Modeling in Engineering—The Challenge of Multiple Scales

by Rob Phillips

hether we consider the
design of a new genera-
tion of airliners such as
the Boeing 777 or the
development of the latest micro-

processors, engineering relies
increasingly on the use of mathe-
matical models to characterize
these technologies. In the case of
the 777, sophisticated models of
the fluid mechanics of air flow over
the wings were an integral part of
the design process, just as struc-
tural mechanics models ensured
that flight in turbulence leads to
nothing more grave than passenger
discomfort.

Models of complex materials
that make up our modern technolo-
gies also pose a wide range of sci-
entific challenges. Indeed, many of
the most important recent advan-
ces in the study of materials result-
ing in entirely new classes of mate-
rials such as the famed oxide high-
temperature superconductors or
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fullerenes, and their structural part-
ners known as carbon nanotubes,
have engendered a flurry of model-
ing efforts.

Important problems that such
modeling must confront are those

of an intrinsically multiscale nature.

What this means is that analysis of
a given problem requires simulta-
neous consideration of several spa-
tial or temporal scales. This idea is
well represented in drawings made
more than 500 years ago by
Leonardo da Vinci, in which the
turbulent flow of a fluid is seen to
involve vortices within vortices
over a range of scales. This sketch
(see Fig. 1) serves as the icon for
the new Caltech center known as
the Center for Integrative Multi-
scale Modeling and Simulation
(CIMMS) [see article on page 10].
CIMMS brings together faculty
members from several different
Options and Divisions including
Professors K. Bhattacharya
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(Mechanical Engineering),

E. Candes (Applied & Compu-
tational Mathematics), J. Doyle
(Control & Dynamical Systems,
Electrical Engineering, and
Bioengineering), M. Gharib
(Aeronautics and Bioengineering),
T. Hou (Applied & Computational
Mathematics), H. Mabuchi (Physics
and Control & Dynamical Systems),
J. Marsden (Control & Dynamical
Systems), R. Murray (Control &
Dynamical Systems and Mechan-
ical Engineering), M. Ortiz
(Aeronautics and Mechanical
Engineering), N. Pierce (Applied

& Computational Mathematics),

R. Phillips (Mechanical Engineer-
ing and Applied Physics) and

P. Schréder (Computer Science

and Applied & Computational
Mathematics). The aim of multi-
scale modeling is to construct mod-
els of relevance to macroscopic
scales usually observed in experi-
ment and tailored in the engineer-
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ing process without losing sight of
the microscopic processes which
may dictate processes at the
macroscale. Although the relation
between force and extension can
be observed macroscopically, it is
often complex microscopic processes
that give rise to the macroscopic
force-extension curves. Examples
include the breaking of hydrogen
bonds during protein deformation,
and the motion of defects in the
deformation of crystalline solids.

key outcome of the use of
computers in science and
engineering has been the
ability to solve problems
of ever-increasing com-
plexity. Whereas the tools of nine-
teenth-century mathematical
physics emphasized geometries of
high symmetry (such as spheres
and cylinders, each of which is
aligned with a set of special func-
tions such as the Legendre polyno-
mials or Bessel functions), current
modeling is aimed at considering
problems in their full three-dimen-

sional complexity. The key advance
enabling such calculations is high-
speed computation. As a represen-
tative case study of the high level
to which such models have been
taken, Fig. 2 shows the computa-
tional grid (finite-element mesh)
used to model a human kidney
when subjected to ultrasonic shock
waves. The aim is to degrade kid-
ney stones (shock-wave lithotripsy).
As noted above, no assumptions
are required concerning the sym-
metry of the body. The level of spa-
tial resolution needed to construct
models of systems of interest may
vary from one position in the sys-
tem to another. Indeed, the finite-
element method serves as a power-
ful tool in the multiscale modeling
arsenal. Efforts in the Phillips group
and that of Michael Ortiz are aimed
at bringing these methods to bear
on problems ranging from the
deformation of dense metals such
as tungsten to the fragmentation of
human bone to the deformation of
individual proteins.

One of the precepts which pre-
sides over the field of computation-

al science and engineering is
Moore’s law, which calls for a dou-
bling in the number of transistors
per integrated circuit every 18
months. For those of us who exploit
computers to solve complex prob-
lems, this enables ever-increasing
computational resources. From
many perspectives, Moore's law
should be seen as an expression of
unbridled optimism which has set
the agenda respected in the semi-
conductor technology roadmap
(betp://public.itrs.net). It serves as a
guide to understanding the way in
which the resources of computa-
tional scientists have increased
since the first models were solved
on primitive vacuum-tube
computers.

On the other hand, for those
interested in brute-force atomic-
level calculation of the properties of
materials (or any of a wide range of
other problems occurring in fluid
mechanics, meteorology, computa-
tional biology, etc.), Moore's law
paints an altogether more gloomy
picture. To see this, we need only
remark that the number of atoms in
a cubic micron of material is rough-
ly 10" since about 3,000 atoms will
fit onto each edge of such a cube.
Calculations of this size are at least
three orders of magnitude larger
than the 10 million atoms reached
on today's best supercomputers in
the case of the simplest materials.
Worse yet, this is but one facet of
the problem. Just as the maximum
size accessible by direct numerical

Figure 1. Sketch by Leonardo da Vinci illus-
trates the sense in which turbulent flow of a
fluid is a multiscale phenomenon. Parcels of
fluid in a turbulent flow with a net rotation,
vortices, are organized hierarchically in such a

way that there are vortices within vortices.
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calculation is too small, so too are

the intervals of time being simulat-
ed, with the current standard being
that a nanosecond worth of simula-
tion time (10’9 seconds) represents

long simulation time. To drive home
this point, we note that if our inter-
est is in the simulation of semicon-

ductor processing, we will need to
simulate micron size regions for
times much in excess of the

nanosecond simulation times
described above. Similarly, should
our interest be in simulating the
properties of the basic building
blocks of life, what Francis Crick
referred to as the “two great poly-
mer languages,” nucleic acids and
proteins, there too we are faced
with the simulation of scales in
both space and time that will con-
tinue to defy our current brute-
force computational schemes.

As an antidote to this scourge
on the face of computational sci-
ence, workers from a host of differ-
ent fields ranging from applied
mathematics to meteorology to
computational biology are engaged
in work that has been dubbed
“multiscale modeling.” From a com-
putational perspective, the premise
of multiscale modeling is that new
methods must be developed in
which alternatives to the full brute-
force ideas described above are
examined. Though this vibrant field
has been hyped by giving it a spe-

cial name, I suggest that multiscale
modeling is really as old as science
itself and was being practiced by
Newton when he treated the Earth
as a point mass, by Hooke when he
treated a spring as an elastic con-
tinuum, by Bernoulli in the devel-
opment of the kinetic theory of
gases, by Lorentz in his early

and primitive models of the
absorption of light in crys-

talline solids, and by Einstein

in his treatment of both

Brownian motion in liquids

and specific heats of crystalline
solids. What all of these modeling
efforts have in common is the idea
of starting with a picture of the
material of interest which is
oppressively complex and finding a
way to replace that complexity

Figure 2. Computational mesh used to evalu-
ate the mechanical response of a kidney to
ultrasonic shock waves (courtesy of Kerstin

Weinberg and Michael Ortiz).

with a “coarse grained” model. Said
differently, such models can be
thought of as viewing the problem
of interest with lower resolution.
An example from everyday experi-
ence is gained by looking out the
window of an airplane when flying
at 30,000 feet. At this resolution,
forests are smeared out and the
various topographical features with
a scale less than several meters are
no longer observable. Nevertheless,
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from the perspective of understand-
ing the overall forestation and
topography of a given region,
understanding at this level of reso-
lution is likely more useful than a
more accurate rendering with reso-
lution at the meter scale.

istory is replete with

beautiful examples in

which multiscale model-

ing ideas have been used

to characterize a range of
problems. One such example is
related to the following question:
given that a gas is a collection of
atoms, is it possible to replace
models of the gas which acknowl-
edge the underlying graininess of
matter by those in which the atom-
ic degrees of freedom are smeared
out into continuous fields such as
density, temperature, and pressure?
Of course, it is well known that the
answer to this query can be posited
in the affirmative. Further, it is
through the multiscale vehicle of
the kinetic theory of gases that this
transformation in perspective is
made.

As illustrated in Fig. 3, a gas
may be thought of as a collection of
molecules, each engaged in its own
jiggling dance until, by chance, one
molecule collides either with anoth-
er molecule or the surrounding
walls. The realization of the early
thermodynamicists was that the
accumulation of all such collisions
per unit time corresponds to our
macroscopic impression of the
pressure exerted on the walls by all
of the gas molecules. Through a
well-defined statistical formalism,
statistical mechanics and the
kinetic theory of gases instruct us

Figure 3. lllustration of the relation between
molecular and continuum descriptions of the
internal state of a gas.This figure comes from
the original paper of Daniel Bernoulli, one of
the developers of the multiscale modeling
paradigm known as the kinetic theory of

gases.
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how to compute the macroscopic
average quantities measured in the
lab as a function of the underlying
molecular coordinates. For the
present argument, the key point is
that by evaluating the molecular
mechanics of the various collisions
between molecules, it is possible to
compute parameters such as vis-
cosity, which show up in higher
level continuum descriptions of the
fluid. The existence of simple
parameters (such as viscosity) cap-
ture the details of the underlying
microscopic collisions and allow us
to replace these microscopic
details with continuum notions, an
example of multiscale modeling at
its best.

Work in the same vein as the
kinetic theory of gases has contin-
ued unabated and now represents a
cornerstone of the modern ap-
proach to understanding materials
ranging from steel to proteins. In
the remainder of this article, we
examine one corner of this vast
field which has understanding as
its first objective and, later, design-
ing and controlling the response of
materials when they are subjected
to an applied force.

ne of the key ways to
understand different mate-
rials is to subject them to
different external stimuli
and watch their attendant respons-
es. One classic example of this
strategy is embodied in the formu-
lation of the laws of elasticity.
Using experimental apparatus like
that shown in Fig. 4, Robert Hooke
measured the extension of material
bodies as a function of the imposed
load and thereby formulated his
justly famous law which he
expressed as an anagram CEII-
INOSSITTUV, which when
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Figl 3.

unscrambled reads Ut tensio, sic
vis—"As the extension, so is the
force.” In modern parlance, this is
written S = Ee: stress is proportion-
al to strain with the constant of
proportionality given by the
Young's modulus, E£. This basic
idea jibes with our intuition: the
harder you pull on something, the
more it stretches. Similar propor-
tionalities have been formulated for
material response in other settings
such as the relation between cur-
rent and voltage (Ohm's law) and
that between diffusion and the
chemical gradient (Fick's law). In

each of these cases, the basic idea
can be couched in the following
terms:

response = material parameter X stimulus

However, as one might guess,
once the driving force (i.e., the
stimulus) becomes too large, the
simple linear relation between force
and response breaks down and
calls for more sophisticated analy-
sis. A particularly compelling
example of these ideas is presented
in the emerging field of single-mol-
ecule biomechanics in which the
force-extension curves for individ-
ual molecules such as the protein
titin found in muscle are measured
using the atomic-force microscope.
An example of such a curve is
shown in Fig. b. The vertical axis in
this curve shows the applied force
(measured in piconewtons) while
the horizontal axis shows the
extension of the molecule (meas-
ured in nanometers). What is

Figure 4. Experimental apparatus used by
Robert Hooke in his elucidation of the laws of

elasticity.

remarkable is that the molecule
goes through a series of processes
in which the load increases (corre-
sponding to the elastic stretching
of the various domains) followed by
a precipitous drop in the load (cor-
responding to the breaking of col-
lections of hydrogen bonds in one
of the globular domains of the pro-
tein).

A second example of this same
type of massively nonlinear defor-
mation is revealed by the process
used to create the tungsten fila-
ments that light our homes every
evening. In this case, a cylindrical
specimen of tungsten, roughly a
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meter long and several centimeters
in diameter, is put through a series
of deformation steps in which the
tungsten is progressively elongat-
ed. By the end of this process, the
tungsten rod of original length on
the order of a meter has now been
stretched to a length of hundreds of
kilometers. This process takes
place without changing the overall
volume of the rod. We leave it to
the reader to work out what this
implies about the final diameter of
the tungsten filament.

The nonlinear deformation of
either proteins or tungsten (and
most everything in between) is an
intrinsically multiscale problem
because in each case the macro-
scopic force response is engen-
dered by microscopic processes.
In the case of the deformation
of a protein like that shown in
Fig. 5, it is the breaking of
particular sets of hydrogen
bonds that give rise to steep
drops in the force-extension
curve, bonds which are character-
ized by a length scale of 10" m
and not the 10%m typical of the
measured force-extension curves.
Similarly, in the deformation of
tungsten, it is the motion of atom-
ic-scale defects known as disloca-
tions that give rise to the overall
plastic deformation. As a result, in
both of these cases a bridge is
required which allows for a model-
ing connection to be made
between the “microscopic”
processes such as bond breaking
and the macroscopic observables
such as the force-extension curve.
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Efforts in the Phillips group and
that of Michael Ortiz have been
aimed at constructing multiscale
models which are sufficiently gen-
eral to be able to treat the force-
extension curves in materials rang-
ing from proteins to tungsten.

n intriguing alternative to
the atom-by-atom simula-
tion of force-extension
curves like those dis-
cussed above has been the devel-
opment of new techniques in
which high resolution is kept only
in those parts of the material where
it is really needed. We close this
essay with a brief exposition of the
use of these methods to examine
the way in which defects give rise
to plastic deformation in strained
materials, and how by virtue of
entanglements of these defects,
such materials are hardened.
Without entering into a detailed
exposition of the character of
defects that populate materials, we
note again that the plastic defor-

Figure 5. Schematic of the force-extension
curve measurement procedure and the force-
extension curve for the muscle protein titin.
As shown in (A), the molecule is stretched
using the atomic-force microscope and leads
to (B), a force-extension spectrum which is a
mechanical fingerprint for the molecule of

interest (courtesy of Julio Fernandez).

mation of materials is often mediat-
ed by defects known as disloca-
tions. Roughly speaking, disloca-
tions are the crystal analog of the
trick one might use to slide an
enormous carpet. If we imagine
such a carpet and we wish to slide
it a foot in some direction, one way
to do so is by injecting a bulge
from one side as shown schemati-
cally in Fig. 6. Hence, rather than
having to slide the whole carpet
homogeneously, we are faced
instead with only having to slide a
little piece with a width equal to
that of the bulge. Nevertheless, the
net result of this action is overall
translation of the carpet. This same
basic idea is invoked in the setting
of stressed crystals where the slid-
ing of one crystal plane with
respect to another is mediated by a
line object (like the bulge described
above) on which atomic bonds are
being rearranged.

One of the key features of
deformed crystals is the fact that
the defects described above can
encounter other such defects
which exist on different crystal
planes. The net result is the forma-
tion of a local entanglement known
as a dislocation junction. The for-
mation of such entanglements has
the observable consequence that
the crystal is harder—the critical
stress needed to permanently

Figure 6. The sliding of a carpet by injecting
a bulge is analogous to deformation of crys-

tals by injecting dislocations.
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deform the material (i.e., the plastic
threshold) is raised by the presence
of junctions. Although this entan-
glement is ultimately and intrinsi-
cally a particular configuration of
the various atoms that make up a
material, by exploiting ideas from
elasticity theory it is possible to
represent all of this atomic-level
complexity in terms of two inter-
acting lines. For present purposes,

the replacement of the all-atom
perspective by an elastic theoreti-
cal surrogate is exactly the type of
multiscale analysis argued for earli-
er in this essay.

Figure 7 shows the structure of
such a dislocation junction as com-
puted not by considering the atoms
that make up the material, but
rather as a collection of interacting
lines. Just as the various molecules
that make up a gas can be elimi-
nated from consideration by invok-
ing an equation of state and
exploiting hydrodynamics, so too in
the context of modeling the defor-
mation of materials may we replace

defects that are intrinsically
atomistic by elastic surrogates
which allow us to answer the
multiscale challenge of material
response. As a result of exploiting
the correspondence between the
atomic-level and elastic description
of junctions, we have been able to
evaluate the critical stress needed
to disentangle the two dislocations
that make up a given dislocation
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Figure 7. A junction between two disloca-
tions as modeled using the same theory of
elasticity first developed by Robert Hooke
and derived using the experimental appara-

tus of Fig. 4.

junction. One example presented
here (that of interactions between
dislocations), ferrets out the nature
of the conspiracy between the vari-
ous defects such as dislocations,
grain boundaries, and cracks that
make up materials and that are
responsible for observed macro-
scopic material response. Some of
the other problems we have exam-
ined using multiscale models are
the nucleation of dislocations at
crack tips, the interactions of dislo-
cations with grain boundaries, and
the response of proteins to external
forcing (Fig. b).

his essay has attempted to
convey some of the excite-
ment that has arisen
because of the advent of
the ability to build models of sys-
tems of interest to scientists and
engineers that intrinsically involve
multiple scales in either space or
time or both. Though we have
argued that multiscale modeling
has always been a part of the theo-
retical arsenal used to investigate
problems ranging from turbulent
flow to the magnetic properties of
materials, high-speed computation
has led to a resurgence of interest
in the construction of coarse-
grained models. This represents an
amusing twist of fate since naively
one might have expected that such
computational resources would
allow for the “first principles” simu-
lation of processes without the
need for theoretical surrogates. On
the other hand, I have argued that
as it has always been, the develop-
ment of compelling models of the
world around us must be based
upon the realization of a tasteful
distinction between those features
of a system which are really neces-
sary and those that are not. This
idea served as a cornerstone in
many of the great historical exam-
ples of multiscale modeling and
serves as an embodiment of
Einstein’s dictum that “Things
should be made as simple as possi-

ble—but not simpler.” EHEE
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