoretical foundations of the mechanics of inviscid and viscous fluids pertinent to aeronautics. The first half, covering inviscid fluids, includes: incompressible flow theory; incompressible two-dimensional airfoil, three-dimensional wing, and slender body theories; linearized compressible potential flows and wing theory; oblique shocks; method of characteristics; exact solutions of the two-dimensional compressible flow equations; similarity laws for subsonic, transonic, supersonic, and hypersonic flows; introduction to hypersonic aerodynamics. The second half, dealing with viscous fluids, includes: physical properties of real gases; Navier-Stokes equations and their exact solutions; low Reynolds number approximate solutions; high Reynolds number phenomena emphasizing boundary layer concepts and their mathematical treatments. Instructors: Millikan, Lees, Kubota.

Ae 203 abc. Flight Mechanics and Applied Aerodynamics. 6 units (2-0-4); each term. Prerequisites: Ae 101, Ae 103, AM 113, 116. Atmospheric flight mechanics, controlled motion of airplanes and rockets, atmospheric perturbation effects, gyroscopic coupling effects. Orbital flight mechanics, launching trajectories, space trajectories, orbital perturbations. Multi-stage rocket performance. Re-entry mechanics and aerodynamic heating. Special topics in wing theory, linearized incompressible and supersonic lifting surface theory and non-stationary wing theories. Instructor: Stewart.
Ae 208 abc. Fluid Mechanics Seminar. 1 unit (1-0-0); each term. A seminar course in fluid mechanics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Instructor: Liepmann.

Ae 209 abc. Seminar in Solid Mechanics. 1 unit (1-0-0); each term. A seminar for staff and students of all divisions whose interests lie in the general field of solid mechanics. Reports on current research by staff and students on the campus are intermixed with seminars given by invited lecturers from companies and other research institutions. Instructors: Staff.

Ae 210 abc. Fundamentals of Solid Mechanics. 9 units (3-0-6); each term. Prerequisite: Ae 102 or equivalent. A course whose purpose is the laying of the foundation for the study of statics and dynamics of elastic, anelastic, and plastic bodies. General basic methodology is emphasized. By developing the general theory to a reasonably high level, several special fields such as elastic waves, viscoelasticity, thermal stresses, theory of plates and shells, conditions of yield and flow, finite strain, etc. are introduced. The main concepts and features of these special fields are discussed. The course first presents prototypes of general theories for simple configurations and then proceeds to develop in detail the tensor analysis, stress and strain analyses, physical laws of elasticity, yield and flow, various stress and strain potentials, complex function techniques, energy principles, and associated methods for approximate analysis based on variational methods. The special fields mentioned above are introduced at appropriate times as illustrations and special developments of general principles. Instructors: Fung, Williams.

Ae 211 abc. Systems Concepts. 6 units (2-0-4); each term. An integrated study of various related subjects in engineering with emphasis on synthesizing the interactions which affect systems design—not necessarily restricted to aeronautics. The interplay between performance requirements, strength-weight analysis, power requirements, logistics, and human economic factors is evaluated in conjunction with familiarizing the student with the more elementary features of the mathematical tools at his disposal, such as operations analysis, digital computations and the variational calculus. (Not necessarily offered each year). Instructors: Staff.

Note: The following group of courses, Ae 212 to 222, represents a series of one term courses in Advanced Solid Mechanics. They will be given as student demand requires and staff facilities permit. It is anticipated that Ae 215, Ae 216, Ae 217, Ae 221 and Ae 222 will be offered in 1962-63. The remaining courses, which are listed by title only, may be offered if sufficient demand exists.

Ae 213. Fracture Mechanics. 9 units (3-0-6); one term. An advanced course stressing the interdisciplinary approach to the fracture of materials, both metallic and non-metallic. The Griffith macroscopic theory of brittle fracture. Essential features of dislocation theory. Extensions to ductile materials and dynamic effects of running cracks as well as fatigue fracture are included. Instructor: Williams.

Ae 216. Structural Dynamics. 9 units (3-0-6); second term 1962-63. Selected problems of structural dynamics that are of special interest to aerospace engineers. Topics may include 1) the causes, effects, and control of structural dynamics of flight vehicles including free, forced, and self excited oscillations, 2) ground shock, base hardening, ground wind, and silo firing problems, and 3) testing techniques, design criteria, and methods of analysis and calculation pertaining to structural dynamics. Instructors: Fung, Schmidt.

Ae 218. Thermal Stress Problems. 9 units (3-0-6); one term.

Ae 219. Mechanics of Inelastic Materials. 9 units (3-0-6); one term.

Ae 220. Non-linear Problems in Structures and Aeroelasticity. 9 units (3-0-6); one term.

Note: The following group of courses Ae 231-Ae 239 includes one term advanced courses in Fluid Mechanics which will be offered from time to time as demand warrants and staff availability permits. The courses which will be offered in 1961-62 are indicated.

Ae 233. Mathematical Fluid Dynamics. 9 units (3-0-6); one term. Prerequisites: Ae 101, AM 125. Topics chosen from characteristic theory, simple waves, shock waves, interactions, similarity solutions, singular perturbation theory, with applications to one-dimensional unsteady flow, supersonic flow, blast wave theory, Stokes flow, and boundary layer theory. Instructors: Lagerstrom, Cole, Kaplun. (Not offered in 1961-62).

Ae 234. Hypersonic Aerodynamics. 9 units (3-0-6); one term. Prerequisites: Ae 101, Ae 201 a, AM 125. An advanced course dealing with aerodynamic problems of flight at hypersonic speeds. Topics are selected from: Hypersonic small-disturbance theory, blunt body theory, boundary layers and shock waves in real gases, heat and mass transfer, testing facilities and experiments. Text: Hypersonic Flow Theory, Hayes and Probstein. Instructor: Kubota (Offered second term 1961-62).

Ae 236. Topics in Plasma Physics. (3-0-6); one term. Prerequisites: Permission of instructor. A lecture course on current problems in the dynamics of ionized gases offered jointly with the Astronomy department. The course will be given by resident or visiting faculty members. The subject matter will vary from year to year and may include e.g., plasma waves, plasma stability problems, radiation from plasma sources, statistical mechanics of ionized gases, etc. Instructor: Lüst. (Offered second term 1961-62).

Ae 237. Shock Tube Theory and Techniques. 9 units (3-0-6); one term. Prerequisites: Ae 101, AM 95 or AM 113, AM 116. Review of shock waves in moving co-ordinate systems, in real and perfect gases. Simple expansion waves. Basic shock tube equation; various shock tube parameters. Reflected shock waves. Effects of area charge. Driver types and characteristics. Non-ideal behavior in shock tubes; diaphragm opening effects, boundary layer effects. Shock tube techniques and measurements. Illustrations of shock tube applications; shock wave structure, shock
wave interactions, experiments on chemical and physical properties of gases, reaction rates, aerodynamic experiments, light gas guns, etc. Instructors: Roshko, Sturtevant. (Offered third term 1961-62).

JET PROPULSION

(For Jet Propulsion see pages 294-297)

AIR SCIENCE

AS 1 abc. Foundations of Aerospace Power. 4 units (2-1-1). *(The freshman year.)* An introductory examination of the factors of aerospace power, major ideological conflicts, requirements for military forces in being, responsibilities of citizenship, development and traditions of the military profession, role and attributes of the professional officer in American democracy, organization of the armed forces as factors in the preservation of national security, and the United States Air Force as a major factor in the security of the free world. An average of not less than two classroom hours per week for the academic year (a total of 60 classroom hours). Instructors: Air Force Staff.

AS 2 abc. Fundamentals of Aerospace Weapon Systems. 4 units (2-1-1). *(The sophomore year.)* An introductory survey of aerospace missiles and craft, and their propulsion and guidance systems; target intelligence and electronic warfare; nuclear, chemical, and biological warhead agents; defensive, strategic, and tactical operations; problems, mechanics, and military implications of space operations; and a survey of contemporary military thought. An average of not less than two classroom hours per week for the academic year (a total of 60 classroom hours). Instructors: Air Force Staff.

*AS 3 abc. Air Force Officer Development.** 8 units (4-1-3). *(The junior year.)* Staff organization and functions and the skills required for effective staff work, to include oral and written communication and problem solving; basic psychological and sociological principles of leadership and their application to leadership practices and problems; and an introduction to military justice. An average of not less than four classroom hours per week for the academic year (a total of 120 classroom hours). Instructors: Air Force Staff.

During the junior and senior years certain Institute courses may be substituted for some of the areas of instruction depicted above. When this occurs, and no military classroom instruction is provided, only three units will be granted for Air Science that term.
*AS 4 abc. Global Relations. 3 or 8 units (0-1-2 first and second terms, 4-1-3 third term). *(The senior year.)* An intensive study of global relations of special concern to the Air Force officer, with emphasis on international relations and geography, and briefing for commissioned service. An average of not less than four classroom hours per week for the academic year (a total of 120 classroom hours). Instructors: Air Force Staff.

Applied Mechanics

Undergraduate Subjects

AM 8 abc. Mechanics of Solids I. 9 units (3-0-6); first, second and third terms. Prerequisites: Ph 1 abc, Ma 1 abc. Dynamics of particles, groups of particles and rigid bodies; general principles of statics including energy, stability and an introduction to statically indeterminant structures; kinematics of relative motion; periodic and non-periodic motion of vibrating systems; planetary motion; Euler's equations of motion and gyroscopes; momentum relations in flow of matter. Concept of stress and strain in continuous solids; stress states; deformation of continuous solids, displacement-strain and stress-strain-temperature relations; strain energy and energy methods; equilibrium and compatibility equations for stresses; uniqueness theorem, St. Venant's principle. Emphasis is on development of fundamental principles with application to selected problems. Text (AM 8 ab): *Principles of Mechanics of Solids and Fluids, Vol. 1*, Yeh and Abrams. Instructors: Crede, Vreeland.

AM 9 abc. Mechanics of Solids II. 9 units (3-0-6); first, second and third terms. Prerequisite: AM 8 abc. Analysis of stress, strain and deflection in torsion, bending, columns, beams, plates and shells, pressure vessels and rotating discs. Hamilton's principle; generalized coordinates; Lagrange's equation; vibration of multiple degree-of-freedom systems; vibration of systems with distributed mass and stiffness; longitudinal and flexural vibrations of bars; wave propagation; Rayleigh's principle; representation of continuous vibrating systems by lumped parameters; matrix formulation of vibration problems; orbital mechanics. Emphasis is on more advanced methods of analysis and application to physical problems. Instructors: Crede, Vreeland.

Advanced Subjects

Note: Other subjects in the general field of Applied Mechanics will be found listed under the departments of Aeronautics, Electrical Engineering, Mechanical Engineering, and Physics.

AM 95 ab. Engineering Mathematics. 12 units (4-0-8); first and second, and second and third terms. *(Graduate students needing this material should take AM 113 ab.)* Prerequisites: Ma 1 abc, Ma 2 abc, or equivalent. A course in the mathematical treatment of problems in engineering and physics. Emphasis is placed on the formulation of problems as well as their mathematical solution. The topics studied include: vector analysis as applied to formulation of field theory problems; special functions such as the Bessel functions and Legendre functions; series of orthogonal functions; partial differential equations and boundary value problems, and an introduction to integral transforms. Text: *Differential Equations Applied in Science and Engineering*, Wayland. Instructors: Knowles, Miklowitz, Wayland, and Staff.

*During the junior and senior years certain Institute courses may be substituted for some of the areas of instruction depicted above. When this occurs, and no military classroom instruction is provided, only three units will be granted for Air Science that term.
AM 101 abc. Nuclear Reactor Theory. 9 units (3-0-6); each term. Prerequisite: AM 113 ab or equivalent (may be taken concurrently). Neutron chain reactions and the criticality condition; the slowing down of neutrons in an infinite medium; one-speed diffusion of neutrons in multiplying and non-multiplying systems; combined slowing down and diffusion; bare and reflected homogeneous reactors; effects of heterogeneity; time dependent behavior of reactors; control rod theory; elements of transport theory. Instructor: Lurie.

AM 102 abc. Applied Nuclear Physics. 6 units (2-0-4); each term. Prerequisites: Ph 2 abc; AM 95 ab or equivalent. An introductory course covering those aspects of nuclear physics which are encountered in nuclear engineering. Topics covered will include radioactivity, the interactions of charged particles and gamma rays with matter, nuclear reactions, neutron physics and nuclear fission. Part of the third term will be devoted to such specialized topics as radiation shielding including bulk and thermal shields. Instructors: Plesset, Hsieh.

AM 103 ab. Nuclear Engineering Laboratory. 9 units (1-4-4); first and second terms. Prerequisite: Ph 2 abc. A laboratory course divided into two parts. In the first term, basic radiation detection devices and techniques are studied. The instruments are used to determine the properties of various types of radiation and to observe the nature of their interaction with matter. In the second term, measurements associated with nuclear reactor parameters are made. Neutron flux distributions in pure water and in a subcritical assembly are measured and analyzed. Instructor: Shapiro.

AM 105. Advanced Strength of Materials. 6 units (2-0-4); second term. Prerequisites: AM 8, AM 9. Analysis of problems of stress and strain that are described by ordinary differential equations, such as beams on elastic foundation, curved bars, combined bending and axial loading of beams, combined bending and torsion of beams. Energy methods of solution. Instructor: Housner.

AM 106. Problems in Buckling. 6 units (2-0-4); third term. Prerequisites: AM 8, AM 9. Analysis of problems dealing with the elastic instability of columns, beams, arches and rings, and the inelastic buckling of columns. Instructor: Housner.

AM 111. Experimental Stress Analysis. 9 units (1-6-2); second term. Prerequisite: AM 8 abc or equivalent. Static and dynamic stress and strain measurements, including the use of piezoelectric materials; wire resistance strain gages; mechanical, optical, inductance, and capacitance displacement gages: photoelastic materials; brittle
lacquer coatings; X-rays, and associated instrumentation and recording systems. Instructor: Staff.

AM 113 ab. Engineering Mathematics. 9 units (4-0-5); first and second, or second and third terms. For graduate students only. Prerequisites: Ma 1 abc, Ma 2 abc, or equivalent. A course for graduate students who have not had the equivalent of AM 95 ab. Emphasis is placed on the setting up of problems as well as their mathematical solution. The topics studied include: vector analysis, ordinary differential equations emphasizing power series solutions; special functions such as the Bessel functions and Legendre functions; partial differential equations and boundary value problems, with emphasis on application of series of orthogonal functions; and an introduction to transform methods. Text: Differential Equations Applied in Science and Engineering, Wayland. Instructors: Knowles, Miklowitz, Wayland, and Staff.

AM 116. Complex Variables and Applications. 12 units (4-0-8); first term and third term. Only six units credit for those students who have completed or are simultaneously enrolled in Ma 108. Prerequisites: Ma 1 abc, Ma 2 abc, or equivalent. A basic introduction to analytic functions of a complex variable. Emphasis is placed on application of conformal mapping to boundary value problems and on techniques and applications of contour integration. Text: Introduction to Complex Variables and Applications, Churchill. Instructors: Miklowitz, Wayland, and Staff.

AM 125 abc. Engineering Mathematical Principles. 9 units (3-0-6); each term. Prerequisites: AM 95 ab and AM 116, Ma 108, or equivalent. Topics from ordinary and partial differential equations with applications to vibrations, elasticity, theory of sound, fluid mechanics, and diffusion. Instructor: Cole.

AM 126 abc. Applied Engineering Mathematics. 12 units (3-0-9); each term. Prerequisites: AM 95 ab and AM 116, Ma 108, or equivalent. A problem and lecture course in engineering mathematics. Preparation of approximately six reports per term on problems taken from all branches of engineering. First term lectures cover topics in ordinary differential equations including: Lagrange's equations, normal modes of vibration, and nonlinear systems. Second and third term lectures cover topics in partial differential equations including: characteristics, vibration theory, Rayleigh-Ritz method, conformal mapping, Laplace transform, difference equations, relaxation methods. Instructor: Lindvall.

AM 130 abc. Applications of Classical Theoretical Physics I. 9 units (3-0-6); first, second, and third terms. Prerequisites: AM 95 ab, AM 116, or equivalent. Analytical mechanics of systems of particles, heat conduction, thermodynamics, mechanics of continuous media. Instructors: Plesset and Wu.

AM 131 abc. Applications of Classical Theoretical Physics II. 9 units (3-0-6); first, second, and third terms. Prerequisites: AM 96 ab, AM 116, or equivalent. Kinetic theory, classical and quantum statistical mechanics, electrodynamics, and special relativity. Instructors: Plesset and Wu.

AM 150 abc. Mechanical Vibrations. 6 units (2-0-4); first, second, and third terms. Prerequisites: AM 8, AM 95 a, b or permission of instructor. A study of the theory of vibrating systems, and the application of such theory to problems of mechanical design. Subjects considered include theory of resonant systems; elimination of undesirable vibrations; design of vibration instruments; periodic disturbing forces such as engine vibration problems; critical speed phenomena; transient excitations; general normal mode theory. The third term is an introduction to non-linear vibration theory. Instructors: Caughey, Crede, Hudson.

AM 155. Dynamic Measurements Laboratory. 9 units (1-6-2); first term. Theory and technique of making measurements encountered in engineering practice and research, with special reference to dynamic measurements. Experiments in vibrations and stability using the latest electro-mechanical and electronic instruments are performed. Instructors: Caughey, Crede, Hudson.

AM 160. Vibrations Laboratory. 6 units (0-3-3). Prerequisite: AM 150. The experimental analysis of typical problems involving vibrations in mechanical systems, such as a study of the characteristics of a vibration isolation system, or a determination of the transient strains in a machine member subjected to impact loads. The measurements of strains, accelerations, frequencies, etc., in vibrating systems, and the interpretation of the results of such measurements. Consideration is given to the design, calibration and operation of the various types of instruments used for the experimental study of dynamics problems. Instructors: Caughey, Crede, Hudson.

AM 174 abc. Advanced Dynamics I. 6 units (3-0-3). Prerequisites: AM 125 abc and AM 150 abc or equivalents. The first two terms will cover topics in advanced linear vibration theory with special emphasis on approximate methods of analysis of complex systems and topics in non-linear vibration theory with special emphasis on systems with strong non-linearities. The third term will be devoted to noise and stochastic processes applied to vibration problems. This course will be given every other year to alternate with AM 176. Given 1960-61. Instructor: Caughey.

AM 176 abc. Advanced Dynamics II. 6 units (3-0-3). Prerequisites: AM 125 abc and AM 150 abc or equivalents. The first term will be devoted to topics in engineering applications of acoustics. The second and third terms will cover topics in stability of dynamic mechanical systems and in control of mechanical-electrical systems. This course will be given every other year to alternate with AM 174. Instructor: Caughey.

AM 180. Matrix Algebra. 9 units (3-0-6); first term. Prerequisite: AM 95 ab or equivalent. Theory of matrices from the standpoint of mathematical physics and as used in the formulation of problems on high-speed analog and digital computers. Canonical forms are developed for self adjoint and for general matrices. Text: Principles of Numerical Analysis, Householder. Instructor: Franklin.
AM 181 ab. Linear Programming. 9 units (3-0-6); second and third terms. Prerequisite: AM 180 or Ma 5. Engineering and economic applications of linear programming. Duality and equilibrium theorems. The simplex method. Integral linear programming. Assignment, transshipment, and transportation problems. Applications to game theory. Instructor: Franklin.

AM 200. Special Problems in Advanced Mechanics. Dynamics of solid and deformable bodies, fluids, and gases; mathematical and applied elasticity. By arrangement with members of the staff, properly qualified graduate students are directed in independent studies. Hours and units by arrangement.

AM 225 abc. Advanced Topics in Applied Mathematics. 9 units (3-0-6). Prerequisite: AM 125 or equivalent. Advanced mathematical techniques used in Engineering and Physics. Special emphasis on a systematic theory of partial differential equations. This will include theory of characteristics, Green's functions, tensor analysis, perturbation methods, similarity, Wiener-Hopf method. Selected advanced topics, such as Calculus of Variation, Integral Equations, will be included. The connections between physical and mathematical problems will be emphasized. Instructors: Cole, Lagerstrom, Kaplun.

AM 250 abc. Research in Applied Mechanics. Research in the field of Applied Mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in research. Hours and units by arrangement.

Astronomy

Undergraduate Subjects

Ay 1. Introduction to Astronomy. 9 units (3-1-5); third term. This course is intended to give the student sufficient familiarity with general astronomy to enable him to read with profit all but the more technical books and articles dealing with this subject. Reading in a text is supplemented by lectures on current astrophysical topics. Instructor: Greenstein.
Subjects of Instruction

Ay 2 abc. General Astronomy. 9 units (3-3-3); first, second, and third terms. Prerequisites: Ph 2 abc, Ma 2 abc. The planets, the sun and solar-terrestrial relations. Physical properties of the stars and the spectral sequence. Binary and variable stars. Dynamics of the galaxy, extragalactic nebulae. Introduction to astrophysics of stellar interiors and atmospheres. Instructors: Münch, Eggen, Schmidt.

Advanced Subjects

Ay 112 abc. General Astronomy. 6 units (3-2-1); first, second, and third terms. This subject is the same as Ay 2, with reduced credit for graduate students. Instructors: Münch, Eggen, Schmidt.

Ay 131 ab. Stellar Atmospheres. 9 units (3-0-6); first and second terms. Prerequisites: Ay 2 abc, Ph 112 abc. Atomic spectroscopy. Stellar spectra. The theory of radiative equilibrium in stellar atmospheres. The continuous absorption by atoms and the production of the continuous spectrum of the stars; the line absorption coefficient and the formation of spectral lines. The solar atmosphere. Analysis of stellar spectra. Abundances of the elements. Nucleo-synthesis. Instructors: Greenstein, Münch.

Ay 132 ab. Stellar Interiors. 9 units (3-0-6); second and third terms. Prerequisites: Ay 2 abc, Ph 112 abc, or their equivalents. Introduction to the study of stellar interiors; polytropes; opacity and energy generation. Stellar models. Red giants and white dwarfs. Stellar evolution. Pulsating stars. Not given in 1962-63.

Ay 135. Topics in Modern Astronomy. 9 units (3-0-6); third term. Lectures on recent developments and trends in current research. Instructor: Struve.

Ay 136. Planetary Physics. 9 units (3-0-6); third term. Introduction to planetary dynamics. Physical properties of the planets and satellites, their atmospheres and interiors. Interplanetary matter and fields. Comets. Given in alternate years. Instructor: Münch.

Ay 140 abc. Seminar in Astrophysics. 4-12 units; first, second, third terms. Discussions on the large-scale distribution of matter in the universe, statistics of the distribution of nebulae and clusters of nebulae. Morphology of nebulae. Theory and discussion of observational data on stars of special interest, such as supernovae, white dwarfs, variable stars, and emission line stars. Practical work of reduction of data obtained with the Schmidt telescopes on Palomar Mountain. Students and visiting research personnel are admitted to the seminar who have the time, inclination and ability to engage in active, constructive work on problems that will be formulated in this seminar. Meetings throughout the year according to agreement. Instructor: Zwicky.
Ay 141 abc. Research Conference in Astronomy. 2 units; first, second and third terms. Meets weekly to discuss work in progress in connection with the staff of the Mount Wilson and Palomar observatories.

Ay 142. Research in Astronomy, Radio Astronomy, and Astrophysics. Units in accordance with the work accomplished. The student should consult a member of the department and have a definite program of research outlined with him before registering. Eighteen units required for candidacy.

Ay 202. The Solar Atmosphere. 9 units (3-0-6); third term. The photosphere and the outer layers of the sun; the chromosphere and corona. Magnetic fields; spots and the general field; their motion and variations. Instructor: Howard.

Ay 208. Laboratory in Stellar Astronomy. 10 units (2-6-2); third term. Use of astronomical observational and laboratory equipment. Measurement and reduction of research materials. Projects undertaken by the group will involve research on star positions, motions, brightness, color, variability and spectra. Given in alternate years. Instructor: Eggen.

Ay 211. Stellar Dynamics and Galactic Structure. 9 units (3-0-6); first term. Dynamical and kinematical description of stellar motions. Galactic rotation and the density distribution. Dynamics of clusters; relaxation times. Structure and mass of the galaxy and external systems. Not given in 1962-63.

Ay 215. Seminar in Astrophysics. 4 units (1-0-3); second term. Prerequisites: Ay 131 and/or Ay 132. Seminar on recent developments for advanced students. The current observational and theoretical literature will be discussed by the students. Instructor: Münch. Not given in 1962-63.

Ay 234. Seminar in Radio Astronomy. 8 units (2-0-6); second term. Prerequisite: Ay 133. Recent developments in radio astronomy for the advanced student. Current publications and research in progress will be discussed by students and staff. Instructor: Schmidt and Staff.

The following courses will be offered from time to time by members of the Mount Wilson Observatory and Institute staffs:

Ay 203. Stellar Electromagnetism.

Ay 204. Advanced Stellar Spectroscopy.

Ay 207. Stellar Luminosities and Colors.
Subjects of Instruction

Ay 209. Planetary and Diffuse Nebulae.

Ay 213. Selected Topics in Observational Cosmology.

Ay 214. Theoretical Cosmology.

Ay 216. Advanced Stellar Interiors.

BIOLOGY

UNDERGRADUATE SUBJECTS

Bi 1. Elementary Biology. 9 units (3-3-3); second term. A study of the organism as a structural and functional entity, and of the relation of biological problems to human affairs. Instructors: Bonner, Staff.

Bi 3. Plant Biology. 12 units (3-6-3); first term. Prerequisite: Bi 1, Bi 9, or consent of instructor. Principles of plant structure, plant diversity, and plant function. Instructors: Lang, Bonner, Staff.

Bi 9. Cell Biology. 9 units (3-3-3); third term. Studies of life at the cellular level: nature, functions, and integration of ultrastructural components; physical and chemical parameters; influences of external agents and internal regulation. Instructors: Hodge, Staff.

Bi 10. Animal Biology. 12 units (3-6-3); second term. Principles of animal structure, function, and diversity. Instructor: Brokaw.

Bi 20. Mammalian Anatomy and Histology. 12 units (2-6-4); third term. Macroscopic and microscopic structure of a mammal, including elementary instruction in preparation of tissue for microscopic inspection. Instructors: Van Harreveld, Keighley.

Bi 22. Special Problems. Units to be arranged; first, second, and third terms. Special problems in one of the fields represented in the undergraduate biology curriculum; to be arranged with instructors before registration. Instructors: The Biology teaching staff.

ADVANCED SUBJECTS

A. Subjects open to graduate students, but not to be counted toward a major for the degree of Doctor of Philosophy.

Bi 106. Embryology. 12 units (2-6-4); third term. Prerequisite: Bi 10. The subject deals mainly with vertebrate embryology and includes some invertebrate, experimental and cytological material. Instructor: Tyler.

Bi 107 abc. Biochemistry. 10 units (3-0-7; 3-3-4; 3-5-2); first, second, and third terms. Prerequisite: Ch 41. A lecture course on the chemical constitution of living matter and the chemical changes in animals, with laboratory work illustrating principles and methods in current use. In the third quarter emphasis is placed upon the application of physical methods to biochemical problems. Instructors: Borsook, Mitchell, Sinsheimer.

Bi 109. Advanced Genetics Laboratory. Units to be arranged; second term. An advanced laboratory course in the genetics of Drosophila. Instructor: Lewis.
Bi 110. General Microbiology. 12 units (3-4-5); third term. Prerequisites: Bi 122, Bi 107a. A course dealing with the various aspects of microorganisms, including cytology, antigenic properties of bacteria; nutritional requirements, with particular emphasis on autotrophic bacteria; the influence of environment; growth; spontaneous death and artificial killing; microbial variation; sexuality in microorganisms; taxonomical problems. Instructor: Dulbecco. Not offered in 1962-63.

Bi 114. Immunology. 9 units (2-4-3); first term. Prerequisite: Ch 41 abc. A course on the principles and methods of immunology and their application to various biological problems. Instructor: Owen.

Bi 117. Psychobiology I. 9 units (3-3-3); third term. Prerequisite: Bi 1. An introduction to the biology of behavior with correlated laboratory study of the vertebrate nervous system. Instructor: Sperry.

Bi 118. General Physiology. 10 units (3-3-4); first term. A lecture and laboratory course on selected topics like nervous excitation and conduction, synaptic transmission, inhibition, muscle contraction, sense organ physiology, etc. Instructors: Van Harreveld, Wiersma.

Bi 120. Mammalian Anatomy and Histology. 9 units; third term. This subject is the same as Bi 20 but with reduced credit for graduate students. Graduate students majoring in Biology receive no credit for this subject. Instructors: Keighley, Van Harreveld.

Bi 122 Genetics. 10 units (3-3-4); first term. Prerequisite: Bi 1 or Bi 9. A course presenting the fundamentals of genetics in relation to general biological problems. (This course was previously listed as Bi 2.) Instructor: Lewis.

Bi 126. Genetics of Microorganisms. 10 units (2-4-4); second term. Prerequisite: Bi 122. The genetics of algae, fungi, protozoa, and bacteriophage with laboratory work to illustrate the suitability of different microorganisms to particular kinds of genetic analysis. Instructors: Emerson, Edgar, Staff.

Bi 127. Biochemical Genetics. 10 units (2-4-4); third term. Prerequisites: Bi 122 and Bi 126. A course dealing with gene action at the molecular and cellular levels. Topics to be reviewed include genetic determination of protein structure, gene-enzyme relationships, genetic control of metabolism and biosynthetic pathways, and genes and development. May be taken without the laboratory, for reduced credit, with permission of instructor. Instructor: Horowitz.

Bi 128. Advanced Microtechnique. 6 units (1-4-1); third term. Theory and practice of preparing biological material for microscopic examination; histochemical methods; phase contrast microscopy; methods in electron microscopy. Instructor: Tyler.

Bi 129 ab. Biophysics. 6 units (2-0-4); first and second terms. The subject matter to be covered will be repeated approximately in a three-year cycle. During the first term the subject matter will be organized according to various biological functions, such as replication, contractility, sensory processes, endogenous rhythms, etc. Each function will be discussed in its various biophysical aspects. During the second term the subject matter will be organized according to methods of research. This course together with Ch 132 constitutes an integrated program covering the physical and physico-chemical approaches to biology. Instructor: Sinsheimer. (Bi 129a will not be offered in 1961-62.)
B. Subjects primarily for graduate students.

Bi 201. General Biology Seminar. 1 unit; all terms. Meets weekly for reports on current research of general biological interest by members of the Institute staff and visiting scientists. In charge: Emerson, Dulbecco, Wiersma.

Bi 202. Biochemistry Seminar. 1 unit; all terms. A seminar on selected topics and on recent advances in the field. In charge: Mitchell.

Bi 204. Genetics Seminar. 2 units; all terms. Reports and discussion on special topics. In charge: Edgar, Lewis.

Bi 205. Experimental Embryology Seminar. 1 unit; all terms. Reports on special topics in the field; meets twice monthly. In charge: Tyler.

Bi 206. Immunology Seminar. 1 unit; all terms. Reports and discussions; meets twice monthly. In charge: Owen, Tyler.

Bi 207. Biophysics Seminar. 1 unit; all terms. A seminar on the application of physical concepts to selected biological problems. Reports and discussions. Open also to graduate students in physics who contemplate minoring in Biology. Instructor: Sinsheimer.

Bi 214 abc. Chemistry of Bio-Organic Substances. 3 units (1-0-2); first, second, and third terms. Prerequisite: Ch 41 ab. A series of lectures on selected topics of organic chemistry that have special interest from a biological viewpoint. Instructor: Haagen-Smit.

Bi 217. Quantitative Organic Microanalysis. Units to be arranged; second term. Laboratory practice in the methods of quantitative organic microanalysis required for structure determination of organic compounds. Students must obtain permission from the instructor before registering for this subject as the enrollment is necessarily limited. Instructor: Haagen-Smit.

Bi 218. Virology. 9 units (2-3-4); second term. Prerequisites: Bi 1 or Bi 9, and permission of instructor. The multiplication of viruses, the origin of their chemical constituents, and the determination and transmission of their genetic properties. Instructor: Dulbecco.

Bi 220 abc. Experimental Embryology. 6 units (2-0-4); first, second, and third terms. Lectures and discussion of the problems of embryonic development, including such topics as growth of the ovary, breeding habits of animals, fertilization, cleavage, organ formation, metamorphosis, regeneration, tissue culture, embryonic metabolism, etc. The subject may be taken for two consecutive years since the subject matter will be duplicated only in alternate years. Instructor: Tyler.

Bi 221. Experimental Embryology Laboratory. Units to be arranged; all terms. The work will include certain classical experiments and instruction in the methods of studying embryonic metabolism, transplantation, vital staining, cytochemistry, etc. Instructor: Tyler.

Bi 230. Psychobiology 2. Units to be arranged. First, second, and third terms. Prerequisite: consent of instructor. An advanced course on the neural organization of behavior. Instructor: Sperry.

Bi 240 abc. Plant Physiology. 6 units (2-0-4); first, second, and third terms. Reading and discussion of the problems of plant physiology. Instructors: Bonner, Lang.

Bi 241 abc. Advanced Biochemistry. 6 units (2-0-4); first, second, and third terms. Detailed discussions of biochemical topics on an advanced level. Instructor: Bonner.

Bi 270. Special Topics in Biology. *Units to be arranged. First, second, and third terms.* Students may register with permission of the responsible faculty member.

Bi 280-290. Biological Research. *Units to be arranged. First, second, and third terms.* Students may register for research in the following fields after consultation with those in charge: Animal physiology (280), biochemistry (281), bio-organic chemistry (282), embryology (283), genetics (284), immunology (285), marine zoology (286), plant physiology (287), biophysics (288), psychobiology (289), virology (290).

CHEMICAL ENGINEERING

UNDERGRADUATE SUBJECTS

ChE 50. Applications of Chemistry. 9 units (3-0-6); second term. Consideration of the most recent developments in the field of chemical engineering viewed from the quantitative backgrounds of physics, mathematics, chemistry, and economics. Instructor: Corcoran.

ChE 61 ab. Industrial Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: Ch 21 abc. A study of the more important industrial chemical processes, from the point of view not only of the chemical reactions, but of the conditions and equipment necessary to carry on these reactions. Instructor: Manning.

ChE 63 abc. Chemical Engineering Thermodynamics. 9 units (3-0-6) first, third terms; 6 units (2-0-4) second term. Class exercises and problems in engineering thermodynamics studied from the point of view of the chemical engineer. Text: Thermodynamics of One-Component Systems, Lacey and Sage. Instructor: Pings.

ChE 65. Economics of Chemical Technology. 9 units (1-0-8); second term. Detailed studies of the technology and its relation to the economic feasibility of exemplary chemical processes. Offered to seniors in the chemical engineering option as an elective. Instructor: Manning.

ChE 66 abc. Chemical Engineering Operations. 12 units (3-0-9); first, second, third terms. Prerequisite: ChE 63 abc. Calculations and discussions on the quantitative problems encountered in carrying out chemical processes efficiently on a commercial scale. The unit operations of chemical engineering are studied both as to principle and practice. Texts: Transport Phenomena, Bird, Stewart, and Lightfoot; Principles of Unit Operations, Foust. Instructor: Pings.

ChE 67 ab. Chemical Engineering Laboratory. 9 units (0-7-2); second, third terms. Prerequisites: Ch 21 abc, ChE 63 abc. Instruction and practice in making engineering measurements, and illustration of some of the principles encountered in engineering courses. Instructor: Richter.

ChE 68. Introductory Chemical Engineering Kinetics. 9 units (3-0-6); first term. Prerequisite: Ch 21 abc. A quantitative treatment of the engineering design of chemical reactors. Instructor: Corcoran.

ChE 80. Undergraduate Research. Research in chemical engineering and industrial chemistry offered as an elective in each of three terms. If ChE 80 units are to be used as electives in the Chemical Engineering Option a thesis must be submitted in duplicate before May 10 of the year of graduation and be approved by the research director. The thesis must contain a statement of the problem, appropriate background material, a description of the research work, a discussion of the results, conclusions, and an abstract. The thesis may cover only a portion of the research.
ChE 81. Special Topics in Chemical Engineering. Occasional advanced work involving reading assignments and a report on special topics. Permission of the instructor is required. No more than 12 units in ChE 81 may be used as electives in the Chemical Engineering Option.

ADVANCED SUBJECTS

ChE 163 abc. Chemical Engineering Thermodynamics. 6 units (3-0-3) first, third terms; 4 units (2-0-2) second term. This subject is the same as ChE 63 abc for third-year students, but with reduced credit for graduate students. No graduate credit is given for this subject to students in chemical engineering.

ChE 166 abc. Chemical Engineering Operations. 8 units (3-0-5); first, second, third terms. Prerequisite: ChE 63 abc. This subject is the same as ChE 66 abc, but with reduced credit for graduate students. No graduate credit is given for this subject to students in chemical engineering.

ChE 167 abc. Chemical Engineering Laboratory. 15 units (0-15-0); first, second, third terms. Prerequisites: Ch 21 abc, ChE 61 ab, ChE 63 abc. A laboratory course providing fundamental training in the methods and techniques of engineering measurements and in research encountered by the chemical engineer. Instructors: Sage, Richter.

ChE 168 ab. Mechanics of Fluid Flow. 9 units (2-0-7), second, third terms. Prerequisites: ChE 66 a, AM 95 ab, or taking AM 113 ab concurrently. A study of the flow of fluids in situations of interest to chemical engineers, with emphasis on estimation of velocity and pressure distribution. Subjects include the conservation of momentum and the Navier-Stokes equations, boundary layer theory, turbulence, non-Newtonian fluids, and flow in porous media. Instructor: Longwell.

ChE 169. Advanced Industrial Chemistry. 9 units (2-0-7); first term. Prerequisites: ChE 61 ab, ChE 63 abc. An extension of ChE 61 with emphasis on quantitative approaches to industrial chemical problems. Consideration is given to the more important chemical reactions of industrial interest. Chemical kinetics and material and energy balances are treated. Instructor: Corcoran.

ChE 170. Chemical Process Dynamics. 9 units (2-0-7); third term. Prerequisite: Ma 2 abc. A treatment of automatic control of chemical processes with emphasis on theory and dynamic response. Instructor: Richter.

ChE 171 ab. Chemical Engineering Applied Mathematics. 9 units (2-0-7); first, second terms. Prerequisite: AM 95 ab. Handling and interpretation of data including elementary statistical treatment, Laplace transforms and other methods of solution of linear partial differential equations, numerical solution of ordinary and partial differential equations, calculus of finite differences. Instructor: Longwell.

ChE 172. Heat Transfer. 9 units (2-0-7); third term. Prerequisite: ChE 66 abc. Detailed consideration of problems in thermal transfer. Instructor: Sage or Corcoran.

ChE 175 ab. Chemical Process Development. 9 units (0-0-9); two terms, by arrangement with instructor. Prerequisites: ChE 61 ab, ChE 66 abc. Application of chemical engineering and related economic principles involved in process development, equipment selection and plant design. Through regular consultation with the instructor, the student will select a chemical compound or product and carry out a comprehensive investigation leading to a detailed report which will include the elements of a technical business problem in the chemical industry. Instructor: Manning.
ChE 262 abc. Thermodynamics of Multi-Component Systems. 9 units (2-0-7); first, second, third terms. Prerequisites: ChE 61 ab, ChE 63 abc, AM 95 ab, or taking AM 113 ab concurrently. A presentation of the background necessary for a working knowledge of multi-component open systems from the engineering viewpoint. A discussion of the volumetric and phase behavior of pure substances, and of binary, ternary, and multi-component fluid systems at physical and chemical equilibrium is included as a part of this thermodynamic treatment. The solution of numerous problems relating to the application of these principles to industrial practice constitutes a part of this course. Texts: Volumetric and Phase Behavior of Hydrocarbons, Sage and Lacey; Thermodynamics and Multi-Component Systems, Sage and Lacey. Instructor: Sage.

ChE 263 abc. Transfers in Fluid Systems. 12 units (2-0-10); first, second, third terms. Prerequisites: ChE 66 abc, ChE 168 ab, AM 95 ab, or taking AM 113 ab concurrently. A consideration of thermal and material transfers in fluid systems under conditions encountered in practice. Emphasis is placed upon point conditions and upon the analogies between momentum, thermal, and material transfers in turbulent flow. The greater part of the effort in the course is devoted to the solution of transfer problems, many of which require the use of graphical or numerical methods for solution of the differential equations involved. Given in alternate years. Offered in 1961-62. Instructor: Sage.

ChE 266 abc. Applied Chemical Kinetics. 9 units (2-0-7); first, second, third terms. Prerequisite: ChE 66 abc. Both homogeneous and heterogeneous kinetics are studied. Design of various types of reactors is treated on the basis of the associated phenomena of material, energy and momentum transfer. In the third term an extended problem in the design of a chemical reactor wherein there is simultaneous energy, material and momentum transfer is considered, and the Datatron 220 digital computer is used in the solution of the problem. Given in alternate years. Offered in 1962-63. Instructor: Corcoran.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in Chemical Engineering. The main lines of research now in progress are:
- Influence of turbulence upon heat transfer in fluids.
- Influence of turbulence on the transfer of material through fluids.
- Phase and thermodynamic behavior of hydrocarbons and others fluids.
- Studies of non-equilibrium behavior of fluid systems at elevated pressure.
- Reaction kinetics in flow and non-flow systems.
- Study of gas chromatography in analytical chemistry and mass transfer.
- Application of mathematics to complex chemical engineering problems.
- Liquid state physics.
- Chemical thermodynamics.
- Thermodynamics of irreversible processes.

ChE 291 abc. Chemical Engineering Conference. 2 units (1-0-1); first, second, third terms. Oral presentations on industrial chemistry and chemical engineering problems of current interest. Instructor: Corcoran.

CHEMISTRY

UNDERGRADUATE SUBJECTS

Ch 1 abc. General and Quantitative Chemistry. 12 units (3-6-3); first, second, third terms. Lectures, recitations, and laboratory exercises dealing with the general principles of chemistry. Fundamental laws and theories of chemistry are discussed and illustrated by factual material. In the first and second terms of the laboratory analytical experiments involving quantitative gravimetric, volumetric, optical, and electrical measurements are provided; in the third term use is made of a system of qualita-
tive and semiquantitative analysis for selected elements representative of the periodic system. The stress in the course is on quantitative reasoning and on accurate and intelligent work in the laboratory. Texts: General Chemistry, Pauling; Quantitative Chemistry, Waser; and Qualitative Elemental Analysis, Swift and Schaefer. Instructors: Waser, Schaefer, other staff members, and assistants.

Ch 13 abc. Inorganic Chemistry. 6 units (2-0-4); first, second, third terms. Prerequisites: Ch 1 abc, Ch 21 ab. The chemical and physical properties of the elements are discussed with reference to the periodic system and from the viewpoints of atomic structure and radiation effects. Such topics as coordination compounds, the liquid ammonia system, the compounds of nitrogen, the halides, and selected groups of metals are taken up in some detail. The class work is supplemented by problems which require a study of current literature. Instructor: Yost.

Ch 14. Quantitative Analysis. 10 units (2-6-2); first term. Prerequisite: Ch 1 abc or equivalent. Laboratory instruction in advanced analytical chemical measurements, supplemented by lectures in which the principles involved in the laboratory work are emphasized. Text: Chemical Analysis, Laitinen. Instructors: Anson, Swift.

Ch 16. Instrumental Analysis. 8 units (0-6-2); first term. Prerequisite: Ch 1 abc. Laboratory practice designed to familiarize the student with special analytical apparatus and methods, used both for process and control and for research. Instructor: Sturdivant.

Ch 21 abc. Physical Chemistry. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 abc; Ph 2 abc; Ma 2 abc. A lecture and recitation course. The main emphasis is on the principles of thermodynamics, statistical mechanics, and atomic theory, and their application to the quantitative interpretation of the properties of matter. Instructor: Robinson.

Ch 24 ab. Physical Chemistry for Geologists. 10 units (4-0-6); first, second terms. Prerequisites: Ch 1 abc; Ma 2 abc; Ph 2 abc. A discussion of selected topics in physical chemistry, adapted to the needs of Science Course students in the Geology Option. Instructor: Hughes.

Ch 26 ab. Physical Chemistry Laboratory. 8 units (0-6-2); second, third terms. Prerequisites: Ch 1 abc; Ch 21 a. Text: Experiments in Physical Chemistry, Badger. Instructor: Badger.

Ch 41 abc. Basic Organic Chemistry. 4 units (2-0-2); first, second, third terms. Prerequisite: Ch 1 abc. Lectures and recitations relating to the classification of carbon compounds, development of fundamental theories, and preparation and characteristic properties of the principal classes of carbon compounds. Text: Basic Principles of Organic Chemistry, Roberts and Caserio. Instructor: Roberts.

Ch 46 abc. Basic Organic Chemistry Laboratory. 6 units (1-5-0); first, second, third terms. Prerequisite: Ch 1 abc. Laboratory exercises to accompany Ch 41 abc. The preparation and purification of carbon compounds and the study of their characteristic properties. Qualified students may pursue research work. Instructors: Richards and assistants.

Ch 80. Chemical Research. Offered to B.S. candidates in Chemistry. If Ch 80 units are to be used as electives in the Chemistry Option a thesis must be submitted in duplicate before May 10 of the year of graduation and be approved by the research director. The thesis must contain a statement of the problems, appropriate background material, a description of the research work, a discussion
of the results, conclusions, and an abstract. The thesis may cover only a portion of the research.

Ch 81. Special Topics in Chemistry. Occasional advanced work involving reading assignments and a report on special topics. Permission of the instructor is required. No more than 12 units in Ch 81 may be used as electives in the Chemistry Option.

Ch 90. Oral Presentation. 2 units (1-0-1); first term. Training in the technique of oral presentation of chemical topics. Practice in the effective organization and delivery of reports before groups. Instructors: Corey, Booth.

ADVANCED SUBJECTS

Ch 113 abc. Inorganic Chemistry. 4 units (2-0-2); first, second, third terms. Selected groups of inorganic compounds will be considered from modern physicochemical viewpoints; thus with reference to their physical properties, their thermodynamic constants (their heat-contents, free-energies, and entropies), their rates of conversion into one another (including effects of catalysis and energy radiations), and their molecular structure and valence relations. Instructor: Yost.

Ch 117. Electroanalytical Chemistry. 4 units (2-0-2); second term. The theory and practice of selected electroanalytical techniques are presented. Topics covered include potentiometry, diffusion currents, polarography, amperometry, coulometry, chronopotentiometry, and other electrochemical methods. Text: *Electroanalytical Chemistry*, Lingane. Instructor: Anson.

Ch 118 ab. Electroanalytical Chemistry Laboratory. 6 units (0-6-0); second, third terms. Laboratory experiments involving the use of electroanalytical instruments. Instructor: Anson.

Ch 120. Electric and Magnetic Properties of Molecules. 6 units (2-0-4); third term. Topics discussed are index of refraction and birefringence of substances, electronic polarizability of molecules, dielectric constant, diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, antiferromagnetism, Kerr effect, electric dipole moments, magnetic moments, and other molecular properties, especially in relation to the structure of molecules and crystals and the nature of the chemical bond. Offered in 1962-63. Instructor: Pauling.

Ch 121 ab. The Nature of the Chemical Bond. 6 units (2-0-4); second, third terms. This subject comprises the detailed non-mathematical discussion of the electronic structure of molecules and its correlation with the chemical and physical properties of substances. Text: *The Nature of the Chemical Bond*, Pauling. Instructors: Pauling and others.

Ch 122 ab. The Structure of Molecules. 6 units (2-0-4); first, second terms. A discussion of the arrangement of atoms in molecules and crystals. A non-mathematical and semi-empirical treatment is given to the various types of interatomic forces and their relationship to the chemical and physical properties of substances. Text: *The Nature of the Chemical Bond*, Pauling. Given in alternate years. Offered in 1962-63. Instructor: Marsh.

Ch 124 ab. Physical Chemistry for Geologists. 6 units (4-0-2); first, second terms. This course is the same as Ch 24 with reduced credit for graduate students. Instructor: Hughes.

Ch 125 abc. Introduction to Chemical Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or the equivalent. This course provides a brief but quanti-
tative introduction to quantum mechanics, and is otherwise devoted primarily to both theoretical and experimental aspects of the electronic wave functions of molecules and solids. Illustrative topics are: molecular orbital and valence bond theories of molecules, Bloch states in solids, and applications of electron and nuclear magnetic resonance to electronic structure problems. Instructor: McConnell.

Ch 128 ab. Electronic Structure of Molecules. 6 units (2-0-4); second, third terms. Prerequisite: Ch 21 abc. Molecular electronic structure is treated with particular reference to chemical and geometric properties of molecules and the variation of these properties with electronic excitation. An elementary introduction to group theoretical methods in molecular problems is presented. A generally descriptive treatment follows of the electronic structure of organic and inorganic prototype molecules, free radicals, and ions, starting from the molecular orbital and valence bond approximations. The nature and chemical importance of the coupling of electronic motions with other kinds of molecular motions are stressed, and a discussion of inter-molecular interactions is given. Given in alternate years. Not offered in 1961-62. Instructor: Robinson.

Ch 129. Surface and Colloid Chemistry. 8 units (3-0-5); first term. Prerequisite: Ch 21 abc or equivalent. Classroom exercises with outside reading and problems, devoted to the properties of surfaces and interfaces, and the general principles relating to disperse systems with particular reference to the colloidal state. Instructor: Badger.

Ch 130. Photochemistry. 6 units (2-0-4); first term. Prerequisite: Ch 21 abc. Lectures and discussions on photochemical processes, especially in their relation to quantum phenomena. The following topics are included: the photochemical absorption law; the processes—excitation, dissociation, ionization—accompanying the absorption of radiation; subsequent processes including fluorescence and collisions of the second kind; photosensitization; quantum yield and its relation to photochemical mechanism; kinetics of homogeneous thermal and photochemical reactions; catalysis and inhibition; temperature coefficients of photochemical reactions. Instructor: Wulf.

Ch 132 a. Biophysical Chemistry. 6 units (2-0-4); third term. This course considers the physical chemistry of macromolecules of biological interest. Together with Bi 129 ab it constitutes an integrated program covering the physical and physico-chemical approaches to biology. The subject matter to be repeated, approximately in a three-year cycle, will consist of a discussion of the principles and methods employed in the determination of size, shape, charge, and thermodynamic properties of biological macromolecules. Not offered in 1962-63. Instructor: Vinograd.

Ch 135. Chemical Kinetics. 6 units (2-0-4); third term. The mechanics of chemical reactions as revealed by various methods, especially rate measurements and photochemical experiments, are discussed. Both theoretical and experimental aspects of the subject are studied. Topics include the transition state theory and the collision theory, unimolecular reactions, ionic reactions, modern experimental approaches to the nature of transient intermediates and elementary reactions, molecular structure and reactivity, catalysis, tracer studies, hydrodynamics and kinetics, combustion and detonation. Not offered in 1962-63. Instructor: Davidson.
Ch 144 abc. Advanced Organic Chemistry. 9 units (3-0-6); first, second, third terms. A survey of synthetic and theoretical organic chemistry at an advanced level with emphasis on stereochemistry. Applications of fundamental principles to the chemistry of naturally occurring substances. Instructor: Hammond.

Ch 148 abc. Characterization of Organic Compounds. 4 units (2-0-2); first, second, third terms. Prerequisites: Ch 41 abc, Ch 46 abc. Lectures and recitations emphasizing the analytical methods of organic chemistry. Consideration of the general problem of the characterization of organic compounds by qualitative and quantitative procedures. Instructor: Niemann.

Ch 149 abc. Laboratory in Characterization of Organic Compounds. 6 units (0-6-0); first, second, third terms. Prerequisites: Ch 41 abc, Ch 46 abc, and consent of instructor. Laboratory exercises to accompany Ch 148. The isolation, purification, and identification of organic compounds with special reference to the manipulation of milligram and decigram quantities. Qualified students may pursue research work. Instructors: Niemann and assistant.

Ch 180. Chemical Research. Offered to M.S. candidates in Chemistry.

Ch 190. Oral Presentation. 2 units (1-0-1); first term. Training in the technique of oral presentation of chemical topics. Any graduate student in chemistry may be required to register for the course if, during his candidacy examination, or for any other reason, he gives evidence of needing instruction in oral presentation. Instructors: Waser, Corey, Booth.

Ch 223 abc. Statistical Mechanics. 9 units (3-0-6); first, second, third terms. After a survey of the principles of classical and quantum mechanics and of the theory of probability, the equilibrium theory of statistical mechanics is developed and used to interpret the laws of thermodynamics from the molecular standpoint. A detailed study of the relationships between the thermodynamic functions of gases, liquids, and solids and their structure on the molecular scale follows. Given in alternate years. Not offered in 1962-63. Instructor: Davidson.

Ch 225 abc. Advanced Chemical Thermodynamics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or the equivalent. Basic concepts and the laws of thermodynamics are reviewed. The theories of heterogeneous and chemical equilibrium are developed according to the methods of J. Willard Gibbs. A systematic treatment is presented of the thermodynamic properties of pure systems, mixtures, chemical reactions, electrochemical systems, surface phases, and systems under the influence of external fields. The theory of heterogeneous equilibrium and phase diagrams is developed analytically. The third term is largely devoted to the thermodynamics of irreversible processes.

Ch 226 abc. Introduction to Quantum Mechanics, with Chemical Applications. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 125 abc, or Ph 112 abc, or the equivalent. A review of the physical and historical background of the quantum theory is followed by a treatment of the mathematical formalism. Some exactly soluble problems are discussed and approximate methods for more complicated problems are developed. The structure of atoms and molecules, the theory of spectra, and if time permits other special topics will be treated.

Ch 227 abc. The Structure of Crystals. 9 units (3-0-6); first, second, third terms. The nature of crystals and X-rays and their interaction. The various diffraction techniques. The theory of space groups and the use of symmetry in the determination of the

Ch 229 ab. X-Ray Diffraction Methods. 6 units (2-0-4); second, third terms. Prerequisite: Ch 227 abc or equivalent. An advanced discussion of the techniques of structure analysis by X-ray diffraction. Given in alternate years. Offered in 1962-63. Instructors: Hughes, Marsh.

Ch 233 ab. The Metallic State. 6 units (2-0-4); first, second terms. The physical, electrical, and magnetic as well as the structural, chemical, and thermodynamic properties of metals and alloys considered from modern viewpoints. Instructor: Yost.

Ch 234. Introduction to the Spectra of Molecules. 6 units (2-0-4); first term. The theory of the structure of the spectra of both the diatomic and simpler polyatomic molecules is presented, and the transition rules and their relation to the symmetry elements of molecules are discussed. Emphasis is laid on the methods of interpreting and analyzing molecular spectra, and it is shown how from an analysis one obtains information regarding the structure and other properties of a molecule of interest to the chemist. Problems are given in the interpretation of actual data. Instructor: Badger.

Ch 242 ab. Chemistry of Natural Products. 4 units (2-0-2); first, second terms. Prerequisite: Ch 41 abc. The chemistry of antibiotics, alkaloids, pigments, steroids, terpenes, etc. is used as a vehicle for a discussion of the general principles of structural elucidation, total synthesis, and biogenesis of natural products. The course is given as a continuing cycle such that each of the major areas is presented once every three years. Instructor: Richards.

Ch 246 abc. Structures and Reactions of Organic Compounds. 4 units (2-0-2); first, second, third terms. Prerequisites: Ch 41 abc, Ch 21 abc. Special methods for study of organic compounds and reactions. Topics discussed vary from year to year but usually include applications of the molecular orbital approach and nuclear magnetic resonance spectroscopy to problems of structure and reactivity. Texts: Spin-Spin Splitting and Molecular Orbital Calculations, Roberts. Given in alternate years. Not offered in 1962-63. Instructor: Roberts.

Ch 247 ab. Organic Reaction Mechanisms. 6 units (2-0-4); first, second terms. Prerequisite: Ch 144 or equivalent. Various tools for the study of organic reaction mechanisms will be discussed with major emphasis on kinetic methods. Given in alternate years. Offered in 1962-63. Instructor: Hammond.

Ch 253 ab. Chemistry of the Enzymes. 6 units (2-0-4); first, second terms. Consideration of the nature and mechanism of enzyme action. Offered in 1962-63. Instructor: Niemann.

Ch 254 ab. The Chemistry of Amino Acids and Proteins. 3 units (1-0-2); first, second terms. Prerequisites: Ch 41 abc, Ch 46 abc. A consideration of the physical and chemical properties of the amino acids, peptides, and proteins. Given in alternate years. Offered in 1961-62. Instructor: Niemann.

Ch 255 abc. Chemistry of Bio-organic Substances. 3 units (1-0-2); first, second, third terms. Lectures on selected subjects of organic chemistry such as alkaloids, essential oils, and other major groups of natural products. Instructor: Haagen-Smit.
Ch 258. Immunochemistry. 8 units (2-3-3); second term. Prerequisite: Ch 129 and Bi 114, or consent of instructor. Lectures cover the following material: fundamental physical and biochemical factors of importance in immunochemistry; nature of antigens and antibodies; physical and biological manifestations of antigen-antibody reactions; basis of immunological specificity; and practical aspects of immunology. The laboratory consists of a variety of experiments designed essentially to familiarize the student with the preparation of antigens and antibodies and the nature of antigen-antibody interactions. Particular emphasis is given to quantitative aspects of the precipitin reaction and its significance. Texts: Principles of Immunology, Cushing and Campbell; Experimental Immunochemistry, Kabat and Mayer; Fundamentals of Immunology, Boyd. Instructors: Campbell and associates.

Ch 280. Chemical Research. Offered to Ph.D. candidates in Chemistry. The main lines of research now in progress are:

In physical and inorganic chemistry—
Free energies, equilibria, and electrode potentials of reactions.
Distribution of chemical compounds between immiscible phases.
Kinetics and mechanisms of electrode reactions. Inorganic analytical methods.
Kinetics of chemical reactions including photochemical reactions.
Determination of the structure of crystals by the diffraction of X-rays.
Application of quantum mechanics to chemical problems.
Molecular structure by spectroscopic methods.
Nature of the metallic bond and the structure of metals and intermetallic compounds.
Microwaves and nuclear resonance.
Electronic structures of simple molecules and molecular fragments.
Spectroscopic studies of the chemistry of free radicals trapped at low temperatures.

In organic chemistry—
Mechanism of organic reactions in relation to electronic theory.
Isolation of alkaloids and determination of their structure.
Structural elucidation and biosynthesis of natural products.
Chemistry and reaction mechanisms of metallocenes.
Isotope effects in organic and biochemical reactions.
Synthesis of substances related to cyclobutadiene.
Chemistry of amino acids and peptides.
Chemistry of small-ring carbon compounds.
Application of isotopic tracer and nuclear magnetic resonance techniques to problems in organic chemistry.
Relation of structure to reactivity of organic compounds.
Organic chemistry of metal chelates.
Solution photochemistry.
Reactions of free radicals in solutions.

In fields of application of chemistry to biological and medical problems—
Mechanism of antigen-antibody reactions and the structure of antibodies.
Functional significance of antibodies.
Chemical and physical properties of blood.
Isolation and characterization of cellular antigens.
Enzymatic cleavage and formation of amide bonds.
Chemical analysis of proteins and determination of the order of amino-acid residues in polypeptide chains.
Crystal structures of amino acids, peptides, and proteins.
Subjects of Instruction

- Plant hormones and related substances of physiological importance.
- Investigation of mammalian and bacterial polysaccharides including the blood-group specific substances.
- Nature of sickle cell anemia and other hemolytic diseases.
- Behavior of biological macromolecules in the ultracentrifuge.
- Chemistry in relation to mental disease.

Ch 290 abc. Chemical Research Conference. First, second, third terms. These conferences consist of reports on investigations in progress in the chemical laboratories and on other researches which are of current interest. Every graduate student in chemistry is expected to attend these conferences. Seminars in special fields (immunochemistry, analytical chemistry, crystal structure, physical chemistry, organic chemistry) are also held.

Civil Engineering

Undergraduate Subjects

CE 10 abc. Structural Analysis and Design. 9 units (3-0-6); first, second and third terms. Prerequisites: AM 8 and AM 9 (may be taken concurrently). Analysis of lumped-parameter structural systems, including the basic concepts of relaxation. The design of structural components using such materials as steel and reinforced concrete. Instructor: McCormick.

CE 17. Civil Engineering. 9 units (3-0-6); third term. Prerequisite: Senior standing. Selected comprehensive problems of civil engineering systems involving a wide variety of interrelated factors. Instructor: Staff.

Advanced Subjects

CE 105. Introduction to Soil Mechanics. 9 units (2-3-4); first term. Prerequisites: AM 8, AM 9. A general introduction to the physical and engineering properties of soil, including origin, classification and identification methods, permeability, seepage, consolidation, settlement, slope stability, lateral pressures and bearing capacity of footings. Standard laboratory soil tests will be performed. Text: Principles of Soil Mechanics, Scott. Instructor: Scott.

CE 115 ab. Soil Mechanics. 9 units (3-0-6); first term. 9 units (2-3-4); second term. Prerequisite: CE 105 or equivalent, may be taken concurrently. A detailed study of the engineering behavior of soil through the examination of its chemical, physical and mechanical properties. Classification and identification of soils, surface chemistry of clays, inter-particle reactions, and their effect on sediment deposition and soil structure. Permeability and steady state water flow, transient flow and consolidation processes, leading to seepage and settlement analyses. In the second term, attention is given to stress-deformation behavior of soils, elastic stability, failure theories, and problems of plastic stability. Study is devoted to the mechanics of soil masses under load, including stress distributions and failure modes of footings, walls and slopes. Laboratory tests of the shear strength of soils will be performed. Instructor: Scott.

CE 120 ab. Advanced Structural Analysis. 9 units (3-0-6); first and second terms. Prerequisite: CE 10 or equivalent. Advanced methods of structural analysis, including the solution of differential equations, energy methods, moment distribution and relaxation methods, finite difference and numerical methods, applied to special structures such as elastic and plastic frames, unstable columns and frames, suspension bridges, arches, prismatic shells. Instructors: Housner, McCormick.
CE 121. Analysis and Design of Structural Systems. 9 units (0-9-0); third term. Prerequisite: CE 120 ab. The analysis and design of complete structural systems. In general, students will work on a single problem for the entire term. The problem may be primarily one of analysis or one of design. Instructors: Housner, McCormick.

CE 123. Dynamics of Structures. 9 units (3-0-6); third term. Prerequisites: AM 150 ab, CE 120. Analysis of structures and their response to dynamic loads such as blast and earthquakes. Consideration will be given to both elastic and plastic deformations. Instructor: Housner.

CE 124. Special Problems in Structures. 9 units (3-0-6); any term. Selected topics in the field of structures to meet the needs of first-year graduate students. Instructors: Housner, McCormick.

CE 130 abc. Civil Engineering Seminar. 1 unit (1-0-0); each term. Conferences participated in by faculty and graduate students of the Civil Engineering department. The discussions cover current developments and advancements within the fields of civil engineering and related sciences, with special consideration given to the progress of research being conducted at the Institute.

CE 137 abc. Water Supply and Waste Water Disposal. 9 units (3-0-6), first term; 9 units (3-0-6), second term; 9 units (1-6-2), third term. Prerequisites: ME 17 ab, ME 19 ab or equivalent, CE 155 (may be taken concurrently). A study of the principles involved in the collection, storage, treatment, and distribution of water for municipal, industrial, and irrigation use, and the removal of storm waters, municipal sewage, and excess irrigation waters; water rights and stream administration; water quality criteria; the economic aspects of projects; the theory of unit operations as applied to the treatment of water and waste water; and the design of works for the collection, treatment, and disposal of water and liquid wastes. Instructors: McKee, Samples.

CE 138 abc. Sanitary Sciences. 9 units (2-3-4); first, second and third terms. Prerequisites: Ch 1 abc, Ph 2 abc. A review of chemical, physical, and biological phenomena and their application to the analysis and treatment of water, waste waters, and polluted atmospheres; laboratory exercises and problems in water and air analysis. Instructors: Johannson, Samples.

CE 150. Foundation Engineering. 9 units (3-0-6); third term. Prerequisite: CE 115 ab. Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including spread and combined footings, mats, piles, caissons, retaining walls, cofferdams, and methods of underpinning. Instructor: Scott.

CE 151 abc. Air Resources Engineering. 9 units (2-3-4); first, second, and third terms. Prerequisites: Ch 1 abc, Ph 2 abc, Ma 2 abc, ME 17 ab, ME 19 ab. The application of engineering analysis and scientific phenomena to problems of atmospheric pollution; evaluations of source emissions, meteorologic and climatologic factors, air quality measurements, aerosol properties and behavior, photochemical reactions, effects on animate and inanimate receptors; and principles of engineering control. Study of hazardous conditions in work places. The advanced courses comprise aerosol technology, special methods of air analysis, air and gas cleaning, field survey techniques, administrative and legal aspects, public health implications, and studies of selected occupational exposures. Instructor: Rossano and visiting lecturers.

CE 152 ab. Environmental Radiation. 9 units (2-3-4); second and third terms. Prerequisites: Ch 1 abc, Ph 2 abc, Ma 2 abc, ME 17 ab, ME 19 ab. Engineering analysis of
the problems associated with ionizing radiations in the human environment, especially in water, waste water, and air; evaluation of radiation sources; interactions of radiation with matter; methods of detection and measurement; use of radioactive tracers; acute and chronic effects on health; radioactive waste disposal; and engineering principles of control. Instructor: Rossano.

CE 153. Seminar in Environmental Health Engineering. 3 units (2-0-1); third term. Special seminars and field trips to cover several aspects of engineering in environmental health not normally included in formal courses; e.g., engineering aspects in problems of epidemiology; sanitation of swimming pools, hospitals, and housing; engineering control of insects, rodents, and vermin; waste disposal in the marine environment; occupational hazards, and environmental control in space. Instructor: Rossano and visiting lecturers.

CE 155. Hydrology. 9 units (3-0-6); first term. Prerequisites. Ma 2 abc, Ph 2 abc. An introductory study of the occurrence and movement of water on the earth's surface, including such topics as precipitation, evaporation, transpiration, infiltration, ground water, runoff, and flood flows; applications to various phases of hydraulic engineering such as water supply, irrigation, water power, and flood control; the use of statistical methods in analyzing hydrologic data. Instructor: Brooks.

CE 156. Industrial Wastes. 9 units (3-0-6); third term. Prerequisites: CE 137 ab, CE 138 ab. A study of the industrial processes resulting in the production of liquid wastes; the characteristics of such wastes and their effects upon municipal sewage-treatment plants, receiving streams, and ground waters; and the theory and methods of treating, eliminating, or reducing the wastes. Instructors: McKee, Samples.

CE 160. Advanced Hydrology. 6 or more units as arranged; any term. Prerequisite: CE 155. Advanced studies of various phases of hydrology. The course content will vary depending on needs and interests of students enrolling in the course. Instructor: Brooks.

CE 200. Advanced Work in Civil Engineering. 6 or more units as arranged; any term. Members of the staff will arrange special courses on advanced topics in civil engineering for properly qualified graduate students. The following numbers may be used to indicate a particular area of study.

CE 201. Advanced Work in Structural Engineering.

CE 202. Advanced Work in Soil Mechanics.

CE 203. Advanced Work in Environmental Health Engineering.

CE 204. Advanced Work in Water Resources.

Hy 200. Advanced Work in Hydrodynamics or Hydraulic Engineering.

CE 300. Civil Engineering Research.

COMPUTERS AND MACHINE METHODS OF COMPUTATION

The following courses in computers and their application to applied mathematics and engineering analysis are offered under the various options indicated.

EE 181 ab. Principles of Analog Computation. See Electrical Engineering Section.

Ma 105 ab. Introduction to Numerical Analysis. See Mathematics Section.

Ma 205. Advanced Topics in Numerical Analysis. See Mathematics Section.

ECONOMICS

UNDERGRADUATE SUBJECTS

Ec 4 ab. Economic Principles and Problems. 6 units (3-0-3); first term, and either second or third term. A course in economic life, institutions, and problems, stressing the national income approach. Subjects studied parallel those of Ec 2 ab, with such difference in emphasis as is necessary to make this shorter course complete in itself. Instructors: Sweezy, Brockie, Untereiner, Sherman.

Ec 13. Reading in Economics. Units to be determined for the individual by the department.

Ec 18. Industrial Organization. 7 units (3-0-4); third term. After outlining the historical background of industry with the economic changes involved, this subject surveys the major problems facing management, especially in factory operations. The principal topics included are organization, plant layout, costs and budgets, methods, time and motion study, production control, labor relations, and wage scales. Instructor: Gray.

Ec 25. Business Law. 7 units (3-0-4); third term. A survey of the law governing business activities and relationships. Contracts, agency, sales, insurance, negotiable instruments, employment, property rights, trusts and estates, and forms of business organization are studied. Instructor: Untereiner.

Ec 48. Introduction to Industrial Relations.* 9 units (3-0-6). Senior Elective. This course stresses the personnel and industrial relations functions and responsibilities of supervisors and executives. The history, organization, and activities of unions and the provisions of current labor legislation are included. The relationships of a supervisor or executive with his employees, his associates, and his superiors are analyzed, and the services which he may receive from the personnel department are examined. The course also discusses the use of basic tools of supervision. Instructor: Gray.

ADVANCED SUBJECTS

Ec 100 abc. Business Economics. 10 units (4-0-6); first, second, third terms. Open to graduate students. This course endeavors to bridge the gap between engineering and business, especially industry. It is intended for two groups of technically trained students: 1) those who wish sooner or later, to take advantage of opportunities in industry beyond their strict technical fields, and 2) those who will be engaged in teaching and in scientific research, but who wish to get an understanding of industry in both its technical and philosophical aspects. The broad assumptions in the course are that technical training is an excellent approach to positions of general responsibility in business and industry, and that technically trained men going into industry can make significant contributions to the improved functioning of the economy. The principal divisions of the subject matter of the course are designed to:

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.

**Advanced students in Economics should be aware that AM 181 ab, Linear Programming, 9 units (3-0-6) second and third terms, is valuable for its economic applications. Credit in this course may be counted toward the fulfillment of requirements for a Ph.D. minor in Economics.
the courses are: 1) business organization, 2) industrial promotion and finance, 3) factory management, 4) industrial sales, and 5) business economic topics, especially the business cycle. This treatment provides a description of the industrial economy about us and of the latest management techniques. The points of most frequent difficulty are given special study. The case method of instruction is used extensively in the course. Instructor: Gilbert.

Ec 104. Government Regulation. 9 units (3-0-6); third term. A study of government’s growing role in the functioning of the private business system. Conditions leading to, and objectives sought by regulation of competition, quality and price. The evolution and functioning of a “mixed” economy. Emphasis on public utilities: methods and objectives of their regulation and problems of determining rate base, reasonable return and spread of rates. Instructor: Untereiner.

Ec 106 abc. Business Economics (Seminar). Units by arrangement; first, second, third terms. Open to graduate students. This seminar is intended to assist the occasional graduate student who wishes to do special work in some part of the field of business economics or industrial relations. Special permission to register for this course must be secured from the instructors. Instructors: Gilbert, Gray.

Ec 110. Industrial Relations. 9 units (3-0-6); first term. Not open to students who have taken Ec 48, Introduction to Industrial Relations. An introductory course dealing with basic problems of employer-employee relationships and covering the internal organization of an enterprise, the organization and functions of unions, and the techniques of personnel administration with emphasis on the problems of setting wage rates. Instructor: Gray.

Ec 111. Business Cycles and Governmental Policy. 9 units (3-0-6); first term. A study of the nature, causes, and possible control of economic fluctuations with special emphasis on the interrelationship of business cycles and such fiscal matters as national debt control, national budgetary control, and the maintenance of high levels of employment, production, and purchasing power. The course also integrates the international problems of war, reconstruction, trade, and investment with the analysis of business cycles and internal fiscal policies in order to provide a unified theory of national and international equilibrium. May be taken as a senior elective. Instructor: Brockie.

Ec 112. Modern Schools of Economic Thought. 9 units (3-0-6); third term. A study of economic doctrine in transition, with particular emphasis on the American contribution. Against a background of Marshall and Keynes, a critical examination will be made of the institutional, collective, quantitative, social, experimental, and administrative schools of economics. Instructor: Brockie.

Ec 113. Reading in Economics. Same as Ec 13 but for graduate credit.

Ec 120. International Economic Relations. 9 units (3-0-6); second term; Senior elective. An investigation of the factors influencing the flow of goods and services between markets. Particular attention is paid to the techniques of exporting and importing, foreign investments, the balance of international payments, foreign exchange rates and controls, international monetary and commodity agreements, and the international inter-relationships of politics and economics. Open to all students who have taken Ec 4 ab or the equivalent. Instructor: Oliver.

Ec 124. Economic Problems of Underdeveloped Areas.* 9 units (3-0-6); third term. Senior elective. An examination of economic conditions in low income countries. Modern

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
techniques of promoting development are studied, including international assistance programs and national economic planning. Instructor: Sweezy.

Ec 125 abc. Technical Cooperation (Seminar). 9 units (3-0-6). Senior elective. This special seminar will be conducted experimentally during the year 1961-1962 as a part of the Carnegie Science and Public Affairs program. The primary objectives of the seminar are to prepare students for participation in technical cooperation programs, both in the United States and overseas, and to provide an opportunity for an intensive examination of the technical problems of raising living standards in newly developing countries. Guest lecturers and faculty from other divisions will participate in the seminar. Research projects will be undertaken by the students. Instructor: Oliver.

Ec 126 abc. Economic Analysis and Policy* (Seminar). 9 units (3-0-6); first, second, third term. Senior elective. Open to students who have taken Ec 2 ab or Ec 4 ab and to other qualified students with the consent of the instructor: Instructors: Sweezy, Sherman.

Electrical Engineering

UNDERGRADUATE SUBJECTS

EE 1 abc. Basic Electrical Engineering. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc; Ph 1 abc. An introductory course in circuit analysis, energy conversion, electromechanical devices, vacuum and solid-state devices and circuits. Instructor: Nicolet.

EE 2 ab. Basic Electrical Engineering Laboratory.

EE 2 a. Laboratory in Electrical Circuits. 3 units (0-3-0); second term. Prerequisite: EE 1 a. This course is the laboratory for EE 1 a. The experiments are designed to acquaint the student with techniques of electrical measurements and to provide experimental verification of the behavior of passive electrical circuits. Instructors: Staff.

EE 2 b. Laboratory in Electronics. 3 units (0-3-0); third term. Prerequisites: EE 1 ab, EE 2 a. This course is the laboratory for EE 1 b. The experiments are designed to acquaint the student with techniques of electrical measurements and to provide experimental verification of the properties of electron devices and simple electronic circuits. Instructor: Nicolet.

EE 5. Introductory Electronics. 9 units (3-0-6); third term. Prerequisite: Ph 1 abc. This is an introductory course to provide a background in electronics for students both in engineering and in other fields. The subjects covered will be simple a.c. circuit theory, properties of vacuum tubes and transistors, simple amplifiers and switching circuits. Instructor: Langmuir.

EE 7 abc. Experimental Techniques in Electrical Engineering. 5 units (0-3-2); first, second, third terms. A general laboratory program developing experimental techniques, and verifying the theory of the five senior engineering courses (EE 101, EE 106, EE 107, EE 115 and EE 162). Text: Laboratory notes. Instructors: Electrical Engineering Faculty.

ADVANCED SUBJECTS

EE 101 abc. Electric Circuit Theory. 9 units (3-0-6); first, second and third terms. Prerequisites: EE 1 abc; AM 116. Steady state and transient analysis of linear electric

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.

EE 106 ab. Electronic Circuits. 9 units (3-0-6); first and second terms. Prerequisite: EE 1 abc. A course covering the general areas of nonlinear electronics. Diode circuits, rectifiers, clippers, clamps, mixers. Transistor and vacuum tube amplifiers treated from the equivalent circuit point of view; biasing, gain, frequency response, class A, B and C power output and limitations. Transistor switching, saturation, power converters, transistor choppers, direct coupled transistor logic. Oscillators; relaxation and harmonic, using 3 terminal and negative resistance devices. Modulation (AM and FM) methods. Texts: Transistor Circuit Analysis, Joyce and Clarke; Electronic and Radio Engineering, Terman. Instructor: Mead.

EE 107. Principles of Feedback. 9 units (3-0-6); third term. Prerequisite: EE 101 ab. Basic principles of linear feedback theory. Automatic control systems, feedback amplifiers, oscillators. Instructor: Wilts.

EE 115 abc. Electromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc; Ma 2 abc; AM 95 a, b. A course in theoretical electricity and magnetism, primarily for electrical engineering students. Topics covered include electrostatics, magnetostatics, Maxwell's equations, wave-guides, cavity resonators, and antennas. EE 115 c will include topics on propagation in the ionosphere, propagation over the earth's surface, and modern microwave tubes. Text: Electromagnetic Fields and Waves, Langmuir. Instructor: Langmuir.

EE 132 abc. Network Synthesis. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 101 ab. The analysis and synthesis of lumped and distributed parameter circuits. Mathematical properties of network functions. Realization theory for driving-point and transfer functions, including the synthesis techniques of Bode, Brune, Cauer, Darlington, Foster, Guillemin and others. The approximation problem, the scattering matrix, the Deschamps chart, and selected topics of research importance. Text: Synthesis of Passive Networks, Guillemin; Principles of Microwave Circuits, Montgomery et al. Instructor: George.

EE 140 abc. Communication Theory. 9 units (3-0-6); first, second, third terms. Prerequisites: EE 101 ab. Modern basis of the theory of communication of information. Review of probability and statistical methods. Noise, its description, properties and effects; random time series; autocorrelation and cross-correlation functions; spectral density; physical origins and mathematical models of noise; effects of linear and non-linear circuits. Information theory; entropy of a source and channel capacity; equivocation and redundancy; coding theorems; error detecting and correcting codes; continuous information; modulation methods—AM, FM, PM, PCM. Optimum linear circuits (Wiener filters) for smoothing or prediction of statistical signals in noise. Text: Random Signals & Noise, Davenport and Root. Instructor: H. Martel.

EE 150 abc. Electromagnetic Fields. 9 units (3-0-6); first, second, third terms. Prerequisites: EE 115 ab or Ph 107. An advanced course in classical electromagnetic theory and its application to guided waves, cavity resonators, antennas, artificial dielectrics, propagation in ionized media, propagation in anisotropic media, magnetohydrodynamics, and to other selected topics of research importance. Text: Course notes. Instructor: Papas.

EE 162 abc. Physics of Electronic Devices. 6 units (2-0-4); first, second, third terms. Prerequisite: EE 1 ab. A course in the physical principles of electron devices and an introduction to atomic and molecular physics. Motion of charged particles in elec-

EE 164 abc. Microwave Electronics and Magnetics. 9 units (3-0-6); first, second, third terms. Prerequisites: EE 115 ab or Ph 107 and EE 162 abc. Principles of interaction between the electronic charge and spin with microwave electromagnetic fields. Generation and focusing of high-current electron beams with electric and magnetic fields. Velocity modulation, transit time effects, plasma oscillation and space charge wave propagation, and traveling wave interaction with electron beams with application to microwave amplifiers and oscillators. The electromagnetic theory of slow-wave circuits and noise in electron beams will also be considered. Electron spin resonance and relaxation phenomena will be discussed. The interaction of electromagnetic fields with magnetic materials with application to the behavior of quantum amplifiers such as Masers and Lasers, microwave ferrite devices, and thin magnetic films will be treated in detail. Instructor: Soohoo.

EE 165. Microwave Laboratory. 6 units (1-3-2); second term. Prerequisite: EE 132 or EE 150 or may be taken concurrently. Covering experiments on microwave generation, bridges, precise impedance measurement, nodal shift methods, and the properties of microwave circuit elements such as matched Ts, directional couplers and antennas. Instructor: George.

EE 170 abc. Feedback Control Systems. 9 units (3-0-6); first term: 12 units (3-3-6); second and third terms. Prerequisites: EE 101 ab, EE 107. A study of automatic feedback control systems. Basic theory and methods of analysis and synthesis: root locus methods, the Nyquist criterion, and analog computer techniques. Multiple loop systems. Non-linear systems with emphasis on phase plane and describing function techniques. Sampled-data systems. The laboratory experiments are designed to acquaint the student with characteristics of practical components, but emphasis is placed on a correlation of observed response with predictions based on the various theoretical methods.

EE 180 abc. Data Processing Systems and Switching Theory. EE 180 a, 9 units (3-3-3); EE 180 bc, 9 units (3-0-6). The first term is concerned with the basic principles of logical design and instrumentation of digital computers with an introduction to modern switching theory, pulse circuitry, and electronic instrumentation principles. The laboratory permits a study of the design and operating characteristics of the actual computers. The second and third terms are a more detailed treatment of switching theory and switching circuit synthesis as applied to modern concepts of instrumenting complex data processing systems, together with more advanced concepts of machine organization for data processing. Text: Logical Design of Digital Computers, Phister (first term); course notes (second and third terms). Instructor: Miller.

EE 181 ab. Principles of Analog Computation. 12 units (3-3-6); second, third terms. Prerequisite: AM 180. General survey of the basic principles of electric analog com-

EE 191 abc. Physics of Semiconductors and Semiconductor Devices. 9 units (3-0-6); three terms. Introduction to the concepts of semiconductor devices. Includes topics such as the solid state, electric properties of solids, Boltzmann and Fermi statistics, properties of regular arrays, mechanical and electrical filter, band theory of crystal electrons, holes, semiconductors, theory of p-n junctions and p-n junction transistors. Instructor: Nicolet. (Second or third term only in 1962-63.)

EE 200. Advanced Work in Electrical Engineering. Special problems relating to electrical engineering will be arranged to meet the needs of students wishing to do advanced work. The Institute is equipped to an unusual degree for the following lines of work: electronic devices and their application, physical electronics, microwave tubes, transistor applications, electromechanical devices, control systems, communications and information theory, electromagnetic wave propagation and antennas, analog and digital computers, engineering analysis requiring large scale computing techniques.

EE 220. Research Seminar in Electrical Engineering. 2 units. Meets once a week for discussion of work appearing in the literature and in industry. All advanced students in electrical engineering and members of the electrical engineering staff are expected to take part. In charge: Staff.

EE 240 abc. Advanced Communication Theory. 9 units (3-0-6). Prerequisite: EE 140 abc. A continuation of EE 140 with a more detailed treatment of stochastic processes, random time series, information theory and optimum linear filters. Emphasis will be on recent developments in the field. Course content will vary. Instructor: H. Martel.

EE 250 abc. Boundary-Value Problems of Electromagnetic Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 150 abc or equivalent. This course presents the mathematical techniques (Fourier-Lamé method, integral equation method, variational principles) that are available for the solution of boundary-value problems arising from the study of antennas, waveguides, and wave propagation. Text: Randwertprobleme der Mikrowellenphysik, Borgnis and Papas; also class notes. Instructor: Papas.

EE 260 abc. Topics in Physical Electronics. 4 units (1-0-3); first, second, and third terms. Prerequisite: EE 164 abc. Principles of electromagnetic interaction with solids and ionized gases and current applications. Content to vary from year to year. Typical topics are: microwave noise in electron beams, magnetic resonance and relaxation, cyclotron resonance, oscillations and waves in plasmas. Instructor: Gould.
EE 280 abc. Advanced Course in Machine Computing Methods for Engineering Analysis. 9 units (2-3-4); first, second, third terms. The application of analog and digital methods to problems in engineering analysis. Specific system and design analysis problems in such fields as electricity and magnetism, solid mechanics, fluid mechanics, aeroelasticity and thermal conductivity will be solved by both analog and digital methods with the comparison of various machine computing techniques. Course open only to advanced graduate students and by permission of instructor. Instructors: Franklin, McCann.

EE 281 Seminar in Electronic Computers. 4 units (1-0-3); first, second, third terms. Special topics on new developments in digital and analog computers and their applications to engineering analysis. Instructor: McCann.

EE 290. Topics in Solid State Devices and Circuits. 5 units (1-0-4); third term. Prerequisite: EE 190 ab. Advanced seminar in solid-state devices and circuits. A term paper will be required. Instructors: Middlebrook, Nicolet.

ENGINEERING

E 10 ab. Technical Presentations. 2 units (1-0-1); first and second terms. A course concerned with oral presentations of technical material. Instructors: Staff.

E 11 ab. Technical Presentations. 2 units (1-0-1); first and second terms. A course concerned with oral presentations of technical material coordinated with EE 7 ab. EE 7 ab must be taken concurrently with E 11 ab. Instructors: Staff.

E 150 abc. Engineering Seminar. 2 units (1-0-1); each term. All candidates for the M.S. degree in Materials Science and Mechanical Engineering are required to attend any graduate seminar in any division each week of each term.

ENGINEERING GRAPHICS

Gr 1. Basic Graphics. 3 units (1-2-0); first term. This course deals with the fundamental aspects of projective geometry and graphical techniques used by the scientist and engineer as an aid in spatial visualization, communication and in creative design. Emphasis is placed on the effective use of freehand sketching in perspective, orthographic projection and other useful forms of representation. The student’s ability to visualize three-dimensional forms and spatial relationships is logically developed through a series of freehand problems followed by basic descriptive geometry solutions analyzing some of the general relationships which exist among points, lines and planes. Accuracy, neatness and clarity of presentation are encouraged throughout the course. Instructors: Welch, Kiceniuk.

Gr 5. Descriptive Geometry. 6 units (0-6-0); third term. Prerequisite: Gr 1. The course is primarily for geology students and is designed to supplement the study of shape description as given in Gr 1 and to present a graphical means of solving the more difficult three-dimensional problems. The student reviews geometrical relationships of straight lines and planes, then advances to curved lines, single and double curved surfaces, warped surfaces and intersections. Methods of combining the analytical solution of the simpler problems with the graphical solution are discussed and applied. Emphasis is placed throughout the course on practical problems in mining and earth structures and on the development of an ability to visualize in three dimensions. Instructor: Welch.

Gr 7. Advanced Graphics. Maximum of 6 units. Elective; second and third terms. Prerequisite: Gr 1. Further study in the field of graphics as applied to engineering problem analysis and in design for production. Through a coordinated series of
discussions, laboratory problems and field trips the student is introduced to work in various branches of engineering as well as to some of the broad aspects of human engineering, aesthetics and various economic factors as they affect design. Instructor: Welch.

ENGLISH

UNDERGRADUATE SUBJECTS

En 1 abc. Literature. 6 units (3-0-3); first, second, third terms. A study of literary documents illustrating Rationalism, Romanticism and the Modern Reaction with frequent analytical and critical papers assigned. Instructors: Bowerman, Clark, Eagleson, Langston, Mandel, Stanton, D. Smith.

En 7 abc. Advanced Literature. 8 units (3-0-5); first, second, third terms. Prerequisite: En 1 abc. Advanced study of major literary works in various forms. The reading of the first term is focused on tragedy and epic, the second term on Shakespeare and the third term on the novel. Instructors: Bowerman, Clark, Eagleson, Eaton, Langston, Mandel, Miller, D. Smith, Stanton.

En 9. American Literature.* 9 units (3-0-6). Senior Elective. Prerequisite: En 7. A study of major literary figures in the United States from Whitman and Mark Twain to those of the present time. The larger part of the course is concerned with contemporary writers. An emphasis is placed on national characteristics and trends as reflected in novel and short story, biography, poetry, and drama. Instructor: Langston.

En 10. Modern Drama.* 9 units (3-0-6). Senior Elective. Prerequisite: En 7. A study of leading European, British, and American dramatists from Ibsen to writers of the present time. Special attention is given to dramatic technique, and to the plays both as types and as critical comments upon life in the late nineteenth and twentieth centuries. Instructor: Stanton.

En 11. Literature of the Bible.* 9 units (3-0-6). Senior Elective. Prerequisite: En 7. A study of the Old and New Testaments, and the Apocrypha, exclusively from the point of view of literary interest. The history of the English Bible is reviewed, and attention is brought to new translations. Opportunity is offered for reading modern fiction, poetry, and drama dealing with Biblical subjects. Instructor: Stanton.

En 12 abc. Debating. 4 units (2-0-2). A study of the principles of argumentation; systematic practice in debating; preparation for intercollegiate debates.

En 13. Reading in English and History. Units to be determined for the individual by the department. Collateral reading in literature and related subjects, done in connection with regular courses in English or history, or independently of any course, but under the direction of members of the department.

En 14. Special Composition. 2 units (1-0-1). This subject may be prescribed for any student whose work in composition, general or technical, is unsatisfactory.

En 15 abc. Journalism. 3 units (1-0-2); first, second, third terms. A study of the elementary principles of newspaper writing and editing, with special attention to student publications at the Institute. Instructor: Hutchings.

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
En 16. Spelling. *No credit.* This subject may be prescribed for any student whose spelling is unsatisfactory.

En 17. Technical Report Writing. 9 units (3-0-6). Senior Elective. Prerequisite: En 7. Practice in writing reports and articles in engineering, science, or business administration. The course includes some study of current technical and scientific periodicals. The major project is the preparation of a full-length report.

En 18. Modern Poetry. 9 units (3-0-6). Senior Elective. Prerequisite: En 7. An study of three or four major poets of the twentieth century, such as Yeats, T. S. Eliot and W. H. Auden. Modern attitudes toward the world and the problem of Belief. Some consideration of recent theories of poetry as knowledge. Instructor: Clark.

En 19. Seminar in Literature. 9 units (3-0-6); second term. Senior Elective. Prerequisite: En 7. The subject matter of this course arises from the interest of the students registered in any given term. Each student is required to give a long oral report to the class on some humanistic subject selected by himself with the approval of the instructor. The number registered for the course in any term is strictly limited and is by permission of the instructor. Hours by arrangement. Instructor: Eagleson.

En 20. Summer Reading. Units to be determined for the individual by the department. Maximum 8 units. Elective. Reading in literature, history, philosophy, and other fields during summer vacation, books to be selected from a recommended reading list, or in consultation with a member of the staff. Critical essays on reading will be required.

ADVANCED SUBJECTS

En 100 abc. Seminar in Literature. 9 units (2-0-7); first, second, third terms. A survey of recent critical methods, from I. A. Richards to the present time, and the application of these methods to the work of such major writers as Joyce, Yeats, Eliot and Mann. The influence of modern psychology and anthropology on creative writing and criticism. Instructor: H. Smith.

FRENCH

(See under Languages)

GEOLOGICAL SCIENCES

UNDERGRADUATE SUBJECTS

Ge 1. Physical Geology. 9 units (4-2-3); first term. Prerequisites: Ch 1 abc, Ph 1 abc. An introduction to the basic principles of the earth sciences. Geology, geochemistry and geophysics in relation to materials and processes acting upon and within the earth's crust. Consideration is given to: rocks and minerals, structure and deformation of the earth's crust, earthquakes, volcanism, and the work of wind, running water, ground water, the oceans and glaciers upon the earth's surface with the aim of stimulating the student's interest in the geological aspects of the environment in which he will spend his life. Text: Principles of Geology, Gilluly, Waters, and Woodford. Instructors: Allen, Sharp, and Teaching Fellows.

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
Ge 2. Geophysics. 9 units (3-0-6); second term. Prerequisites: Ge 1, Ma 2 ab, Ph 2 ab. A selection of topics in the field of geophysics using, as fully as possible, the prerequisite background. Included are consideration of the earth's gravity and magnetic fields, geodesy, seismology, and the deformation of solids, tides, thermal properties, radioactivity, age determinations, the continents, the oceans, and the atmosphere. Observations followed by their analysis in terms of physical principles. Instructor: Smith.

Ge 3. Mineralogy. 9 units (3-3-3); second term. Prerequisites: Ge 1, Ch 1, Ph 1. A study of the fundamental structure of minerals, rocks, and other earth materials and their behavior under the varying physical conditions of the earth's crust. Topics discussed include crystallography, stability relations of minerals, solid-state transformations, and mechanisms of material transfer with strong emphasis on the basic atomistic relations. This course is intended to provide fundamental information needed for subsequent studies in mineralogy, petrology, and structural geology. Instructor: Wasserburg.

Ge 5. Geobiology. 9 units (3-0-6); third term. Prerequisites: Ge 1, Ch 1, Bi 1. An examination, chiefly in biological terms, of processes and environments governing the origin and differentiation of secondary materials in the crust throughout the span of earth history. Consideration is given to the environmental influence of the change from a reducing to an oxidizing atmosphere upon the evolution of life processes and to the subsequent progression of organisms and organic activity throughout the oxidizing era as recorded in the sedimentary rocks of the earth's crust. Special attention is devoted to organic progression and differentiation in time and space in terms of environment. Instructors: Lowenstam, Brown.

Ge 30 ab. Introduction to Geochemistry. 6 units (2-0-4); first and second terms. Prerequisites: Ch 14, Ch 24 ab, Ma 2 abc, Ph 2 abc, Ge 1. A lecture and problem course on the application of chemical principles to earth problems, involving topics in stable and radioactive isotopic geochemistry. Instructors: Epstein (Ge 30a); Brown (Ge 30b).

Ge 40. Special Problems for Undergraduates. Units to be arranged, any term. This course provides a mechanism for undergraduates, other than freshmen, to undertake honors-type work in geologic sciences. By arrangement with individual members of the staff.

ADVANCED SUBJECTS

Courses given in alternate years are so indicated. Courses in which the enrollment is less than five may, at the discretion of the instructor, not be offered.

Ge 100. Geology Club. 1 unit (1-0-0); all terms. Presentation of papers on research in geological science by the students and staff of the Division of the Geological Sciences and by guest speakers. Generally required of all senior and graduate students in the Division; optional for sophomores and juniors. Instructor: Allen.

Ge 102. Oral Presentation. 1 unit (1-0-0); first, second, or third term. Training in the technique of oral presentation. Practice in the effective organization and delivery of reports before groups. Successful completion of this course is required of all candidates for the bachelor's, master's, and doctor's degrees in the Division. The number of terms taken will be determined by the proficiency shown in the first term’s work. Offered in 1962-63. In charge: Sharp (first term).

Ge 103. Historical Geology. 9 units (2-2-5); second term. Prerequisite: Ge 1. Distribution in time and space of stratified rocks; development of the biota since the
beginning of the Cambrian; distribution of orogenies in time and space since the Precambrian; relation of major stratified rock types and orogenic areas to the Precambrian shields of the world. Instructor: Boucot.

Ge 104 a. Igneous Petrology. 8 units (3-3-2); first term. Prerequisite: Ge 3. A study of the origin, occurrence, and classification of the igneous rocks, with training in the megascopic identification, description and interpretation of these rocks and their constituent minerals. Problems of genesis are considered mainly in the light of chemical equilibria and features of geologic occurrence. Instructor: Silver.

Ge 104 b. Sedimentary Petrology. 10 units (3-4-3); second term. Prerequisites: Ge 1, Ge 3. A study of the origin, occurrence, and classification of the sedimentary rocks, training in the identification, description, and interpretation of these rocks, using megascopic methods and the binocular microscope; consideration of the chemical, physical, and biologic processes involved in the origin, transport, and deposition of sediments, and their subsequent diagenesis. Field trips supplement the laboratory study. Texts: *Sedimentary Rocks*, Pettijohn; *Principles of Geochemistry*, Mason. Instructor: Degens.

Ge 104 c. Metamorphic Petrology. 7 units (2-3-2); third term. Prerequisites: Ge 3, Ch 24 ab. A study of the origin, occurrence, and classification of the principal metamorphic rocks, with training in the megascopic identification, description, and interpretation of these rocks. Emphasis is placed upon problems of genesis, which are viewed mainly in the light of chemical equilibria and features of geologic occurrence. Text: *Igneous and Metamorphic Petrology*, Turner and Verhoogen. Instructor: Taylor.

Ge 105. Optical Mineralogy. 12 units (2-8-2); first term. Prerequisite: Ge 3. The principles of optical crystallography; training in the use of the petrographic microscope in identification of crystalline substances, especially natural minerals, both in thin section and as unmounted grains. Text: *Optical Crystallography*, Wahlstrom. Instructor: Kamb.

Ge 106 ab. Petrography. 9 units (2-6-1) second and third terms. Prerequisites: Ge 105, Ch 24 ab. A systematic study of rocks and rock-forming minerals; training in the use of the petrographic microscope in the study of rocks; interpretation of mineral assemblages and textures; problems of genesis. Text: *Optical Mineralogy*, Kerr. Instructor: Albee.

Ge 108. Mathematical Techniques for Geologists. 6 units (3-0-3); first term. A review of some of the mathematical methods used in formulating and solving geologic problems. The purpose of this course is to give new graduate students a reasonable proficiency with those mathematical techniques which will be used in advanced courses in the earth sciences. Instructor: Phinney.

Ge 109. Structural Geology. 6 units (1-3-2); first term. Prerequisites: Ge 1, Ge 2, Ge 3. A problem course in the interpretation and description of geologic structures. Includes use of descriptive geometry and stereographic projection in solution of geologic problems; mechanical properties of rocks; geologic scale models. Instructor: Allen.

Ge 111 ab. Invertebrate Paleontology. 10 units (2-6-2); second and third terms. Prerequisite: Ge 1. Morphology and geologic history of the common groups of the lower invertebrates, with emphasis on their evolution and adaptive modifications. Second term: consideration of the higher invertebrates groups; preparation of fossils and problems of invertebrate paleontology. Instructors: Lowenstam, Boucot.
Ge 120 abc. Field Geology. 10 units (4-5-1), first term; 10 units (0-8-2), second term; 10 units (0-6-4), third term. Prerequisites: Ge 1, Ge 3. An introduction of the interpretation of geologic features in the field, and to the fundamental principles and techniques of geologic mapping. Classroom and field studies include the interpretation of geologic maps, megascopic investigation of rock types, the solution of field problems in structure and stratigraphy, geologic computations, and an introduction to the use of aerial photographs for field mapping. To these ends, small areas are mapped in great detail and reports are prepared in professional form. Text: Field Geology, Lahee. Instructors: Allen (120 a); Taylor (120 b); Degens (120 c).

Ge 121 abc. Advanced Field Geology. 14 units (4-8-2), first term; 10 units (0-8-2), second term; 11 units (0-5-6), third term. Prerequisites: Ge 3, Ge 120 abc. Interpretation of geologic features in the field, with emphasis on problems of the type encountered in professional geologic work. Advanced techniques of investigation are discussed. The student investigates limited but complex field problems in igneous, sedimentary, and metamorphic terranes. Individual initiative is developed, principles of research are acquired, and practice gained in field techniques, including the use of the plane table in geologic mapping. The student prepares reports interpreting the results of his investigations. Instructors: Silver (121 a); Albee (121 b); Kamb (121 c).

Ge 123. Summer Field Geology. 30 units. Prerequisite: Ge 120 abc. Intensive field study of a 10-15 square mile area from a centrally located, temporary camp. Emphasis is placed on stratigraphic and structural interpretation, and on detailed mapping techniques, including the use of aerial photographs. Each student prepares a geologic map, stratigraphic and structural sections, and a complete geologic report. The work is performed under close supervision of regular staff members. The area chosen generally lies in a part of the Rocky Mountains, or the Basin and Range Province. The course is designed to complement the field training in southern California afforded by the regular school year courses, Ge 20 and Ge 121. The course begins the Monday following commencement (about June 12) and lasts for six weeks. It is required at the end of the junior year of candidates for the bachelor's degree in the geology and geochemistry options; of candidates for the Master of Science degree; and, at the discretion of the staff, of candidates for other advanced degrees in the Division of Geological Sciences. Registration is limited to students regularly enrolled in the California Institute of Technology or to those entering the following term. Text: Suggestions to Authors, Wood and Lane. Instructors: To be designated.

GE 126. Geomorphology. 10 units (4-0-6); second term. Primarily a consideration of dynamic processes acting on the surface of the earth, and the genesis of landforms. Offered in 1963-64. Instructor: Sharp.

Ge 130 ab. Introduction to Geochemistry. 4 units (2-0-2); first and second terms. This subject is the same as Ge 30 ab, but with reduced credit for graduate students.

Ge 131. Geochronology. 6 units (2-0-4); third term. Prerequisite: Ge 130 ab. A lecture and problem course covering topics in radioactive isotopes, and geochronology. Instructor: Patterson.

Ge 150 g. The Nature and Evolution of the Earth. 6 units (3-0-3). Discussions at an advanced level of problems of current interest in the earth sciences. The course is designed to give graduate students in the geological sciences and scientists from other
fields a broad sampling of data and thought concerning current problems. The lectures are given by members of the staff of the Division of the Geological Sciences. Staff members from other divisions and visiting lecturers from the outside also participate in the instruction. Students may enroll for any or all terms of this course without regard to sequence. Instructors: The staff and visitors.

Ge 151 a. Laboratory Techniques in the Earth Sciences. 5 units (0-5-0); second term. Introductory training in the use of tools and techniques used in earth sciences research. Experiments of geological interest are done using the emission spectrograph, spectrophotometer, X-ray spectrometer, alpha and beta counters, mass spectrometers, wet chemical techniques and other available tools and techniques. The course carries a minimum of 5 units but additional units may be elected. In charge: Epstein.

Ge 151 b. Geophysical Investigations of Geological Field Relationships. 5 units (0-5-0); third term. This course is designed to familiarize the student with various geophysical techniques and instruments that can be brought to bear on the investigation of diverse geological field problems. The course consists essentially of a series of field exercises, and should be of interest to both geologists and geophysicists. Instructors: Phinney and Smith.

Ge 185. General Geophysics. 6 units (3-0-3); third term. A survey course in the physics of the earth. Among topics included are Seismology, Gravity, Terrestrial Magnetism, Thermal History of the Earth and Submarine Geophysics. Suitable for students in geology and as an elective in physics and engineering. Instructor: Press.

Ge 171. Applied Geophysics I. 10 units (4-2-4); second term. The use of gravity, magnetic and seismic methods applied to geological field problems. Theoretical background and field practice. Instructor: Dix.

Ge 176. Elementary Seismology. 6 units (3-0-3); third term. Prerequisites: Ge 1, Ma 2 ab. A survey of the geology and physics of earthquakes. Text: Elementary Seismology, Richter. Instructor: Richter.

Geology

Ge 209. Sedimentary Petrology. 10 units (2-4-4); third term. Prerequisite: Ge 105. A study of the processes and products of sedimentation in relation to their geologic environment. Emphasis is given to major lithologic facies and their interpretation. The laboratory work affords an introduction to techniques of sedimentary analysis. Occasional field trips. Instructor: Degens.

Ge 211 abc. Topics in Advanced Petrology. 15 units each term (4-4-7). Integrated lecture, laboratory and seminar treatments of topics in igneous and metamorphic petrology and the mechanics of rock deformation at an advanced level. Laboratory and field studies will be pursued in close association with the classwork. Consideration of petrologic problems in terms of basic principles and modern investigative approaches will be emphasized.

211 a. Problems in igneous petrology: the origin, nature, distribution, and behavior of magmas and analogous chemical systems. Critical comparison of theoretical predictions and natural systems. Prerequisites: Ge 106 ab, Ch 124 ab. Instructor: Wasserburg.

211 b. Topics in metamorphic petrology, including the facies principle and the thermodynamic equilibrium of metamorphic mineral assemblages. These
problems are attacked using the tools of thermodynamics, chemical kinetics and isotope geology, and are evaluated in terms of field evidence. **Prerequisites:** Ge 211 a. Instructor: Epstein.

Ge 211 c. Rock Deformation. Tensor analysis of stress and strain; deformation of single crystals; rock plasticity and creep; recrystallization; structural petrology and petrofabrics; theory of fracture; stress distribution and fault patterns; tectonic models. **Prerequisites:** Ge 211 b and Ge 108 or Ph 108 abc. Not offered in 1962-63. Instructors: Kamb and Allen.

Ge 213. Mineralogy-Petrology (Seminar). 5 units; second term. **Prerequisite:** Ge 211 ab. Discussion of special problems and current literature related to the general provinces of mineralogy and petrology. Topics in such broad fields as crystal structure, mechanics of crystallization, geochemistry, techniques of mineral identification, and the origin of rocks and mineral deposits are selected for critical attention during the term, largely on the basis of trends of interests among members of the group.

Ge 229. Glacial Geology. 10 units (3-0-7); second term. **Prerequisite:** Ge 126. Origin of glaciers, existing glaciers, glaciology and glacial mechanics, erosional and depositional features of mountain and continental glaciers, chronology of the Pleistocene. Text: *Glacial and Pleistocene Geology*, Flint. Offered in 1962-63. Instructor: Sharp.

Ge 230. Geomorphology (Seminar). 5 units; third term. Discussion of research and current literature in geomorphology. In charge: Sharp.

Ge 237. Tectonics. 8 units (3-0-5); third term. Advanced structural and tectonic geology. Structure of some of the great mountain ranges; theories of origin of mountains; mechanics of crustal deformation; isotasy, continental drift, convection; fault-plane solutions. Offered in 1962-63. Instructors: Allen and Kamb.

PALEONTOLOGY

Ge 244 ab. Paleoecology (Seminar). 5 units; second and third terms. Critical review of classic investigations and current research in paleoecology and biogeochemistry. In charge: Lowenstam.

Ge 245. Biostratigraphy (Seminar). 5 units; first term. A consideration of problems and principles of biostratigraphy, including regional, inter-regional, and world-wide correlations by means of fossils, and the problems arising from the consideration of animal geography. Instructor: Boucot.

GEOPHYSICS

Ge 261. Advanced Seismology: Theoretical. 6 units (3-0-3); first term. **Prerequisite:** Ph 108 abc. Discusses essential material not covered in Ge 264 (Elastic Waves), including equations of electromagnetic seismographs and paths of seismic rays within the earth. Instructor: Richter.

Ge 264 ab. Elastic Waves. 8 units (4-0-4); first and second terms. **Prerequisite:** Ph 106 abc. Experimental and theoretical aspects of elastic wave propagation in a layered half space, in plates, cylinders, and spheres, with application to seismic waves and underwater acoustics. Instructor: Press.

Ge 265 ab. Advanced General Geophysics. 9 units (3-0-6); second and third terms. **Prerequisites:** Ph 107 abc; Ph 108 abc; Ph 129 also desirable. Topics from among the following areas will be selected: thermal regime of the earth, submarine geophys-
ics; geomagnetism; planetary geophysics; gravity field; large-scale motions in the earth. Not offered in 1962-63. Instructors: Press and Knopoff.

Ge 268 ab. Selected Topics in Theoretical Geophysics. 6 units (3-0-3); second and third terms. Prerequisite: Ph 129 abc or equivalent. Discussion of seismic wave propagation, gravitational and magnetic fields, stress systems, and general thermodynamics as applied to earth processes. Content of course is altered somewhat from year to year depending mainly upon student needs. Instructor: Dix.

Ge 282 abc. Geophysics-Geochemistry (Seminar). 1 unit; first, second, third terms. Prerequisite: At least two subjects in geophysics or geochemistry. Discussion of papers in geochemistry, general and applied geophysics. In charge: Epstein, Phinney, Smith.

General

Ge 295. Master's Thesis Research. Units to be assigned. Listed as to field according to the letter system under Ge 299.

Ge 297. Advanced Study. Students may register for 8 units or less of advanced study in fields listed under Ge 299. Occasional conferences.

Ge 299. Research. Original investigation, designed to give training in methods of research, to serve as theses for higher degrees, and to yield contribution to scientific knowledge. These may be carried on in the following fields:

Geology:
- (A) Economic Geology
- (B) Field Geology
- (C) Geomorphology
- (D) Glaciology
- (E) Invertebrate Paleontology
- (F) Mineralogy
- (G) Paleocology
- (H) Petrology
- (I) Sedimentation
- (J) Stratigraphy
- (K) Structural Geology

Geochemistry:
- (L) General Geochemistry
- (M) Geochronology
- (N) Isotopic Geochemistry
- (O) Meteorites
- (P) Space Science

Geophysics:
- (Q) Applied Geophysics
- (R) General Geophysics
- (S) Geophysical Instruments
- (T) Seismology
- (U) Theoretical Geophysics
GERMAN
(See under Languages)

HISTORY AND GOVERNMENT
UNDERGRADUATE SUBJECTS

H 1 abc. History of European Civilization. 5 units (2-0-3); first, second, third terms. An introduction to the history of Europe from 1648 to the present. The course will include discussions of political, social, and economic problems, and of the more important theoretical concepts of the period. Instructors: Ellersieck, Elliot, Fay, Huttenback, Conhaim, Searle.

H 2 abc. History and Government of the United States. 6 units (2-0-4); first, second, third terms. The United States since the Revolution. Particular attention will be given to the great questions of domestic and foreign policy which the United States has faced in recent times. The course will include a study of the Constitution and form of government of the United States and the State of California, and will trace the evolution of national and local political institutions and ideas. Instructors: J. Davies, Paul, Piper, Strout, Baker.

H 4. The British Empire and the Commonwealth.* 9 units (3-0-6). Senior Elective. The growth of the imperial idea and the institutional development of the Empire and the Commonwealth with particular reference to Africa and Asia. Instructor: Huttenback.

H 5 abc. Public Affairs. 2 units (1-0-1); first, second, third terms. In this course a selection of important contemporary problems connected with American political and constitutional development, economic policies, and foreign affairs will be considered. Instructors: Elliot, Sweezy; occasional lectures by other members of the department.

H 7. Modern and Contemporary Germany.* 9 units (3-0-6). Senior Elective. A study of what is sometimes called "The German Problem." Attention will be focused on the rise of Prussia, on Prussian leadership in the unification and direction of Germany, and on the place of Germany in the economy of Europe. Particular stress will be placed upon the German experience since the first World War.

H 8. Modern and Contemporary Russia.* 9 units (3-0-6). Senior Elective. An attempt to discover and interpret the major recurring characteristics of Russian history and society, with attention particularly to developments in the Soviet period. Instructor: Ellersieck.

H 15. Europe since 1914.* 9 units (3-0-6). Senior Elective. Since 1914 the world has felt the impact of two great wars and powerful revolutionary ideas. This course will analyze these upheavals of the twentieth century and their effect on domestic and international organization. Instructor: Fay.

H 16. American Foreign Relations.* 9 units (3-0-6). Senior Elective. How American foreign policy has been formed and administered in recent times: the respective roles of the State Department, Congress, and the President, of public opinion and pressure groups, of national needs and local politics. Instructor: Paul.

H 17. The Far West and the Great Plains.* 9 units (3-0-6). Senior Elective. A study of the development of the great regions that compose the western half of the United States. Especial attention will be paid to the influence of the natural environment.

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
on the men who settled the West, from pioneer days to the present time, and the exploitation of natural resources, through such industries as mining, ranching, oil and farming. Instructor: Paul.

H 19. Modern America.* 9 units (3-0-6). Senior Elective. An experimental course in which the main theme will be the conflict between government regulation and private enterprise in Twentieth-Century America. Classes will be conducted as discussions under the joint leadership of an historian and an economist. Instructors: Paul, Sweezy.

H 20. Modern and Contemporary France.* 9 units (3-0-6). Senior Elective. A study of modern France in the light of her revolutionary tradition. A consideration of the French Revolution followed by an examination of selected episodes between 1815 and 1944 (the June Days, the Paris Commune, the Dreyfus affair, the Stavisky riots, the Vichy regime) which reflect continuing revolutionary strain. Instructor: Fay.

H 22. Modern Britain.* 9 units (3-0-6). Senior Elective. A study of Britain's recent past with particular emphasis upon the development of the working class movement. Instructor: Elliot.

H 23. Modern War.* 9 units (3-0-6). Senior Elective. The course will trace the major developments within the military establishment, such as the growth of the general staff and mass armies. It will discuss the major strategic concepts of the nineteenth and twentieth centuries and the problems of modern war, with some consideration of the political, economic, and social aspects of waging war. Instructor: Ellersieck.

H 24 a. Political Behavior.* 9 units (3-0-6). Senior Elective. An examination of general behavior patterns and tendencies of individuals as related to their political behavior and to appropriate types of political institutions. Relevant psychological and sociological theory and research will be discussed in an effort to find the kinds of government suitable to people living in modern technological and industrial society. Instructor: J. Davies.

H 24 b. Political Revolution. 9 units (3-0-6). Senior Elective. An analysis of various revolutions in light of the basic psychic and social forces which impel individuals to fight for and support a drastic, sudden change in the political power structure of their society. Instructor: J. Davies.

H 25. Political Parties and Pressure Groups.* 9 units (3-0-6). Senior Elective. A study of those institutions through which individuals and groups seek to control governmental policy and administration. Particular attention will be focused on parties as formulators of individuals' political wants, fears, and expectations and as transmitters of these programs to government. Instructor: J. Davies.

H 26. The Political Novel.* 9 units (3-0-6). Senior Elective. A political and literary appraisal of modern novels that attempt to explain and to judge relationships between the individual and the state in both free and totalitarian societies.

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
class will meet under the joint supervision of a professor of English and a political scientist. Instructors: J. Davies, Stanton.

H 28. American Political Ideas.* 9 units (3-0-6). Historical and analytical examination of liberal, conservative and radical thought with an emphasis on reading in original sources. Instructor: Strout.

H 30. The Individual and Society in America.* 9 units (3-0-6). Readings in some "classics" of American history, centered about the relation of the individual to the larger community at different periods. Problems such as status and social mobility, personal and group values and tensions, nonconformity and social criticism, and the development of the American character will be discussed. Instructor: Baker.

H 35. Modern India and Pakistan.* 9 units (3-0-6). The course will deal with the growth of Indian nationalism in the years before independence, and developments in India and Pakistan since partition. Special emphasis will be placed on the philosophical conflict between British and indigenous Indian attitudes and the consequent effect on contemporary India and Pakistan. Instructor: Huttenback.

H 40. Reading in History. Units to be determined for the individual by the department. Elective, in any term. Approval of the Registration Committee is required where excess units are involved. Reading in history and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required.

H 41. Summer Reading. Units to be determined for the individual by the department. Maximum, 8 units. Elective. Reading in history and related subjects during summer vacation. Topics and books to be selected in consultation with members of the department. A brief written report will usually be required.

ADVANCED SUBJECTS

H 100 abc. Seminar in History and Government. 9 units (2-0-7). Studies in English and American civilization. The reading will be chiefly in biographies of great men and women, famous novels, and suggestive essays in historical and political interpretation. Instructor: Fay.

H 123. The Growth of Industrial Civilization.* 9 units (3-0-6). Senior Elective. An analysis and study of some of the major factors affecting the past, present and future development of industrial civilization with emphasis on projections into the next century. Among the factors to be considered are population changes, material, food and energy resources and technical manpower. Lectures and discussions will be given by staff members from various Institute divisions. Instructors in charge: Weir, Bonner, Brown.

H 124. Seminar in Foreign Area Problems.* 9 units (3-0-6); second term. Senior Elective. The object of this course is to give students an opportunity to study in some detail problems current in certain selected foreign areas. Three or four areas will be considered each time the course is given, and the selection will normally vary from

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
year to year. Instruction will be given mainly by area specialists of the American Universities Field Staff. Instructors: Elliot and members of AUFS.

H 125 abc. Seminar on National Security. 9 units (2-0-7). Senior Elective. The object of this course is to afford an opportunity to study some of the problems faced by the U. S. Government in the world today. Consideration will be given to such matters as the process of policy formation within the government, the relationship of disarmament and arms control to defence policy, and the role of international organizations in the development of an orderly world society. Instructor: Elliot.

H 140. Reading and Research in History and Government. Units to be determined for the individual by the department.

HYDRAULICS ADVANCED SUBJECTS

Hy 100. Hydraulics Problems. Units to be based upon work done, any term. Special problems or courses arranged to meet the needs of fifth-year students or qualified undergraduate students.

Hy 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: ME 19 ab and Hy 111 or equivalent. Continuity, momentum, and energy equations for viscous, compressible fluids; circulation and the production of vorticity; potential flow and applications to flow around bodies; gravity waves; laminar flow; laminar boundary layers; turbulence and turbulent shear flow; transport of sediment; topics from gas dynamics and introduction to mechanics of compressible flow. Instructor: Marble.

Hy 103 abc. Advanced Hydraulics and Hydraulic Structures. 9 units (3-0-6); first, second, third terms. Prerequisites: ME 19 ab and Hy 111 or equivalent. Ideal fluid flow, turbulence and diffusion, boundary layers, dimensional analysis, hydraulic models, steady flow in open channels, hydraulic jump, high-velocity flow in open channels, sedimentation, surface waves and coastal engineering, and unsteady flow in pipes and channels. Theory and design of hydraulic structures such as inlets, chutes, energy dissipators, canals, transitions and the like. Instructors: Vanoni, Harleman, Raichlen.

Hy 105. Analysis and Design of Hydraulic Projects. 6 or more units as arranged; any term. The detailed analysis or design of a complex hydraulic structure or project emphasizing interrelationships of various components, with applications of fluid mechanics and/or hydrology. Students generally work on a single problem for the entire term, with frequent consultations with the instructor. Among possible problems or projects are multipurpose river storage projects, spillways, waterpower developments, pipelines, pumping stations, distribution and collection systems, flood control systems, ocean outfalls, water and sewage treatment plants, irrigation systems, navigation locks and harbors. Instructors: Vanoni, Raichlen.

Hy 111. Fluid Mechanics Laboratory. 6 units (0-6-0); third term. Prerequisite: ME 19 ab. A laboratory course illustrating the basic mechanics of incompressible fluid flow, and complementing the lecture course ME 19 abc. Students will usually select 4 or
5 regular experiments, but with the permission of the instructor they may propose special investigations of brief research projects of their own in place of some of the regular experiments. Objectives also include giving students experience in making engineering reports. Although course is primarily for seniors, it is also open to first-year graduate students who have not had an equivalent course. Instructor: Raichlen.

Hy 121. Advanced Hydraulics Laboratory. 6 or more units as arranged; any term. Prerequisite: Consent of instructor. A laboratory course primarily for fifth-year students dealing with flow in open channels, sedimentation, waves, hydraulic structures, hydraulic machinery, or other phases of hydraulics of special interest. Students may perform one comprehensive experiment or several shorter ones, depending on their needs and interests. Instructor: Staff.

Hy 134. Flow in Porous Media. 9 units (3-0-6); third term. Prerequisite: AM 95 ab or equivalent. AM 116 is also recommended. (AM 95 b may be taken concurrently.) A study of the hydrodynamics of flow through porous media, with applications primarily in the field of ground water flow, including seepage through earth dams and levees, uplift pressures on dams and foundations, flow toward wells, ground water recharge, drainage, dewatering for excavations, dispersion, and salinity intrusion. Emphasis is placed on flow-net analysis and mathematical methods. Instructor: Harleman.

Hy 200. Advanced Work in Hydrodynamics or Hydraulic Engineering. Units to be based upon work done; any term. Special courses on problems to meet the needs of students beyond the fifth year.

Hy 201 abc. Hydraulic Machinery. 6 units (2-0-4); first, second, third terms. No prerequisite. A study of such rotating machinery as turbines, pumps, and blowers and their design to meet specific operating conditions. This course will be given in seminar form led by members of the Hydrodynamics and Mechanical Engineering staffs. Not given every year. Check with your instructor.

Hy 203. Cavitation Phenomena. 6 units (2-0-4). Prerequisite: Graduate standing. Study of the experimental and analytical aspects of cavitation and allied phenomena. Problems will be considered in the field of hydraulic machinery and also for bodies moving in a stationary fluid. Instructor: Ellis.

Hy 210 ab. Hydrodynamics of Sediment Transportation. 9 units (3-0-6). Prerequisites: AM 95 ab and Hy 103 abc or Hy 101 abc. A study of the mechanics of the entrainment, transportation, and deposition of solid particles by flowing fluids. This will include problems of water and wind erosion, and density currents. Instructor: Vanoni.

Hy 211. Advanced Hydraulics Seminar. 4 units (2-0-2); every term. A seminar course for advanced graduate students to discuss and review the recent technical literature in hydraulics and fluid mechanics. Emphasis will be on topics related to civil engineering which are not already available in courses offered by the Engineering Division. The subject matter will be variable depending upon the needs and interests of the students. It may be taken any number of times with permission of the instructor. Instructor: Harleman.

Hy 300. Thesis.

JET PROPULSION

ADVANCED SUBJECTS

JP 120 abc. Chemistry Problems in Propulsion. 9 units (3-0-6); each term. Open to all graduate students and to seniors by permission of instructor. Propellant chemistry; de-

JP 121 abc. Rockets and Air Breathing Engines. 9 units (3-0-6); each term. Prerequisites: AM 95 ab, AM 116 or equivalent (may be taken concurrently with permission of instructor). Basic performance and comparison of rocket and air breathing engines. Nozzle flow, under- and over-expansion, particle flow in nozzles, heat transfer and cooling of components. Cycle analysis of air-breathing engines; component performance; diffusers, combustion chambers, compressors, turbines, ducted fans; component matching and overall performance. Properties and burning characteristics of solid propellants, solid propellant rocket motors; properties and burning characteristics of liquid propellants, propellant feed systems, liquid rocket motors, low frequency and high frequency instability; weight estimates, optimization of vehicle performance. Instructors: Rannie, Zukoski.

JP 170. Jet Propulsion Laboratory. 9 units (0-9-0); third term. Laboratory experiments related to propulsion problems. Instructor: Zukoski.

JP 201. Physical Mechanics. 9 units (3-0-6); any term. Prerequisite: JP 120 abc or equivalent. Introduction to quantum mechanical and statistical mechanical methods for calculating thermodynamic properties, in particular properties of materials at high temperatures; transport theory. Not offered every year. Instructor: Penner.

JP 202 abc. Quantitative Spectroscopy and Gas Emissivities. 9 units (3-0-6); each term. Prerequisite: Ph 112 or Ch 226 or JP 201 or equivalent. This course will consist of the following subjects, with one term being devoted to each subject: (1) Black-body radiation laws, Einstein coefficients, integrated intensities and f-numbers. Spectral line widths and shapes; the curves of growth. Theoretical calculation of absolute intensities for atoms and molecules. (2) Theoretical calculation of equilibrium gas emissivities and absorptivities; infrared emissivities for diatomic molecules at low pressures; pressure-induced transitions. Infrared emissivities of polyatomic molecules. Emissivity calculations for heated air. Emissivity calculations for a hydrogen plasma. Relation between gas absorptivities and emissivities. Spectroscopic techniques for temperature measurements. (3) Radiative transfer problems in ionized gases; emission of radiation behind shock fronts; the influence of radiative transfer on the flow equations; radiant heat transfer to hypersonic vehicles during re-entry of the atmosphere. Approximate emissivity calculations for polyatomic molecules. Line broadening in ionized gases. Not offered every year. Text: *Quantitative Molecular Spectroscopy and Gas Emissivity*, Penner. Instructor: Penner.

JP 203 abcd. Ionized Gas Theory. 6 units (2-0-4); any term. Prerequisite: Ph 112 or Ch 226 a or JP 201 a or equivalent. The course will consist of the following subjects with one term being devoted to each subject: (1) Particle interactions: elastic, inelastic and recombination collisions involving neutral atoms, electrons and + ions studied in sufficient detail for accurate evaluation of bulk kinetic and thermodynamic properties of ionized gases. (2) Bulk properties: Application of kinetic theory, statistical thermodynamics and collision parameters developed in (1) above to bulk properties of ionized gases such as equilibrium composition, electrical
Subjects of Instruction

conductivity, ambipolar diffusion rate and others. (3) Surface phenomena: Particle and bulk interactions between an ionized gas and a bounding surface, surface emission processes, electrical and thermal conduction between a hot ionized gas and a cold surface. (4) Discharges: Ionization in strong electric fields, electron and ion mobilities, glow discharges, arc discharges, engineering applications. Not offered every year. Instructor: Staff.

JP 211 ab. Gas Dynamics of Propulsion System Components. 6 units (2-0-4); any term. Prerequisites: JP 121 abc, Ae 101 abc or Hy 101 abc or equivalent. This course will consist of the following subjects with one term being devoted to each subject: (1) Inlet diffusers: theory of diffusers for air breathing engines in supersonic and hypersonic flow, real fluid effects and losses, stability, diffuser problems in rarefied gases. (2) Nozzles: theory of three-dimensional flow in nozzles, separation and over-expansion, plug nozzles; chemical reactions and phase condensation; particle flow in nozzles. Not offered every year. Instructors: Marble, Zukoski.

JP 212 ab. Flame Theory and Combustion Technology. 6 units (2-0-4); any term. Prerequisites: JP 120 abc, Ae 101 abc or Hy 101 abc or equivalent. This course will consist of the following subjects with one term being devoted to each subject: (1) Stationary flames: review of laminar flame and diffusion flame theory; combustion of solid propellants, spray burning; combustion in boundary layers, wakes, and laminar mixing regions; principles of ignition; turbulence and turbulent flames. (2) Unsteady flames: gas dynamic flow fields with flame discontinuities, structure of non-steady flames, stability of laminar flames; unsteady combustion of particles and droplets; flame holding, flame spreading; combustion chambers. Not offered every year. Instructors: Marble, Penner.

JP 221 abc. Rocket Trajectories and Orbital Mechanics. 6 units (2-0-4); any term. Prerequisite: AM 95 ab. (Students who have taken or are intending to take Ae 103 and Ae 203 should consult the instructor.) This course will consist of the following subjects with one term being devoted to each subject: (1) Ballistic trajectories: impulsive launching, optimization with finite burning time, gravity turn; re-entry, non-lifting and gliding. (2) Satellite orbits: motion in an inverse square law field; perturbations due to oblateness of the earth, radiation pressure, moon, sun, and aerodynamic drag. (3) Space vehicle trajectories: transfer ellipses, minimum energy estimates, motion in the Earth-Moon system, powered flight. Not offered every year. Instructor: Rannie.

JP 230 abcd. Power Generation and Propulsion in Space. 6 units (3-0-3); any term. Prerequisite: JP 121 abc (some previous knowledge of Electromagnetic Theory and Modern Physics is advisable). (The aim of this course is to provide the background for understanding the current status and problems of space propulsion systems. The emphasis will change from year to year and the various terms are independent.) This course will consist of the following subjects with one term being devoted to each subject: (1) Power generation for space systems: general power requirements for space systems, turbogenerator systems with solar or nuclear power sources, radioisotope power supply, silicon solar cell, and thermoelectric systems; heat rejection and condensation processes. (2) Plasma propulsion and power extraction: plasma properties and magnetohydrodynamic flow fundamentals; steady, wave guide, and pulsed types of plasma accelerators, limitations on performance. (3) Ion propulsion: ion sources, ion accelerators, and beam neutralization; limitations on performance. (4) Nuclear propulsion: principles of the nuclear heat transfer rocket, propellant feed systems, cooling, and materials limitations; the gaseous fission rocket. Not offered every year. Instructor: Marble.

JP 240 b. Heat Transfer in Propulsion Systems—Conductive and Convective Heat Transfer. 9 units (3-0-6); any term. Prerequisite: Hy 101 abc or ME 118 abc or equivalent. Exact and approximate integral solutions of unsteady heat conduction problems, applications to solid propellant rocket motors; convective heat transfer to rocket chambers and nozzles, regenerative cooling of liquid propellant motors. Not offered every year. Instructor: Rannie.

JP 250 abc. Fluid Mechanics of Axial Turbomachines. 6 units (2-0-4); any term. Prerequisite: Hy 101 abc or equivalent. This course will consist of the following subjects with one term being devoted to each subject: (1) Cascade theory: potential flow through two-dimensional cascades, real fluid effects, and evaluation of performance. (2) Axisymmetrical flow: flow through an actuator disc in an annular duct, linearized perturbations of strong vorticity fields, single and multiple blade rows of finite axial length, effect of varying duct height, and compressibility effects. (3) Three-dimensional real fluid effects: secondary flow, propagating stall, blade tip clearance flow. Not offered every year. Instructors: Marble, Rannie.

JP 270. Special Topics in Propulsion. 6 units (2-0-4). The topics covered will vary from year to year. Instructors: Staff Members.

JP 290 abc. Advanced Seminar in Jet Propulsion. 2 units (1-0-1); each term. Seminar on current research problems in propulsion and related fields. Instructors: Staff Members.

Languages

Undergraduate Subjects

L 1 abc. Elementary French. 10 units (3-1-6); first, second, third terms. A subject in grammar, pronunciation, and reading that will provide the student with a vocabulary and with a knowledge of grammatical structure sufficient to enable him to read at sight French scientific prose of average difficulty. Accuracy and facility will be insisted upon in the final tests of proficiency in this subject. One session in the language laboratory will be scheduled each week. Students who have had French in the secondary school should not register for this subject without consulting the department of languages. Instructor: Stern.

L 5. French Literature.* 9 units (3-0-6); second term. Senior elective. Prerequisite: L 1 ab, or the equivalent. The reading of selected classical and modern literature, accompanied by lectures on the development of French literature. Elective and offered when there is sufficient demand. Instructors: Bowerman, Stern.

L 32 abc. Elementary German. 10 units (3-1-6); first, second, third terms. This subject is presented in the same manner as the Elementary French. Students who have had German in the secondary school or junior college should not register for this
subject without consulting the department of languages. One session in the language laboratory will be scheduled each week. Instructors: Bowerman, Wayne.

L 35. Scientific German. 10 units (0-0-10); first term. Prerequisite: L 32 abc, or equivalent. This is a continuation of L 32 abc, with special emphasis on the translation of scientific material in the student’s field. Instructor: Bowerman.

L 39 abc. Reading in French or German. Units to be determined for the individual by the department. Reading in scientific or literary French or German under the direction of the department.

L 40. German Literature.* 9 units (3-0-6); third term. Senior Elective. Prerequisite: L 35, or L 32 abc with above average grades. The reading of selected classical and modern literature, accompanied by lectures on the development of German literature. Instructor: Stern.

L 50 abc. Elementary Russian. 10 units (4-0-6); first, second, third terms. A subject in pronunciation, grammar, and reading that is intended to enable a beginner to read technical prose in his field of study. Students are expected to become familiar with a basic scientific vocabulary. Articles from current Russian scientific periodicals are used in the second and third terms. Instructor: Kosloff.

L 51 abc. Intermediate Russian. 10 units (4-0-6); first, second, third terms. Prerequisite: L 50 abc or the equivalent. A continued study of the Russian language with increased emphasis on conversation. The reading of selected classical and modern literature. Discussions in Russian. Continuation of reading and translation of scientific material. Instructor: Kosloff.

ADVANCED SUBJECTS

L 105. Same as L 5. For graduate students.

L 140. Same as L 40. For graduate students.

MATHEMATICS

UNDERGRADUATE SUBJECTS

Ma 1 abc. Freshman Mathematics. 12 units (4-0-8); first, second, third terms. Prerequisites: High school algebra and trigonometry. An introduction to the calculus; vector algebra; analytic geometry; the infinite series. Professors in charge: Bohnenblust, De Prima.

Ma 1.5 abc. Advanced Placement Course. 12 units (4-0-8); three terms. This course is restricted to entering freshmen who are given advanced placement in mathematics. The concepts of the calculus are reviewed and the course covers the material of Ma 1 abc and Ma 2 ab. Students who complete this course take Ma 2 c either in the first or in the last quarter of their sophomore year.

Ma 2 abc. Sophomore Mathematics. 12 units (4-0-8); first, second, third terms. A continuation of the freshman mathematics course including: an extension of the calculus to functions of several variables; introduction to probability; vector analysis; differential equations; numerical analysis. Professor in charge: Lees.

Ma 5 abc. Introduction to Abstract Algebra. 9 units (3-0-6); three terms. Groups, rings, fields, and vector spaces are presented as axiomatic systems. Their subsystems, factor systems and direct products are studied. The algebraic techniques of decom-

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
Mathematics

position and extension are presented. A large portion of the course is devoted to linear algebra and matrix theory with applications to geometry. Included are determinants, characteristic roots, Hermitian matrices and canonical forms. Professor in charge: Hall. Instructors: Block, Dade, Dixon.

Ma 91. Special Course. 9 units (3-0-6); third term. Each year, during the third term, a course will be given in one of the following topics:

(a) Some field of number theory. (Given in 1959-60.)
(b) Some field of algebra or logic. (Given in 1961-62.)
(c) Theory of elasticity. (Given in 1962-63.) Knowles.
(d) Game Theory. (Given in 1960-61.)

Ma 92 abc. Senior Thesis. 9 units (0-0-9); three terms. Prerequisite: Approval of advisor. Open only to seniors who are qualified to pursue independent reading and research. The work must begin in the first term and will be supervised by a member of the staff. Students will consult periodically with their supervisor, and will submit a thesis at the end of the year.

Ma 98. Reading. 3 units or more by arrangement. Occasionally a reading course under the supervision of an instructor will be offered. Topics, hours, and units by arrangement. Only qualified students will be admitted after consultation with the instructor in charge of the course.

ADVANCED SUBJECTS

[A] The following courses are open to undergraduate and graduate students:

Ma 102. Differential Geometry. 9 units (3-0-6); third term. Selected topics in metrical differential geometry. Instructor: Erdélyi.

Ma 105 ab. Introduction to Numerical Analysis. 11 units (3-2-6); second and third terms. Prerequisites: Ma 108 or AM 15 or equivalent, Ma 5, Ma 31 or AM 180 or equivalent, and familiarity with coding procedures by the middle of the first quarter of the course. The topics considered include: Interpolation and quadrature. Numerical solution of algebraic and transcendental equations. Matrix inversion and determination of eigenvalues. Numerical solution of ordinary differential equations. Numerical solution of elliptic, parabolic, and hyperbolic partial differential equations. Instructor: Franklin.

Ma 108 abc. Advanced Calculus. 12 units (4-0-8); three terms. Prerequisite: Ma 2. In this course, a sequel to Ma 2, more advanced techniques and applications of calculus are treated. Point set topology is the point of departure for the theory of convergence, and applications are made to implicit functions, partial differentiations, infinite series and infinite products of real and complex numbers. Other topics treated include: uniform convergence of sequences of functions; functions defined by integrals; Fourier series and integrals; analytic functions of a complex variable. Instructors: Apostol, Chakerian, Fuller, Garsia, Sharples.
Ma 109. **Operational Calculus. 9 units (3-0-6); third term.** Introduction to operational calculus and to delta functions. Applications to ordinary and partial differential equations. Given in 1963-64 and alternate years.

Ma 112. **Elementary Statistics. 9 units (3-0-6); first and repeated in second term. Prerequisite: Ma 1, Ma 2.** This course is intended for anyone interested in the application of statistics to science and engineering. The topics treated will include the preparation and systematization of experimental data, the fundamental statistical concepts; population, sample, mean and dispersion, curve fitting and least squares, significance tests and problems of statistical estimation. Instructors: Knowles, Ward.

Ma 116 ab. **Mathematical Logic and Axiomatic Set Theory. 9 units (3-0-6); first and second terms. Prerequisite: Ma 5 abc or equivalent.** The predicate calculus and functional calculi of first order are presented and problems in the foundations of mathematics are studied. Included are Boolean algebra, theorems of Gödel, axiomatic set theory, and theory of cardinal and ordinal numbers. Instructor: Halpern.

Ma 118 abc. **Functions of a Complex Variable. 9 units (3-0-6); three terms. Prerequisite: Ma 108 or equivalent.** Review of the basic concepts of the theory of analytic functions (Cauchy’s theorem, singularities, residues, contour integration, analytic continuation). Further topics selected from: entire functions, conformal mapping, differential equations, special functions, applications of complex variable analysis. Instructor: Chakerian.

Ma 120 abc. **Abstract Algebra. 9 units (3-0-6); three terms. Prerequisite: Ma 5.** Abstract development of the basic structure theorems of groups, commutative and non-commutative rings, lattices, and fields. Instructors: Block, Ward.

Ma 121 ab. **Combinatorial Analysis. 9 units (3-0-6); first and second terms. Prerequisite: Ma 5.** Elementary and advanced theory of permutations and combinations. Theory of partitions. Theorems on choice including Ramsey’s theorem, the Hall-König theorem. Existence and construction of block designs with reference to statistical design of experiment, linear programming, and finite geometries. Instructor: Hall.

Ma 137. **Introduction to Lebesgue Integrals. 9 units (3-0-6); first term. Prerequisite: Ma 108 or equivalent.** Sets, topology, metric spaces. Functions of bounded variation. Lebesgue integrals of functions of one or two real variables. Fourier integrals. L^p spaces. Linear functionals on Hilbert spaces and Banach spaces. This is an introductory course designed as a preparation for graduate courses in analysis and probability theory. Instructor: Erdélyi.

Ma 142 ab. **Introduction to Partial Differential Equations. 9 units (3-0-6); second and third terms. Prerequisite: Ma 137 or equivalent.** Topics will include the following: Equations of the first order. Linear equations of the second order. Boundary value and eigenvalue problems for elliptic equations. Initial value and initial boundary value problems for parabolic and hyperbolic equations. Applications to problems of mathematical physics. Not given in 1962-63.

Ma 143 ab. **Functional Analysis and Integral Equations. 9 units (3-0-6); second and third terms. Prerequisites: Ma 108 and Ma 137 or equivalent.** This course is a continuation of Ma 137 and provides an introduction to methods of functional analysis. L^p spaces and their conjugates. Stieltjes integrals. The Riesz representation theorem. Daniell integrals. The Radon-Nikodym theorem. Linear operators on Banach spaces. Spectral theory of compact operators. Integral equations with applications to potential theory and to the Sturm-Liouville problem. Instructor: Erdélyi.
Mathematics

Ma 144 ab. Probability. 9 units (3-0-6); second and third terms. Prerequisite: Ma 137 or equivalent. Basic concepts of probability, limit theorems, random walks, Markov chains, stochastic processes with applications. Instructor: Garsia.

Ma 150 abc. Combinatorial Topology. 9 units (3-0-6); three terms. Introduction to combinatorial topology. The course covers homology and co-homology theory with applications to fixed point theorems and homotopy theory. Selected topics from the theory of fibre bundles. Instructor: Fuller.

Ma 160 abc. Number Theory. 9 units (3-0-6); three terms. Prerequisite: Ma 108 abc or equivalent. The first term, Ma 160 a, is a review of the elementary theory of numbers including congruences, numerical functions, elementary theory of primes, quadratic residues. The second and third terms, Ma 160 bc, include topics selected from: zeta functions, distribution of primes, elliptic modular functions, asymptotic theory of partitions, geometry of numbers, foundation of ideal theory in algebraic number fields, theory of units, valuations and local theory, discriminants, differents. Instructor: Apostol.

Ma 165 a. Diophantine Analysis. 9 units (3-0-6); third term. Prerequisite: Ma 5. The study of rational or integral solutions of equations. Theory of rational approximations to irrational numbers, and theory of continued fractions. The theorems of Thue-Siegel and Roth will be included. Not given in 1962-63.

Ma 180 abc. Methods of Applied Mathematics. 9 units (3-0-6); each term. Prerequisites: Ma 108, or AM 95, AM 116 or equivalent. Basic theory and methods of solution of partial differential equations. Classification of equations and general properties of solutions. Green's functions, eigen-function expansions, integral transforms. Other topics such as parts of the theory of ordinary differential equations, asymptotic expansions and generalized functions will be introduced as required. Instructor: Whitham.

Ma 190 abc. Elementary Seminar. 9 units; three terms. This seminar is restricted to first year graduate students and is combined with independent reading. The topics will vary from year to year. In charge: J. Todd, O. Todd.

[B] The following courses are open primarily to graduate students.

Ma 205 abc. Numerical Analysis. 9 units (3-0-6); three terms. Prerequisite: Ma 105 or equivalent. Discussion of areas of current interest in numerical analysis and related mathematics; such as: matrix inversion and decomposition, ordinary differential equations, partial differential equations, integral equations, conformal mapping, discrete problems, linear programming and game theory, approximation theory, applications of functional analysis, theory of machines, theory of programming, estimates for characteristic value of matrices. Each quarter will be treated as a separate unit. Where appropriate, accompanying laboratory periods will be arranged as a separate reading course. Instructors: J. Todd, Knuth.

Ma 222 abc. Group Theory. 9 units (3-0-6); three terms. Prerequisite: Ma 120 or permission of instructor. An introduction to the basic properties of finite and infinite groups. Theorems on homomorphisms, the theory of abelian groups, permutation groups, free groups, automorphisms. The Sylow theorems. Study of solvable, supersolvable, and nilpotent groups. A large part of the second term will be devoted to the theory of group representation, and will include applications to theoretical physics. Given in 1963-64 and alternate years.

Ma 223. Matrix Theory. 9 units (3-0-6); second term. Prerequisites: Ma 108, 1220 or equivalent. Algebraic, arithmetic and analytic aspects of matrix theory. Not offered in 1962-63.
Ma 224 abc. Lattice Theory. 9 units (3-0-6); three terms. Prerequisite: Ma 120 or permission of instructor. Systematic development of the theory of Boolean algebras, distributive, modular, and semi-modular lattices. Includes the study of lattice congruences, decomposition theory, and the structure of free lattices. Instructor: Dilworth.

Ma 237 abc. Real Variable Theory. 9 units (3-0-6); three terms. Prerequisite: Ma 137 or equivalent. The axiom of choice and its relation to the other axioms of set theory. Measure theory; the theory of integration; and related topics such as differentiation of set functions, Banach function spaces, and ergodic theory. Topological linear spaces, introduction to Banach algebras, the Stone-Weierstrass theorem. Given in 1963-64 and alternate years.

Ma 238 abc. Advanced Complex Variable Theory. 9 units (3-0-6); three terms. Prerequisite: Ma 108, Ma 118 a or equivalent. In this course the knowledge of basic parts of the classical theory of analytic functions is assumed, and special topics are presented introducing topological and group-theoretical considerations, and relations to functional analysis. The topics will be selected from: linear spaces of analytic functions, conformal mapping, algebraic functions, Riemann surfaces, functions of several complex variables, singular integral equations. Not given in 1962-63.

Ma 244 ab. Advanced Probability. 9 units (3-0-6); first and second terms. Prerequisites: Ma 137 and Ma 144 or equivalent. An exposition of probability theory in general sample spaces. Topics will include the following: modes of convergence of random variables, sequences of independent random variables, the central limit theorem, infinitely divisible distributions, conditional expectation, ergodic theory and the role of entropy in ergodic theory (and information theory). Instructor: Konheim.

Ma 280 abc. Applied Mathematics. 9 units (3-0-6); three terms. Prerequisites: Ma 137 and Ma 143 or equivalent. Special theory of self-adjoint operators in Hilbert spaces with applications to boundary value problems and to functional equations. Nonlinear problems in functional analysis applied to the theory of partial differential equations and to approximation processes. Not offered in 1962-63.

Ma 290. Reading. Occasionally advanced work is given by a reading course under the direction of an instructor. Hours and units by arrangement.

[C] The following courses and seminars are intended for advanced graduate students. They are research courses and seminars, offered according to demand, and covering selected topics of current interest. The courses offered, and the topics covered will be announced at the beginning of each term.

Ma 305 abc Seminar in Numerical Analysis. 6 units. Three terms.

Ma 320 abc Special topics in Algebra. 9 units. Three terms.

Ma 325 abc Seminar in Algebra. 6 units. Three terms.

Ma 340 abc Special topics in Analysis. 9 units. Three terms. Instructor: Luxemburg.

Ma 345 abc Seminar in Analysis. 6 units. Three terms.

Ma 350 ab Special topics in Geometry. 9 units. First and second terms. Instructor: Garsia.

Ma 355 abc Seminar in Geometry. 6 units. Three terms.

Ma 360 abc Special topics in Number Theory. 9 units. Three terms.
Ma 365 abc Seminar in Number Theory. 6 units. Three terms.
Ma 380 abc Special topics in Applied Mathematics. 9 units. Three terms.
Ma 385 abc Seminar in Applied Mathematics. 6 units. Three terms.
Ma 390 Research. Units by arrangement.
Ma 392 Research Conference. 2 units.

APPLIED MATHEMATICS COURSES OFFERED BY OTHER DEPARTMENTS

AM 95 Engineering Mathematics. See Applied Mechanics section, for description.
AM 116 Complex Variables and Applications. See Applied Mechanics section, for description.
AM 125 Engineering Mathematical Principles. See Applied Mechanics section, for description.
AM 180 Matrix Algebra. See Applied Mechanics section, for description.
AM 181 Linear Programming. See Applied Mechanics section, for description.
AM 225 Advanced Topics in Applied Mathematics. See Applied Mechanics section, for description.

Ph 107 Electricity and Magnetism. See Physics section, for description.
Ph 108 Theoretical Mechanics. See Physics section, for description.
Ph 129 Methods of Mathematical Physics. See Physics section, for description.
EE 280 Advanced Course in Mechanical Computing Methods. See Electrical Engineering section, for description.

MECHANICAL ENGINEERING

UNDERGRADUATE SUBJECTS

ME 1. Introduction to Design. 9 units (0-9-0); second, or third term. Prerequisite: Gr 1.
This course supplements first-year graphics with more advanced applications of graphical methods to spatial delineation and design. The following subjects are introduced through a series of coordinated lecture discussions and laboratory problems: descriptive geometry in analysis and design; useful mechanisms; displacement, velocity and acceleration in machines and systems; creative synthesis; human and economic factors as they affect design. Emphasis is placed on an imaginative yet rational approach to new problems and upon the development of the individual student's ability to recognize fundamental principles and logically plan his development work. Instructors: Welch, Morelli.

ME 3. Materials and Processes. 9 units (3-3-3); first, second or third term. Prerequisites: Ph 1 ab, Ch 1 abc. A study of the materials of engineering and of the processes by which these materials are made and fabricated. The fields of usefulness and the limitations of alloys and other engineering materials are studied, and also the fields of usefulness and limitations of the various methods of fabrication and of processing machines. The student is not only made acquainted with the technique of processes but with their relative importance industrially and with the competition for survival which these materials and processes continually undergo. Text: Engineering Materials and Processes, Clark. Instructors: Buffington, Clark.
ME 5 abc. Design. 9 units (2-6-1); first, second, and third terms. Prerequisites: ME 1, ME 3, ME 17 ab, AM 8 abc, AM 95 ab. The purpose of this course is to develop creative ability and engineering judgment through work in design and engineering analysis. Existing devices are analyzed to determine their characteristics and the possibilities for improving their performance or economy and to evaluate them in comparison with competitive devices. Practice in the creation or synthesis of new devices is given by problems in the design of machines to perform specified functions. The fundamental principles of scientific and engineering knowledge and appropriate mathematical techniques are employed to accomplish the analysis and designs. Text: Design and Production, Kent. Instructors: Morelli, Welch.

ME 17 ab. Thermodynamics. 9 units (3-0-6); first and second terms. Prerequisites: Ma 1 abc, Ph 1 abc. Basic laws of thermodynamics, fundamental properties and interrelationships between properties. Maxwell relations, Joule-Thomson effect, Clapeyron-Clausius equation. Application to gases as well as to other systems. Elements of kinetic theory. Analyses of energy conversion cycles and propulsion devices. One-dimensional flow in a duct, normal and oblique shocks, expansion through nozzles. Basic chemical thermodynamics and theory of equilibrium of a reacting mixture. Text: Elements of Engineering Thermodynamics, Sabersky. Instructor: Sabersky.

ME 19 ab. Fluid Mechanics and Gas Dynamics. 9 units (3-0-6); first and second terms. Prerequisites: Ma 2 abc, Ph 1 abc. Basic equations of fluid mechanics, theorems of energy, linear and angular momentum, potential flow, elements of airfoil theory. Flow of real fluids, similarity parameters, flow in closed ducts. Boundary layer theory in laminar and turbulent flow. Flow and wave phenomena in open conduits. Instructor: Acosta.

ME 19 c. Principles of Energy Conversion. 9 units (3-0-6); third term. Prerequisites: Ma 2 abc, ME 17 ab and ME 19 ab or equivalent. Availability of chemical, nuclear, and solar energy. Systems for the conversion into mechanical or electrical power. Analysis of principal system components such as fans, compressors, pumps and turbines. To include topics from two- and three-dimensional design theories of turbomachines. Instructor: Acosta.

ADVANCED SUBJECTS

ME 100. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses or problems to meet the needs of fifth-year students or qualified undergraduate students.

ME 101 abc. Advanced Design. 9 units (1-6-2); first, second, and third terms. Prerequisite: ME 5 abc or equivalent. Creative design and analysis of machines and engineering systems is developed at an advanced level. Laboratory problems are given in terms of the need for accomplishing specified end results in the presence of broadly defined environments. Investigations are made of environmental conditions to develop quantitative specifications for the required designs. Searches are made for the possible alternate designs and these are compared and evaluated. Preferred designs are developed in sufficient detail to determine operational characteristics, material specifications, general manufacturing requirements and costs. Instructors: Morelli, Welch.
ME 118 abc. Advanced Thermodynamics and Energy Transfer. 9 units (3-0-6); first, second, and third terms. Prerequisites: ME 18, ME 19 ab. Equilibrium of chemical systems including dilute solutions, elements of non-equilibrium thermodynamics, basic concepts of statistical mechanics. Special problems in heat conduction involving non-isotropic media, moving sources, and changes of phase. Exact solutions of heat transfer problems in laminar flow for compressible and incompressible fluids. Problems in turbulent flow and the application of Reynolds analogy. Principles of mass transfer and problems involving the simultaneous transfer of heat and mass. Theory of black body radiation and radiation characteristics of solids and gases. Instructor: Sabersky.

ME 126. Fluid Mechanics and Heat Transfer Laboratory. 9 units (0-6-3); third term. Prerequisites: ME 17 abc, ME 19 ab, or equivalent. Students with other background shall obtain instructor's permission. Introduction to some of the basic measurements and phenomena in fluid mechanics and heat transfer. The students will become acquainted with the use of hot wire equipment, thermocouples, thermistors, velocity probes, as well as with electrical and hydraulic analogues. The experiments in which these instruments will be used will include, for example, the flow over a flat plate, free and forced convention heat transfer, boiling heat transfer, solid state energy conversion phenomena, free surface and supersonic flows. Instructors: Sabersky, Zukoski.

ME 127. High Frequency Measurements in Fluids and Solids. 9 units (2-6-1); second term. Prerequisites: AM 8 abc, AM 95 ab. The course will treat the theory and application of modern instrumentation to dynamic problems in fluid mechanics and elasticity which will be selected to provide familiarity with a wide range of electronic devices, transducers, and high-speed photoelastic and schlieren photographic techniques. Instructor: Ellis.

ME 200. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses on problems to meet the needs of students beyond the fifth year.

ME 300. Thesis Research.

Many advanced courses in the field of Mechanical Engineering may be found listed in other engineering options such as:

Applied Mechanics, page 255.
Hydraulics, page 295.
Jet Propulsion, pages 296, 297.
Physical Metallurgy, pages 310-312.

Music

Mu 1 abc. Music History and Analysis. 5 units (2-0-3). The development of Western music studied through the analysis of historically significant compositions. Musical notation, melodic techniques, harmonic and polyphonic forms will be studied in relation to stylistic use during the principal periods of music history. An understanding of the musical score will be emphasized by means of correlated studies in analysis and record listening. Instructor: Ochse.

Paleontology

(See under Geological Sciences)
PHILOSOPHY AND PSYCHOLOGY
UNDERGRADUATE SUBJECTS

PI 1. Introduction to Philosophy.* 9 units (3-0-6). Senior Elective. A study of the major problems of philosophy in terms of the most influential contemporary world views, including naturalism, idealism, theism, pragmatism, and positivism. Instructor: Bures.

PI 2. Logic* 9 units (3-0-6). Senior Elective. A study of modern and traditional logic. An analysis of knowledge into basic symbolic forms. Detailed consideration of such logical concepts as: proposition, truth, variable, definition, implication, inference, class, syllogism, logical law, deductive system. Emphasis on the fundamental role of logical methods in the rational approach to knowledge. Instructor: Bures.

PI 4. Ethics.* 9 units (3-0-6). Senior Elective. A study of ethical values in relation to human nature and culture. Among the major topics considered are: the moral systems of some representative cultures; the development of personality and values in these cultures; the possibility of a rational basis for ethics; competing views of human nature; ethical conflicts in American culture. Instructor: Bures.

PI 6 a. Introduction to Personality and Culture.* 9 units (3-0-6). Senior Elective; first term. A study of selected aspects of contemporary psychology and anthropology, aimed at introducing the student to the wide diversity of approaches currently being employed in seeking a scientific understanding of man and his behavior. The complementary character of the various concepts and methods will be indicated. Recommended as preparation for PI 6 b and PI 6 c. Instructor: Atkins.

PI 6 b. The Psychology of Behavioral Processes.* 9 units (3-0-6). Senior Elective; second term. A study of the individual, social and cultural factors that contribute to the development of human behavior and human interaction. Both theoretical and empirical formulations will be used in the analysis of the content and process of behavior especially as it occurs within the student's experiential field. PI 6 a and PI 6 b are recommended as preparation for this course. Instructor: Weir.

PI 6 c. The Psychology of Personality Development.* 9 units (3-0-6). Senior Elective; third term. A study of psychological development from birth to maturity. Attention is paid to stages of development, roles, emotional and motivational patterns. A positive conception of growth and creativity and factors inhibiting growth are emphasized in terms of a basic vocabulary. Recommended as preparation for PI 6 c. Instructor: Bures.

PI 7. Human Relations. 7 units (3-0-4); third term. An introduction to the principles of human relations with major emphasis on the development of groups. Psychological and emotional factors influencing group behavior, group leadership and group co-operation will be explored. Instructors: Ferguson, Weir.

PI 8 a. Classical Social Theories.* 9 units (3-0-6); first term. Reading, analysis, and interpretation of major political philosophies, Greek and post-Renaissance, as related to the philosophical task and to the relevant political, economic, and social issues. Instructor: Morris.

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
PI 8 b. Modern Social Theories.* 9 units (3-0-6); second term. A study of contemporary social issues, their alternative formulation by communist, fascist, and democratic thinkers, with special attention to the myths that obfuscate their thought. Instructor: Morris.

PI 9. Philosophy of Culture.* 9 units (3-0-6); third term. Theories of culture and their significance for understanding basic issues and controversies in contemporary society as manifested in science and technology, the arts, education, religion, and ethics. Instructor: Morris.

PI 13. Reading in Philosophy. Units to be determined for the individual by the department. Elective, with the approval of the Undergraduate Academic Standards and Honors Committee, in any term. Reading in philosophy, supplementary to, but not substituted for, courses listed; supervised by members of the department.

ADVANCED SUBJECTS

PI 100 abc. Philosophy of Science. 9 units (2-0-7). A full-year sequence. The relation between science and philosophy. The functions of logical analysis in knowledge and the analysis of the language of science. A study of the nature of formal science (logic and mathematics) and of factual science, their methods and interrelationships, Concept formation in the sciences. Analysis of some basic problems in the philosophy of science: measurement, casualty, probability, induction, space, time, reality. Scientific method and social problems. Instructor: Bures.

PI 101 abc. History of Thought. 9 units (2-0-7). A full-year sequence. A study of the basic ideas of Western Civilization in their historical development. The making of the modern mind as revealed in the development of philosophy and in the relations between philosophy and science, art and religion. The history of ideas in relation to the social and political backgrounds from which they came. Instructor: Morris.

PI 102 abc. Philosophy and Literature. 9 units (2-0-7). A full-year sequence. A philosophical analysis and interpretation of literature as an art and as a vehicle of philosophical thought, exemplified in great works of world literature, beginning with Homer and the pre-Socratic poems on nature and ending with the literature of Existentialism and Surrealism. The course includes a study of the main philosophical theories of the different forms of literary expression (tragedy, comedy, poetry, the novel) and the reading of original works or translations. Instructor: Stern.

PI 113. Reading in Philosophy. Same as PI 13 but for graduate credit.

PHYSICAL METALLURGY

UNDERGRADUATE SUBJECTS

PM 5 abc. Principles of Engineering Materials. 9 units (3-0-6); first, second and third terms. Prerequisites: Ch 1 abc, Ph 2 abc, AM 8 c. (AM 8 c may be taken concurrently with PM 5 c). The purpose of this course is to acquaint the student with the principles underlying the properties of solid materials. Elementary principles of quantum mechanics are employed to discuss the electronic structure of atoms, the types of bonds between atoms in molecules and crystals, and to develop the band theory of solids. An introduction to the principles of statistical thermodynamics also is given. These principles are employed as the basis for discussion of the electrical, magnetic, and thermal properties of solids. Rate processes such

*The fourth-year Humanities electives to be offered in any given term will be scheduled before the close of the preceding term.
as diffusion and phase transformation also are considered. The concepts and
theory of dislocations in crystals are introduced and are employed in the dis­
cussion of the processes of deformation and fracture of solids. Instructors: Buffing­
ton, Wood.

PM 10. Engineering Physical Metallurgy. 9 units (2-1-6); first term. Prerequisite: PM 5 ab, or ME 3. A study of the properties of ferrous and non-ferrous metals and alloys with respect to their application in engineering; the principles of the treatment of ferrous and non-ferrous alloys for a proper understanding by engineers for application of alloys in fabrication and design. Four laboratory sessions during the term correlate properties and heat treatment with the microstructures of alloys. Text: *Physical Metallurgy for Engineers*, Clark and Varney. Instructors: Clark, Buffington.

PM 11. Metallography Laboratory. 9 units (0-6-3); second term. Prerequisite: PM 10. The technique of metallographic laboratory practice including microscopy, preparation of specimens, etching reagents and their use, photomicrography. The study of the microstructure of ferrous and non-ferrous metals and alloys for different conditions of treatment. Text: *Principles of Metallographic Laboratory Practice*, Kehl. Instructors: Clark, Buffington.

PM 15. Behavior of Solids Laboratory. 9 units (0-6-3); third term. Prerequisite: PM 5 abc, or concurrent registration. Experimental studies of the physical and mechanical behavior of solid materials which may be correlated with the fundamental principles of material behavior. A few examples of investigations which the student may elect to undertake are: The thermal and electrical conductivities of a metal and a semi-conductor as functions of temperature. The influence of temperature on the stress-strain behavior of rubber-like polymers and temperature changes produced by deformation of such materials. The influence of grain size on the brittle fracture stress of mild steel at low temperatures and observations of microcracks. The generation and direct observation of dislocations in lithium fluoride crystals under applied stress. Instructor: Wood.

ADVANCED SUBJECTS

PM 100. Advanced Work in Physical Metallurgy. The staff in physical metallurgy will arrange special courses or problems to meet the needs of fifth-year students or qualified undergraduate students.

PM 102. Pyrometry. 9 units (1-6-2); third term. Prerequisite: Ph 2 abc. Study of the principles of thermometry and the theory underlying instruments that are used to measure temperatures. Experiments will be conducted with a variety of such instruments to illustrate their applications and limitations. Instructor: Staff.

PM 103 ab. Physical Metallurgy Laboratory. 9 units (0-9-0); first term. 6 units (0-6-0); second term. Prerequisite: PM 11. Experimental studies concerned with the structures and properties of metals and alloys associated with heat treatment and recrystallization phenomena. Studies of hardenability characteristics of steel with respect to prediction by thermodynamic considerations. The determination of grain size of metals and alloys in relation to properties. Instructor: Clark.

PM 104. Photography. 9 units (1-6-2), first term. Prerequisite: Ph 2 abc. Study and synthesis of optical systems in the use of photographic methods in research. Experiments will be conducted with various systems to illustrate the effectiveness of photographic methods as research tools. Instructors: Staff.
PM 105. Mechanical Behavior of Metals. 6 units (2-0-4); first term. Prerequisites: AM 9 abc, PM 5 abc. A study of the various types of behavior of metals under applied load which are of significance for engineering applications. Properties under simple tension and compression loading, hysteresis and damping capacity, the influence of temperature, behavior under rapidly applied and impact loads, fatigue, mechanical wear, behavior under combined stress, and selection of working stresses. Instructor: Wood.

PM 112 ab. Advanced Physical Metallurgy. 9 units (3-0-6); second and third terms. Prerequisites: PM 5 ab or PM 120, PM 115 a. Ternary phase diagrams; order-disorder transformations; solid-state diffusion; theory of gas-metal reactions; advanced consideration of magnetic properties; effects of radiation on materials. Instructor: Buffington.

PM 120. Physics of Solids. 9 units (3-0-6); first term. Prerequisite: AM 95 ab or equivalent. Introduction to wave mechanics; band theory of solids; physical properties of solids. Those who have received credit for PM 5 ab cannot receive credit for PM 120, since there exists some duplication of material. Additional study in physics of solids can be arranged under PM 100. Instructor: Buffington.

PM 135. Radioisotopes Laboratory. 9 units (0-9-0); third term. Prerequisites: AM 103, PM 112 a. Experiments illustrating the use of radioisotopes in the field of physical metallurgy. Typical examples are studies of solid state diffusion and the determination of chemical inhomogeneities in metals and alloys. Instructor: Buffington.

PM 200. Advanced Work in Physical Metallurgy. The staff in physical metallurgy will arrange special courses or problems to meet the needs of students beyond the fifth year.

PM 205. Theory of the Mechanical Behavior of Metals. 9 units (3-0-6); third term. Prerequisites: AM 110 a, PM 115. A study of the nature and physical theory of the deformation of metals under the influence of applied stress. Elasticity of single crystals, plastic flow in crystals by slip and twinning, the concept of dislocations, stress fields of dislocations, dislocation interactions, generation of dislocations, dislocations in crystal lattices, arrays of dislocations, application of dislocation theory. Text: Dislocations in Crystals, Read. Instructor Vreeland.

PM 217. X-Ray Metallography Laboratory II. 9 units (0-6-3); any term. Prerequisite: PM 116. An advanced laboratory course for students carrying out research involving the use of X-ray diffraction techniques. Methods of X-ray diffraction requiring
the use of single crystals, rotating crystal and Weisenberg methods. Accurate measurements of diffracted intensities. Quantitative analysis of phases in alloys. Special problems will be assigned, depending on the student's field of interest. Instructor: Duwez.

PM 225. Industrial Physical Metallurgy. 9 units (0-6-3); any term. Prerequisites: PM 103, PM 116. Application of the principles of physical metallurgy and the techniques of metallographic laboratory practice to the solution of problems concerning the causes of failure of commercial parts. Typical cases are used as problems to be solved by the student and presented and discussed before the class and staff in the form of reports. Instructor: Clark.

PM 250 abc. Advanced Topics in Physical Metallurgy. 6 units (2-0-4); first, second, and third terms. The content of this course will vary from year to year. Topics of current interest will be chosen according to the interests of students and staff. Visiting professors may present portions of this course from time to time. Instructor: Staff.

PM 300. Thesis Research.
tion and radiation, and solutions to various boundary-value problems involving static fields and traveling waves. The emphasis is upon the more general aspects of the subject, and upon physical principles. Graduate students majoring in physics or astronomy will be given only 6 units credit for this course. Instructors: Cowan, Boehm, Kobrak, Tollestrup.

Ph 108 abc. Theoretical Mechanics. 9 units (3-0-6); first, second, and third terms. Prerequisites: Ph 1 abc, Ph 2 abc, and preferably Ph 107 abc. An intermediate course in the application of mathematical methods to problems in mechanics. Topics include particle mechanics, Lagrange and Hamilton equations, damped vibrations, coupled vibratory systems, rigid body dynamics. Graduate students majoring in physics or astronomy will receive only 6 units credit for this course. Text: Classical Mechanics, Goldstein. Instructors: Anderson, Knopoff, Pellam.

Ph 111 abc. Structure of Matter. 9 units (3-0-6); first, second, and third terms. Prerequisites: Ph 1 abc; Ph 2 abc. A course dealing with those properties of matter which can be treated from a relatively simple, largely classical, point of view. The connection between the properties of matter and the properties of the atoms of which it is composed is stressed. Topics include: atomic structure, atomic spectra, magnetic properties of matter; molecular binding, spectra of diatomic molecules, dielectric and optical properties; kinetic theory of gases, ionized gases, plasmas; free electron theory of solids, metals, semi-conductors; structure of solids, electrical and mechanical properties, specific heats. Quantum concepts are introduced but no formal development of quantum mechanics is included. Graduate students majoring in physics or astronomy will receive only 6 units credit for this course. Instructor: Ward Whaling.

Ph 112 abc. Atomic and Nuclear Physics. 12 units (4-0-8); first, second, and third terms. Prerequisites: Ph 107 abc and Ph 111 abc, or equivalent. A problem and lecture course in the experimental and theoretical foundations of modern atomic and nuclear physics. Topics include the special theory of relativity with applications to kinematics and electrodynamics, and an introduction to quantum mechanics with applications to the harmonic oscillator, the free particle, the one-electron atom and selection rules. Also treated, on a less analytical basis, are the exclusion principle and atomic shell structure; optical spectroscopy; molecular binding and molecular spectra; quantum statistics; the band theory of solids; X-rays; radioactivity and nuclear structure; elementary particles; high energy physics. Text: Principles of Modern Physics, Leighton. Instructor: T. Lauritsen.

Ph 115 ab. Geometrical and Physical Optics. 9 units (3-0-6); first and second terms. Prerequisite: Ph 2 abc. An intermediate lecture and problem course dealing with the fundamental principles and applications of geometrical optics, interference, diffraction and other topics of physical optics. Given in alternate years. Offered in 1962-63. Instructor: King.

Ph 129 abc. Methods of Mathematical Physics. 9 units (3-0-6); first, second, and third terms. Prerequisites: Ph 107 abc and Ph 108 abc or the equivalents (may be taken concurrently), and some knowledge of complex variables. Aimed at developing familiarity with the mathematical tools useful in physics, the course discusses practical methods of summing series, integrating, and solving differential equations, including numerical methods. The special functions (Bessel, Elliptic, Gamma, etc.) arising in physics are described, as well as Fourier series and transforms, partial differential equations, orthogonal functions, eigenvalues, calculus of variations, integral equations, matrices and tensors, and non-commutative algebra. The emphasis is toward applications, with special attention to approximate methods of solution. Instructor: Walker.
Ph 131 abc. Electricity and Magnetism. 9 units (3-0-6); first, second, and third terms. Pre-requisite: An average grade of C in Ph 107 abc. A problem course in electricity, magnetism and electromagnetic waves for students who are doing or plan to do graduate work. The first two terms cover potential theory as applied to electrostatics, magnetostatics and current flow in extended mediums; eddy currents; and the laws of electromagnetic induction as applied to linear circuits. The third term covers electromagnetic waves and the motion of charged particles in electromagnetic fields. Text: Static and Dynamic Electricity, Smythe. Instructor: Smythe.

Ph 171. Reading and Independent Study. Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Units in accordance with work accomplished. Approval of the instructor and of the student’s Departmental Advisor or Registration Representative must be obtained before registering.

Ph 172. Experimental Research in Physics. Units in accordance with the work accomplished. Approval of the student’s research supervisor and of his Departmental Advisor or Registration Representative must be obtained before registering.

Ph 173. Theoretical Research in Physics. Units in accordance with the work accomplished. Approval of the student’s research supervisor and of his Departmental Advisor or Registration Representative must be obtained before registering.

Ph 201 abc. Analytical Mechanics. 9 units (3-0-6); first, second, and third terms. Pre-requisites: Ph 108 abc; Ph 129 ab is desirable. A problem and lecture course dealing with the various formulations of the laws of motion of systems of particles and rigid bodies, and with both exact and approximate solutions of the resulting equations. Topics considered include Lagrange’s and Hamilton’s equations, canonical transformations, the dynamics of axially symmetric rigid bodies, and vibrations about equilibrium and steady motion. Additional topics will be selected from such subjects as elasticity, hydrodynamics, non-linear vibrations, dynamics of particles in accelerators, potential theory, and hydromagnetics. Given in alternate years. Offered in 1962-63. Instructor: Davis.

Ph 203 abc. Nuclear Physics. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ph 112 abc or equivalent. A problem and lecture course in nuclear physics. Subjects include fundamental properties and structure of nuclei, including the liquid drop, shell, and collective models, nuclear forces, modes of nuclear decay, nuclear reactions, interaction of particles and radiation with matter, and particle acceleration and detection. The third term is usually devoted to such specialized topics as nuclear processes in stars including energy generation and element synthesis. Text: The Atomic Nucleus, Evans. Instructor: Fowler.

Ph 204 abc. Low Temperature Physics. 9 units (3-0-6); first, second, and third terms. Pre-requisite: Ph 112 abc. Recommended: Ph 205 abc, Ph 227 abc. First and second terms: Introductory exposition of the subject of cryogenics. General coverage of topics includes (1) liquid helium II, (2) superconductivity, and (3) adiabatic demagnetization and nuclear alignment. Emphasis to be based on correlating behavior of matter at low temperatures with existing theoretical interpretations. Third term: Advanced topics on specific aspects of low temperature physics to be covered by special reading assignments. Given in alternate years. Not offered in 1962-63. Instructor: Pellam.

Ph 205 abc. Principles of Quantum Mechanics. 9 units (3-0-6); first, second, and third terms. Prerequisites: Ph 112 abc or equivalent; Ph 129 abc concurrently. A fundamental treatment of quantum mechanics including stationary states of one and many particle systems; exclusion principle; approximation methods; transition
Physics 315

problems; scattering theory; angular momentum; introduction to the quantum theory of radiation; application of these methods to atomic, molecular, and nuclear problems. Instructor: Christy.

Ph 207 abc. X- and Gamma-rays. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ph 112 abc, or equivalent. Covers the generation of X-rays and gamma-rays and the various interactions of these with matter both in practical applications to research physics and in theory. The first term is devoted to a descriptive general survey of the subject. The second term deals with nuclear gamma-ray and X-ray emission spectra, the mean lives of excited states, elementary theory of multipole radiation, theories of the generation and intensities of characteristic X-ray line spectra and also of the continuous X-ray spectrum covering briefly under the latter topic the theories of Sommerfield and of Heitler and their experimental verifications. The third term covers in considerable detail the scattering of these radiations by matter, both coherent and incoherent processes being considered, and presents the resulting physical conclusions regarding the structure of atoms, molecules, liquids, solids and the Compton effect with its manifold implications. Other interactions between radiation and matter are also treated. Solution of a moderate number of illustrative problems required in all three terms. Instructor: DuMond.

Ph 209 abc. Electromagnetism and Electron Theory. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ph 107 abc. Electromagnetic fields in vacuum and in matter; classical electron theory, retarded potentials, radiation, dispersion, and absorption; theories of the electric and magnetic properties of materials; selected topics in wave propagation; special relativity. Instructor: Jon Mathews.

Ph 217. Spectroscopy. 9 units (3-0-6); third term. Prerequisite: Ph 112 ab or the equivalent. Atomic line spectra. Experimental techniques of excitation and observation of the spectra of atoms and ions. A discussion of observed spectra, including complex spectra, in terms of atomic structure theory. Given in alternate years. Offered in 1962-63. Instructor: King.

Ph 218 ab. Electronic Circuits and their Application to Physical Research. 9 units (3-0-6); first and second terms. Permission of the instructor is required in order to register for this course. A course on electronic circuits with primary emphasis on basic factors entering into the design and use of electronic instruments for physical research. Topics considered will include the theory of response of linear networks to transient signals, linear and nonlinear properties of electron tubes and practical circuit components, basic passive and active circuit combinations, cascade systems, amplifiers, feedback in linear and nonlinear systems, statistical signals, noise, and practical construction. Particular examples will be taken from commonly used research instruments. Given in alternate years. Not offered in 1962-63. Instructor: Tollestrup.

Ph 220 abc. Introduction to Solid State Physics. 6 units (2-0-4); first, second and third terms. Prerequisite: Ph 112 abc. Recommended: Ph 205 concurrently. An introduction to the experimental and theoretical foundations of solid state physics and its relation to other domains of physics. Topics presented will include: The dynamics of lattices and their association with physical properties of solids; crystal structures; the electric and magnetic properties of bulk matter, including ferromagnetism; band theory of solids; theory of conductors and semiconductors; optical spectra of crystals; nuclear hyperfine interactions in solids; scattering of slow neutrons from crystals; lattice defects. Instructor: Moessbauer.

Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ph 205 or equivalent. Relativistic quantum mechanics, Feynman diagrams, quantum electrodynamics, field theory formalism, dispersion relations, theories of strong and weak interactions. Instructors: Gell-Mann, Zachariasen.

Ph 231 abc. High Energy Physics. 9 units (3-0-6); first, second and third terms. A course covering the properties of the elementary particles and their interactions, especially at high energies. Topics discussed include the classification of the particles and their properties, strangeness theory, pion nucleon and nucleon-nucleon interactions, photoproduction of pions, high energy electron scattering, high energy electromagnetic interactions, production of strange particles, hyperfragments. Given in alternate years. Offered in 1962-63. Instructor: Frautschi.

Ph 234 abc. Topics in Theoretical Physics. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ph 205 or equivalent. The content of this course will vary from year to year. Topics presented will include: General methods in quantum mechanics such as operator calculus, group theory and its application; theory of meson and electromagnetic fields; atomic and molecular structure; theory of solids; theoretical nuclear physics.

Ph 236 ab. Relativity Theory. 9 units (3-0-6); first and second terms. The incompatibility of Newtonian relativity and Maxwell's electromagnetism; survey of the classic ether experiments, and the transformation equations of Lorentz. Einstein's derivation of these, based on the Postulates of Relativity. Minkowski's discovery of the Riemannian geometry of space-time. Tensor analysis applied to the differential geometry of space-time, and the covariant expression of relativistic physics. The relativistic generalization of the law of inertia to include gravitation. Offered in 1962-63. Instructor: Estabrook.

Ph 238 abc. Seminar on Theoretical Physics. 4 units; first, second, and third terms. Recent developments in theoretical physics for specialists in mathematical physics. In charge: Christy, Feynman, Frautschi, Gell-Mann, Mathews, Zachariasen.

Ph 241. Research Conference in Physics. 4 units; first, second, and third terms. Meets once a week for a report and discussion of the work appearing in the literature and that in progress in the laboratory. Advanced students in physics and members of the physics staff take part. In charge: Anderson, Christy.

Ph 300. Research in Physics. Units in accordance with work accomplished. Ph 300 is elected in place of Ph 172 when the student has progressed to the point where his research leads directly toward the thesis of the degree of Doctor of Philosophy. Approval of the student's research supervisor and of his Departmental Advisor or Registration Representative must be obtained before registering.

Psychology

(See under Philosophy)

Russian

(See under Languages)
Section VII

DEGREES CONFERRED JUNE 8, 1962

DOCTOR OF PHILOSOPHY

Joseph Kohler (Mathematics). B.Sc., Ohio State University, 1957. Thesis: Finite Groups with All Maximal Subgroups of Prime or Prime Square Index.

320 Degrees Conferred

ENGINEER'S DEGREE
AERONAUTICAL ENGINEER

John Carl Casey, Major, U.S.A.F. B.S., Purdue University, 1955; M.S., California Institute of Technology, 1961.

Grant Reed Johnson, Lt., U.S.N. B.S., University of Utah, 1955; B.S., United States Naval Postgraduate School, 1961.

Werner Preukschat. Dipl. Ing., Technische Hochschule (Aachen), 1959.

Kendrick Radey. B.S.Ae.,E., University of Texas, 1947; M.S., California Institute of Technology, 1951.

Stuart Blackton Savage. B.Eng. (Hons), McGill University, 1960; M.S., California Institute of Technology, 1961.

Ernest Richard Seymour, Lt., U.S.N. B.S., United States Naval Academy, 1953; B.S., United States Naval Postgraduate School, 1961.

Jerry Lee Simmons. B.S., University of Kansas, 1959; M.S., 1960.

Degrees Conferred

MASTER OF SCIENCE IN SCIENCE

ASTRONOMY
Manuel E. Mendez. B.S., University of Mexico, 1960.

CHEMISTRY
Bernard Foran. B.Sc. (General), London University, 1951; B.Sc. (Special), 1952.
Seymour Alvin Rapaport. B.S., California Institute of Technology, 1957; M.D., The Johns Hopkins University School of Medicine, 1961.
Masaaki Takahashi. B.S., Tohoku University, 1955.

CHEMICAL ENGINEERING
Johannes Huisman. Associateship Dipl. in Applied Chemistry, Royal Melbourne Technical College, 1956; Associateship Dipl. in Chemical Engineering, 1959.

GEOLOGY
David Lawrence Schleicher. B.S., Pennsylvania State University, 1959.

GEOCHEMISTRY
Dennis Roland Wik. B.S., Beloit College, 1960.

GEOPHYSICS

MATHEMATICS

PHYSICS
David George Agresti. B.S., The Ohio State University, 1959.
Norman Webster Albright. B.S., California Institute of Technology, 1956.
Larry Dean Fitzgerald. B.S., United States Military Academy, 1956.
Harvey Kenneth Shepard. B.S., University of Illinois, 1960.

MASTER OF SCIENCE IN ENGINEERING

AERONAUTICS
Anthony Bedford. B.S., University of Texas, 1961.
Scott Edwin Gilles. B.S., University of Kansas, 1961.
John Fletcher Murphy. B.S., University of Notre Dame, 1957.
Stottler King Starr. B.S., Purdue University, 1961.
Floyd Ronald Stuart. B.S., United States Naval Academy, 1957.
Richard R. Williams. B.S., Purdue University, 1961.

APPLIED MECHANICS
Clark Reid Barker. B.S.M.E., Bradley University, 1961.

CIVIL ENGINEERING
Carlos Miguel Campuzano. B.S., University of Kansas, 1959.

ELECTRICAL ENGINEERING
Donald Henry Close. B.S., University of Kansas, 1960.
Jean Claude Dubois. Dipl. d'Ing. Civil Electricien-Mécanicien, Université Catholique de Louvain, 1958.
Stanley Richmond Harrison. B.S., California Institute of Technology, 1948.
Curtis Frederick Kuebler. B.S., California Institute of Technology, 1961.
Orval George Lorimer. B.S., Iowa State University, 1961.
Helmut K. V. Lotsch. Dipl. Ing., Technische Hochschule (Karlsruhe), 1958.
Padraic Declan O'Riordan. B.E., National University of Ireland (Cork), 1959.
Dennis Lorin Paull. B.S., California Institute of Technology, 1959.
Maurice Vincent Whelan. B.E., National University of Ireland (Cork), 1960.

ENGINEERING SCIENCE

MATERIALS SCIENCE

Donald Bozell Forrest. B.S., California Institute of Technology, 1961.
Degrees Conferred 327

David Peter Pope. B.S., University of Wisconsin, 1961.
Om Parkash Puri. B.Sc., Panjab University, 1950; M.Sc., 1951.

MECHANICAL ENGINEERING

Vincent George Aquino. B.S., University of Portland, 1957.
Terrill Alan Cool. B.S., University of California, 1961.
Edward Otto Moeck. B.Sc., Queen's University, 1961.
Students whose names appear in boldface type graduated with scholastic honor in accordance with a vote of the Faculty.
Larry Ralph Dawson, Sunnymead, California. Engineering.
Lonnie Keith DeMent, Mt. Prospect, Illinois. Chemical Engineering.
Lee Edward Elliott, Topeka, Kansas. Engineering.
Peter George Eltgroth, Tujunga, California. Physics.
Stanley Martin Flatte, Los Angeles, California. Physics.
Peter Campbell Ford, Porterville, California. Chemistry.
Gary Scott Fraley, Atascadero, California. Physics.
Samuel Theodore Furr, Los Angeles, California. Engineering.
Ronald Frank Gebhardt, Coos Bay, Oregon. Geology.
Porter Dean Gerber, Santa Fe, New Mexico. Mathematics.
Donald William Green, Pasadena, California. Physics.
Randall Bertram Griepp, Redondo Beach, California. Biology.
David Cantrell Grimes, Burbank, California. Engineering.
John Moss Grover, Annapolis, Maryland. Mathematics.
Harrison Babcock Hall, Encino, California. Engineering.
Frederick John Hameetman, Lomita, California. Engineering.
Lyndon Mauriece Hardy, Los Angeles, California. Physics.
Joseph Heller, Santa Monica, California. Mathematics.
David Nelson Herting, Ventura, California. Engineering.
Richard Irwin Hess, Los Angeles, California. Physics.
Evan Eugene Hughes, Jr., Los Angeles, California. Physics.
Wendell Yau Git Ing., Honolulu, Hawaii. Physics.
James Hayden Johnson, Oxnard, California. Physics.
Arnold Richard Jones, Manhattan, Kansas. Engineering.
Howard Arthur Kabakow, Los Angeles, California. Physics.

William Chung King, Hong Kong, British Crown Colony. Engineering.
James Dean Klett, Los Angeles, California. Physics.

Lawrence Dean Kugler, San Jacinto, California. Mathematics.
Michael Logan Lampton, Santa Monica, California. Physics.
Robert George Langsner, Sacramento, California. Mathematics.
Peter Alan Laszlo, Beverly Hills, California. Mathematics.
Robert Peichung Lin, Los Angeles, California. Physics.

Stuart Michael Linn, Los Angeles, California. Chemistry.
Thomas James Litle IV, Grosse Point, Michigan. Engineering.

Gary Allen Lorden, Los Angeles, California. Mathematics.

Waldemar Traugott Lungershausen, Jr., Detroit, Michigan. Astronomy.

Robert Jerome Manning, Dallas, Texas. Physics.

Etan Markowitz, Los Angeles, California. Mathematics.
Harold Everett Marr III, Searsport, Maine. Chemistry.
Franklin Lester Marshall, Burbank, California. Engineering.
Garland Ross Marshall, College Station, Texas. Biology.

Daniel Webster McMorris, Los Angeles, California. Physics.
Lauren Vail Merritt, Kensington, California. Engineering.
Peter Lee Metcalf, Los Angeles, California. Chemical Engineering.

Edward Standish Miller, Berkeley, California. Physics.

Ralph Crittenden Moore, Denver, Colorado. Physics.

Frank Edward Mullin, Los Gatos, California. Mathematics.

John Anthony Newmeyer, Los Angeles, California. Physics.

Roger Gordon Noll, Oceanside, California. Mathematics.

David Justin Osias, Chevy Chase, Maryland. Physics.

Bunso Otani, Altadena, California. Engineering.

William E. Palke, St. Petersburg, Florida. Chemistry.

Julian Frederick Prince, Newton, Massachusetts. Mathematics.
Charles Howard Radoy, Los Angeles. Engineering.
Frank Ridolphi, Montgomery, Alabama. Engineering.
David Herbert Rogstad, Los Angeles, California. Physics.
Daniel Fredric Romm, Los Angeles, California. Mathematics.
George Robert Root, Jr., Arcadia, California. Engineering.
Robert Talman Ross, San Marino, California. Chemistry.
Robert Henry Rouda, Los Angeles, California. Chemistry.
Carl M. Rovainen, Excelsior, Minnesota. Biology.
George Thomas Sallee, Nyssa, Oregon. Mathematics.
Lawrence Neal Sealey, Freeport, Texas. Mathematics.
Douglas Smith, St. Joseph, Missouri. Geology.
Robert James Tait, Burbank, California. Engineering.
Joel Tenenbaum, Queens Village, New York. Physics.
Don Ray Thompson, Little Rock, Arkansas. Physics.
Frederick Wesley Weingarten, Jr., Covina, California. Engineering.
Joel R. Yellen, Lakewood, California. Physics.
Geary Ralph Younce, Hillsboro, Oregon. Engineering.
Albert Richard Zacher, Jr., Fresno, California. Physics.
Alan Zame, Coral Gables, Florida. Mathematics.
CANDIDATES FOR COMMISSIONS
UNITED STATES AIR FORCE
RESERVE OFFICERS TRAINING CORPS

Carl Edward Baum*
Gary Craig Chamness
Reginald Willis Clemens
Victor Solomon Engleman
Roy Scott Jordan
David Kauffman*

*Distinguished Air Force Reserve Officers Training Corps Graduate

The following candidate has completed all academic requirements, and will be commissioned 25 August, 1962, upon completion of Summer Training.

George Raynor Muenich III
HONORS AND AWARDS

HONOR STANDING

The undergraduate students listed below have been awarded honor standing for the current year, on the basis of excellence of their academic records for the year 1961-62.

CLASS OF 1963

Henry Don Abarbanel
Daniel John Alderson
Edward Anton Bender
William Lionel Burke
Robert Louis Causey
Bruce Wilcox Chesbro
Jan William Dash
Donald Robert Davis
Lawrence Kenneth Gershwin
Richard William Griffith
Roger Calvert Hill
John Michael Hosack
John Andrew Kiger
Allan Roy King
John Hathaway Lindsey, II
Barry Malcolm McCoy

James Allen Morrow
Michael David Perlman
Allen Michael Pfeffer
Raymond Herman Plaut
Stephen William Prata
Neil Paul Rosenthal
Charles Albert Ryavec
George Fredrick Soule
Willard Gibbs Spiegelman
Kenneth Barry Stolarsky
Karvel Kuhn Thornber
Ivar Harald Tombach
Warren Humphreys White
Alan Cameron Wright
Steven Joseph Yellin
Albert Yeou Yu

CLASS OF 1964

Richard Ray Burgess
John Robert Burke
Bob Li-shyng Ching
David Lem Colton
Francis Anthony Dahlen, Jr.
Duygu Mehmet Demirlioglu
Herbert Roy Flindt
Samuel Robert Gordon
Ray E. L. Green
Mark Northrop Gurnee
Richard Danforth Hake, Jr.
David Andrew Hammer
Alan Carleton Hindmarsh
David Holtz

Kwok-Chu Leung
Tommy Carl Luboeansky
Roderick Canfield McCalley
Richard Paul McGehee
Roger Leon Minear
Robert Alan Moline
George Norman Reeke, Jr.
Dennis Kent Ross
Arthur Turner
Volker Michael Vogt
Martin Eric Weiner
Joseph Herman Weis
Paul Frank Winkler, Jr.
Alvin Bau Yuen Young

CLASS OF 1965

Robert Joseph Barro
John Harden Beamer
George Conrad Brackett
I-Lok Chang
Jack Clifton Comly
Kris David Davidson
Roger Carl Davisson
Nicholas I-Tseng Djeu
Richard Charles Essenber
Mark Joel Gingold
Donald Webb Green
Kenneth Steven Kauffmann

Kenneth Kunen
Allan Goddard Lindh
Kenneth Kiyoshi Murata
Lee Neidengard
Jerry Earl Nelson
Dimitrios Anastassios Papanastassiou
Thomas Antone Pucik
Ronald Sylvester Remmel
Hanan Rosenthal
William Franklin Satterthwaite
Edwin Paul Swatek, III
Larry Dawson Wittie
Honors and Awards

Frederic W. Hinrichs, Jr., Memorial Award
Awarded annually to the "senior who, in the opinion of the undergraduate Deans, has throughout his years at the Institute made the greatest contribution to the welfare of the student body and whose qualities of leadership, character and responsibility have been outstanding."

Porter Dean Gerber

Don Baxter, Inc., Prizes in Chemistry
Awarded to the undergraduate students who during the year have carried out the best original researches in chemistry.

First Prize: Robert L. Causey
Second Prize: Donald R. Davis

Conger Peace Prize Oration
Established in 1912 by Everett D. Conger, D.D.
First Prize: Roger Gordon Noll
Second Prize: Kip Stephen Thorne

Eastman Kodak Scientific Awards
Awarded to doctoral students on the basis of outstanding contributions and progress either in graduate studies and research or in teaching.

Chemistry: Alvin L. Kwiram
Physics: Sidney Richard Coleman

Institute of the Aerospace Sciences Award
Awarded to the student member of the I.A.S. attaining the best scholastic record in engineering or the physical sciences.

Mrs. Ying-Chu Lin Wu

David Joseph Macpherson Prize
Awarded annually to the graduating senior in engineering who best exemplifies excellence in scholarship.

Steven Collins Crow

Mary A. Earle McKinney Prize in English
Established in 1946 by Samuel P. McKinney, M.D., as a memorial to his mother.

No awards made this year
DON SHEPARD AWARDS

Awarded annually to one or more outstanding residents of the Student Houses in order to pursue cultural opportunities which they might otherwise not be able to enjoy.

- ROBERT D. BRUNER
- RICHARD A. D'ARI
- JAN W. DASH
- LAWRENCE K. GERSHWIN

SOCIETY OF AMERICAN MILITARY ENGINEERS GOLD MEDAL

Awarded annually by the National Society of American Military Engineers to each of 20 Air Force ROTC cadets selected nationwide from Air Science 3 and 4 classes for outstanding achievement as an engineering student.

- CARL E. BAUM

ARMED FORCES CHEMICAL ASSOCIATION MEDAL

Awarded annually by the Armed Forces Chemical Association to a junior or senior Air Force ROTC cadet who is majoring in chemistry or chemical engineering, based on leadership ability, initiative, and scholastic attainment.

- VICTOR S. ENGLEMAN
Abbreviations Key 219
Administrative Committees 13
Administrative Officers 12
Admission 150
Application for 150
To Freshman Class 150
To Graduate Standing 186
To Upper Classes 157
Aeronautics 130
Advanced Subjects 249
Laboratories, Description of 249
Schedule of Courses 235, 236
Special Req., Ph.D. Degree 202
Staff of Instruction and Research 22
Study and Research 129
Advanced Placement Program 154
Air Force ROTC 332
Candidates for Commission, 1962 332
Program, Description of 149
Schedule of Courses 219-233
Staff of Instruction 36
Undergraduate Subjects 254
Air Science 36, 254, 255
Alles Laboratory for 109, 115
Molecular Biology 109, 115
Applied Mathematics 123
Applied Mechanics
Advanced Subjects 255
Laboratories, Description of 132
Schedule of Courses 236
Special Req., Ph.D. Degree 203
Study and Research 131
Undergraduate Subjects 255
Arms Laboratory of 108, 118
Geological Sciences 108, 118
Assistantships 214
Associated Students of the 144, 173
California Institute of Technology, Inc. 144, 173
Associates, California Institute 91-95
Associates, Industrial 95-96
Astronomy 107, 111
Advanced Subjects 260
Laboratories, Description of 112
Schedule of Courses 221, 237
Special Requirements, Ph.D. Degree 212, 213
Staff of Instruction and Research 32
Study and Research 112
Undergraduate Subjects 259
Athenaeum 108
Athletics 145
Auditing of Courses 162
Awards 184, 185, 333-335
Bachelor of Science, Degree of 267
Candidacy for 167
Conferred, June 1962 328-331
Courses leading to 220-234
Beckman Auditorium 110
Biology 110
Advanced Subjects 262
Laboratories, Description of 115
Schedule of Courses 222, 237
Special Requirement, Ph.D. Degree 198-200
Staff of Instruction and Research 16
Study and Research 114
Undergraduate Subjects 267
Board of Control, Student Body 145
Board of Directors, Student Body 144
Board of Trustees 9
Bookstore 149
Bridge Laboratory of Physics 107, 125
Buildings and Facilities 107-111
Business Officers 12
Calendar 4, 5
California Tech, College Paper 147
Campbell Plant Research Laboratory 109, 115
Campus, Map and Plan of 6, 7
Central Engineering
Machine Shop 108
Chairmen of Divisions 12
Chemical Engineering
Advanced Subjects 266, 267
Special Req., Ph.D. Degree 201-202
Schedule of Courses 225, 237
Undergraduate Subjects 265, 266
Chemistry
Advanced Subjects 269-274
Req., Ph.D. Degree 200-202
Schedule of Courses 226, 238
Undergraduate Subjects 267-269
Chemistry and Chemical Engineering
Description of Laboratories 116
Special Req., Ph.D. Degree 201-202
Staff of Instruction and Research 19
Study and Research 116
Church Laboratory for
Chemical Engineering 109, 116
Civil Engineering
Advanced Subjects 274
Laboratories, Description of 133
Schedule of Courses 238, 239
Special Req., Ph.D. Degree 203
Staff of Instruction and Research 22
Study and Research 132
Undergraduate Subjects 274
Clark Greenhouse 109, 115
Clubs 147
Committees
Administrative 13
Trustees 10
Faculty 14, 15
Observatories 35
Computers 276
Conditions 163
Course Schedules 219, 248
Course in Engineering Described 127
Course in Science Described 112
Credits and Units 163, 164
Creltin Laboratory of Chemistry 107, 116
Culbertson Hall 107
Dabney Hall of the Humanities 108, 141
Deans 12
Debating 148
Deferred Tuition 173, 174
Deficiency 165
Degrees Conferred,
June 1962 317-331
Departmental Regulations 165
Description of Undergraduate
and Fifth-Year Courses 249-316
Dining Facilities 110-213
Discipline 162
Dismissal 162
Dispensary and Infirmary 168
Divisions of the Institute 16-34
Doctor of Philosophy, Degree of
Regulations and
Requirements 194-198
Conferred, June 1962 317-322
Dolk Plant Physiology
Laboratory 108, 115
Drafting (see Engineering Graphics)

Earhart Plant Research
Laboratory 108
Early Decision Plan 153
Economics
Advanced Subjects 277
Undergraduate Subjects 277
Educational Policies 97
Electrical Engineering
Advanced Subjects 279
Laboratories, Description of 135
Schedule of Courses 239
Special Requirements, Engineer's Degree 193
Special Req., Ph.D. Degree 204
Staff of Instruction and Research 22
Undergraduate Subjects 279
Emergency Health Fund 169
Employment 184
Engineering, Buildings and
Laboratories 128
Engineering, General
Description of 127-140
Engineering Graphics 283
Engineering, Schedule of
Courses, Undergraduate 226
Engineering Science
Advanced Degrees 204
Special Req., Ph.D. Degree 204
Schedule of Courses 240
Study and Research 135
Engineering Societies 147
Engineering Undergraduate
Subjects 283
Engineer's Degree
Courses Leading to 235-248
Degrees Conferred, June 1962 323
Regulations and Requirements 192
English
Advanced Subjects 285
Undergraduate Subjects 284
Enrollment
Graduate 186
Undergraduate 150
Upper Classes 157
Entrance Examinations 151, 152
Entrance Requirements
Graduate 186
Undergraduate 150
Upper Classes 157

Examinations
Placement, for Graduate Students
(see Placement Examinations)
Term 4, 166
Entrance, Undergraduate 151
Languages for Ph.D.
Candidacy 4, 197
Excess Units 167
Executive Committee, Board
of Trustees 9
Expenses
Undergraduate 171, 172
Graduate 189

Faculty Members (see Staff of
Instruction and Research)
Faculty, Officers and
Committees 14, 15
Fees
Late Registration 161
Graduate Tuition 188
Summer Accident Insurance 170
Fellowships
Graduate 215
Post-Doctoral 216
Fifth- and Sixth-Year Course
Schedules 235-248
Finance Committee, Board
of Trustees 10
Firestone Flight Sciences
Laboratory 110, 129
First Year Course 230
French (see Languages)
Freshman Admissions 150
Freshman Honor Electives 167
Freshman Scholarships 175

Gates and Creltin Laboratories
of Chemistry 107, 116
General Deposit 172
Geochemistry (see Geology)
Geology
Advanced Subjects 286
Laboratories, Description of 118
Special Req., Ph.D. Degree 206-209
Schedule of Courses 229, 240
Staff of Instruction and Research 27
Study and Research 118
Undergraduate Subjects 285
Geophysics (see Geology)
German (see Languages)
Grade-Point Average 164
Grading System 163, 187
Graduate Assistantships 214
Graduate Courses
Schedules 235-248
Subjects of Instruction 249-316
Graduate Degrees,
June 1962 317-332
Graduate Fellows, Scholars,
and Assistantships 68-90
Graduate Humanities Electives 235
Graduate Standing, Admission to 186
Graduation in Two Different
Options 167
Graduation Requirements (B.S.) 166
Graduation with Honor 166
Graphics, Engineering 283
Guggenheim Aeronautical Laboratory 107, 129

Handbook (little t) 147
Health Center 168
Health Service 169, 170
Heating Plant 107
Historical Sketch 99-105
History and Government Advanced Subjects 294
Undergraduate Subjects 292
Holidays 4
Honorary Scholarships 176
Honors at Entrance 175
Honor Standing 333
Honor System (see Board of Control) 147
Hospital Services 168
Housing, Off Campus 142
Housing, On Campus 142
Humanities 141
Freshman Options 220
Graduate Electives 235
Senior Electives 220
Staff of Instruction 29
Study and Research 141
Humanities, Library and Art Gallery 141
Hydraulics and Hydrodynamics Advanced Subjects 295
Laboratories, Description of 133, 139
Study and Research 139
Industrial Associates 95
Industrial Relations Center 105
Institute Guests 218
Interhouse Activities 144
Interhouse Scholarship Trophy 144
Jet Propulsion Advanced Subjects 296
Laboratories, Description of 111, 138
Schedule of Courses 136, 243, 247
Jet Propulsion Laboratory 111
Karman Laboratory of Fluid Mechanics and Jet Propulsion 110, 129
Keck Engineering Laboratories 109, 133
Kellogg Radiation Laboratory 108, 125
Kerckhoff Laboratories of Biology 107, 115
Kerckhoff Marine Laboratory 111, 115
Languages Advanced Subjects 300
Predoctoral Examination in 4, 197
Undergraduate Subjects 299
Leave of Absence 165
Libraries 110
Living Accommodations 142, 213
Loan Funds 173, 174, 183
Machine Methods of Calculation 276
Marine Biology Laboratory 111, 115

Master of Science, Degree of
Conferred, June 1962 324-327
Courses leading to 235-248
Registration 190
Regulations and Requirements 189-191

Materials Science
Schedule of Courses 241
Special Requirements, Ph.D. Degree 204, 205
Study and Research 136

Mathematics
Advanced Subjects 301
Laboratories, Description of 121
Schedule of Courses 232
Special Req., Ph.D. Degree 211, 212
Staff of Instruction and Research 31
Study and Research 121
Undergraduate Subjects 305

Mechanical Engineering
Advanced Subjects 306
Laboratories, Description of 137
Schedule of Courses 242-247
Special Requirements, Engineer's Degree 193
Special Req., Ph.D. Degree 205
Staff of Instruction and Research 31
Study and Research 137
Undergraduate Subjects 305
Medical Service 168-170
Metallurgy (see Physical Metallurgy) 35, 112
Mount Wilson Observatory 35, 111
Mudd Laboratory of Geological Sciences 108
Music History and Analysis 307
Musical Activities 147

New Student Camp 156
Nuclear Energy 136, 244

Officers
Board of Trustees 9
Administrative Officers of the Institute 12
Trustee Committees 10, 11
Faculty Officers and Committees 14
California Institute Associates 91
Option Advisors 145

Paleontology (see Geology)
Palomar Observatory 35, 111
Pass, Grade of 164
Ph.D. (see Doctor of Philosophy)
Philosophy and Psychology
Advanced Subjects 309
Undergraduate Subjects 308
Physical Education 168
Physical Examination 155, 168
Physical Metallurgy
Advanced Subjects 310
Schedule of Courses 309
Undergraduate Subjects 309
Physical Plant Building and Shop 109
Physician, Institute, Services of 168
Pi Kappa Delta 147
Physics
Advanced Subjects 312
Laboratories, Description of 125
Schedule of Courses 233
Special Req., Ph.D. Degree 209, 211
Staff of Instruction and Research 31
Study and Research 124
Undergraduate Subjects 312

Placement Examination for
Graduate Students
Astronomy 191, 212
Chemistry 191, 200, 238
Chemical Engineering 191, 201
Geology 191, 206
Geological of Geophysical Engineer 191, 206
Mathematics 191, 209
Physics 191, 209
Placement Service 184
Plant Physiology Laboratory, Dolk 107
Prizes 184, 185
Psychology (see Philosophy) 147
Publications, Student Body 147

Registration:
General 161, 162
For Undergraduates 161
For M.S. Degree 190
For Engineer’s Degree 192
For Ph.D. Degree 194
For Summer Research 187
Ineligibility for 164, 187
Changes of 161

Regulations and Requirements
Undergraduate 150
Graduate 186
For M.S. Degree 189
For Engineer’s Degree 194
For Ph.D. Degree 165
Reinstatement 165

Requirements for Admission
(for Admission)
Requirement, Scholastic 163
Research at the Institute 112-140, 187
Residence Requirement 166, 187
Robinson, Laboratory of Astrophysics 108
Room and Board, Cost of 171
ROTC, Air Force (see Air Force ROTC) 171
Russian (see Languages) 147
Spalding Laboratory of Engineering 109
Special Fees 172
Special Fellowship and Research Funds 216
Special Requirements for Doctor’s Degree 198-212
Special Students 161
Speech Activities 148
Staff of Instruction and Research Summary by Divisions 16-34
Faculty 38-67
Graduate Fellows, Scholars and Assistants 68-90
State and National Scholarships 176
Student Camp 156
Student Center, Winnett 110
Student Employment 184
Student Health Program 68
Student Houses 142
Student Life 142-149
Student Relations, Faculty Committee on 145
Student Shop 148
Student Societies and Clubs 147
Students’ Day 156
Study and Research at the Institute 112-140
Subjects of Instruction 249-316
Summer Health Coverage 170
Summer Registration 187
Supplies, Cost of 171
Synchrotron Laboratory 108

Tau Beta Pi 147
Thesis
For M.S. Degree 191
For Engineer’s Degree 193
For Ph.D. Degree 197
Thomas Laboratory of Engineering 108
3-2 Plan 160
Throop Hall 107
Transfer from Other Institutions 157
Trustees, Board of 9
Trustee Committees 10
Tuition
Undergraduate 171, 172
Graduate 171, 172, 188

Undergraduate Courses
Schedules 219-234
Subjects of Instruction 249-316
Undergraduate Student Houses 109, 142
Units
Assignment of 163, 219
Excess of Fewer than Normal 167
Upper Class Admissions 157
Upper Class Scholarships 176
USAF Commissions Conferred, 1962 332

Vacations 4
Vaccination 155, 168
Withdrawal 172
Y.M.C.A. 148