
30 31division of engineering & applied science ENGenious  ISSUE 8  2011

RESEARCH NOTE

the fault protection system decided 
that the batteries must be full and 
stopped charging. But the batteries 
were actually getting hot because the 
rotation that the spacecraft under-
went in order to point the solar panels 
at the sun exposed the batteries to 
the sun as well. The fault protection 
system did not know this. To act on 
the second priority, the spacecraft had 
to point its antennas at Earth, but the 
Earth-pointing parameter was next to 
the soft-stop parameter for the solar 
arrays, and had also been corrupted in 
the earlier update. So the spacecraft 
was unable to find Earth as it tried to 
send out its calls for help. Next, the 
fault protection system noticed that 
the batteries had cooled off and were 
almost depleted—so it went back to 
its first priority. This cycle repeated 
a number of times until the batteries 
were fully depleted and the spacecraft 
became uncommandable. The curi-
ous thing is that the fault protection 
system was doing precisely what it 
was programmed to do, but there was 
this circumstance that nobody had 
thought of until it happened. How do 
you predict these things? Well, that is 

very difficult, but it is precisely what 
makes this fascinating. You think 
you’ve covered all the possibilities, but 
you probably didn’t even scratch the 
surface.

ENGenious: How is JPL’s Laboratory 
for Reliable Software making flight 
software more reliable? 

Holzmann: We started the Labora-
tory for Reliable Software when I 
joined JPL in 2003. It has the daunt-
ing task of trying to achieve long-
term improvements in the reliability 
of the software we use to fly inter-
planetary space missions. So far, we’ve 
introduced the use of state-of-the-art 
static source code analyzers as part of 
the software development process at 
JPL. These analyzers can intercept a 
lot of common software defects that 
otherwise slip through. We’ve also 

developed a new Institutional Coding 
Standard for all flight code developed 
at JPL, we initiated a new and more 
thorough code review process, and 
we’ve started a formal “certification” 
course for our flight software devel-
opers. We’ve made good progress in 
the last few years, but we don’t take 
anything for granted. 

ENGenious: Tell us about being 
asked by the U.S. Department of 
Transportation and NASA to study 
the possibility of software triggers 
for unintended acceleration events in 
Toyota vehicles.

Holzmann: I was very fortunate to be 
part of the team of software experts 
that could work on this problem. I 
was asked to apply some of the tech-
niques I developed for these types of 
problems in my years as a computing 

Gerard Holzmann

0100011101110110000101110010

0011101000110111100100000011011010110000101101
011011001000100000011001010111
10000111010001110010011001010

1101101011001010110110001111001
001000000110010001100001011011

11100100110111101110101011100110010000001100011
01101111011011100111001101

1001100111011001011001010111X00101110101011001010110111001100011
01010110010010100

101011100110010000001101110011011110111010000
001100010011101010111010

0001001011000100110110001100

RESEARCH NOTE

ENGenious: What inspired you to 
become an engineer?

Holzmann: You can view engineering 
as the art of combining components 
in such a way that the whole becomes 
greater than the sum of its parts. This 
is an effort to strive for perfection: the 
illusion that we can build things that 
work perfectly all the time and that 
accomplish things that we as humans 
cannot. The most interesting part for 
me is that no matter how hard we try, 
the perfection that we aim for almost 
always remains elusive.

Engineering is interesting because 
it perpetually confronts us with the 
frailty of our understanding of how 
things work. A computer program, 
for instance, can be “perfect” in the 
sense that it will make a machine 
do precisely what we tell it to do, in 
precisely the order in which we tell it 
to do it. But almost inevitably things 
still go wrong, not because the com-
puter misunderstands our instruc-
tions, but because we as programmers 
don’t always appreciate the complex-
ity of what we are trying to do, which 

means that we often get the instruc-
tions wrong in subtle ways.

ENGenious: Can you give an ex-
ample?

Holzmann: A few years ago, NASA 
lost contact with the Mars Global 
Surveyor (MGS). The spacecraft had 
been orbiting Mars since September 
1997. It all started with a regular 
maintenance action involving a minor 
update to some parameters to increase 
their precision. But the update for 
one of these parameters was off 
by one word in the memory. This 
meant that this key parameter (and 
the one next to it in the computer’s 
memory) was corrupted and ended 
up having the wrong value. It went 
unnoticed at the time. Six months 
later, though, the solar panels’ posi-
tions had to be adjusted from winter 
to summer, but because of the first 
corrupt parameter the solar panels 
rotated too far. This automatically 
put the spacecraft in “safe mode.” 
Safe mode is programmed to have 
two priorities. The first is to be power 
positive—that means to make sure 

that the batteries are always charged. 
The second priority is to maintain 
a communication link with Earth. 
Clearly, not doing so can lead to a 
loss of the mission. Since the solar 
panels were considered stuck, the only 
remaining way to point the panels at 
the sun to charge the batteries was to 
rotate the entire spacecraft, which was 
done automatically. As the space-
craft was charging the batteries, the 
fault protection system noticed that 
they were heating up. Typically, this 
means that they’re overcharging. So 

Ruling Out Bad Behavior: 
Designing Software to Make Extremely Dangerous Consequences 
Not Just “Unlikely” but “Impossible”

Gerard Holzmann is a Faculty Associate at Caltech in the 
Department of Computing and Mathematical Sciences and 
is the Lead Scientist of the Laboratory for Reliable Software 
(LaRS) at the Jet Propulsion Laboratory (JPL). He was recently 
part of a small team of NASA and JPL engineers commis-
sioned by the U.S. Department of Transportation to study the 
possibility of software triggers for unintended acceleration in 
Toyota vehicles.

Mars Global Surveyor (MGS)



32 33division of engineering & applied science ENGenious  ISSUE 8  2011

CAMPUS RESOURCE

ENGenious: How was the CCD created? 

Graham: It has been three years since the Office of 
Minority Student Education at Caltech was combined 
with the Women’s Center to form the Caltech Center 
for Diversity. In this area, Caltech was following a trend 
already established at several other educational institutes. 
It has not only been more cost-effective, but it also has 
given us the opportunity to reach communities that we 
may have missed before, because now we have overlap in 
expertise and programming areas. With the overlap, we are 
able to reach a woman who is African-American and Les-
bian, Gay, Bisexual, Transgender, Questioning and Allies 
(LGBTQA). We are also down the hall from International 
Student Programs, which provides us with the opportunity 
to work with international students.

ENGenious: What has stayed the same? 

Graham: We have maintained our programs for women 
and minority students. Their foci are the same. With 
women, we still focus on helping them access resources 
and become part of the community. Long before the 
CCD was created, the Women’s Center was doing a great 
job helping women understand their roles in science and 
engineering. I’m happy to say that now women are seeing 
themselves as part of an even larger community. There are 
larger numbers of women on campus, and we’re hear-
ing less and less about inappropriate behavior toward 
women. Certain programs are as popular as ever, such as 
self defense, assertiveness, and programs related to being 
women in a laboratory environment (because they might 
still be the only woman in a lab). With minority students, 
the focus has always been on outreach, recruitment, and 
retention. We also focus on community building, because 
the numbers of minority students remain low.

ENGenious: What has changed? 

Graham: For the LGBTQA community, we’ve focused 
on providing a safe space for coming out and gathering. 
We continued a working group made up of students and 
staff. The students are representatives of PRISM, which 
is Caltech’s campus social group for lesbian, gay, bisexual, 
and transgender students with support from staff, faculty, 
and their straight allies. In addition, we have created a Safe 
Zone program on campus led by one of the CCD Assis-
tant Directors, Linda Webb. The program is designed to 
help build community, increase awareness, and support a 
safe space for the LGBTQA community. Student mem-
bers of the program have designed their own logo, which is 
displayed in the offices on campus that are safe spaces for 
LGBTQA students who are struggling or have questions. 
In addition, we hold monthly community lunches. By 

The Caltech Center for Diversity
Providing a Real Pathway to 
Membership for Underrepresented 
Students at Caltech

ENGenious sat down with Eva Graham, the Director of the Caltech Center for Diversity 
(CCD), to learn more about the center and how it has been serving the Caltech community 
since its creation in 2008.

RESEARCH NOTE

science researcher at Bell Labs. We 
were given unlimited access to the 
source code that drives Toyotas and 
to the technical experts who could 
explain its working in detail. I learned 
more about the software controls in 
cars than I could have imagined. We 
immersed ourselves in this problem 

for about five months in 2010, work-
ing full-time at Toyota facilities in 
Los Angeles, and I believe we were 
able to complete a really thorough 
analysis of the code. The puzzle was 
the usual one: Can we find out how 
something that is not supposed to be 
happening might happen anyway? 
We were able to rule out a number 
of potential causes for unintended 
acceleration, although much of our 
analysis has not been released pub-
licly. The complexity of an analysis 
like this immediately leads back to 
my original fascination with software 
complexity: it should be possible to 
design software in such a way that we 
can rule out bad behavior conclusive-
ly. My colleagues and I are today even 
more determined than ever to develop 
such a method for use in safety criti-
cal systems.

ENGenious: What are the main 
research challenges in reliable systems 
design?

Holzmann: The main challenge in 
reliable systems design is to make sure 
that unacceptable events are actu-
ally rendered “impossible”—and not 
just “unlikely.” To do this, we first 
have to recognize that no single part 
of a complex system is ever perfect, 
and that includes the software. The 
key is to build reliable systems from 
potentially unreliable parts. Noth-
ing is foolproof. So we often try to 

find a compromise between cost and 
benefit, but extremely dangerous 
consequences should be firmly placed 
outside such a cost-benefit analysis. 
Many have not yet fully embraced 
this approach, partly because it is 
tempting to interpret events with a 
very small probability of occurrence 
as virtually impossible. We only have 
to look at how nuclear power plants 
sometimes fail to see that extremely 
low-probability events are still very 
much possible. 
 
ENGenious: Are engineering stu-
dents trained well to design reliable 
systems? What, if anything, should 
change?

Holzmann: I think there are two pos-
sible answers to this. In most areas of 
engineering, the answer is yes. Civil 
engineers, for instance, can design 
a building or bridge to successfully 
withstand an earthquake of a certain 
magnitude. In software engineering, 
though, the answer is often nega-
tive. The prevailing belief is that the 
hardware has known failure modes, 
but that software can be perfect. The 
fault protection software onboard a 
spacecraft is designed to recover the 
spacecraft when a hardware prob-
lem strikes, but it is often powerless 
when a software problem occurs. 
The fault protection software itself, 
furthermore, can also be faulty or 
subtly incomplete. We should design 

safety critical applications in medical 
devices, cars, power plants, and space-
craft with knowledge of the failure 
modes, including software failure 
modes. This is something that we are 
not very good at today. 

ENGenious: One way of improving 
the reliability of systems is to have 
them tested extensively. Should mem-
bers of the community participate in 
testing? Can systems such as OnStar 
help?

Holzmann: Direct measurement of 
the true performance of a system 
in practice is invaluable. It is how 
we learn the hidden flaws and what 
gives us the opportunity to adapt 
our designs to improve them. In a 
sense, all spacecraft that are currently 
active across the solar system have 
the equivalent of an “OnStar” button. 
Every time a spacecraft presses that 
button, so to speak, we learn some-
thing new about how the spacecraft 
we built yesterday works today and 
how it could be designed even better 
tomorrow. 

Gerard Holzmann is a Faculty Associate 
at Caltech in the Department of 
Computing and Mathematical Sciences 
and the Lead Scientist of LaRS at the 
Jet Propulsion Laboratory.

Visit lars-lab.jpl.nasa.gov.

“...to make sure that unacceptable events are actually rendered ‘impossible’
—and not just ‘unlikely’ ...we first have to recognize that no single part of a 

complex system is ever perfect, and that includes the software.”

0100011101110110000101110010
0110010100100000011101000110111100100
000011011010110000101101
0110110010
00100000011001010111
10000111010001110010011001010
1101101011001010110110001111001
001000000110010001100001011011
10011001110X1100101111001001101111011
10101011100110010000001100011

Eva Graham


