
magine driving in the fol-
lowing manner. You fix
your eyes twenty feet in
front of your car. When

you see no obstacle in sight, you
slowly increase your speed. As soon
as anything comes into sight, you
slam on the brakes. Repeat as many
times as necessary to reach your
destination.

This is not a bad strategy in a
parking lot, but it is not how you
would want to drive on the auto-
bahn, or on any high-speed road-
way. When we enter a highway, we
look near and far, front and rear, to
sense the traffic flow around us and
then converge quickly to the right
speed. When sending and receiving
information over the Internet, the
current strategies used to control
transfer speed are still designed for
parking lot driving, while the infra-
structure is being upgraded to
superhighway mode. The FAST
project at Caltech, led by Professor
Steven Low, is changing that.

Here is the current state of
affairs. The algorithm that controls

the sending speed is called the con-
gestion control algorithm. It is a
distributed algorithm designed to
share the Internet among hundreds
of millions of users. It consists of
two sub-algorithms. One is a host
algorithm, implemented by the
Transmission Control Protocol
(TCP) that modifies the sending
rate in response to the amount of
congestion in the path from source
to destination. The second is a
queue-management (QM) algo-
rithm that implicitly or explicitly
feeds back congestion information
to the hosts. All currently deployed
TCP algorithms are based on a
scheme developed at Berkeley 15
years ago when most parts of the
Internet could barely carry the traf-
fic of a single voice call—and when
the general public had no knowl-
edge of the Internet’s existence, let
alone surfed the web. Since the mid
1990s, researchers have realized
that this algorithm cannot scale to

any future network that must be
able, for instance, to carry 1.5 mil-
lion concurrent voice calls. The lack
of a theoretical framework to
understand the underlying structure
of the general problem led to a
tremendous variety of ad hoc tinker-
ing with the TCP and QM algo-
rithms, with limited success.

During the past five years, a
rigorous theory of congestion con-
trol has started to emerge, based on
work done at Cambridge
University, the University of
Melbourne, Caltech, UCLA,
UIUC, and the University of
Massachusetts. The theory covers
the equilibrium and dynamic struc-
ture of large-scale networks under
end-to-end control. One of the key
components in the theory is Low’s
idea of interpreting the TCP/QM
pair as a distributed primal-dual
algorithm carried out over the
Internet by hosts and routers in the
form of congestion control, in order

e n g e n i o u s f a l l 2 0 0 3

r e s e a r c h n o t e

Today’s Internet is Just a Parking Lot: New Algorithms

Pave the Way for the Real Superhighway—Steven Low and the FAST Team

I

10

Average

Utilization

19%

txq=10000

Linux TCP

txq=100

Linux TCP

1G

FAST

Th
ro

u
g

h
p

u
t

(M
b

p
s)27%

95%

11

to solve a global mathematical opti-
mization problem. The iteration on
the primal variable is carried out by
TCP while the iteration on the
dual variable is carried out by QM.
The underlying optimization prob-
lem determines the equilibrium
properties of the network such as
performance, throughput, delay,
packet loss, and fairness in resource
allocation. It explains some intrigu-
ing phenomena observed empirical-
ly and provides practical guidelines
for sizing network buffers.

With Caltech Professor John
Doyle and Caltech alumnus and
UCLA Professor Fernando
Paganini (MS ’92, PhD ’96), Low
has shown that the current TCP
algorithm becomes unstable when
feedback delay increases, and more
strikingly, when network capacity
increases! More importantly, the
theory provides a framework to
design and prove stable TCP algo-
rithms that easily scale to large
delay and network capacity.

With these new theoretical
insights as a guiding light, Low’s
Networking Lab designed a TCP
congestion control algorithm, called
FAST TCP, that maintains high
performance and is fair and stable.
It was implemented in the Linux
operating system. With Caltech
Professor Harvey Newman, they
demonstrated FAST TCP in
November 2002 at the
Supercomputing Conference in
Baltimore, Maryland. The partners
involved for this demonstration
included Caltech’s Center for
Advanced Computing Research
(CACR), Stanford Linear
Accelerator Center (SLAC),
European Organization for Nuclear
Research (CERN), with support

from DataTAG, StarLight,
TeraGrid, Cisco, and Level(3).

The current TCP typically
achieves an average throughput of
266 Mbps, averaged over an hour
(a single TCP/IP flow between
Sunnyvale, California and CERN
in Geneva, Switzerland over a dis-
tance of 10,037 kilometers). This
represents an efficiency of just 27
percent. Using the standard packet
size that is supported throughout
today’s networks, the FAST TCP
sustained an average throughput of
925 Mbps and an efficiency of 95
percent—a 350 percent improve-
ment—under the same experimen-
tal conditions. With 10 concurrent
TCP flows, FAST achieved an
unprecedented speed of 8,609
Mbps, at 88 percent efficiency.
More importantly, the FAST pro-
tocol sustained these speeds using
standard packet size stably over an
extended period on shared net-
works in the presence of back-
ground traffic, making it “back-
wards compatible” and adaptable
for deployment on the world’s
high-speed production networks.

Low and his team are working
with academic and industry part-
ners to further test the FAST TCP
in real applications. The first users
will probably be those in academia
requiring terabyte data transfers on
demand, high-energy physics (HEP)
research groups, for instance. But
stay tuned! This new superhighway
may be making its way to your
neighborhood next.

Professor Steven Low is Associate
Professor of Computer Science and
Electrical Engineering at Caltech.

For further information visit:
net lab.ca l tech.edu/FAST

Th
ro

u
g

h
p

u
t

(M
b

p
s)

txq=100

Linux TCP

txq=10000

Linux TCP FAST

16%

48%

92%

2G

The figure above shows throughput traces for FAST and Linux TCP with percentage utilization. The x-axis is time

(sec), the y-axis is aggregate throughput (Mbps). The FAST traces are in red. The txq number refers to the size of

buffer memory in the Linux kernel used to mitigate the mismatch in the network card’s transmission rate and the

CPU processing of packets.

