STARTS HERE.

Caltech

2014 Annual Report

It starts here. At Caltech.

Year after year, research gets its start at Caltech. In telling the story of 2014, we decided to look back at how some of today's most exciting work came to be. Read on to learn—from our people, in their words—how our faculty and students turn ideas into discoveries, and how those discoveries are transforming the world we live in.

Table of Contents

- 2 Mikhail Shapiro
- 4 Dehn Gilmore
- 6 David Anderson
- 8 Azita Emami
- 10 New Beginnings
- 12 Andrew Thompson
- 14 Fiona Harrison
- 16 Ellen Price
- 18 Adam Jermyn
- 20 Awards
- 22 Financial Summary
- 24 Board of Trustees

Caltech is a jewel of American higher education, a source of transformative discovery for the world. But what motivates our researchers to tackle the most difficult problems and create new fields of inquiry? To engineer technologies to probe the human brain, to understand the basis of consciousness and the neural circuitry underlying human emotion? To imagine implantable devices that can cure blindness and epilepsy?

What spurs a theoretician to send robots along the ocean floor? A historian to elucidate artistic representations of human life? Undergraduates to lead laboratory projects and author articles in top journals?


This year's report provides snapshots of extraordinary individuals and in so doing illustrates the dynamic environment at Caltech. We hope that you enjoy these stories of inspiration, intellectual adventure, and achievement.

Thomas F. Rosenbaum

Thomas F. Roselson

President, Caltech Sonja and William Davidow Presidential Chair and Professor of Physics David L. Lee

Chair, Caltech Board of Trustees

"I started out in neuroscience in college, and I really wanted to learn how the brain works, how consciousness works, and these are still the questions that ultimately drive what my lab is interested in. But I realized at the time that we didn't have the right technologies to really probe the brain in the way I wanted to; most of its information is hidden in chemical signals deep inside the skull. So I decided to become an engineer in order to create those technologies to help us observe the brain's chemical signals from the outside without having to open it up."

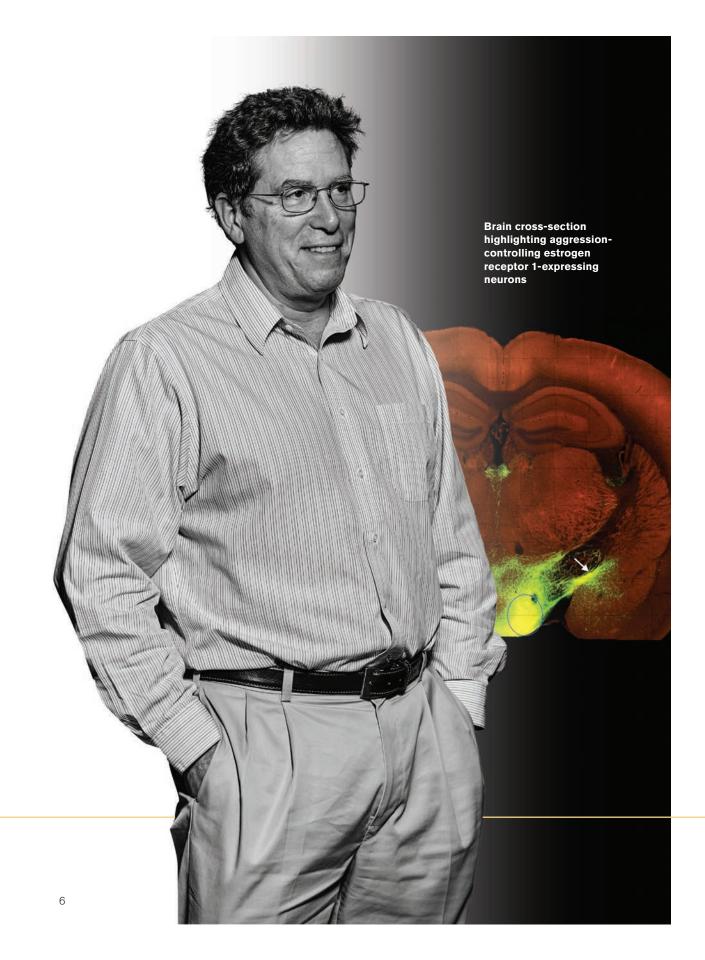
That charge—which Shapiro says he's pursued with single-minded intensity ever since—has led him to explore the use of magnetic fields and sound waves to penetrate deeply yet noninvasively into the body. His research has resulted in the first biomolecular sensors that can be imaged with MRI and ultrasound. And he credits the environment at Caltech for making it possible.

"In a lot of places, if I were in a chemical engineering department, people might ask, 'Why aren't you working on a pipeline or in a refinery?' But at Caltech, working across disciplines is totally normal. And without this kind of collaboration, our vision never would have gotten off the ground. I can't imagine this happening so quickly and naturally anywhere else in the world."

Mikhail Shapiro

Assistant Professor of Chemical Engineering

When Dehn Gilmore was finishing up her first book—
The Victorian Novel and the Space of Art: Fictional Form
on Display (Cambridge, 2013)—she came across a
collection of miniatures during a house tour in England.
The questions of scale that the encounter brought up
have resulted in her current research project, a
book tentatively titled "Large as Life": The Victorians'
Disproportionate Reality.


"The Victorians were obsessed in ways that we have not necessarily realized before with life-sized representation, whether that's the wax models at Madame Tussaud's, anatomical models, or even the life-size statue made out of sugar that somebody put together for Queen Victoria.

"The phrase 'large as life' actually comes to its modern meaning in the Victorian period, but it starts more as a classification of size. As the project is shaping up, it's also starting to become about 'history of science' things—like automata and anatomical models—and a lot of the questions I'm thinking about are questions of objectivity versus subjectivity.

"As somebody whose work is half history and half literature, it was really exciting to join a department that's genuinely interdisciplinary, and that fosters conversations across fields—across English, across history, across the history of science. Being around people who are so engaged by their research is very inspiring. In moments when you're full of doubt or exhaustion, it makes you want to get back into it."

Dehn Gilmore
Professor of English

"I like to get into a field at the beginning, when there aren't too many people thinking about it and working on it. Staying focused on a topic within a mature field can be rewarding, but the downside is that your contributions tend to become more and more incremental and it's harder to make big discoveries."

In the 1990s, David Anderson—already renowned for his work on the development and function of the nervous system—began refocusing his research and exploring the neural circuits underlying emotional behavior. Anderson helped bring to his new field of study a transformative molecular biological toolkit that provided unprecedented ways to determine which neural circuits provoke specific emotions, such as fear or anger.

"The change in field has been very productive: we've gotten fairly sophisticated in our ability to mark, map, measure, and manipulate neuronal activity in a way that will ultimately allow us to construct an integrated picture of what is happening in the brain when an animal is afraid or angry—and where that is encoded. Which could eventually lead us to a better understanding of forms of aggression like impulsive violence."

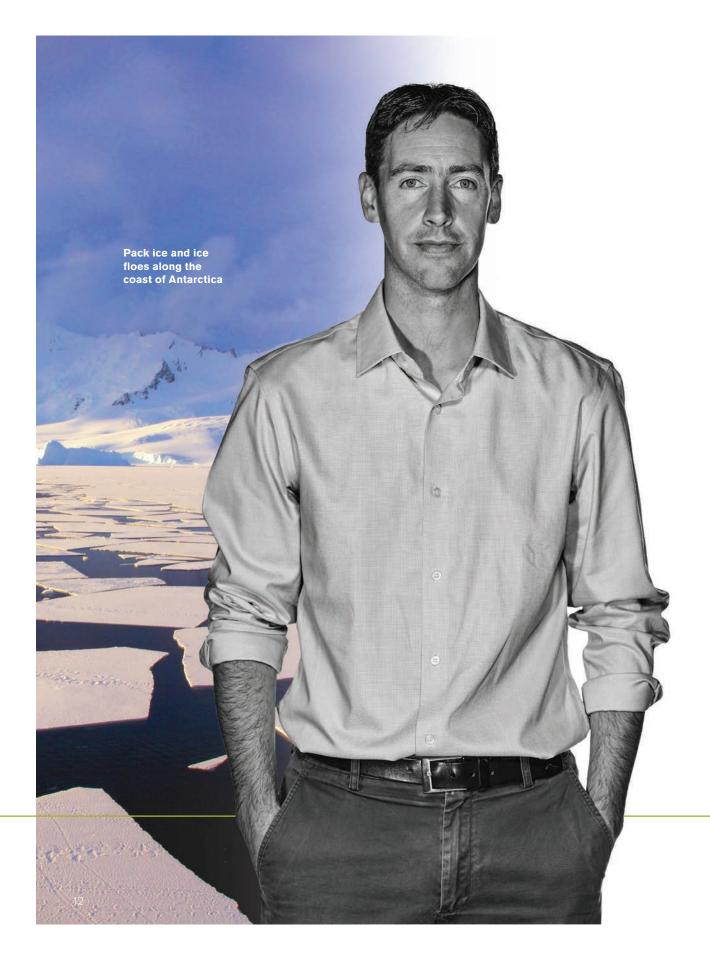
David Anderson

Seymour Benzer Professor of Biology

"I have a sister who suffers from epilepsy, and there is evidence that neurostimulation—the therapeutic activation of part of the nervous system using microelectrodes—can help minimize the symptoms. This is one of my inspirations for directing part of my research team's efforts towards neural interfaces."

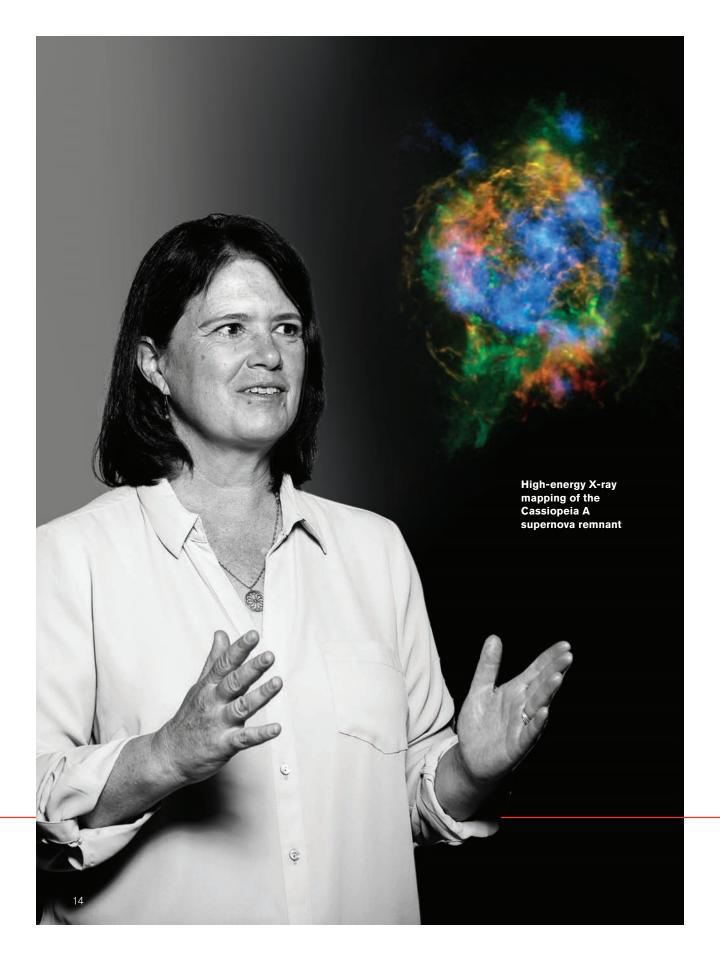
When she joined the Caltech faculty in 2007, Azita Emami added her expertise in implantable devices to a research collaboration involving electrical engineer Yu-Chong Tai and other Caltech researchers. This group is developing a tiny retinal implant that fits within the eye and allows blind people to recognize faces as well as read. The current prototype of the implant supports 512 stimulation channels and features wireless power delivery and data transmission.

"Although my current research—creating a new retinal implant that allows people to see efficiently and do everyday tasks without assistance—isn't going to affect my sister directly, it is moving the field forward and we are learning more about the brain. For instance we are learning how to use its power to fix what has gone wrong. This will ultimately help many people."


Azita Emami

Professor of Electrical Engineering

Andrew Thompson had always assumed he would join a traditional oceanography institute—somewhere he could carve out a niche and pursue his research into how ocean eddies redistribute heat and nutrients.


But when Thompson began looking for a home for himself and his research, he began hearing about Caltech's interest in expanding work in the area of climate science. And then there were the robots: autonomous vehicles that glide through the ocean, measuring everything from polar ice melt to ocean levels. Thompson wanted them, and Caltech was ready and able to hand them over to him.

"Caltech was willing to give someone who had mostly done theory on numerical models the keys to these ocean gliders. They basically said, 'We believe in the work you're doing—even though you haven't done it before—so go and do it, and if it doesn't work out, don't worry about it. You have to try things that are a bit crazy.'

"The gliders are at a stage now where less of the effort is on the engineering side of getting them ready; now, they are tools that we can use to actually get at the science we want to do. We're getting observational data back from them that we can use to increase our understanding of ocean circulation."

Andrew Thompson

Assistant Professor of Environmental Science and Engineering

"When I started on the faculty at Caltech, in 1995, I had this idea that I wanted to focus high-energy X-rays with a space telescope for the first time. But we didn't yet have the technologies—the mirrors, the detectors—to do this. So I joined the Institute's Space Radiation Lab, which allowed me the opportunity to work with excellent, experienced engineers who designed electronics and detectors. Also, with JPL being so close and supportive, Caltech provided a uniquely encouraging environment for me."

Fiona Harrison's idea—an expansion of work she had done as a graduate student to build a balloon-borne X-ray telescope—came to fruition and worldwide attention in June 2012 with the launch of the Nuclear Spectroscopic Telescope Array (NuSTAR), which has been exploring the heavens ever since. This year alone, NuSTAR's explorations have yielded information about a pulsating dead star that beams with the energy of about 10 million suns, and a map of the radioactive material from the core of a supernova explosion.

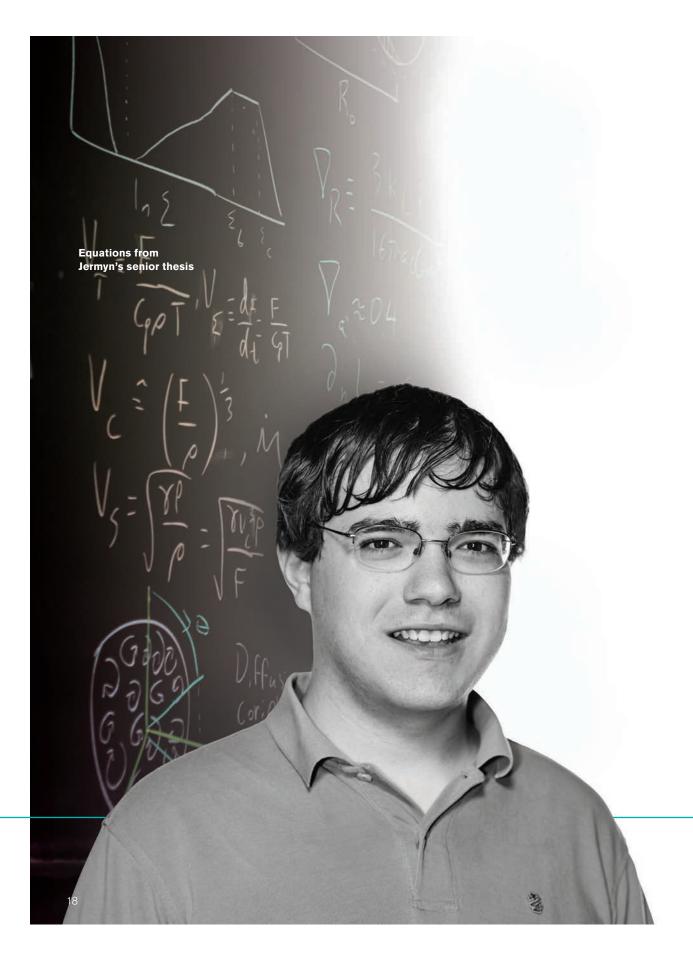
"There's a certain amount of risk associated with starting as a junior faculty member trying to work on something that has to go into space to get results. But Caltech is a place that truly believes that if something is hard and worthwhile, you should do it. And that has really paid off."

Fiona Harrison

Benjamin M. Rosen Professor of Physics

Ellen Price has been the lead author on two astronomy research papers—and she hasn't even received her undergraduate degree. This Caltech senior grew up with two scientist parents and an innate interest in the sciences that was carefully cultivated throughout high school. But it wasn't until she got to Caltech that she was able to carve out her path for the future.

"As a sophomore, I enrolled in Astronomy 20 with John Johnson, who approached me to work on a project with him—even though I didn't know anything about exoplanets! Over the three years I've worked with the exoplanet team at Caltech, I feel like I've contributed significantly to the project."


Those contributions led to a paper on transit light curves with finite integration time published in 2014, and another on the photoeccentric effect for planets of various sizes, set to be published in 2015.

"One of the best parts of my time here at Caltech has been being able to do so much hands-on research; I never imagined I would be able to go so far. The professors here have had such an impact on me, and it's because I want to be able to do that for future students that I am planning to pursue a career in academia."

Ellen Price

Caltech Senior

For senior Adam Jermyn, studying science in college was a no-brainer. The tricky part was focusing on just one area. As a freshman, he came to Caltech to study physics; later, he changed his focus to study biology after his grandfather was diagnosed with Alzheimer's. Then, as a sophomore, he was encouraged by his statistical physics professor, Jason Alicea, to study condensed-matter physics; a graduate student invited him to do research on solar energy with Harry Atwater; and he took his first trip to the Palomar Observatory with Nick Scoville, which helped reignite a passion he has always had for astronomy. Jermyn will graduate this June with a degree in physics, and as both a Marshall Scholar and a Goldwater Scholar.

"I never had room in my schedule to take the intro astronomy course that Dr. Scoville taught, but every year I would email him and ask him if I could tag along with that class to Palomar. It eventually dawned on me: If I'm this interested in astronomy, then why am I not doing it?

"I've taken a strange path through this place. I've been distracted by all the shiny course offerings, but ultimately I'm here to do research, to be challenged. Amazingly, Caltech let me find my own challenges, and that helped me find my own way."

Adam Jermyn

Caltech Senior

Awards

NATIONAL AWARDS AND HONORS

AMERICAN ASTRONAUTICAL

SOCIETY, Lifetime Achievement Award:

Edward C. Stone

David Morrisroe Professor of Physics; Vice Provost for Special Projects

2014 PRESIDENTIAL EARLY CAREER AWARD FOR SCIENTISTS AND ENGINEERS, Recipient:

Theodor Agapie

Professor of Chemistry

NATIONAL ACADEMY OF INVENTORS. Fellow:

Frances H. Arnold

Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry; Director, Donna and Benjamin M. Rosen Bioengineering Center

David Baltimore

President Emeritus; Robert Andrews Millikan Professor of Biology

Carver Mead

Gordon and Betty Moore Professor of Engineering and Applied Science, Emeritus

Axel Scherer

Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics

NATIONAL INVENTORS HALL OF FAME. Inducted:

Frances H. Arnold

Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry; Director, Donna and Benjamin M. Rosen Bioengineering Center

NATIONAL ACADEMY OF SCIENCES, Member:

Gregory C. Fu

Altair Professor of Chemistry

Fiona A. Harrison

Benjamin M. Rosen Professor of Physics

John P. Preskill

Richard P. Feynman Professor of Theoretical Physics

NATIONAL INSTITUTES OF HEALTH, 2014 BRAIN Award:

David J. Anderson

Seymour Benzer Professor of Biology; Investigator, Howard Hughes Medical Institute

Michael H. Dickinson

Esther M. and Abe M. Zarem Professor of Bioengineering

Viviana Gradinaru

Assistant Professor of Biology

Markus Meister

Anne P. and Benjamin F. Biaggini Professor of Biological Sciences

Michael L. Roukes

Robert M. Abbey Professor of Physics, Applied Physics, and Bioengineering

Mikhail G. Shapiro

Assistant Professor of Chemical Engineering

Thanos G. Siapas

Professor of Computation and Neural Systems

Doris Y. Tsao

Professor of Biology

Changhuei Yang

Professor of Electrical Engineering, Bioengineering, and Medical Engineering

NASA HONOR AWARDS:

James J. (Jamie) Bock

Professor of Physics; Jet Propulsion Laboratory Senior Research Scientist

Christopher Martin

Professor of Physics

INTERNATIONAL AWARDS AND HONORS

2014 PRINCE OF ASTURIAS AWARD FOR TECHNICAL AND SCIENTIFIC RESEARCH,

Recipient:

Mark E. Davis

Warren and Katharine Schlinger Professor of Chemical Engineering

2014 SPIE, George W. Goddard

Award, Recipient:

James J. (Jamie) Bock

Professor of Physics; Jet Propulsion Laboratory Senior Research Scientist

ORDER OF THE SACRED TREASURE GOLD AND SILVER STAR, JAPAN, Recipient:

Hiroo Kanamori

John E. and Hazel S. Smits Professor of Geophysics, Emeritus

THE ROYAL SOCIETY, Fellow:

Vladimir Markovic

John D. MacArthur Professor of Mathematics

SOCIETY OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN,

2015 Mukaiyama Award:

Brian Stoltz

Professor of Chemistry

KODANSHA PRIZE FOR SCIENCE BOOKS, JAPAN,

Recipient:

Hirosi Ooguri

Fred Kavli Professor of Theoretical Physics and Mathematics; Deputy Chair of Physics, Mathematics and Astronomy

AWARDS AND HONORS FROM PROFESSIONAL SOCIETIES

2014 ALBANY MEDICAL CENTER PRIZE IN MEDICINE AND BIOMEDICAL RESEARCH, Recipient:

Alexander J. Varshavsky

Howard and Gwen Laurie Smits Professor of Cell Biology

AMERICAN ACADEMY OF ARTS AND SCIENCES, Fellow:

John F. Brady

Chevron Professor of Chemical Engineering and Mechanical Engineering; Executive Officer for Chemical Engineering

Katherine T. Faber

Simon Ramo Professor of Materials Science

Kenneth A. Farley

W. M. Keck Foundation Professor of Geochemistry

Fiona A. Harrison

Benjamin M. Rosen Professor of Physics

AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,

Wallace E. Pratt Memorial Award, Recipient:

Michael Gurnis

John E. and Hazel S. Smits Professor of Geophysics; Director, Seismological Laboratory

AMERICAN CHEMICAL SOCIETY,

2015 Priestley Medal, Recipient:

Jacqueline K. Barton

Arthur and Marian Hanisch Memorial Professor of Chemistry; Chair, Division of Chemistry and Chemical Engineering

AMERICAN INSTITUTE OF

PHYSICS, 2014 Andrew Gemant Award, Recipient:

Sean Carroll

Research Professor of Physics

AMERICAN GEOPHYSICAL UNION.

the William Bowie Medal, Recipient:

Hiroo Kanamori

John E. and Hazel S. Smits Professor of Geophysics, Emeritus

AWARDS AND HONORS FROM FOUNDATIONS AND ORGANIZATIONS

SPRINGER SCIENCE+BUSINESS

MEDIA, Julius Springer Prize for Applied Physics, Recipient:

Harry A. Atwater

Howard Hughes Professor of Applied Physics and Materials Science; Director, Resnick Sustainability Institute

DAVID AND LUCILE PACKARD

FOUNDATION, Packard Fellowship, Fellow:

Andrew Thompson

Assistant Professor of Environmental Science and Engineering

SOCIETY FOR EXPERIMENTAL

MECHANICS, 2014 William M. Murray Award, Recipient:

Guruswami (Ravi) Ravichandran

John E. Goode, Jr., Professor of Aerospace and Professor of Mechanical Engineering; Director, Graduate Aerospace Laboratories

INSTITUTE HONORS

ENDOWED PROFESSORSHIPS AND CHAIRS:

Antonio Rangel

Bing Professor of Neuroscience, Behavioral Biology, and Economics

Oskar J. Painter

John G Braun Professor of Applied Physics

John C. Dovle

Jean-Lou Chameau Professor of Control and Dynamical Systems, Electrical Engineering, and Bioengineering

Edward M. Stolper

Carl and Shirley Larson Provostial Chair

Christopher R. Hitchcock

J. O. and Juliette Koepfli Professor of Philosophy

B. Thomas Soifer

Kent and Joyce Kresa Leadership Chair, Division of Physics, Mathematics, and Astronomy

Sarkis Mazmanian

Luis B. and Nelly Soux Professor of Microbiology

Katherine T. Faber

Simon Ramo Professor of Materials Science

Thomas F. Rosenbaum

Sonja and William Davidow Presidential Chair

RICHARD P. FEYNMAN PRIZE FOR EXCELLENCE IN TEACHING,

Recipient:

Steven C. Frautschi

Professor of Theoretical Physics, Emeritus

Financial Summary

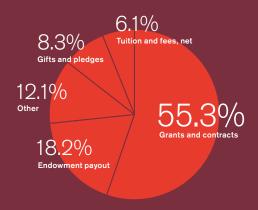
For the fiscal years ended on September 30, 2014 and 2013 (in thousands)

LETTER FROM DEAN CURRIE, VICE PRESIDENT FOR BUSINESS AND FINANCE

I am happy to report that fiscal 2014 was another positive year for Caltech. Net assets increased by 6.6 percent and topped \$2.5 billion on the strength of investment returns, the generosity of our donors, and careful management of operating expenses. The Institute's endowment rose to \$2.1 billion due to investment returns and new contributions to the endowment, and provided more than \$108 million in support to campus programs. Our visionary donors continue not only to increase Caltech's financial strength but also to provide the flexibility to determine the best use of funds in pursuing exciting opportunities. Similarly, increases in JPL funding and continued strength in funding of new campus research awards reveal the support for the ideas generated at Caltech. Overall expenses remained virtually unchanged, reflecting the Institute's continuing commitment to administrative efficiency. In particular, innovative efforts in the structure of health benefits will moderate costs in the years to come while maintaining accessible benefits for faculty, staff, and retirees, and providing upgraded benefits administration systems. As we usher in a new era of leadership under Thomas F. Rosenbaum, I am confident that the Institute's strong financial foundation, and its focus on flexibility and careful administration, will allow the Institute to maintain its commitment to scientific leadership as well as its ability to attract the world's most creative, insightful, and impactful scholars.

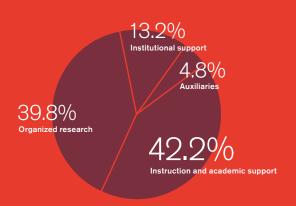
4	Ja.	0
	($\overline{}$

Operating Revenues (excluding JPL)	2014	2013
Tuition and fees, net	\$ 36,307	\$ 35,216
Endowment payout	108,086	102,162
Gifts and pledges	49,523	46,174
Grants and contracts	327,744	342,279
Other	72,022	80,476
Operating revenues	\$ 593,682	\$ 606,307


Operating Expenses (excluding JPL)

Compensation and benefits	\$ 351,490	\$ 349,643
Supplies and services	122,759	144,882
Subcontracts	38,355	32,798
Graduate fellowships	17,202	17,720
Depreciation, accretion, & amortization	67,170	67,406
Utilities	18,040	16,170
Interest	16,788	16,400
Operating expenses	\$ 631,804	\$ 645,019

Asset, Liability, and Net Assets Summary


Cash and cash equivalents	\$ 10,092	\$ 10,209
Accounts receivable, net	239,130	216,290
Investments	2,501,865	2,392,563
Other assets	202,451	181,367
Deferred United States government billings	346,160	456,917
Property, plant and equipment, net	866,706	874,288
Total assets	\$ 4,166,404	\$ 4,131,634
Accounts payable and accrued expenses	\$ 462,540	\$ 408,913
Other liabilities	134,876	118,155
Bonds and notes payable	682,362	726,970
Accumulated postretirement benefit obligation	369,244	515,032
Total net assets	2,517,382	2,362,564
Total liabilities and net assets	\$ 4,166,404	\$ 4,131,634
Increase in net assets	\$ 154,818	\$ 182,125

Note: The figures that appear in the financial summary shown are derived from the financial statements for the years ended September 30, 2014 and 2013, that have been audited and have received an unmodified opinion. The complete, audited financial statements for the Institute can be seen at www.businessandfinance.caltech.edu.

2014 Operating Revenues (excluding JPL)

Grants and contracts	\$ 327,744	%	55.3
Endowment payout	108,086		18.2
Other	72,022		12.1
Gifts and pledges	49,523		8.3
Tuition and fees, net	36,307		6.1
Operating revenues	\$ 593,682	%	100.0

2014 Operating Expenses (excluding JPL)

Instruction and academic support	\$ 266,766	%	42.2
Organized research	251,374		39.8
Institutional support	83,198		13.2
Auxiliaries	30,466		4.8
Operating expenses	\$ 631,804	%	100.0

Caltech Board of Trustees

OFFICERS OF THE BOARD

David L. Lee

Ronald K. Linde Vice Chair

Thomas F. Rosenbaum

TRUSTEES

Sean Bailey

Barbara McConnell Barrett

Brigitte M. Bren John E. Bryson

John S. Chen

Wenchi Chen

Peggy T. Cherng

Robert B. Chess

David T. Dreier

Lounette M. Dyer

Joshua S. Friedman

William T. Gross

Narendra K. Gupta

Maria D. Hummer-Tuttle

Robert T. Jenkins

G. Bradford Jones

Peter D. Kaufman

Louise Kirkbride

Walter G. Kortschak

Jon B. Kutler

David L. Lee

York Liao

Alexander Lidow

Andrew N. Liveris

Shirley M. Malcom

Deborah D. McWhinney

Richard N. Merkin

Kenneth G. Moore

Philip M. Neches

Patrick H. Nettles, Jr.

Peter Norton

Stephen R. Onderdonk

Thomas F. Rosenbaum

Stephen A. Ross

James F. Rothenberg

Richard H. Scheller

Marc I. Stern

Donald W. Tang

Kevin M. Taweel

David W. Thompson

Richmond A. Wolf

SENIOR TRUSTEES

Gordon M. Binder

Robert C. Bonner

Lynn A. Booth

Milton M. Chang

William H. Davidow

Thomas E. Everhart

B. Kipling Hagopian

Frederick J. Hameetman

Shirley M. Hufstedler

Bobby R. Inman

Ronald K. Linde

A. Michael Lipper

Ronald L. Olson

Stewart A. Resnick

Nelson C. Rising

Charles R. Trimble

Lewis W. van Amerongen

Walter L. Weisman

Gayle E. Wilson

Suzanne H. Woolsey

LIFE MEMBERS

George L. Argyros

Stephen D. Bechtel, Jr.

Donald Bren

Eli Broad

Harold Brown

Walter Burke

Jewel Plummer Cobb

Harry M. Conger

Richard P. Cooley

Camilla Chandler Frost

Arthur L. Goldstein

Philip M. Hawley

Gordon E. Moore

Sidney R. Petersen

Simon Ramo

Arthur Rock

Benjamin M. Rosen

Richard M. Rosenberg

Robert J. Schultz

Mary L. Scranton

Dennis Stanfill

Virginia V. Weldon

HONORARY LIFE MEMBER

Betty I. Moore

Academic Leadership

Thomas F. Rosenbaum

President

Edward M. Stolper

Provost

Mory Gharib

Vice Provost

Cindy A. Weinstein

Vice Provost

Jacqueline K. Barton

Chair, Division of Chemistry

and Chemical Engineering

John P. Grotzinger

Chair, Division of Geological

and Planetary Sciences

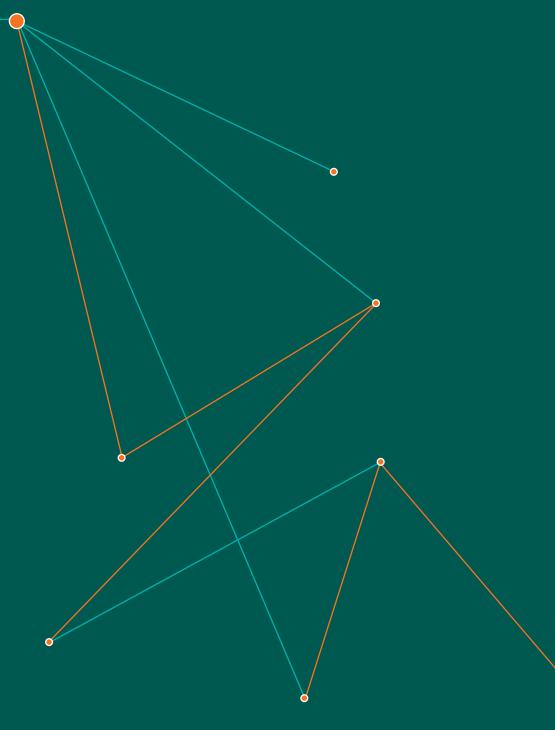
Stephen L. Mayo

Chair, Division of Biology and Biological Engineering

Ares J. Rosakis Chair, Division of Engineering

and Applied Science

Jean-Laurent Rosenthal


Chair, Division of the

Humanities and Social Sciences

B. Thomas Soifer

Chair, Division of Physics,

Mathematics and Astronomy

Photo Credits: Portraits on pages 2, 5, 6, 9, 12, 14, 17, 18: Mario de Lopez; Other images, 2: Mikhail Shapiro; 5: crop of image from Wikimedia.org, flickr.com/photos/griannan, published under CC BY 2.0; 6: Liching Lo, the Allen Institute for Brain Science and the Allen Mouse Connectivity Atlas; 9: Manuel Monge/Azita Emami's lab; 10–11: Lance Hayashida; 12: crop of image from Wikimedia.org, Jason Auch, www.flickr.com/photos/10004136@N05/3212359454, published under CC BY 2.0; 14: NASA/JPL-Caltech/CXC/SAO; 17: NASA's Exoplanet Exploration Program; 18: Jenny K. Somerville.

Graphic design by Keith & Co.