CONTENTS

<table>
<thead>
<tr>
<th>1. GENERAL INFORMATION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Historical Sketch</td>
<td>10</td>
</tr>
<tr>
<td>Buildings and Facilities</td>
<td>15</td>
</tr>
<tr>
<td>Postdoctoral Appointments</td>
<td>20</td>
</tr>
<tr>
<td>Sherman Fairchild Distinguished Scholars Program</td>
<td>20</td>
</tr>
<tr>
<td>Undergraduate Research</td>
<td>20</td>
</tr>
<tr>
<td>Student Life</td>
<td>21</td>
</tr>
<tr>
<td>Student Health</td>
<td>25</td>
</tr>
<tr>
<td>Career Development</td>
<td>26</td>
</tr>
<tr>
<td>Notices and Agreements</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STUDY AND RESEARCH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautics</td>
<td>33</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>35</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>36</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>36</td>
</tr>
<tr>
<td>Astronomy</td>
<td>37</td>
</tr>
<tr>
<td>Biology</td>
<td>39</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>40</td>
</tr>
<tr>
<td>Chemistry</td>
<td>41</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>42</td>
</tr>
<tr>
<td>Computer Science</td>
<td>43</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>45</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>46</td>
</tr>
<tr>
<td>Environmental Engineering Science</td>
<td>47</td>
</tr>
<tr>
<td>Environmental Quality Laboratory</td>
<td>48</td>
</tr>
<tr>
<td>Geological and Planetary Sciences</td>
<td>49</td>
</tr>
<tr>
<td>Humanities</td>
<td>50</td>
</tr>
<tr>
<td>Independent Studies Program</td>
<td>51</td>
</tr>
<tr>
<td>Materials Science</td>
<td>51</td>
</tr>
<tr>
<td>Mathematics</td>
<td>52</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>52</td>
</tr>
<tr>
<td>Physics</td>
<td>53</td>
</tr>
<tr>
<td>Social Science</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. INFORMATION FOR UNDERGRADUATE STUDENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for Admission to Undergraduate Standing</td>
<td>57</td>
</tr>
<tr>
<td>Admission to the Freshman Class</td>
<td>57</td>
</tr>
<tr>
<td>Admission to Upper Classes by Transfer</td>
<td>61</td>
</tr>
<tr>
<td>Exchange Programs</td>
<td>63</td>
</tr>
<tr>
<td>ROTC</td>
<td>63</td>
</tr>
<tr>
<td>Registration Regulations</td>
<td>64</td>
</tr>
<tr>
<td>Scholastic Requirements: Grading</td>
<td>66</td>
</tr>
<tr>
<td>Athletics and Physical Education</td>
<td>72</td>
</tr>
<tr>
<td>Undergraduate Expenses</td>
<td>72</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>74</td>
</tr>
<tr>
<td>Prizes</td>
<td>80</td>
</tr>
<tr>
<td>Graduation Requirements, All Options</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. INFORMATION FOR GRADUATE STUDENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Program</td>
<td>115</td>
</tr>
<tr>
<td>General Regulations</td>
<td>116</td>
</tr>
</tbody>
</table>
Degree Regulations

Graduate Expenses
Financial Assistance
Prizes
Special Regulations of the Graduate Options

5. COURSES

- Aeronautics: 170
- Anthropology: 173
- Applied Mathematics: 173
- Applied Mechanics: 176
- Applied Physics: 178
- Art: 182
- Astronomy: 183
- Bioinformation Systems: 185
- Biology: 186
- Business Economics and Management: 190
- Chemical Engineering: 191
- Chemistry: 193
- Civil Engineering: 198
- Computer Science: 199
- Economics: 203
- Electrical Engineering: 206
- Engineering: 210
- Engineering Graphics: 211
- Engineering Science: 211
- English: 211
- Environmental Engineering Science: 212
- Geological and Planetary Sciences: 214
- History: 222
- Humanities: 227
- Humanities and Social Sciences: 228
- Hydraulics: 228
- Independent Studies Program: 230
- Jet Propulsion: 230
- Languages: 231
- Linguistics: 232
- Literature: 233
- Materials Science: 237
- Mathematics: 239
- Mechanical Engineering: 243
- Music: 245
- Performance and Activities: 246
- Philosophy: 247
- Physics: 249
- Political Science: 255
- Psychology: 257
- Social Science: 258

6. TRUSTEES, ADMINISTRATION, FACULTY

Officers: 263
Board of Trustees: 263
Administrative Officers: 266
Faculty Officers and Committees: 268
Staff of Instruction and Research: 270
Officers and Faculty: 299
ACADEMIC CALENDAR 1984–85

1984

First Term

September 19
Registration of entering freshmen—1:00 p.m.–4:30 p.m.

September 20–22
New Student Orientation

September 24
Undergraduate Academic Standards and Honors Committee—
9:00 a.m.

September 24
General Registration

September 25
Beginning of instruction—8:00 a.m.

October 12
Last day for adding courses and for removing conditions and
incompletes

October 29–Nov 2
Mid-term week

November 2
Last day for admission to candidacy for Master’s and Engineers
degrees

November 5
Mid-term deficiency notices due—9:00 a.m.

November 12–16
Pre-registration for second term, 1984–85

November 22–25
Thanksgiving recess

November 22–23
Thanksgiving holidays

November 30
Last day for dropping courses and changing sections

December 8–14
Final examinations, first term, 1984–85

December 15
End of first term, 1984–85

December 16–January 7
Christmas recess

December 17
Instructors’ final grade reports due—9:00 a.m.

December 24–25
Christmas holidays

December 31–January 1
New Year’s holidays

1985

Second Term

January 7
General Registration—8:30 a.m.–3:30 p.m.

January 7
Undergraduate Academic Standards and Honors Committee—
9:00 a.m.

January 8
Beginning of instruction

January 25
Last day for adding courses and for removing conditions and
incompletes

February 11–15
Mid-term week

February 18
Mid-term deficiency notices due—9:00 a.m.

February 25–March 1
Pre-registration week for third term, 1984–85

March 8
Last day for dropping courses and changing sections

March 16–22
Final examinations, second term, 1984–85

March 22
Last day for obtaining admission to candidacy for the degree of
Doctor of Philosophy

March 23
End of second term, 1984–85

March 24–31
Spring recess

March 25
Instructors’ final grade reports due—9:00 a.m.
1985

Third Term

April 1
- General Registration—8:30 a.m.–3:30 p.m.
- Undergraduate Academic Standards and Honors Committee—9:00 a.m.
- Beginning of instruction—8:00 a.m.
- Last day for adding courses and for removing conditions and incompletes

April 29–May 3
- Mid-term week

May 3–4
- Examinations for admission to upper classes, September 1985
- Mid-term deficiency notices due—9:00 a.m.

May 20–24
- Pre-registration for first term, 1984–85, and registration for summer research (graduate and undergraduate)
- Last day for dropping courses and changing sections
- Last day for presenting theses for the degrees of Doctor of Philosophy and Engineer

May 27
- Memorial Day holiday

June 1–7
- Final examinations for seniors and graduate students, third term, 1984–85

June 8–14
- Final examinations for undergraduate students, third term, 1984–85
- Instructor’s final grade reports due for senior and graduate students—9:00 a.m.

June 12
- Undergraduate Academic Standards and Honors Committee—9:00 a.m.
- Curriculum Committee meeting—10:00 a.m.
- Faculty meeting—2:00 p.m.
- Commencement

June 15
- End of third term, 1984–85
- Instructors’ final grade reports due for undergraduate students—9:00 a.m.

June 26
- Undergraduate Academic Standards and Honors Committee—9:00 a.m.

July 4–5
- Independence Day holiday

September 2
- Labor Day holiday

1985 First Term 1985–86

September 25
- Registration of entering freshmen—1:00 p.m.–4:30 p.m.
- New Student Orientation
- General Registration—8:30 a.m.–3:30 p.m.
- Beginning of instruction—8:00 a.m.
CAMPUS DIRECTORY

<table>
<thead>
<tr>
<th>Number</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Alles Laboratory</td>
<td>(Molecular Biology)</td>
</tr>
<tr>
<td>97</td>
<td>Alumni House</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Arms Laboratory</td>
<td>(Geological and Planetary Sciences)</td>
</tr>
<tr>
<td>77</td>
<td>Art Gallery</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Athenaeum (Faculty Club)</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Baxter Hall (Humanities and Social Sciences)</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Baxter Lecture Hall</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Beckman Auditorium</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Beckman Laboratories (Behavioral Biology)</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Blacker House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Bookstore (Student Center)</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Booth Computing Center</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Braun House (Graduate)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Braun Laboratories (Cell Biology and Chemistry)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Bridge Annex</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bridge Laboratory (Physics)</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Campbell Laboratory (Plant Research)</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Central Engineering Services</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Central Plant</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Chandler Dining Hall</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Chemical Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Church Laboratory (Chemical Biology)</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Coffeehouse, Student</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cooling Tower Buildings</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Cosmic Ray Laboratory</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Crellin Laboratory (Chemistry)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Dabney Hall (EQL and Humanities)</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Dabney House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Development Offices</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Downs Laboratory (Physics)</td>
<td></td>
</tr>
<tr>
<td>40, 96</td>
<td>Environmental Quality Laboratory</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Firestone Laboratory (Flight Sciences and Applied Mathematics)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Fleming House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Gates Building (Chemistry)</td>
<td></td>
</tr>
<tr>
<td>9-14, 87-89</td>
<td>Graduate Student Housing</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Gravitational Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Grounds Operations Office</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Guggenheim Laboratory (Aeronautics and Applied Physics)</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Housing Office</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Industrial Relations Center</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Isotope Handling Laboratory</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Jorgensen Laboratory (Computer Science and Bioinformation Systems)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Karman Laboratory (Fluid Mechanics and Jet Propulsion)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Keck House (Graduate)</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Keck Laboratories (Environmental Engineering and Materials Science)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Kellogg Radiation Laboratory</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Kerckhoff Laboratory (Biological Sciences)</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Lauritsen Laboratory (High Energy Physics)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L. S. B. Leakey Foundation</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Lloyd House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Marks House (Graduate)</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Mead Laboratory (Chemistry)</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>"Mechanical Universe"</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Millikan Library</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Mosher-Jorgensen House (Graduate)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mudd, North (Geology and Geochemistry)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mudd, South (Geophysics and Planetary Sciences)</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Noyes Laboratory (Chemical Physics)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Page House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Parsons-Gates Hall (Administration)</td>
<td></td>
</tr>
<tr>
<td>4, 5, 82, 83, 84</td>
<td>Physical Plant</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Public Events Office</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Public Relations</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Ramo Auditorium</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ricketts House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Robinson Laboratory (Astrophysics)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Ruddock House (Undergraduate)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Sloan Laboratory (Mathematics and Physics)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spalding Building (Business Services)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Spalding Laboratory (Chemical Engineering)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Steele House (Residence, Master of Student Houses)</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Steele Laboratory (Applied Physics and Electrical Engineering)</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Thomas Laboratory (Civil and Mechanical Engineering)</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Ticket Office</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Transportation and Grounds Operations</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>U.S. Geological Survey</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Watson Laboratories (Applied Physics)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Winnet Student Center</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Caltech Y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Young Health Center</td>
<td></td>
</tr>
</tbody>
</table>
GENERAL INFORMATION

INTRODUCTION

The California Institute of Technology, an independent, privately supported institution, officially classed as a university, is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges. Caltech carries on instruction on both undergraduate and graduate levels, and, including its off-campus facilities, it is also one of the world’s major research centers. “Caltech has achieved international influence far disproportionate to its size,” according to Time magazine.

The Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; The Humanities and Social Sciences; and Physics, Mathematics and Astronomy.

The primary purpose of the undergraduate school of the California Institute of Technology, as stated by the original trustees, is “to train the creative type of scientist or engineer so urgently needed in our educational, governmental, and industrial development.” It is believed that this purpose is attained at the Institute for both undergraduate and graduate students because of the contacts between a relatively small group of students (approximately 830 undergraduate and 950 graduate students) with the members of a relatively large research staff (approximately 780 faculty members).

President Goldberger says, “Our small size enables us to form a community of scientists, a scholarly intimacy that cannot be found anyplace else.” Advancement in understanding is best acquired by intimate association with creative workers who are, through research and reflection, extending the boundaries of knowledge.

Undergraduate Program

Caltech offers a four-year undergraduate course with options available in applied mathematics, applied physics, astronomy, biology, chemical engineering, chemistry, economics, electrical engineering, engineering and applied science, geochemistry, geology, geophysics, history, independent studies program, literature, mathematics, physics, planetary science, and social science. Each leads to the degree of Bachelor of Science.

All options require students to take courses in chemistry, humanities, mathematics, physics, and the social sciences. Course work is rigorous and students are encouraged to participate in research. The undergraduate program is thus designed to provide an intensive exposure to a wide spectrum of intellectual pursuits.
Near the end of the first year, students select an option, and during the second year they begin to specialize. However, the major concentration in chosen fields and professional subjects occurs during the third and fourth years.

Caltech also encourages a reasonable participation in extracurricular activities, largely managed by the students themselves. Three terms of physical education are required, and intercollegiate and intramural sports are encouraged.

In short, every effort is made to provide undergraduate students with well-rounded, integrated programs that will not only give them sound training in their professional fields, but that will also develop character, intellectual breadth, and physical well-being.

Graduate Program

In the graduate school Caltech offers courses leading to the degree of Master of Science, which normally involves one year of graduate work; the Engineer’s degree in certain branches of engineering, with a minimum of two years; and the degree of Doctor of Philosophy. In all the graduate work, research is strongly emphasized, not only because of its importance in contributing to the advancement of science and thus to the intellectual and material welfare of mankind, but also because research activities add vitality to the educational work of Caltech.

The graduate options are: aeronautics, applied mathematics, applied mechanics, applied physics, astronomy, biology, chemical engineering, chemistry, civil engineering, computer science, electrical engineering, engineering science, environmental engineering science, geological and planetary sciences, materials science, mathematics, mechanical engineering, physics, and social science.

Graduate students constitute a comparatively large proportion (slightly over 50 percent) of the total student body. Engaged as they are in research problems of varying degrees of complexity, and taught by faculty members who are also actively engaged in research, they contribute materially to the general atmosphere of intellectual curiosity and creative activity that is engendered on the Institute campus.

Standards

In order to utilize Caltech’s resources most effectively, two general lines of procedure are followed. First, the Institute restricts the number of fields it offers for undergraduate and graduate study, believing that it is better to provide thoroughly for a limited number of curricula than to risk diffusion of personnel, facilities, and funds in attempting to cover a wide variety of fields. Second, and in line with this policy of conservation of resources, the student body is strictly limited to that number which can be satisfactorily provided for. Admission is granted after a careful study of the merits of each applicant, including the results of entrance examinations, school records, and interviews by members of the Caltech staff. These procedures result, it is believed, in a body of students of exceptional ability. A high standard of scholarship is also maintained, as is appropriate for students of such competence.

HISTORICAL SKETCH

The California Institute of Technology, as it has been called since 1920, developed from a local school of arts and crafts, founded in Pasadena in 1891 by the Honorable Amos G. Throop and named, after him, Throop University, later renamed Throop Polytechnic Institute. It enjoyed the local support of the citizens of Pasadena, and by 1908 the Board of Trustees had as members Dr. Norman Bridge, Arthur H. Fleming, Henry M. Robinson, J. A. Culbertson, C. W. Gates, and Dr. George Ellery Hale. It was the dedication, by these men, of their time, their brains, and their fortunes that transformed a modest vocational school into a university capable of attracting to its faculty some of the most eminent of the world’s scholars and scientists.
Historical Sketch

George Ellery Hale, astronomer and first director of the Mount Wilson Observatory, foresaw the development in Pasadena of a distinguished institution of engineering and scientific research. Hale well knew that a prime necessity was modern well-equipped laboratories, but he stressed to his fellow trustees that the aim was not machines, but men. "We must not forget," he wrote in 1907, "that the greatest engineer is not the man who is trained merely to understand machines and apply formulas, but is the man who, while knowing these things, has not failed to develop his breadth of view and the highest qualities of his imagination. No creative work, whether in engineering or in art, in literature or in science, has been the work of a man devoid of the imaginative faculty."

The realization of these aims meant specializing, so the trustees decided in 1907 to separate the elementary department, the normal school, and the academy, leaving only a college of technology that conferred Bachelor of Science degrees in electrical, mechanical, and civil engineering.

In 1910 Throop Polytechnic Institute moved from its crowded quarters in the center of Pasadena to a new campus of 22 acres on the southeastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie. The president, Dr. James A. B. Scherer, and his faculty of 16 members, opened the doors to 31 students that September. When, on March 21, 1911, Theodore Roosevelt delivered an address at Throop Institute, he declared, "I want to see institutions like Throop turn out perhaps ninety-nine of every hundred students as men who are to do given pieces of industrial work better than any one else can do them; I want to see those men do the kind of work that is now being done on the Panama Canal and on the great irrigation projects in the interior of this country—and the one-hundredth man I want to see with cultural scientific training."

It would have surprised Roosevelt to know that within a decade the little Institute, known from 1913 as Throop College of Technology, would have again raised its sights, leaving to others the training of more efficient technicians and concentrating its own efforts on Roosevelt's "hundredth man." On November 29, 1921, the trustees declared it to be the express policy of the Institute to pursue scientific researches of the greatest importance and at the same time "to continue to conduct thorough courses in engineering and pure science, basing the work of these courses on exceptionally strong instruction in the fundamental sciences of mathematics, physics, and chemistry; broadening and enriching the curriculum by a liberal amount of instruction in such subjects as English, history, and economics; and vitalizing all the work of the Institute by the infusion in generous measure of the spirit of research."

Three men were responsible for the change in the Institute. George Ellery Hale still held to his dream. Arthur Amos Noyes, professor of physical chemistry and former acting president of the Massachusetts Institute of Technology, served part of each year as professor of general chemistry and research associate from 1913 to 1919, when he resigned from MIT to devote full time to Throop as director of chemical research. In a similar way Robert Andrews Millikan began, in 1916-17, to spend a few months a year at Throop as director of physical research. In 1921, when Dr. Norman Bridge agreed to provide a research laboratory in physics, Dr. Millikan resigned from The University of Chicago and became administrative head of the Institute as well as director of the Norman Bridge Laboratory.

The great period of the Institute's life began, then, under the guidance of three men of vision—Hale, Noyes, and Millikan. They were distinguished research scientists, and they soon attracted graduate students. In 1920 the enrollment was 9 graduate students and 359 undergraduates under a faculty of 60; a decade later there were 138 graduate students, 510 undergraduates, and a faculty of 180. At the present time there are about 830 undergraduates, 950 graduate students, and 780 faculty (including postdoctoral fellows).

The Institute also attracted financial support from individuals, corporations, and foundations. In January 1920 the endowment had reached half a million dollars. In February of that year it was announced that $200,000 had been secured for research in chemistry and a like amount for research in physics. Other gifts followed from trustees and friends who could now feel
pride in the Institute as well as hope for its future. The Southern California Edison Company provided a high-voltage laboratory, with the million-volt Sorensen transformer. Philanthropic foundations bearing the names of Carnegie, Rockefeller, and Guggenheim came forth with needed help when new departments or projects were organized.

In 1923 Millikan received the Nobel Prize in Physics. He had attracted to the Institute such men as Charles Galton Darwin, Paul Epstein, and Richard C. Tolman. In 1924 the Ph.D. degree was awarded to nine candidates.

It was inevitable that the Institute would enlarge its fields; it could not continue to be merely a research and instructional center in physics, chemistry, and engineering. But the trustees pursued a cautious and conservative policy, not undertaking to add new departments except when the work done in them would be at the same high level as that in physics and chemistry. In 1925 a gift of $25,000 from the Carnegie Corporation of New York made possible the opening of a department of instruction and research in geology. A seismological laboratory was constructed, and Professors John P. Buwalda and Chester Stock came from the University of California to lead the work in the new division.

This same year William Bennett Munro, chairman of the Division of History, Government, and Economics at Harvard, joined the Institute faculty. Offerings in economics, history, and literature were added to the core of undergraduate instruction.

In 1928 Caltech began its program of research and instruction in biology. Thomas Hunt Morgan became the first chairman of the new Division of Biology and a member of Caltech’s Executive Council. Under Morgan’s direction the work in biology developed rapidly, especially in genetics and biochemistry. Morgan received the Nobel Prize in 1933.

The Guggenheim Graduate School of Aeronautics was founded at Caltech in the summer of 1926 and a laboratory was built in 1929, but courses in theoretical aerodynamics had been given at the Institute for many years by Professors Harry Bateman and P. S. Epstein. As early as 1917 Throop Institute had had a wind tunnel in which, the catalog proudly boasted, constant velocities of 4 to 40 miles an hour could be maintained, “the controls being very sensitive.” The new program, under the leadership of Theodore von Kármán, included graduate study and research at the level of the other scientific work at the Institute, and GALCIT (Graduate Aeronautical Laboratories at the California Institute of Technology) was soon a world-famous research center in aeronautics.

In 1928 George Ellery Hale and his associates at the Mount Wilson Observatory developed a proposal for a 200-inch telescope and attracted the interest of the General Education Board in providing $6,000,000 for its construction. The Board proposed that the gift be made to the California Institute of Technology, and Caltech agreed to be responsible for the construction and operation. The huge instrument was erected on Palomar Mountain. Teaching and research in astronomy and astrophysics thus became a part of the Caltech program.

For the five years beginning with the summer of 1940, Caltech devoted an increasingly large part of its personnel and facilities to the furthering of the national defense and war effort. Caltech’s work during this period fell mainly into two categories: special instructional programs and research on the development of the instrumentalities of war. The research and development work was carried on for the most part under non-profit contracts with the Office of Scientific Research and Development. Rockets, jet propulsion, and antisubmarine warfare were the chief fields of endeavor. The Jet Propulsion Laboratory in the upper Arroyo Seco continues under Institute management to carry on a large-scale program of research for the National Aeronautics and Space Administration in the science and technology of unmanned space exploration. The Laboratory launched the first U.S. satellite, Explorer I, in 1958, and held major responsibilities for the Ranger, Surveyor, Mariner, Viking, and Voyager programs of lunar and planetary exploration for NASA, with the Galileo program now under way. The Infrared Astronomical Satellite (IRAS) has recently provided a wealth of data on the infrared sky. The Laboratory also operates the NASA worldwide deep-space tracking network and conducts a program of supporting research in space science and engineering.
In the 1950s, in response to the growing technological component of societal problems, the Institute began to expand the fields in which it had substantial expertise. In the late 1960s and early 1970s several economists and political scientists were added to the Institute faculty who initiated theoretical and applied studies of issues at the interface of their disciplines. A graduate program in social sciences was added in 1972. Caltech students could now engage their talents in the development of the basic scientific aspects of economics and political science, and begin to use the principles from these sciences together with those from the physical sciences to formulate and address public policies.

In 1945 Robert A. Millikan retired as chairman of the Executive Council but served as vice chairman of the Board of Trustees until his death in 1953. Dr. Lee A. DuBridge became president of Caltech on September 1, 1946. Formerly chairman of the physics department and dean of the faculty at the University of Rochester, he came to the Institute after five years as wartime director of the MIT Radiation Laboratory—and remained 22 years.

DuBridge was also committed to the concept of a small, select institution offering excellence in education. Facts and figures are only part of the story, but the statistical record of change during the DuBridge administration indicates how he held to that concept. The 30-acre campus of 1946 grew to 80 acres; the $17 million endowment grew to more than $100 million; the faculty of 260 became 550; the number of campus buildings increased from 20 to 64; and the budget went from something less than $8 million to $30 million. But enrollment remained relatively constant. In 1946 the total number of students, graduate and undergraduate, was 1,391. In 1968, the year DuBridge left, it was 1,492.
Dr. Harold Brown came to Caltech as president in 1969. A physicist who received his Ph.D. from Columbia in 1949, he succeeded Dr. Edward Teller as director of the University of California’s Lawrence Radiation Laboratory in Livermore in 1960. President Lyndon Johnson named Brown Secretary of the Air Force in 1965, and he came to the Institute from that office. Six new campus buildings were dedicated under Brown’s administration, and a major development campaign for $130 million was under way when he resigned to become Secretary of Defense under President Carter in 1977.

Dr. Marvin L. Goldberger was appointed president by the Board of Trustees in March 1978. He received his B.S. at Carnegie Institute of Technology (now Carnegie-Mellon University) and his Ph.D. at The University of Chicago. He came to Caltech from Princeton University where he was the Joseph Henry Professor of Physics.

As Caltech has developed in effectiveness and in prestige, it has attracted a steady flow of gifts for buildings, for endowment, and for current operations. The gifts invested in plant now total $185,900,000 and those invested in endowment about $250,000,000. Very substantial grants and contracts from the federal government support many research activities.

Today Caltech has about 14,400 alumni scattered all over the world, many eminent in their fields of engineering and science.

<table>
<thead>
<tr>
<th>Caltech Nobel Laureates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert A. Millikan</td>
<td>physics 1923</td>
</tr>
<tr>
<td>Thomas Hunt Morgan</td>
<td>physiology 1933</td>
</tr>
<tr>
<td>*Carl D. Anderson, B.S. '27, Ph.D. '30</td>
<td>physics 1936</td>
</tr>
<tr>
<td>Edwin M. McMillan, B.S. '28, M.S. '29</td>
<td>chemistry 1951</td>
</tr>
<tr>
<td>Linus Pauling, Ph.D. '25</td>
<td>chemistry 1954</td>
</tr>
<tr>
<td>William Shockley, B.S. '32</td>
<td>Peace Prize 1962</td>
</tr>
<tr>
<td>George W. Beadle</td>
<td>physics 1956</td>
</tr>
<tr>
<td>Donald A. Glaser, Ph.D. '50</td>
<td>physiology 1960</td>
</tr>
<tr>
<td>Rudolf Mössbauer</td>
<td>physics 1961</td>
</tr>
<tr>
<td>Charles H. Townes, Ph.D. '39</td>
<td>physics 1964</td>
</tr>
<tr>
<td>*Richard Feynman</td>
<td>physics 1965</td>
</tr>
<tr>
<td>*Murray Gell-Mann</td>
<td>physics 1969</td>
</tr>
<tr>
<td>Max Delbrück</td>
<td>physiology & medicine 1969</td>
</tr>
<tr>
<td>Leo James Rainwater, B.S. '39</td>
<td>physics 1975</td>
</tr>
<tr>
<td>Howard M. Temin, Ph.D. '60</td>
<td>physiology 1975</td>
</tr>
<tr>
<td>William Lipscomb, Ph.D. '46</td>
<td>chemistry 1976</td>
</tr>
<tr>
<td>Robert W. Wilson, Ph.D. '62</td>
<td>physics 1978</td>
</tr>
<tr>
<td>*Roger W. Sperry</td>
<td>physiology & medicine 1981</td>
</tr>
<tr>
<td>Kenneth G. Wilson, Ph.D. '61</td>
<td>physics 1982</td>
</tr>
<tr>
<td>*William A. Fowler, Ph.D. '36</td>
<td>physics 1983</td>
</tr>
</tbody>
</table>

*In residence
BUILDINGS AND FACILITIES

Gates and Crellin Laboratories of Chemistry: first unit, 1917; second unit, 1927; third unit, 1937. The first two units were the gifts of Messrs. C. W. Gates and P. G. Gates of Pasadena; the third unit was the gift of Mr. and Mrs. E. W. Crellin of Pasadena. Gates (first unit), which was retired after suffering extensive damage in the February 9, 1971, earthquake, was rebuilt in 1983 as the Parsons-Gates Hall of Administration.

Norman Bridge Laboratory of Physics: first unit, 1922; second unit, 1924; third unit, 1925. The gift of Dr. Norman Bridge of Los Angeles, president of the Board of Trustees, 1896-1917.

High Voltage Research Laboratory, 1923. Built with funds provided by the Southern California Edison Company. Retired in 1959 with basic research completed and rebuilt in 1960 as the Alfred P. Sloan Laboratory of Mathematics and Physics.

Dabney Hall, 1928. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

William G. Kerckhoff Laboratories of the Biological Sciences: first unit, 1928; second unit, 1939; annex, 1948. The gift of Mr. and Mrs. William G. Kerckhoff of Los Angeles.

Guggenheim Aeronautical Laboratory, 1929. Built with funds provided by the Daniel Guggenheim Fund for the Promotion of Aeronautics. A substantial addition was built in 1947.

Athenaeum, 1930. A clubhouse for the teaching, research, and administrative staffs of the Institute and the Huntington Library and Art Gallery, for The Associates of the California Institute of Technology, and for others who have demonstrated their interest in advancing the objectives of the Institute. The gift of Mr. and Mrs. Allan C. Balch of Los Angeles. He was president of the Board of Trustees, 1933–1943.

Undergraduate Houses, 1931:

- **Blacker House.** The gift of Mr. and Mrs. R. R. Blacker of Pasadena.
- **Dabney House.** The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.
- **Fleming House.** Built with funds provided by some 20 donors and named in honor of Mr. Arthur H. Fleming of Pasadena, president of the Board of Trustees, 1917–1933.
- **Ricketts House.** The gift of Dr. and Mrs. Louis D. Ricketts of Pasadena.

W. K. Kellogg Radiation Laboratory (Nuclear Physics), 1932. The gift of Mr. W. K. Kellogg of Battle Creek, Michigan.

Henry M. Robinson Laboratory of Astrophysics, 1932. Built with funds provided by the International Education Board and the General Education Board, and named in honor of Mr. Henry M. Robinson of Pasadena, member of the Board of Trustees, 1907–1937, and of the Executive Council of the Institute.

Charles Arms Laboratory of the Geological Sciences, 1938. The gift of Mr. and Mrs. Henry M. Robinson of Pasadena, in memory of Mrs. Robinson’s father, Mr. Charles Arms.

Seeley W. Mudd Laboratory of the Geological Sciences, 1938. The gift of Mrs. Seeley W. Mudd of Los Angeles, in memory of her husband.
Franklin Thomas Laboratory of Engineering: first unit, 1945; second unit, 1950. Funds for the first unit were allocated from the Eudora Hull Spalding Trust with the approval of Mr. Keith Spalding, trustee. Named in honor of Dean Franklin Thomas, professor of civil engineering and first chairman of the Division of Engineering, 1924–1945.

Scott Brown Gymnasium, 1954. Built with funds provided by the trust established by Mr. Scott Brown of Pasadena and Chicago, who was a member and director of the Caltech Associates.

Norman W. Church Laboratory for Chemical Biology, 1955. Built with funds provided through a gift and bequest by Mr. Norman W. Church of Los Angeles, who was a member of the Caltech Associates.

Eudora Hull Spalding Laboratory of Engineering, 1957. Built with funds allocated from the Eudora Hull Spalding Trust.

Archibald Young Health Center, 1957. The gift of Mrs. Archibald Young of Pasadena, in memory of her husband, who was a member and director of the Caltech Associates.

Physical Plant Building and Shops, 1959. Built with funds provided by many donors.

Gordon A. Alles Laboratory for Molecular Biology, 1960. Erected with the gift of Dr. Gordon A. Alles of Pasadena, research associate in biology at the Institute, an alumnus, and a member of the Caltech Associates, 1947–1963; and with funds provided by the Health Research Facilities Branch of the National Institutes of Health.

Undergraduate Houses, 1960. Built with funds provided by the Lloyd Foundation and other donors.

Lloyd House. Named in memory of Mr. Ralph B. Lloyd and his wife Mrs. Lulu Hull Lloyd of Beverly Hills. He was a member of the Board of Trustees, 1939–1952.

Harry Chandler Dining Hall, 1960. The gift of the Chandler family, the Pfaffinger Foundation, and the Times Mirror Company of Los Angeles.

Alfred P. Sloan Laboratory of Mathematics and Physics, 1960. Formerly High Voltage Research Laboratory, 1923. Rebuilt in 1960 with funds provided by the Alfred P. Sloan Foundation.
Graduate Houses, 1961:

Braun House. Built with funds provided by the trustees of the Carl F Braun Trust Estate in his memory.

Keck House. The gift of Mr. William M. Keck, Jr., of Los Angeles.

Marks House. The gift of Dr. David X. Marks of Los Angeles.

Mosher-Jorgensen House. The gift of Mr. Samuel B. Mosher of Los Angeles and Mr. Earle M. Jorgensen of Los Angeles. Mr. Jorgensen is a member of the Board of Trustees.

Firestone Flight Sciences Laboratory, 1962. The gift of the Firestone Tire and Rubber Company.

Winnett Student Center, 1962. The gift of Mr. P. G. Winnett of Los Angeles, a member of the Board of Trustees, 1939–1968. Winnett houses the bookstore, Caltech Y, *California Tech,* and offices of theater arts and ASCIT.

Beckman Auditorium, 1964. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman, an alumnus, was a member of the Institute’s faculty from 1928 to 1939, a member of the Board of Trustees since 1953, chairman of the Board from 1964 to 1974, and is now chairman emeritus.

Harry G. Steele Laboratory of Electrical Sciences, 1965. Built with funds provided by the Harry G. Steele Foundation and the National Science Foundation.

Central Engineering Services Building, 1966.

Arthur A. Noyes Laboratory of Chemical Physics, 1967. Built with funds provided by the National Science Foundation and Mr. Chester F. Carlson, an alumnus, and named in honor of Arthur Amos Noyes, director of the Gates and Crellin Laboratories of Chemistry and chairman of the Division of Chemistry and Chemical Engineering, 1919–1936.

Central Plant, 1967.

George W. Downs Laboratory of Physics and Charles C. Lauritsen Laboratory of High Energy Physics, 1969. The Downs wing was built with funds provided by George W. Downs and the National Science Foundation. The Lauritsen wing was built with Atomic Energy Commission funds and named in honor of Dr. Charles C. Lauritsen, a member of the Institute faculty, 1930–1968.
Keith Spalding Building of Business Services, 1969.

Donald E. Baxter, M.D., Hall of the Humanities and Social Sciences, 1971. Built with funds provided by Mrs. Delia B. Baxter of Atherton and named in honor of her late husband, Donald E. Baxter, M.D. Additional funds were given by the U.S. Department of Health, Education and Welfare. Dr. and Mrs. Simon Ramo provided funds for the completion of Ramo Auditorium. Dr. Ramo is a member of the Board of Trustees.

The Earle M. Jorgensen Laboratory of Information Science, 1971. Built with the gift of Mr. and Mrs. Earle M. Jorgensen, with additional funds provided by the Booth-Ferris Foundation and other private donors. Mr. Jorgensen is a member of the Board of Trustees.

The Mabel and Arnold Beckman Laboratories of Behavioral Biology, 1974. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman is chairman emeritus of the Board of Trustees.

Seeley G. Mudd Building of Geophysics and Planetary Science, 1974. Built with funds provided by Dr. Seeley G. Mudd, Mrs. Roland Lindhurst, Mr. and Mrs. Ross McCollum, Mr. and Mrs. Henry Salvatori, and the U.S. Department of Health, Education and Welfare.

Clifford S. and Ruth A. Mead Memorial Undergraduate Chemistry Laboratory, 1981. Built with funds allocated from the Clifford S. and Ruth A. Mead Memorial Building Fund.

Thomas J. Watson, Sr., Laboratories of Applied Physics, 1982. Built with funds provided by the Watson family and other private donors. Thomas J. Watson, Jr., is a member of the Board of Trustees.

Braun Laboratories in Memory of Carl F and Winifred H Braun, 1982. Built with funds provided by the Braun family, other private donors, and the National Cancer Institute. John G Braun is a member of the Board of Trustees.

Parsons-Gates Hall of Administration, 1983. Formerly Gates Laboratory of Chemistry, 1917. Rebuilt in 1983 with funds provided by The Ralph M. Parsons Foundation and The James Irvine Foundation.

Athletic Facility, 1984. Built with funds provided by the Carl F Braun Trust and the Braun Foundation.

Graduate Houses, 1984.

Off-Campus Facilities

Kresge Building, Seismological Laboratory, 1928 (of the Division of Geological and Planetary Sciences), 220 North San Rafael Avenue, Pasadena. Named in recognition of a gift from The Kresge Foundation of Troy, Michigan.

William G. Kerckhoff Marine Biological Laboratory, 1930, Corona del Mar. Rehabilitated with funds provided by the National Science Foundation in 1966.

Jet Propulsion Laboratory, 1944, 4800 Oak Grove Drive, Pasadena. Administered by the Institute; owned and supported by the National Aeronautics and Space Administration.
Buildings and Facilities

Palomar Observatory, 1948, San Diego County. Site of the 200-inch Hale Telescope, built by the Institute with funds from Rockefeller sources.

Owens Valley Radio Observatory, 1958, Big Pine. Built with funds provided by the Winnett Foundation, the Office of Naval Research, the National Science Foundation, and the Oscar G. and Elsa S. Mayer Charitable Trust.

Big Bear Solar Observatory, 1969, Big Bear Lake. Built with funds provided by the National Science Foundation and the Max C. Fleischmann Foundation of Nevada.

Libraries

The Caltech library system is organized into 16 departmental or divisional libraries; six are in the Millikan Library and ten are distributed throughout the campus. The libraries collectively subscribe to 5,875 journals, contain 375,756 volumes, and have extensive collections of microfilm, government documents, archives, and maps.

The Robert A. Millikan Memorial Library includes the collections of biology, chemistry, mathematics, physics, engineering, and humanities and social sciences, each of which is organized as an individual unit complete with books, periodicals, reference works, and card catalog. The Millikan Library houses the general administrative offices, acquisitions and cataloging units, interlibrary loan service, and general reference, which are located on the second floor. Also on the second floor is the main card catalog, which includes the records of the books held in the major collections on campus. The circulation and reserve operations are on the first floor of Millikan, photocopy service and the Institute archives are in the basement, and the microfilm and government documents collections are on the fifth floor. The Millikan Library is open weekdays during the school year from 8 a.m. to 1 a.m., and weekends from 9 a.m. until midnight.

The library collections that are located elsewhere on campus include: aeronautics, applied physics and electrical engineering, astrophysics, chemical engineering, computer science, earthquake engineering, environmental engineering, geology, management, and public affairs. Special services that are available through the Caltech libraries include: computerized literature searches, document delivery, and intercampus transportation between the Caltech, UCLA, and USC libraries.

Computing Support Services

Computing Support Services provides a large variety of services in support of the widely distributed computing resources on the Caltech campus. Included are the operation of two DEC VAX 11/780 general purpose timesharing systems for academic and research computing, the management of a campus-wide local area network, the maintenance of a student computing facility consisting of three Data General MV/4000 computers, the presentation of text processing tutorials, and the support of a computing facility for the development of academic computing.

Industrial Relations Center

The purpose of the Industrial Relations Center is to increase and disseminate knowledge and understanding of the current practices, future trends, and issues in executive leadership and the management of human resources. The seminar program emphasizes practical management skills and assists professionals, particularly technical professionals, in making career transitions to managerial ranks. The courses are presented on campus for representatives of a variety of companies or off campus at specific companies. These courses do not carry academic credit.
but the Center awards a certificate for satisfactory completion of the Engineering/Management Program.

The office, library, and conference rooms of the Center are located on campus at 383 South Hill Avenue. Detailed information about the specific services of the Center and the fees involved can be secured from the Director of the Industrial Relations Center.

POSTDOCTORAL APPOINTMENTS

Caltech appoints each year a number of postdoctoral research fellows for definite terms, usually for one year. The postdoctoral program consists, generally, of fundamental research in one of the Caltech laboratories in close association with one or more regular faculty members. Caltech is subject to the requirements of Executive Order 11246 and is an affirmative action employer. All interested persons are encouraged to apply.

SPECIAL PROGRAM

Sherman Fairchild Distinguished Scholars Program

The Sherman Fairchild Distinguished Scholars Program brings renowned scholars to Caltech from industry, government, and the academic community. Through this program, Caltech's faculty and student body have an opportunity to be influenced in both teaching and research by the wisdom and experience of eminent world leaders in various fields. The emphasis in the program is on giving faculty and students exposure to Fairchild Scholars in all academic divisions—through teaching, seminars, lectures, and research—and establishing a forum for the exchange of ideas among Fairchild Scholars, Caltech faculty, students, and industry. Appointments are usually from three months to one year.

UNDERGRADUATE RESEARCH

Each division offers the opportunity for qualified students early in their careers to engage in research under the supervision of a faculty member. Most options offer undergraduate research courses in order to encourage participation, and students should consult their listings and descriptions of opportunities. Students are encouraged to undertake research of such scope and caliber as to merit the preparation of a senior thesis. The requirements for such thesis research vary from option to option, and the individual option representatives should be consulted.

The Summer Undergraduate Research Fellowships (SURF) program provides continuing undergraduate students the opportunity to work on an individual research project in a tutorial relationship with a member of the Caltech/JPL research community. Beginning in January students, in collaboration with the faculty members, develop research proposals that are then judged by a sub-committee of the Scholarships and Financial Aid Committee. Awards are made to the authors of meritorious proposals. SURF Fellows commit themselves to work on their projects on a full-time basis for ten weeks during the summer and finally to prepare a brief written report describing the project and the methods and results of their work. In addition, early in October, students make oral presentations of their projects at SURF Seminar Day; proceedings of the day are bound into a volume with the written reports. Sometimes the students' work is published in the open scientific literature. SURF Fellowships carry a stipend; in 1984 the stipend was $2,600. For further information regarding this program, call the SURF office, 207 Thomas, 356-4285.
STUDENT LIFE

Undergraduate Student Houses. The seven undergraduate student houses are situated on both sides of the Olive Walk near the eastern end of the campus. The original four—Blacker, Dabney, Fleming, and Ricketts—were built in 1931 from the plans of Mr. Gordon B. Kaufmann in the Mediterranean style to harmonize with the adjacent Athenaeum. The other three, designed by Smith, Powell and Morgridge, and generally consistent in appearance with the older group, were completed in 1960, and are named Lloyd, Page, and Ruddock. Each of the seven is a separate unit with its own dining room and lounge, providing accommodations for about 75 students.

Each house has its own elected officers, and has wide power to arrange its own social events and preserve its own traditions. The immediate supervision of the activities of each house is the responsibility of the house Resident Associate, generally a married graduate student or younger faculty member. All houses are under the general supervision and control of a member of the faculty known as the Master of Student Houses.

In addition to the student houses the Institute maintains two apartment buildings and 24 off-campus houses. Typically two or three students share an apartment. Depending upon size, the off-campus houses have a capacity for four to ten students. These residences are all within a short walking distance of the campus and offer students greater privacy, a different life style, and the opportunity to express their gastronomical creativity.

Mail is delivered daily to the student houses except on weekends. Students living in student houses should use their house name and mail code, California Institute of Technology, Pasadena, Calif. 91126, to facilitate the handling of their mail at the campus post office.

Interhouse Activities. The president of each undergraduate house represents that house on the Interhouse Committee (IHC). While the seven houses are generally autonomous, the IHC exists to ensure that conflicts between houses do not develop and to deal with matters that affect the houses in general. In particular, the IHC is responsible for the freshman selection process by which the houses choose their members.

In conjunction with the athletic department, the IHC conducts two intramural sports programs: the Interhouse and Discobolus trophy competitions. Interhouse competition consists of round-robin tournaments in football, softball, swimming, basketball, tennis, track, and volleyball, while the Discobolus competition allows individual houses to challenge one another in a wide variety of sports.

Other interhouse activities include joint dances, usually involving two or three houses, which are held once or twice each term.

Faculty-Student Relations. Faculty-student coordination and cooperation with regard to campus affairs is secured through the presence of students on faculty committees, by faculty-student conferences, and by means of other less formal mechanisms, such as course ombudsmen.

Freshman Advisers. Each member of the freshman class is assigned a faculty adviser. The adviser takes an interest in the freshman's progress and provides advice on any questions or problems that the freshman may have.

Option Advisers. Each member of the three undergraduate upper classes is assigned an option adviser, a faculty member in the option in which the student is enrolled. The adviser takes an interest in the student's selection of courses, progress toward a degree, and, eventually, in assisting the student toward satisfactory placement in industry, or in graduate school. Normally, the association between student and adviser, which is primarily professional, is established before the beginning of the sophomore year and continues through graduation.
Athletics. Caltech supports a well-rounded program of competitive athletics. As a member of the Southern California Inter-Collegiate Athletic Conference, intercollegiate competition is carried on in 12 sports with such schools as Claremont-Harvey Mudd, La Verne, Occidental, Pomona-Pitzer, Redlands, and Whittier. Athletes who distinguish themselves locally are able to compete at regional and national levels.

The athletic facilities include a football field, a standard running track, a soccer field, baseball and softball diamonds, and eight tennis courts. The Scott Brown Gymnasium provides facilities for badminton, basketball, and volleyball, and is adjoined by two modern swimming pools. A well-equipped weight room completes the on-campus athletic facilities. In addition, Caltech owns six Flying Junior sailboats that serve both instructional and competitive interests.

The Institute sponsors a vigorous program of intramural competition in seven sports. The Interhouse Trophy is awarded annually to the house accumulating the most points in this competition. The Varsity Rating Trophy is awarded to the house having the greatest participation in intercollegiate sports. A third trophy, Discobolus, is a bronze replica of Myron’s famous statue of the discus thrower. A challenge trophy, open to competition in any sport, it remains in the possession of a house only so long as that house can defeat the challengers.

ASCIT. The undergraduate student body forms the membership of a corporation known as the Associated Students of the California Institute of Technology, Inc., or ASCIT. Governed by a board of directors consisting of nine elected officers, ASCIT is involved in many aspects of student life. It operates the coffeehouse, a casual nighttime spot near campus offering refreshment and diversion. ASCIT subsidizes the Friday night ASCIT movies, a weekly presentation of late vintage popular films, and partially subsidizes Cinematech, a Saturday night series of film classics. ASCIT also oversees publication of the newspaper, a directory, the yearbook, a research opportunities handbook, a course review, and a literary magazine.

Besides overseeing the many student publications and coordinating activities and policies, the ASCIT Board of Directors administers the corporation’s finances. ASCIT sponsors a wide variety of special interest clubs and programs, such as the Cricket Club and the Caltech musical.

The student government is active in campus affairs. The student members of each standing faculty committee ensure that undergraduate opinion is considered seriously. Excellent informal relations between students and faculty and between students and administration promote mutual concern and goodwill. Faculty-Student Conferences are held in alternate years, most recently in 1984. These serve a very useful purpose in promoting cooperation and communication between these groups.

Overall, the relationship between students and the rest of the campus is characterized by a marked concern. Caltech is fortunate in that the faculty, administration, Board of Trustees, and others take a genuine interest in students’ welfare.

Graduate Student Council. The Graduate Student Council performs essentially the same functions for the graduate students that the Board of Directors of ASCIT does for the undergraduates.

Honor System. The Honor System, embodied in the phrase “No member shall take unfair advantage of any member of the Caltech community,” is the fundamental principle of conduct for all students. More than merely a code applying to conduct in examinations, it extends to all phases of campus life. It is the code of behavior governing all scholastic and many extra-curricular activities, relations among students, and relations between students and faculty. The Honor System is the outstanding tradition of the student body, which accepts full responsibility for its operation. The ASCIT Board of Control, which is composed of elected representatives from each of the seven houses, is charged with interpreting the Honor System for undergraduates, while the Graduate Review Board performs the same function for graduate students. If a violation should occur, the appropriate board investigates and recommends disciplinary measures to the deans.
With a depth of 7 to 15 feet, the new pool is especially designed for water polo, a popular intramural and intercollegiate sport.

Student Body Publications. The publications of the student body include a weekly paper, The California Tech; an annual, a literary magazine; a student handbook, which gives a survey of student activities and organizations and serves as a campus directory; an annual review of the quality of teaching in the various courses; and a handbook of available research opportunities. These publications are staffed entirely by students. Through them ample opportunity is provided for any student who is interested in obtaining valuable experience not only in creative writing, photography, art work, and in the journalistic fields of reporting and editing, but in the fields of advertising and business management as well.

Musical Activities. The Institute provides qualified directors and facilities for a wind ensemble, a jazz band, several choral music groups, a symphony orchestra jointly with Occidental College, a number of small chamber ensembles, and a weekly interpretive music class. A series of chamber music concerts is given on Sundays in Dabney Lounge. There are other musical programs in Beckman and Ramo auditoriums.

Baxter Art Gallery. Baxter Art Gallery offers students, other members of the Caltech community, and the general public the opportunity to experience diverse, stimulating, challenging, and, at times, controversial exhibitions of contemporary American art. In addition to the five or six scheduled exhibitions, the gallery sponsors an educational program of talks with the artists, exhibition curators, art historians, and noted art world personalities. Films, lectures, tours, and other special events round out the program. The gallery, located in the north end of Baxter Hall, is open seven days a week during the academic year, noon to 5 p.m.
General Information

Student Societies and Clubs. There are at the Institute more than 70 societies and clubs covering a range wide enough to satisfy most interests. The American Chemical Society, the American Institute of Chemical Engineers, and the American Society of Mechanical Engineers all maintain active student branches.

The Institute has a chapter (California Beta) of Tau Beta Pi, the national scholarship honor society of engineering colleges. Each year the Tau Beta Pi chapter elects to membership students from the highest ranking eighth of the junior class and the highest fifth of the senior class.

Special interests and hobbies are provided for by a broad and constantly changing spectrum of clubs, some informal but most formally recognized by either ASCIT or the Graduate Student Council.

Student Shop. The Student Shop is housed in the Winnett Student Center. It is equipped by the Institute, largely through donations, and is operated by the students. Here qualified students may work on private projects that require tools and equipment not otherwise available. All students are eligible to apply for membership in the Student Shop; applications are acted on by a governing committee of students. Members who are not proficient in power tools are limited to hand tools and bench work; however, instruction in power tools will be given as needed. Yearly dues are collected to provide for maintenance and replacement.

The Caltech Y. The Y, run by undergraduate and graduate students and supported by endowments and Caltech's friends, builds bridges between science and just about everything else: culture, politics, social consciousness, recreation, ethics, humanism, religious thought, exam week looniness.

Pluralistic and nonsectarian, too. The Caltech Y is open to everyone, and extends its hospitality to students, faculty, and staff, no strings attached. It makes interest-free loans, sets up low-cost ski trips and backpacking adventures, subsidizes theater and sports tickets, administers the annual $1,900 Studenski travel award, has a Xerox machine and a stereophonic lounge, provides free weekly outdoor campus concerts, runs the Lost & Found and a used-textbook exchange, offers personal counseling, loans out camping equipment, and sponsors guest speakers of national fame or local significance. No membership lists; no fees; no catches.

Public Events. Beckman and Ramo auditoriums serve as the home of the professional performing arts program on the Caltech campus. Each year, more than 150 public events, ranging from the traditional Earnest C. Watson Caltech Lecture Series to dramatic, film, and concert attractions (featuring world renowned artists), are presented at Caltech. The auditoriums also serve as the stage for the annual Caltech musical and the Caltech Glee Club Christmas and spring concerts. Tickets, often with discounts available, are offered to Caltech students for all events in Beckman and Ramo auditoriums. Located in the Office of Public Events are a ticket agency (handling tickets not only for Caltech events, but also for most southern California entertainment, sports, and cultural events) and the campus Audio-Visual Services Unit (where projectors, tape recorders, and video equipment may be obtained).

Bookstore. The student store serving students, faculty, and staff is located on the ground floor of the Winnett Student Center. The store, which is owned and operated by the Institute, carries a complete stock of required books and supplies, reference books, and such items as greeting cards, sweatshirts, and sundries. There is, on open shelves, an extensive collection of paperbacks and other books of general interest.
STUDENT HEALTH

Medical Examination. Before initial registration, each applicant is required to submit a Report of Medical History and Physical Examination on a form that will be sent at the time of notification of admission. Students who have been absent from the Institute for two years or more may also be required to submit this report.

Student Health Services. The Archibald Young Health Center, which includes a dispensary and an infirmary, provides for undergraduate and graduate students the following services: (1) office consultation and treatment by a staff physician at prescribed hours; (2) laboratory tests, consultations, and radiographs as prescribed or ordered by the staff physician; (3) inoculations and treatments administered by nurses; (4) routine medications, prescription drugs, and other supplies at cost; (5) infirmary care; and (6) psychological counseling through the services of staff psychologists and psychiatrists. Services are available for faculty and staff on a limited basis, covering only emergency care, on-the-job injuries, and inoculations.

During the summer, a special health fee of $35 is charged to students who have not been enrolled during the preceding school term.

Student Health Insurance. In addition to services available at the Health Center, coverage under a hospitalization insurance plan is provided to all full-time students and, during the summer, to students registered for the previous term. This plan covers basic hospital and surgical costs, and includes an extended benefits plan that co-insures costs not covered by the basic plan. Benefits continue for 12 months, on campus and off campus, provided students remain enrolled through the school year.

Medical Coverage of Dependents. A student’s spouse and all unmarried dependent children under 19 years of age are eligible for coverage under the hospitalization plan. In addition, student spouses may enroll for a modest fee in a plan that makes them eligible for all services offered at the Health Center. Children are not eligible for these services. Application for dependents’ insurance should be made at the time of registration for any one school term. Rates for dependent coverage are available at the Health Center.

Medical Responsibility of the Student. The responsibility for securing adequate medical attention in any contingency, whether emergency or not, is solely that of the student, whether the student is residing on or off campus. Apart from providing the opportunity for consultation and treatment at the Health Center as already described, the Institute bears no responsibility for providing medical attention.

Any expenses incurred in securing advice and attention in any case are entirely the responsibility of the student, except as already specified. To secure payment from the insurance plan and substantiate a claim for services rendered away from the Institute, the student is required to retain bills for such services and present them with appropriate documentation when medical claims are made. The Health Center office staff may be called upon for advice on the preparation of claim forms.

CAREER DEVELOPMENT

Career Services. The Career Development Center provides assistance to students, research fellows, and alumni in the areas of career and life planning and employment. Personal assistance in career choices, job search strategy, resume preparation, and interview techniques is available.
Campus Recruiting Program. Through the campus recruiting program, on-campus employment interviews are arranged with about two hundred companies that seek full-time employees with B.S., M.S., or Ph.D. degrees. All graduating students, research fellows, and recent alumni are eligible to participate.

Career Day. Each February, between 35 and 40 different companies send representatives to campus for a day of informal discussion with students. Most bring informative displays and literature, and many of the representatives are Caltech alumni themselves.

Career and Employment Information Library. This resource library contains college and graduate school catalogues, scholarship and fellowship information, company literature, employer directories, career literature, audio-visual resources, and current employment opportunities.

Student Employment. Part-time and summer job listings both on and off campus are actively solicited to aid students seeking employment to help finance their education and to gain relevant work experience. In addition several major employers arrange on-campus interviews for summer employment. (See also Student Employment under Financial Aid in Section 3.)

Annual Report. The office surveys all graduating students and compiles a detailed annual report that provides information on the plans of graduating students. Included are graduate school attended, types of employers chosen, and salary statistics. (See Employment Experience of Recent Graduates below.)

All students are encouraged to visit and make use of the Career Development Center early in their student career.

NOTICES AND AGREEMENTS

Accreditations and Authorizations

The California Institute of Technology is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges. In addition, the Institute is authorized by the California State Department of Education, Office of Private Postsecondary Education, to operate as a private postsecondary educational institution and, by the same agency, to train veterans in the programs of the Veterans Administration.

In specific degree programs the Accreditation Board for Engineering and Technology has accredited our B.S. programs in chemical engineering and in engineering and applied science and our M.S. programs in aeronautical engineering and in environmental engineering science. Further, the Committee on Professional Training of the American Chemical Society has approved our B.S. program in chemistry.

The documents describing these accreditations and authorizations are on file and may be inspected in the office of the Registrar, the Undergraduate Admissions Office, or the Graduate Studies Office.

Nondiscrimination

The California Institute of Technology is committed to the concept of equal educational opportunity for all. Individuals are considered for admission to student status, and all services, facilities, programs, and activities are administered in a nondiscriminatory manner without regard to race, religion, color, sex, national or ethnic origin or nondisqualifying handicap in
accordance with the existing laws and regulations including Title IX of the Education Amendments of 1972, Title VI of the Civil Rights Act of 1964, and Section 504 of the Rehabilitation Act of 1973 as amended.

The Grievance Procedure described below is the Institute's official avenue for redress of grievances of alleged discrimination. Dr. J. J. Morgan, Vice President for Student Affairs, is the Institute official responsible for investigating student complaints of sex discrimination.

Student Grievance Procedure

There are at Caltech a variety of routes, most of them informal, by which student complaints are brought to consideration and resolution. These routes normally depend on the nature of the complaint. In academic matters, for example, they begin with teacher-student conversations and extend to the Deans, the Division Chairmen, the Registrar, and various committees having faculty and student members. Undergraduate housing matters relate primarily to the house government organizations, and to the Resident Associates and the Master of Student Houses. The Dean of Graduate Studies often serves as ombudsman in graduate student matters. The Graduate Student Council and the Associated Students of Caltech may become responsibly involved in important complaints. Sometimes ad hoc groups are formed to consider and make recommendations in particular areas.

The Grievance Procedure is intended to deal with complaints for which reasonable efforts by the available informal routes have not led to prompt and acceptable resolution and which do not fall within the jurisdiction of the Honor System.

The first step in this procedure is to submit the matter to the Vice President for Student Affairs, who is the ombudsman for student grievances. He will work with the grievant in attempting to resolve the matter. If the grievant is dissatisfied with the results, the grievant may appeal the case to the Grievance Committee. This committee consists of two members of each of the categories—undergraduate students, graduate students, faculty, and administration—appointed, respectively, by the ASCIT Board of Directors, the Graduate Student Council, the Chairman of the Faculty, and the President of the Institute. The Chairman of the Committee, non-voting except in the case of a tie, is also appointed by the President. The grievant may present the case to the Committee, present documents in support of the case, request that witnesses be called, and be assisted by another member of the Caltech community who is not an attorney. The Committee will present its conclusions and recommendations to the President of the Institute and the President's decision will be final. A more detailed statement of student grievance procedure is available from the Vice President for Student Affairs.

Employment Experience of Recent Graduates

A survey was made at the end of June 1983 of the future plans of those students who had graduated at the commencement ceremony on June 10, 1983.

Of those receiving the B.S. degree about whom we have definite information, 52% had been accepted for admission to graduate school for further education, 33% had accepted employment, 5% had other plans and 10% were still seeking employment or graduate school admission. The average salary of those accepting employment was $2,275 per month. At the M.S. level, 58% were continuing in graduate school, 28% were employed at an average salary of $2,480 per month, 11% had other plans, and 3% were still seeking. Of those receiving the Ph.D. degree, 94% were employed at an average salary of $3,335 per month, 3% were continuing in graduate school, and 3% were still looking.
Student Retention

Most undergraduates enter the Institute at the freshman level. Of those, over the last several years, 72% have graduated from the Institute with Bachelor of Science degrees in the options of their choice. Of students registering at the Institute for the first time as sophomores or juniors, 92% have graduated. At the graduate level 91% of the students entering graduate either with the degree of Master of Science or of Doctor of Philosophy or, occasionally, with both.

Student Patent and Computer Software Agreement

Students at Caltech have many opportunities to work in laboratories or in shops, or with computers, sometimes on individual projects and sometimes as part of a group activity. It is not unusual under these circumstances for inventions to be made, or computer software (including programs, data bases, and associated documentation) to be written, and it is important that the student’s rights in patents on inventions and in computer software he or she may have made or written be protected. The Institute’s policy generally is to reserve to itself rights in inventions and computer software made by faculty and staff members with the use of Institute facilities or in the normal course of their Institute duties. The student’s position is different, however, and students generally retain all rights except in inventions or computer software made under circumstances such that rights clearly belong to the Institute or to the sponsor of the research. In order to clarify this situation and to protect the rights both of the student and of the Institute, each entering student is asked to sign the following agreement:

1. The Institute agrees that I shall retain all rights in inventions and computer software made or written by me except when such inventions are first conceived or reduced to practice or such computer software written:
 1.1 in the course of the performance of work as a paid employee of the Institute;
 1.2 in the course of independent student research financed by or otherwise obligated to an outside grant or contract to the Institute or financed by a grant from the Institute;
 1.3 or when they arise out of work in the research program of an academic staff member.

2. The Institute agrees that rights of all other inventions or computer software made or written by me with the use of Institute facilities are to be retained by me, except for computer software which is written in connection with or used in the educational program of the Institute (e.g., course work, homework, theses), for which the Institute shall obtain an irrevocable royalty-free, non-exclusive license, with the right to grant sublicenses, for any purpose whatsoever.

3. I agree to notify the Institute promptly of any discovery, innovation, or invention which is first conceived or first actually reduced to practice, or computer software first written, under the conditions of paragraphs 1.1 or 1.2 or 1.3 above and computer software written in connection with or used in the educational program of the Institute under the conditions of paragraph 2 above.

4. I agree to assign to the Institute or its nominee all rights in the United States and foreign countries to inventions and computer software made or written under the conditions of paragraphs 1.1 or 1.2 or 1.3 above and to supply all information and execute all papers necessary for the purpose of prosecuting all patent applications, or registering copyrights in or otherwise protecting such computer software, and fulfilling obligations that may arise from such inventions or computer software. The Institute will bear the expenses for such patent applications or copyright registrations or for obtaining such other protection.

It is understood that the student will share in the same manner as a member of the academic staff such royalty income from patents or computer software as the Institute may receive on inventions assigned to it, or computer software assigned or licensed to it, as a result of this agreement.
Access to Student Records

In accordance with Section 99.5 of Title 34 of the Code of Federal Regulations, the California Institute of Technology is using this means to inform students of their rights under Public Law 90-247, as amended.

1. The Institute maintains records for each student that include name, address, student identification number, information on parents, guardian, and spouse, general information on academic status at the Institute, previous school data, results of standardized admissions examinations, courses previously taken or being taken, credits, and grades. Applicants for Financial Aid have an additional file established holding those records.

2. The Registrar of the Institute is responsible for maintaining all of these records, except for those involving Financial Aid. They are available to the Registrar, to the Vice President for Student Affairs, to the Dean of Graduate Studies, to the Director of Financial Aid, to the Faculty of the Institute, and to their respective staffs for the normal academic and business purposes of the Institute. Records involving Financial Aid are maintained by the Director of Financial Aid, and are available to the Director and staff, to the Dean of Graduate Studies and staff, to the Faculty Committee on Scholarships and Financial Aid, and to the Faculty Committee on Graduate Study for the purpose of granting and administering the Institute's Financial Aid program. All of these records are also available to such other organizations and persons as are entitled to them under Part 99 of Title 34 of the Code of Federal Regulations. None of these records nor any personally identifiable information contained therein, other than directory information (see below), will be made available to anyone else, other than the student, without written consent. Where consent is required and given, the student, upon request, will receive a copy of the records to be released. The Institute will keep a record, available to the student and kept with his or her file, of all persons and organizations, other than those authorized within the Institute, requesting or obtaining access to the files. This record will indicate specifically the legitimate interest that each person or organization obtaining access to the records has in such records.

3. Students are allowed access to their records as follows: A student may inspect his or her academic transcript during normal working hours. To see other records, the student must provide a written request to the Registrar or to the Director of Financial Aid or to the Dean of Graduate Studies or their deputies, as appropriate. A mutually convenient time will be arranged within ten working days after receipt of the request for the student to examine the records in his or her file. At that time the student may examine all records in the file with the exception of those specifically exempted by Part 99 of Title 34 of the Code of Federal Regulations. The student may obtain copies of any of the records available to him or her; the cost will be $.44 for the first page copied and $.12 for each additional page. All reasonable requests for explanations or interpretations of the records will be honored, and if inaccurate, misleading or otherwise inappropriate data are found in the records, they will be promptly corrected or deleted. The student also has the right to insert into the records a written explanation respecting the contents of such records. If the student and the Registrar, or the Director of Financial Aid, or the Dean of Graduate Studies, or their deputies, do not agree on any item contained in the records, the student may submit a written request to the Provost for a hearing to challenge the content of the records. The Provost will schedule such a hearing within 30 days after receipt of the request and will notify the student reasonably in advance of the hearing of its date, time,
and place. The hearing will be before a Board composed of the Provost, the Vice President for Student Affairs, or their designated alternates, and at least one disinterested member of the Faculty who shall be appointed by the Chairman of the Faculty Board. None of those hearing the challenge may have a direct interest in the outcome. The student will be afforded a full and fair opportunity to present evidence relevant to the issues raised and may be assisted or represented by individuals of his or her choice at his or her own expense, including an attorney. The decision of the board on the correctness of the record, as determined by majority vote, will be in writing, will be rendered within ten days after the conclusion of the hearing, and will be final. This decision will be based solely upon the evidence presented at the hearing and will include a summary of the evidence and of the reasons for the decision.

If, as a result of the hearing, the Institute decides that the information in the files is inaccurate, misleading, or otherwise in violation of the privacy or other rights of the student, the Institute shall amend the records accordingly and so inform the student in writing. However, if, as a result of the hearing, the Institute decides that the information is not inaccurate, misleading, or otherwise in violation of the privacy or other rights of a student, it shall inform the student of the right to place in the records a statement commenting on the information in the records and/or setting forth any reasons for disagreeing with the decision of the Institute.

4. The Institute considers the following to be directory information: student’s name, address, telephone listing, date and place of birth, major field of study, participation in officially recognized activities and sports, weight and height of members of athletic teams, dates of attendance, degrees and awards received, thesis title, home town, and the most recent educational agency or institution attended by the student. Directory information is made generally available to requestors. Any student may, however, have part or all of this information withheld by notifying the Registrar in writing no later than 30 days after the commencement of classes in the academic year. That information will then be withheld for the balance of that academic year. If the information is to be withheld in subsequent years, new requests must be filed.

5. No student can be required, nor will be asked, to waive rights under Part 99 of Title 34 of the Code of Federal Regulations. However, a student may voluntarily waive right of access to confidential statements made by third parties respecting admission to educational agencies or institutions, applications for employment, or the receipt of an honor or honorary recognition. In case of waiver, the confidential statements will be used solely for the purposes for which they were specifically intended, and the student will, upon request, be notified of the names of all persons making such confidential statements. If a student should desire to so waive right of access, so as to facilitate the obtaining of a confidential statement of this nature, he or she should contact the Registrar for the necessary form.

6. The Institute reserves the right to destroy from time to time any and all records that it maintains on a student, except to the extent that the law requires their maintenance for a longer period of time. However, records, access to which has been requested under Part 99 of Title 34 of the Code of Federal Regulations, are not allowed to be and will not be destroyed until such access has been granted, or a decision to deny such access has been arrived at as described in (3) of this section.

7. The Institute also maintains for each student a medical record showing history, treatment, etc. These records are maintained at the Young Health Center and, while specifically excluded from Public Law 90-247, are still available for inspection by the individual student on request.
Academic Records of Veterans

The Institute maintains a written record of a student's previous education and training. This is part of the student's permanent record card, and included on this is a summary of any prior college-level education. A true copy of a transcript of college-level work at other institutions is maintained as part of the student's record. The amount of credit granted for prior training is indicated on the student's permanent record card and, where this results in the shortening of a required training period in the case of a veteran, the Veterans Administration is notified.

The Institute's permanent record card for each student shows the progress that student is making at the Institute. There is a record of each course enrolled in each term with a grade recorded for the course. The total number of units earned is kept so that the record will show continued progress toward the degree sought. The final grades are recorded at the end of each term of the school year, and the accumulative permanent record has on it grades for all subjects undertaken at the Institute. No student is allowed to enroll repeatedly in a course and withdraw without penalty. If a student enrolls in a course, he or she is expected to complete the course or receive a failing grade unless he or she withdraws from the course prior to the deadline for dropping courses. All students must maintain a minimum load equivalent to 12 quarter hours each term; no student may drop courses that would bring him or her below this level of effort. At any time when the student falls below the required number of units, fails to receive satisfactory grades, or engages in unsatisfactory conduct, the record is marked to indicate this, and the student is forbidden to continue at the Institute.

The grading system of the Institute is A (excellent) to F (failed). An A is equivalent to 4.0 and an F to 0.0. A student must maintain a grade point average of 1.4 in any term and at least 1.9 in each full year in order to be able to enroll in a successive term at the Institute. A minimum 1.9 overall grade point average is required for graduation. A student who drops below the required averages (1.4 for a given term or 1.9 for the year) is dismissed and must petition for reinstatement. A student may be reinstated by the Undergraduate Academic Standards and Honors Committee and, if so, is required to earn a 1.9 GPA during the immediately following term. The Veterans Administration is notified when a veteran is academically dismissed or is making unsatisfactory progress toward a degree. Since the Institute requires all students to carry a minimum full load that corresponds to 12 quarter hours each term, any student who finishes a term in good standing is considered to have made satisfactory progress. If a student withdraws from a course before the final date for withdrawal, no grade is given in that course. The time spent in school counts, however, and the student may be considered to have not made satisfactory progress in the event of such withdrawal.

In order to withdraw from any course a student must submit a withdrawal card. This shows the date on which the student last was in official attendance in that course. If a student re-enrolls in that course and successfully completes it, that fact will be noted on his or her permanent record card. Since the Institute does not offer resident courses not leading to a standard college degree, no attendance records are maintained for such courses.
AERONAUTICS

The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical Laboratories, widely known as GALCIT. In this complex are housed the Applied Mathematics group, the Jet Propulsion Center, and the Hydrodynamics Laboratories, as well as the various disciplines making up the broad field known as Aeronautics.

Areas of Research
Aeronautics has evolved at Caltech from a field of basic research and engineering, primarily related to the development of the airplane, into a wide discipline encompassing a broad spectrum of basic as well as applied problems in fluid dynamics and structural mechanics. Research at GALCIT has traditionally pioneered exploration of new areas that have anticipated subsequent technological demands. Thus, for example, research in transonic, supersonic and hypersonic fluid mechanics began before the advent of supersonic flight and the development of vehicles re-entering the earth’s atmosphere. Research in plasma dynamics began before the importance of controlled fusion was recognized; in turbulent mixing before the appearance of the chemical laser, the need for optimizing combustion and the drive to reduce jet noise. Similarly, research on problems of shell structures began before their widespread use in aircraft, and undoubtedly stimulated this development. Work in fracture mechanics of polymers was initiated before composite materials became an important component of aerospace structures. This tradition places a high premium on an in-depth understanding of fields both closely and remotely related to the behavior of fluids and structures such as physics, applied mathematics, geophysics, materials science, electronics, and even astrophysics. As a consequence, GALCIT students are known and sought after for their broad yet intense education and because they are capable of dealing with new and challenging problems.

Major areas of study and research currently pursued by Aeronautics students at Caltech are briefly described below.

Physics of Fluids. Fluid dynamics as a discipline is as much a part of physics as of engineering. Physics of fluids refers to research in areas closer to applied physics than to direct technical applications. Present active research includes studies in gasdynamics, diffraction of shock waves, shock-induced Rayleigh-Taylor instability, and transient supersonic jets; work on the flow properties of liquid helium II, turbulence and shock wave propagation in the superfluid; the development of laser scattering diagnostic techniques for fluid-flow measurements; and
studies of two-phase flows, vapor explosions, and dusty gases in transient flows and explosive volcanoes. Students in applied physics are also able to pursue various problems in the physics of fluids under the supervision of members of the Aeronautics faculty.

Technical Fluid Mechanics. Research at GALCIT includes a long history of work on subsonic and supersonic turbulent boundary layers, shear flows, and separated flows. These areas are related to a variety of modern technological problems and, in addition, to the traditional aeronautical problems of drag, wing stall, and jet mixing. Additional areas of activity include the effects of winds on buildings, aerodynamics of automobiles and trucks, turbulent mixing in chemical lasers, turbulent combustion, laminar diffusion flames and their instabilities, fires in buildings (turbulent mixing and flow fields driven by fire-produced buoyancy), hydrodynamics and two-phase flows, and active and passive control of transition and turbulence.

Structural Mechanics. Structural mechanics research involves both the static and dynamic behavior of structures. Included are buckling in both the elastic and plastic range of the material. Fluid structure interaction under dynamic loading is studied experimentally and analytically. Other subjects include the failure of composite materials and the behavior of large space structures.

Mechanics of Fracture. An active effort is being made to understand the mechanisms of fracture. Aspects that are studied include quasi-static and dynamic crack growth phenomena in brittle solids, polymers and advanced composites, fatigue and failure of adhesive bonds. A research area adjunct to fracture studies in polymers is the non-linearly viscoelastic behavior of polymeric solids.

Aeronautical Engineering and Propulsion. Research work in the field of aeronautics includes studies of airplane trailing vortices, separated flows at high angles of attack, control theory, and space mission analysis. Research work in the propulsion area has centered on the fluid dynamic problems associated with gas turbine components (principally axial flow compressors and combustion chambers), rocket engine combustion chambers, and ramjet engines.

Aero-Acoustics. A number of topics in the broad field of aero-acoustics are actively under study at GALCIT. They include jet noise, combustion noise, and nonlinear acoustics and hydro-acoustics. A particularly interesting problem is the generation of combustion-induced organ pipe oscillations in large burners of electric generating plants.

The Daniel and Florence Guggenheim Jet Propulsion Center conducts a large portion of its instruction and research in close cooperation with the aeronautics group. The fields of study covered are described under the separate heading of Jet Propulsion. Students in aeronautics are able to pursue studies and research leading to graduate degrees in aeronautics utilizing facilities, courses, and research supervision by the faculty of the Jet Propulsion Center.

Physical Facilities
The Graduate Aeronautical Laboratories contain a diversity of experimental facilities in support of the above programs. Low-speed wind tunnels include the Merrill Wind Tunnel, which can be operated by a single student, the GALCIT 10-ft. Wind Tunnel, and many special-purpose flow facilities. Both a High-Speed Water Tunnel (100 feet per second) and a Free-Surface Water Tunnel are housed in the Hydrodynamics Laboratory; they are used for studies of acoustics, laminar-turbulent flow transition, and the structure of turbulent shear flows. A smaller water channel for studies of wave motion and flow visualization is also available. For investigations of high-speed flows there is a supersonic wind tunnel with two different working sections. Shock tubes, plasma tunnels, and other special facilities are available for the study of extreme temperatures, shock waves, acoustics, and cryogenic flow.

The solid mechanics laboratories contain standard as well as special testing machines for research in aircraft and spacecraft structures and materials under static and dynamic loads. Fatigue machines and photoelastic equipment are available, as well as special apparatus, includ-
ing laser equipment and a line of high-speed cameras offering recording at rates from still to 250,000 frames per second, for study of elastic waves, dynamic buckling, and the mechanics of static and dynamic fracture.

State-of-the-art electronic instrumentation is being developed and used. Computer systems for real-time control of experiments, for data acquisition, processing and storage, and for digital image processing are used extensively.

APPLIED MATHEMATICS

The broad aim of the applied mathematics program at Caltech is to stimulate and explore the interplay between mathematics and the various non-mathematical disciplines. On the one hand an active group of pure mathematicians devote themselves mainly to the more abstract and foundational branches of mathematics, and on the other hand faculty members from other disciplines follow a wide diversity of research in physics, engineering, biology, chemistry, geophysics, and economics. Ideas travel in both directions, bringing mathematical tools to bear for synthesis and solution of practical problems in various fields and, of equal importance, generating new mathematical ideas and points of view that arise from physical problems. The research and educational program reflects this aim in its organization.

This program is a joint effort of the Division of Physics, Mathematics and Astronomy and the Division of Engineering and Applied Science. Students majoring in applied mathematics are enrolled in either division and the professors of applied mathematics are also in these two divisions. Further, professors from other divisions supervise research and offer courses of special interest. Close contact is maintained with experimental programs in fluid and solid mechanics. Special notice should be taken of the computer science group at Caltech, which provides the chance for practical experience with the most modern computers and further fields of research. The applied mathematics group has access to the world’s most powerful computers, and has a variety of its own computers, graphics terminals, and other equipment. Library facilities are excellent, comprising all the journals, a complete general library, and a special research library in applied mathematics.

The present graduate program is one leading mainly to the Ph.D. degree. The curriculum consists of two types of courses: those that survey the methods used in applied mathematics, and those that have a special applied mathematics flavor and represent active research interests of the members of the faculty. Among the latter have been wave motion, perturbation theory, fluid mechanics, stochastic processes, linear programming, numerical analysis, computational fluid dynamics, group theory applied to physics, and advanced elasticity. By study outside of applied mathematics each student is expected to become competent in some special physical or non-mathematical field. In this way, subjects for research appear naturally, and a broad educational program is provided.

The present group primarily interested in applied mathematics consists of approximately 25 students and 8 professors. Also, each year many distinguished visitors either come to present lectures or remain in residence for large parts of the academic year.

Areas of Research

Research is particularly strong in theoretical and computational fluid mechanics, elasticity, dynamics, numerical analysis, ordinary and partial differential equations, integral equations, linear and nonlinear wave propagation, bifurcation theory, perturbation and asymptotic methods, stability theory, variational methods, applications of group theory, large-scale scientific computing, and related branches of analysis.
APPLIED MECHANICS

Areas of Research
Advanced instruction and research leading to degrees of Master of Science and Doctor of Philosophy in Applied Mechanics are offered in such fields as elasticity, plasticity, wave propagation in solid and fluid media, fluid mechanics, mechanics of quasi-static and dynamic fracture, structural mechanics and stability, dynamics and mechanical vibrations, finite element analysis, stability and control, and certain areas in the fields of propulsion, heat transfer, and generation of energy.

Research studies in these areas that illustrate current interests include: linear and nonlinear vibrations, structural dynamics and design for earthquake and wind loads, linear and nonlinear problems in static and dynamic elasticity, plasticity and viscoelasticity, wave propagation in elastic and viscoelastic media, mechanics of time-dependent fracture, buckling of shell structures, mechanics of fluid-structure interaction, diffraction of elastic waves by cavities and inclusions, boundary layer problems in plates and shells, stratified flow and unsteady cavity flow.

Physical Facilities
In addition to the regular facilities at the Division of Engineering and Applied Science, such as extensive computing facilities, and the special wind-and-water tunnel facilities for studies in solid and fluid mechanics of the Graduate Aeronautical Laboratories, certain special facilities have grown up in connection with applied mechanics activities. The vibration laboratory is equipped with a good selection of modern laboratory apparatus and instrumentation for experimental research in shock and vibration, and the earthquake engineering research laboratory contains specialized equipment for vibration tests of buildings, dams, and other structures, and for the recording and analysis of strong-motion earthquakes. The solid mechanics laboratory located in the Graduate Aeronautical Laboratories contains extensive testing equipment for the study of fracture and structural failure. Another specialized laboratory is the heat transfer laboratory, which contains a forced convection heat transfer loop and facilities for studying the performance of high-speed pumps.

APPLIED PHYSICS

An interdivisional program in applied physics for both undergraduate and graduate study was initiated in 1970. Like applied mathematics, applied physics at Caltech is in a fortunate position: The comparatively small size of Caltech coupled with great strength in both the pure sciences and engineering makes it possible to have a faculty with a wide interest in the application of modern physics to technology, without losing close interaction with “pure subjects.” At present, members of four divisions—Engineering and Applied Science; Physics, Mathematics and Astronomy; Chemistry and Chemical Engineering; and Geological and Planetary Sciences—participate in instruction and research in applied physics leading to a B.S. degree as well as to M.S. and Ph.D. degrees.

The program is designed for students who are deeply interested in physics but at the same time are fascinated by the interrelation of physical problems and technological development, i.e., students who like to work with problems in physics that originate from or result in applications. A sharp division between “pure” and “applied” physics or between applied physics and engineering cannot be drawn, and the option of applied physics should be considered a bridge rather than a divider. A student is expected to have a thorough background in physics, as well as a broad background in related fields of technology.
Members of the faculty involved with the educational and research activities in applied physics remain members of their respective divisions. Graduate students who choose the applied physics option similarly are admitted to one of the cooperating divisions.

In setting up the undergraduate curriculum every effort has been made to facilitate the transition into and out of the option. In general an undergraduate student in applied physics will devote somewhat more time to the study of matter in bulk than will the "pure" physicist. Since it is expected that a comparatively large proportion of the student body will be interested in experimental research, a special effort has been made to set up challenging laboratory courses and to provide an opportunity to do a senior thesis.

For first-year graduate students and adventurous seniors, a set of basic courses covering broad areas in applied physics is available, supplemented by a set of more specialized courses often closely related to a specific research effort.

Areas of Research and Physical Facilities
Research activities cover a broad spectrum, ranging from cryogenics to plasmas, from rarefied gas flow to high pressures and shock waves in solids, from neutron transport to planetary science. There is research in progress in the physics of solids, including solid-state electronics, ferromagnetic materials, quantum electronics, and superconductivity; in the physics of fluids, including plasmas and magnetohydrodynamics, liquids and superfluids; and in the physics of electromagnetic radiation, including linear and nonlinear laser optics and electromagnetic theory. The research program has been enriched recently by the construction of the 40,000-sq.-ft. Thomas J. Watson, Sr., Laboratories of Applied Physics. This attractive building contains offices around a central courtyard and laboratories in the balance of the two floors. Conference rooms and a large classroom occupy the single-story entrance wing.

ASTRONOMY
The astronomical observatories at Palomar, Mount Wilson, Las Campanas, and Big Bear and the Owens Valley Radio Observatory together constitute a unique and unprecedented concentration of scientific facilities in astronomy. In 1948, the California Institute of Technology and the Carnegie Institution of Washington recognized the advantages in the creation of a great astronomical center in which scientific programs could be pursued under favorable circumstances, with a variety of instruments, which would also draw young men and women of ability to graduate studies, where they might familiarize themselves with powerful tools of exploration. Consequently, for more than 30 years the two institutions together have shared their facilities in optical astronomy—the Palomar Observatory and the Big Bear Solar Observatory, which are operated by Caltech, and the Mount Wilson and Las Campanas Observatories, which are operated by the Carnegie Institution. Within this collaborative arrangement, equipment and facilities are made available for the astronomical investigations of the Caltech and Carnegie astronomers, research fellows, and students. Academic activities as well as the operation of the Owens Valley Radio Observatory are the responsibility of the Institute's Division of Physics, Mathematics and Astronomy. The division also conducts work in theoretical aspects of astrophysics and in laboratory astrophysics.

The radio astronomy group works in close collaboration with the optical astronomers in Pasadena; the program of graduate study in the two fields is essentially the same, except for specialized advanced courses. There also is close cooperation between these groups and the students and astronomers interested in planetary physics and space science.

As a result of the cooperation possible over a broad range of astronomy and theoretical astrophysics, unsurpassed opportunities exist at Caltech for advanced study and research. Courses of study depend upon a broad and thorough preparation in physics, mathematics, and other relevant subjects; the faculty offers advanced instruction in astronomy, astrophysics, solar physics, planetary physics, astronomical instrumentation, and observations with large telescopes.
Areas of Research

Both observational and theoretical astrophysics are actively pursued. Topics of current interest in optical and infrared astronomy include observational cosmology; chemical abundances in normal and peculiar stars; spectroscopic and spectrophotometric studies of quasars and galaxies; studies of white dwarfs and other stars near the end-point of evolution; studies of the dynamics and composition of galaxies and clusters, nebulae and interstellar matter; statistical studies pertinent to the structure of the galaxy; and the physics of solar phenomena.

Active research in planetary and solar system astronomy is pursued in cooperation with groups in the Division of Geological and Planetary Sciences.

The research in radio astronomy covers the physical properties of galactic and extragalactic radio sources, including quasars, radio galaxies, stellar envelopes, and the planets. The properties of the interstellar medium in our own and other nearby galaxies are investigated in spectroscopic studies of various atomic and molecular spectral lines.

Theoretical astrophysics is pursued not only in the astronomy department, but in physics and geology as well, and at Caltech includes work on supernovae, pulsars, stellar structure and evolution, stellar and planetary atmospheres, interstellar and intergalactic matter, the physics of radio sources, nucleosynthesis, relativity, and cosmology.

Physical Facilities

The Rockefeller Boards provided in 1928 for the construction by the Institute of an astronomical observatory on Palomar Mountain, equipped with a 200-inch reflecting telescope, 48-inch and 18-inch Schmidt wide-angle telescopes, and other auxiliary instruments, together with an astrophysical laboratory on the Institute campus. Graduate student thesis research may be conducted at any of these facilities or at the Mount Wilson and Las Campanas Observatories, which are operated by the Carnegie Institution of Washington. The great light-collecting power of the 200-inch Hale Telescope permits advanced studies of the size, structure, and motions of the stars of the galactic system; of the distance, motion, and nature of remote galaxies and quasi-stellar radio sources; and of many phenomena bearing directly on the constitution of matter. The 48-inch Schmidt has made possible a complete survey of the northern sky, as well as an attack upon such problems as the structure of clusters of galaxies, the luminosity function of galaxies, extended gaseous nebulae, and the stellar content of the Milky Way. These two unique instruments on Palomar Mountain supplement each other as well as the telescopes on Mount Wilson. The 200-inch Hale Telescope reaches as far as possible into space in a given direction, while the 48-inch Schmidt photographs upon a single plate an entire cluster of distant galaxies or a star cloud in our own Galaxy. At Palomar a 60-inch telescope owned jointly by Caltech and CTW was completed in 1969. It is used for photometry, spectroscopy, and photography. The Palomar telescopes have modern electronic detectors, some of which are constructed in Robinson Laboratory.

A multipurpose solar equatorial telescope has been installed at an observing station at Big Bear Lake. The unique atmospheric conditions in this area make possible investigations of the fine structure of the solar atmosphere. Emphasis is on high-resolution spectroscopy, magnetography, and cinematography. A major new effort is the study of solar oscillations.

Special apparatus for detection and measurement of radiation in the far infrared has been fitted to various telescopes for the study of planets, cool stars and dust clouds, as well as quasars and the energetic nuclei of galaxies.

The Owens Valley Radio Observatory is in a radio-quiet location 400 km north of Pasadena near Big Pine, California. Facilities include a 40-m paraboloid used in conjunction with other radio telescopes around the world in VLBI (very-long-baseline interferometry) studies of compact sources, at angular resolution higher than one millisecond of arc. The 40-m telescope is also used alone, in spectroscopic and continuum studies of radio sources. An interferometer comprising three moveable 10-m paraboloids operating to wavelengths as short as 1.3 mm is
now nearing completion. This system will be used in continuum and spectroscopic studies of interstellar material, stellar envelopes, and other objects. The OVRO also contains an interferometer composed of two 27-m paraboloids operating at centimeter wavelengths, and used mainly for solar observations.

These antennas are complemented by a wide range of low-noise receivers, spectrographs, and various sophisticated data recording systems to permit a very wide range of studies of continuum and line radiation from solar system, galactic, and extragalactic radio sources over the range from meter to millimeter wavelengths.

Robinson Laboratory on campus houses the Astronomy Data Processing Facility. This contains two VAX 11/780 computers and a multi-baseline processor for VLBI observations. The VLBI processor and one of the computers are operated jointly with the Jet Propulsion Laboratory.

BIOLOGY

Recent, dramatic progress in our understanding of the nature of life has revolutionized the science of biology. Applications of the methods, concepts, and approaches of modern mathematics, physics, chemistry, and information science are providing deep insight into basic biological problems such as the manner in which genes and viruses multiply themselves; the control of gene expression in cells; the regulation of cellular activity; the mechanisms of growth and development; and the nature and interactions of nerve activity, brain function, and behavior. Qualified experimental biologists will find opportunities for challenging work in basic research as well as in medicine and in biotechnology.

Because of the eminent position of the California Institute of Technology in both the physical and biological sciences and of the current expansion of our program in neurobiology, students at the Institute have an unusual opportunity to be introduced to modern biology.

Areas of Research

Research (and graduate work leading to the Ph.D. degree) is chiefly in the following fields: biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, neurobiology, neurophysiology, psychobiology, and virology. Biochemical methodology plays an important role in many of these fields, and there is extensive interaction with related programs in chemical biology within the Division of Chemistry and Chemical Engineering.

The programs in cell and developmental biology are based upon approaches derived from biochemistry, biophysics, and genetics that offer new possibilities for expanded insight into long-standing problems. Some of this research involves the use of advanced physical techniques; such work benefits from close ties between Caltech's biologists and members of the Division of Physics, Mathematics and Astronomy.

Neurobiology and behavioral biology are receiving increasing emphasis within the Division of Biology. A comprehensive program of research instruction has been formulated to span the disciplines from neuron physiology to the study of animal and human behavior.

Physical Facilities

The campus biological laboratories are housed in five buildings: the William G. Kerckhoff Laboratories of the Biological Sciences, the Gordon A. Alles Laboratory for Molecular Biology, the Norman W. Church Laboratory for Chemical Biology, the Mabel and Arnold Beckman Laboratories of Behavioral Biology, and the Braun Laboratories in Memory of Carl F and Winifred H Braun. They contain classrooms and undergraduate laboratories equipped for biological, biochemical, biophysical, physiological, and psychological research at the graduate and doctoral levels. Special facilities include rooms for the culturing of the Institute's valuable collection of mutant types of Drosophila, scanning and transmission electron microscopes,
containment facilities for recombinant DNA research, and a state-of-the-art microchemical facility for sequencing and synthesizing biologically important macromolecules.

About 50 miles from Pasadena, at Corona del Mar, is the William G. Kerckhoff Marine Laboratory. This laboratory provides facilities for research in cellular and molecular biology using marine animals and for collecting and maintaining these animals.

CHEMICAL ENGINEERING

The research and teaching interests of the chemical engineering faculty are directed toward the study of the fundamentals of chemical and transport principles and their application to the analysis and synthesis of complex chemical systems. These interests lead the faculty and students into problems as diverse as the chemical processes occurring in polluted atmospheres, the chemistry of coal conversion to synthetic fuels, the fluid mechanics of suspensions and non-Newtonian fluids, surface chemistry, the fundamentals of heterogeneous catalysis, their application in chemical and petrochemical processes and in the development of synthetic fuels, the mechanical properties of polymers, the control of chemical and biochemical reactors, and biotechnology and genetic engineering.

Areas of Research

The chemical engineering program is well equipped for instruction and research leading to the degrees of Master of Science and Doctor of Philosophy in Chemical Engineering. Major areas in which graduate research is currently concentrated include air pollution, aerosol dynamics, biochemical and biomedical engineering, fluid mechanics, polymers, coal conversion and combustion, desulfurization of fuels, heterogeneous catalysis and surface chemistry, process control and estimation theory, and the physics and chemistry of two-phase systems. In particular, research includes:

1. Biochemical engineering: Dynamics of microbial populations in chemical reactors. Enzyme catalysis.
2. Biomedical engineering: Transport in artificial organs, and the cardiovascular system.
4. Control: Modern control methods for chemical reactors and other distributed parameter systems. Interfacing process design and control systems design. Optimal control and estimation theory with application to petroleum reservoir engineering.

Physical Facilities

Chemical engineering laboratories, housed in the Eudora Hull Spalding Laboratory of Engineering, are particularly well equipped both for instruction and for research.

CHEMISTRY

Caltech’s chemistry program offers exciting opportunities for study and research in many areas of chemical science. Eminent faculty and strong programs are available in structural chemistry, chemical dynamics and reaction mechanisms, synthesis, theoretical chemistry, biochemistry, and biophysical chemistry. Active interaction exists between chemistry and other disciplines at Caltech, especially applied physics, biology, chemical engineering, and geology. There is strong interest on the part of the faculty in both teaching and research, and the undergraduate and graduate programs are designed to encourage the greatest possible amount of freedom, creativity, and flexibility.

Areas of Research

Caltech has long had a reputation for excellence in chemistry in the areas of molecular structure and the nature of chemical bonding. This tradition is continuing. Work in structural chemistry ranges from x-ray crystallographic structural determinations of covalent compounds, transition metal complexes, intermetallic compounds, proteins and nucleic acids, to investigations of the stereochemistry of organic molecules, conformation of oligopeptides and enzymes, and dynamical structures of lipid bilayers by NMR spectroscopy. Active programs in other areas of spectroscopy include laser Raman, electron impact and photoelectron spectroscopy, and mass spectroscopy.

Much of the current research in chemistry is directed at finding out how chemical reactions work in both chemical and biological systems. Chemical physics programs in this area include studies of gas phase reactions and processes using ion cyclotron resonance and molecular beam techniques. In organic chemistry, dynamic research focuses on the behavior of very reactive intermediates both in the gas phase and in solution. Catalysis by transition metals is receiving emphasis among researchers in the inorganic and organometallic areas. Research in progress includes mechanisms of electrode surface chemistry and electrocatalysis, uses of transition metal complexes as homogeneous and heterogeneous catalysts, solar energy conversion and storage, and nitrogen fixation. Reactions of molecules on surfaces are receiving increased attention. A number of biochemical projects are aimed at obtaining detailed information about reactions catalyzed by enzymes, including electron transfer reactions promoted by metalloproteins.
A significant amount of synthetic chemistry is involved in many of the above projects, but in addition several groups have chemical synthesis as a primary goal of their research. These include projects aimed at the synthesis of natural products and of molecules required for the testing of structural theories. Efforts are also directed at the development of novel and synthetically useful chemical transformations.

Research in biochemistry and molecular biology includes studies of the mechanisms of enzyme catalysis and allosteric transitions, interactions between proteins and nucleic acids, structural elucidations of nucleic acids, studies of membrane structure and function, protein-lipid interactions, and mechanisms of ion and electron transport in biological membranes. Other areas receiving emphasis include the chemistry of membrane proteins, glycoproteins and specific receptors for a variety of external stimuli and recognition processes, the fundamental process of photosynthesis, immunology and neurochemistry. Many of these studies make use of recombinant DNA and cloning to probe fundamental biochemical processes.

Current work in energy-related research comprises studies of isotope separation by laser and magnetic means, photochemistry, catalysis, electrochemistry, and molecular processes for energy production, storage and transmission.

Our theoretical chemistry program encompasses work on the applications of quantum mechanics to the study of electronic states of molecules and solids. The emphasis of the work here is on excited states and reactions of molecules. Theoretical techniques are also being developed toward facilitating detailed understanding of reacting systems and energy randomization processes within molecules.

Physical Facilities
The laboratories of chemistry consist of five units providing space for about 250 graduate students and postdoctoral research fellows. Crellin and Gates laboratories house several research groups, the divisional VAX 11/780 computer, the Southern California Regional High Field NMR facility, and the divisional administrative offices. The Norman W. Church Laboratory for Chemical Biology is shared with the Division of Biology, as are the Braun Laboratories in Memory of Carl F and Winifred H Braun. The Arthur Amos Noyes Laboratory of Chemical Physics, one of the major research facilities, is adjoined by the Clifford S. and Ruth A. Mead Memorial Undergraduate Chemistry Laboratory.

CIVIL ENGINEERING

Civil engineering includes the research, development, planning, design, and construction associated with urban development, water supply, energy generation and transmission, water treatment and disposal, and transportation. Dealing with the function and safety of such public facilities as buildings, bridges, pipelines, dams, rivers, power plants, and harbors, it is concerned with the protection of the public against natural hazards of earthquakes, winds, floods, landslides, water waves, and fires.

Recent advances in technology and the escalation of urban problems have broadened the applications of civil engineering, increasing the scope of research. New problems have presented special challenges to the civil engineer well trained in the fundamentals of his or her profession. For this reason, in the advanced study of civil engineering at the Institute, the application of basic scientific principles and mathematics is emphasized for the solution of engineering problems.

Areas of Research
Graduate work leading to advanced degrees lies chiefly in the following fields: structural engineering and applied mechanics; earthquake engineering; soil mechanics and foundation engineering; finite element analysis; hydraulics, which includes hydrodynamics, hydraulic
engineering, hydrology and coastal engineering; and environmental engineering (see also Environmental Engineering Science). In the past few years, graduate students and members of the staff have pursued a variety of research programs, including analysis of structures subjected to earthquakes and other dynamic loadings; the use of finite element methods for structural analysis; soil deformation under stress; behavior of soil models in a centrifuge; investigation of laws of sediment transportation and dispersion in bodies of water; turbulent mixing in density stratified flows; wave-induced harbor oscillations; tsunamis; design criteria for various hydraulic structures; aerosol filtration; radioactive waste disposal; water reclamation; and ocean outfalls for thermal discharges or sewage effluents.

Students whose interests are in environmental problems may enroll for graduate degrees in either civil engineering or environmental engineering science.

Physical Facilities
Civil engineering activities are housed in two buildings, the Franklin Thomas Laboratory, which contains the soil mechanics laboratory and centrifuge, the earthquake engineering laboratory, and the vibration laboratory, and the W. M. Keck Engineering Laboratories, which contain the laboratory of hydraulics and water resources and the environmental engineering science laboratories.

Excellent computing facilities are available through the campus computing network and in the specialized computing centers of various research groups.

COMPUTER SCIENCE

Although computing is a ubiquitous tool in all areas of study and research at Caltech, computer science is directed at the theory and technology of computation itself. It is the science of information, and of the structures that communicate, store, and process information. Whether these structures are expressed in hardware, and called machines, in software, and called programs, or in nature or society, the fundamental concepts are similar. The student of computer science at Caltech does not specialize along traditional lines that divide hardware and software, systems and applications, or theory and experiment. Rather, in our courses and research we take a unified approach to the design and analysis of computing structures.

Unlike the physical and natural sciences, the objects of study by computer scientists are artificial systems, that is, structures that are purposefully designed. Thus design assumes a role equal in importance to analysis, and is a term found frequently in our curriculum and research. Design is a creative activity, but also a formal or at least systematic one. The management of the great complexity of useful systems requires that one represent computations in a way that is amenable to mathematical treatment, as well as to implementation.

Areas of Research
Research and advanced courses leading to MS and PhD degrees in computer science are concentrated in the following areas: VLSI systems; concurrent computation; physics of computation; theory of computation; information theory; high-level programming languages; semantics; programming methods and correctness; the man-machine interface, including natural language; signal and image processing; graphics; and computer-aided design. Research projects frequently involve work in several of these areas, with both theoretical and experimental aspects, as well as connections with fields such as mathematics, physics, biology, linguistics, and electrical engineering.

Students have unusual opportunities at Caltech for research in very large scale integrated (VLSI) systems. VLSI is not only a powerful technology for implementing computing systems, but also an elegant medium for studying computing structures and for understanding their connection to the physical world. VLSI research at Caltech has many components, including
formal design methods and theory, computer-aided design and analysis tools, and experiments with high performance VLSI architectures.

Caltech's computer science department is unique in that from our recent beginnings it was realized that programming and VLSI design should be treated as one science: the science of designing concurrent computing structures. Because of their great complexity, one cannot hope to construct reliable concurrent systems without rigorous design methods for deriving their implementation and proving their correctness. In our research in algorithms, programming notations, and semantics for concurrent computations, we are considering essentially two types of implementations: concurrent programs that run on large ensembles of communicating general purpose automata, and direct implementation in the VLSI medium. The scale and physical characteristics of either of these media pose many interesting problems of sequencing and synchronization, which may be addressed by design disciplines such as "self-timed" systems, in which sequencing does not depend on global timing assumption.

Computational complexity and information theory are two basic fields of research that are growing closer. The relation between different measures of complexity, the universal bounds on these measures, and the characterization of sequential and concurrent computing in terms of the combinatorial structure of data, are active fields of research.

Research in software system architectures for the support of the non-computer professional is a continuing part of computer science at Caltech. The primary language of these systems is natural English, with emphasis on the users' abilities to tailor their systems to their own interests. This research includes strong experimental components, using real life task environments.

Research in computer graphics and in digital signal and image processing is a recent and rapidly developing area of emphasis. The graphics group is conducting research in several areas, including advanced image synthesis, computer animation, CAD/CAM, and the simulation of natural phenomena. The graphics group is also investigating the design of specialized hardware to perform large-scale computations in graphics.

Students have the chance to use a wide variety of equipment, from the relatively slow personal computer to the new, powerful concurrent processors.
Physical Facilities Most of the computer science department’s extensive computing facilities are interconnected by a department ETHERNET that includes gateways to the ARPAnet and UUCP network. All department researchers and staff have terminals or personal computers. Many of the department computers, including four VAXes, a SUN file server, and numerous SUN workstations, run Unix. Another VAX runs VMS. An IBM 4341 with an FPS 160 array processor is used for many demanding computations. There are numerous smaller machines such as HP 9826s, 9836s, and 9845s, and IBM PCs. Our rapidly growing graphics laboratory includes an Evans and Sutherland picture system, Grinell image system on a PDP11, Metheus display, several full-color raster and vector display controllers, and color displays on many of the workstations and personal computers. The Cosmic Cube, an experimental 64-element concurrent computer, is accessible on the department network for system and application experiments. Printing and color plotting are concentrated on VAX servers. Our digital systems laboratory is equipped with complete facilities for construction and testing of experimental systems, including probing, testing, and packaging chips.

ELECTRICAL ENGINEERING

Electrical engineering at the Institute comprises physical electronics, electronic circuits, and communication. Closely allied with the computer science program and the applied physics option, it offers students the opportunity for study in the more technological aspects of a wide variety of subjects including plasma dynamics, electromagnetic radiation, quantum electronics, modern optics, new solid-state materials and devices, computer systems, control theory, signal processing and information theory. This broad spectrum of subjects complementing the program in electronic circuits and circuit function design provides exceptional and challenging opportunities for both experimental and theoretical work.

Areas of Research and Physical Facilities

Laboratory facilities are available for a wide variety of research activities. At present electrical engineering activities are housed mainly in one building, the Harry G. Steele Laboratory of Electrical Sciences.

Research in the Solid-State Electronics Laboratories extends over a variety of subjects. They range from electrical transport properties of semiconductors to the atom movements occurring at interfaces during semiconductor device construction. Thin films and near-surface layers, in particular, are investigated from an electrical and a metallurgical point of view. Subjects currently under investigation are thin-film reactions, diffusion barriers, amorphous and metastable crystalline films, solid-phase epitaxial regrowth, and ion mixing. Conventional experimental tools are used for experimentation, as well as ion implantation and backscattering spectrometry. The properties, limitations, and ranges of application of these two techniques are the subject of additional investigations performed with a 1 MV tandem Van de Graaff accelerator and a 400 keV ion implantation system in Steele Laboratory.

The Quantum Electronics Laboratory and the Laser Laboratory are engaged in research in the area of generation and control of coherent radiation and in the study of related physical phenomena. Research projects in progress include: generation and control of ultrashort pulses, integrated optoelectronic semiconductor circuits, semiconductor injection lasers, phase conjugate optics and applications of nonlinear optics, laser isotope separation, submillimeter wave techniques, dielectric waveguides, and electron beam devices.

Research in the Magnetics Laboratory involves studies of the dynamic processes in magnetic materials that are important to modern digital computer devices. Ferromagnetic resonance in thin films of ferromagnetic metals and garnets is used to explore surface pinning, magnetic parameter profiles, and energy loss mechanisms.
The **Antenna Laboratory** is a center for the theoretical study of antennas, radio wave propagation, gravitational electrodynamics, particle beams, electric and magnetic suspensions, imaging radar, and lightning.

The **Power Electronics Laboratory** deals with modern problems in analysis, design, and synthesis of electronic circuits as applied to efficient conversion, control, and regulation of electrical energy. The analysis techniques developed are extensively verified by experiments. Projects now in progress include the design and optimization of new optimum topology switching dc-to-dc converters for regulated power supplies, dc-to-ac inverters for motor drives, resonant converters, and basic studies in integrated magnetics. A firm theoretical and experimental foundation is established for investigation in a number of research areas opened up by the current studies.

The **Communication Laboratory** conducts experimental and theoretical work in a wide range of communication problems, including speech, hearing, signal processing, and communication theory. The laboratory has a computer-based experimental facility for acoustic signal processing research, including speech and music waveform analysis and synthesis capabilities. Current research in communication theory deals with several areas of information theory—channel capacity, rate distortion theory, source and channel coding, and the complexity of coding algorithms—as applied to source and channel coding models appropriate to information storage and transmission.

In the **Control Laboratory** theoretical work is conducted in the analysis and design of linear, multivariable, and sampled-data control systems. A computer-aided control system design facility is used to implement new analysis and design techniques and to simulate the performance of control systems. The objective is to develop new methods that enable the design of control systems for increasingly complex aerospace, electrical, mechanical, and chemical systems.

Research in the **Integrated Circuits Laboratory** is oriented toward millimeter and submillimeter-wave integrated circuits. The current projects involve gallium-arsenide and indium-phosphide detector diodes, imaging-antenna arrays, plasma holograms, and millimeter-wave radars and sources.

The **Optical Information Processing Laboratory** is engaged in research to develop optical techniques and devices for information processing. Current areas of interest include acoustooptic devices and systems, photorefractive crystals, detector arrays, synthetic aperture radar, image processing, pattern recognition, and numerical optical computers.

ENGINEERING SCIENCE

Advanced programs of study leading to the degrees of Master of Science and Doctor of Philosophy in Engineering Science are offered by the Division of Engineering and Applied Science. The need for these programs has developed as new frontiers of engineering have advanced to coalesce with major disciplines of pure science. It is possible to pursue programs of graduate study in geophysical fluid mechanics, biofluid mechanics, and bioinformation systems under this option.

Areas of Research

The study program of the engineering science student at Caltech emphasizes physics, applied mathematics, biology, and those scientific disciplines that underlie the current development of technology. Its scope contains a broad range of subjects and continues to evolve and develop. Fields of study may include such topics as fluid mechanics with applications to geophysical and biomechanical problems; physics of fluids, flows with phase transition; dynamics of deformable body; aerosol physics; rheology of biological fluids; transport and exchange in biological system; mechanophysiology of swimming, flying, and animal locomotion; free-surface flows; naval hydrodynamics; jets, cavities and wakes; stratified and rotating flows; tsunami and long waves in the ocean; and physical oceanography.
The Bioinformation Systems program examines information processing in nervous systems, principally the human visual systems. It is also concerned with the development of new forms of man-computer interactions for more complex experimentation and new forms of identification theory and estimation theory for applications to biological systems.

Physical Facilities

Laboratories are equipped with several microscope systems, including a Nomarski interference contrast optic, laser illuminator and fluorescent imaging facilities, high-speed-cinephotomicrographic sets, and an automatic image analyzing unit for biophysical and mechanophysiological studies. It is also equipped with a versatile towing tank and flow measuring devices for investigating free surface flows, propulsive devices, and fluid energy engineering.

ENVIRONMENTAL ENGINEERING SCIENCE

This interdisciplinary graduate program is concerned with protection and control of man’s environment. Research and instruction stress basic studies that aim to answer such questions as: How can we improve the air quality in our urban and industrial centers while maintaining clean air in pristine rural areas? How can we ensure the supply of water of adequate quality and quantity for population centers and industry? How can we safeguard our marine environment from pollution? What are the environmental consequences of alternative modes of energy production?

The academic disciplines of importance to the program in environmental science and technology include: chemistry of natural waters and atmospheres; physics and chemistry of particulates; marine biology and ecology; fluid mechanics of the natural environment; pollutant formation and control in combustion systems; theory and design of complex environmental control systems; environmental modeling and monitoring systems; processes of erosion, coagulation, and sedimentation; and environmental economics. Courses are offered in the environmental engineering science program and in other divisions of the Institute. Faculty members participating in this interdisciplinary program are from the Divisions of Engineering and Applied Science, Chemistry and Chemical Engineering, the Humanities and Social Sciences, and Geological and Planetary Sciences.

Areas of Research

Examples of recent and current research are: theoretical and experimental studies on fates of trace metals in the environment; coagulation of particles in seawater; chemistry of aerosols and rainfall in urban atmospheres; oceanic farming as a potential energy source; kinetics of oxidation processes in aqueous systems; dilution in turbulent shear flows; role of buoyancy forces in turbulent mixing; buoyant discharges in coastal waters; and pollutant formation and control in combustion.

Physical Facilities

The laboratory and experimental work in Environmental Engineering Science is primarily carried out in the W. M. Keck Laboratories of Environmental Health Engineering and Hydraulics and Water Resources. These laboratories include a wide variety of modern instrumentation used in air and water studies.

The Air Quality Laboratory includes a facility located on the roof of Keck that has been specially designed for studies of gaseous and particulate pollutants both in the ambient atmosphere and in smog chambers. Bench and pilot scale combustors are housed in a laboratory devoted to the study of pollutant formation and control in combustion of pulverized coal and other fuels. These laboratories are equipped with a wide variety of instruments for the measurement and chemical analysis of gaseous and particulate pollutants. Instruments are interfaced with a computer data acquisition system for on-line data analysis. Cascade impactors and filter
samplers are available for collecting samples of particulate matter for chemical analysis, while on-line analyzers monitor ozone, nitrogen oxides, sulfur oxides, total sulfur, turbidity, and other ambient parameters continuously. An electron microscope and associated equipment for sample preparation are used for particulate characterization. Meteorological variables including wind speed, relative humidity, and temperature can be measured with instruments on hand.

The Water Quality Laboratory is equipped for trace element analysis (atomic absorption, polarography, electrometry, high performance liquid chromatography, fluorescence spectroscopy, multi-wavelength, multi-component UV-VIS spectroscopy, ion-chromatography), carbon compound identification and determination, radiologic measurements, particle size determinations (conductance, electron microscopy, ultracentrifuge), microbiological measurements, and kinetic measurements (T-jump and stopped-flow kinetics, ion-potentiometry), PDP 11 instrumentation control and analysis.

The Hydraulics and Water Resources Laboratory has a variety of water channels and basins appropriate for waves, sediment, and turbulent diffusion studies. A 40-meter-long glass-walled flume is equipped with dual circulating water systems for density-stratified shear flow studies. Two wave flumes and a wave basin have computer controlled wave generators that can produce waves of specified profiles for special wave studies. Three multi-beam laser-Doppler velocimetry systems are available for velocity measurements in turbulent flow studies or for wave-induced fluid velocity measurements. One of these systems is particularly designed for use in sediment-laden fluid flows. High resolution laser-induced fluorescence is used for simultaneous concentration measurement, and mass flux and dispersion studies. The laser systems can be directly coupled to a DEC 11/60 laboratory computer system that can accomplish real time multi-user processing and experiment control with graphic data presentation by a video graphics terminal and plotter.

The Kerckhoff Marine Laboratory of the Division of Biology, at Corona del Mar, is the base for work in marine ecology and coastal oceanography. Three research vessels are available for field work in neighboring coastal waters. The laboratory is equipped for both kelp reproduction and growth studies, and has an extensive range of diving equipment.

An excellent reference library of a wide variety of current materials in the environmental field is maintained in the Keck reference room.

ENVIRONMENTAL QUALITY LABORATORY

The Environmental Quality Laboratory is a research center for multidisciplinary, policy-oriented studies of problems related to natural resources and environmental quality. The organization consists of faculty, students, staff, and consultants from various disciplines in engineering, natural and social sciences, and law. Since EQL is an independent research unit, faculty and students who participate in EQL activities are also associated with the appropriate academic divisions. EQL research projects, often closely related to individual research activities in the academic divisions, provide the framework for a comprehensive view of alternative solutions of natural resources and environmental control problems.

EQL research includes technical assessments, computer modeling, field measurements, studies of environmental control options, and policy analyses. Areas of current or recent work include:

(a) Air quality, especially in the South Coast Air Basin of California (control of sulfate and nitrate air pollutants; visibility; development of advanced photochemical oxidant air quality models; economic analysis of tradable emissions licenses as an alternative for air pollution regulation; indoor air quality; effects of ozone on art works).

(b) Water resources and water quality (pollution control for coastal waters; sewage sludge disposal; acid rain; water usage by energy industries; sediment management for streams and coastlines in southern California).
(c) Control of hazardous substances and residuals management (toxic substances in air and water; risk assessment; economics of control of environmental carcinogens).

(d) Energy policy, with emphasis on environmental tradeoffs (studies of oil leasing and energy pricing; risk taking by regulated firms in the energy industry; economics of the nuclear power industry and the oil shale industry; residential energy demand).

EQL contributes to the education and training of people to do multidisciplinary environmental and natural resources research by involving predoctoral students, postdoctoral fellows, and visiting faculty members in EQL research projects. Students who desire to work in EQL apply through an appropriate degree program, such as Environmental Engineering Science, Chemical Engineering, Civil Engineering, Mechanical Engineering, Geological Sciences, or Social Science.

GEOLOGICAL AND PLANETARY SCIENCES

In the Division of Geological and Planetary Sciences, faculty members study the earth and planets in order to understand their origin, constitution, and development, and the effect of the resulting physical and chemical environments on the history of life, and on man. The approach to these problems is made with strong reliance on the basic sciences; close contact and interaction with the other divisions of the Institute are cultivated. Programs of study and research are pursued in geology, geobiology, geochemistry, geophysics, and planetary science.

The geographical position and geologic setting of the Institute are favorable for year-round field access to a wide variety of earth problems and materials. Current advances in understanding the dynamic motions of the earth’s crust and the structure of the interior have opened up new opportunities for research into the processes responsible for the earth’s development and activity. Seismic activity in the southern California area presents stimulus and research material for the study of earthquakes, which are of great practical concern and are intimately related to the earth’s development on a global scale. Human records of seismic activity are put into long-term perspective by studies of surface and bedrock geology, which reveal the history of motion on fault systems. Major events in the chemical and physical evolution of the earth can be identified by studying the structure and chemistry of rocks formed or modified in these events, and their absolute chronology can be established by measurements of radioactive isotopes. A wide variety of studies are focused on the origins of igneous and metamorphic rocks in planetary interiors. These include radiogenic and stable isotopes and experimental petrology in addition to field and petrographic studies. The earliest history of the solar system can be approached by studies of lunar samples and meteorites. Further breadth in our understanding of the earth and its place in the cosmos is being gained by comparative study of the other planets—their atmospheres, surfaces, and internal structures.

Physical Facilities

The Arms and Mudd Laboratories are modern five-story buildings well equipped for instruction and laboratory research in geology and geochemistry. They also house the division library; paleontologic, rock, and mineral collections; x-ray and electron microprobe facilities, and other facilities required for comprehensive studies in the earth sciences. Laboratories for trace-element studies and mass spectrometric and counting facilities for isotopic work are available to apply the techniques of nuclear chemistry to problems in the earth sciences. Equipment includes mass spectrometers, ultraclean chemical laboratories, and extensive mineral separation facilities.

Conditions for field study and research in the earth sciences in southern California are excellent. A great variety of rock types, geologic structures, active geologic processes, physiographic forms, and geologic environments exist within convenient reach of the Institute. The relatively mild climate permits field studies throughout the entire year; consequently, year-round field work is an important part of both the educational and research programs.
The Seeley G. Mudd Building of Geophysics and Planetary Science, adjacent to the Arms and Mudd laboratories, provides research and teaching facilities for seismology, experimental geophysics, and planetary science. The Seismological Laboratory of the Institute, with excellent facilities including computers and extensive shops, is also located in the Seeley G. Mudd Building. The Kresge Laboratory is located about three miles west of the campus on crystalline bedrock affording firm foundation for the instrument piers and tunnels. These laboratories, together with a dozen portable and 17 permanent outlying auxiliary stations in southern California, which were built and are maintained with the aid of cooperative companies and organizations, constitute an outstanding center for education and research in seismology. In addition, special facilities are available at the Seismological Laboratory for the study of the behavior of rocks and minerals in the pressure and temperature environments of planetary interiors. These facilities include laboratories for performing ultrasonic and Brillouin scattering measurements of elastic constants of rocks and minerals at high pressures and temperatures. Ultra-high-pressure equations of state and shock effects in minerals are being studied in a shock wave laboratory.

Special, moderate-sized telescopes designed specifically for planetary work are available. A wealth of photographic information on the surfaces of Mars and Mercury is available from the Mariner missions and on the surfaces of Jupiter, Saturn, and their satellites from the Voyager missions. Radio and radar observations of the planets are made at the Owens Valley Radio Observatory and the JPL radar facility.

HUMANITIES

Literature at Caltech spans the major periods of American, English, and European writing. Students can pursue interests ranging from Greek and Latin literature to a survey of drama; from Shakespeare to romantic and modern poetry; from the novel as such to "The Self in Literature."

History at Caltech examines the Western and non-Western past to understand the evolution of culture, science, institutions, and behavior. Courses span the medieval, Renaissance, and modern periods; the United States, Europe, and Asia; and special topics such as religion, radicalism, and demography. In certain courses quantitative methods drawn from the social sciences are applied to historical studies, and Caltech has become a major center of social scientific history, one of the most rapidly developing fields in history today.

Philosophy is concerned with the most fundamental issues involving the nature of human knowledge and judgment. At Caltech particular emphasis is placed on moral and political philosophy, the philosophy of history and the social sciences, and the philosophy of the physical sciences. Members of the faculty have a variety of other interests, including legal philosophy, philosophical problems of policy analysis, the history of philosophy, and the understanding of human action. Courses are given at both introductory and advanced levels.

Areas of Research

The faculty, interested in new approaches to studying literature, engage in active research directed to important issues in the humanities—the relationship between literature and psychology, literature and the pictorial arts, and literature and history.

Research in history covers a wide range of historical fields and specialties, including an examination of the political and economic effects of the disenfranchisement of blacks and poor whites in the American South after reconstruction; Anglo-American law as it applies to women's rights; the social, political, and intellectual development of science, particularly physics and genetics; and the confrontation of Asian and Western cultures.
The proximity of the Henry E. Huntington Library and Art Gallery, one of the great research libraries in the world, offers rich opportunities for staff and students, and a close but informal relationship is maintained between the Institute and visiting scholars at the Library. Art history classes make use of the resources of the Huntington Art Gallery and other museums in the area.

INDEPENDENT STUDIES PROGRAM

Independent Studies is an educational alternative for undergraduates whose goals cannot be satisfied with a normal undergraduate option. The student gathers a three-person faculty committee, representing at least two divisions of the Institute, and chooses his or her own scholastic requirements under this committee's supervision. Approval must also be obtained from the Independent Studies Committee, a standing committee of the faculty. The Independent Studies Program has no facilities of its own. Areas of study and research may be selected from any part of the Institute. (For complete description see page 107.)

MATERIALS SCIENCE

The field of materials science is concerned with the properties and behavior of materials of every kind. This field at the California Institute of Technology is largely restricted to metallic and polymer materials, essentially in the solid state. Faculty specifically in the field of materials science are concerned with the mechanical, physical, and chemical properties of solids. Some members of the faculty in electrical engineering are concerned with the behavior of electric and magnetic materials. Work in the general fields of polymers is carried on by faculty in chemical engineering and aeronautics.

Areas of Research

Current areas of research by the faculty and graduate students in materials science include:

A. Mechanical Properties
 1. Dislocation dynamics
 2. Theoretical and experimental deformation studies
 3. Behavior of metals under dynamic loading

B. Physical Properties
 1. Magnetic properties
 2. Electrical properties
 3. Electron transport properties
 4. Radiation effects

C. Chemical Properties
 1. Kinetics of phase transformations
 2. Diffusion in solids
 3. Metastable phases

D. Structure
 1. Theoretical and experimental transmission electron microscopy and diffraction studies of crystal defects and alloy phases
 2. X-ray studies of crystal defects and alloy phases

Physical Facilities

Research by the faculty and graduate students in materials science is conducted in the W. M. Keck Laboratory of Engineering Materials. Facilities are provided for crystal growth and alloy preparation, strain-free machining, annealing with atmosphere control, rapid quenching, optical
metallography, X-ray diffraction, electron microscopy, and systems to control the application of stress (from load pulses of a few microseconds duration to static loading). Specialized equipment is available for measuring low- and high-temperature specific heat, thermoelectric power, superconductivity, and mechanical properties. Computing facilities are available.

Other facilities in the field of materials science are available in the Spalding Laboratory of Engineering, the Firestone Flight Sciences Laboratory, and the Steele Laboratory of Electrical Sciences.

MATHEMATICS

Areas of Research

Graduate students in mathematics may find opportunities to select areas of research from the following list of fields and subfields of mathematics that are areas of current research interest of the mathematics faculty. *Algebra*: finite group theory, matrix algebra, quadratic forms, universal algebra and lattice theory; *Analysis*: classical real and complex analysis, approximation theory, ordinary and partial differential equations, harmonic analysis, integration theory and functional analysis; *Combinatorics*: block designs, coding theory and combinatorial matrix theory; *Mathematical Logic*: recursion theory, set theory and nonstandard analysis; *Mathematical Physics*: Schrödinger operators; *Mathematical Statistics*: sequential analysis; *Number Theory*: algebraic and analytic; *Topology*: algebraic and differential topology.

Physical Facilities

The mathematics department occupies three floors of the Sloan Laboratory of Mathematics and Physics. In addition to offices for the faculty and graduate students, there are classrooms, seminar rooms, a lecture hall, and a lounge for informal gatherings of the students and staff. Sloan Laboratory also houses a reference library in mathematics. The main mathematics library with its outstanding collection of journals is housed nearby in the Robert A. Millikan Memorial Library.

The Willis H. Booth Computing Center central computing facility serves the entire campus. Students are encouraged to use the computer as a research tool. Two remote consoles are located in Sloan Laboratory; one is a graphic display terminal.

MECHANICAL ENGINEERING

The way in which the term "mechanical engineering" is being used today embraces essentially all of those engineering aspects of a project that have to do with fluid flow, heat and mass transport, combustion, power, propulsion, structural integrity, mechanical design, optimization, and systems analysis. Projects in which mechanical engineers play a large role include nuclear and fossil-fuel power plants, as well as all types of energy production and conversion installations, transportation systems, propulsion devices, and pollution control. At the Institute, many of the basic disciplines are offered that are required for such applications. They are described in the following paragraphs under the headings of Design, Mechanics, Thermal and Fluids Engineering, and Jet Propulsion.

Design. Engineering design is an interdisciplinary opportunity for putting theory into practice and bringing together on a common ground some of the more specialized branches of engineering. An imaginative practical approach is emphasized for the solution of real problems involving various disciplines. General areas of interest include system design in the broad sense, automatic control, problem modeling, and the appropriate use of analog and digital techniques in optimization and computer-aided design. Opportunities exist for analytical studies as well as for the design and fabrication of hardware and for the testing and evaluation of the product. A close relationship with people working in the design area at the Jet Propulsion
Physics

Laboratory, as well as those in industry, is maintained through seminars, visits, and a free exchange of ideas on current design problems.

Mechanics. Studies in the broad field of mechanics may be undertaken in either the applied mechanics option or the mechanical engineering option. In general, work pursued within the mechanical engineering option will have a more physical orientation. The specific areas available for advanced study closely parallel the research interests of the faculty.

Thermal and Fluids Engineering. Instruction and research are offered in these fields of mechanical engineering. Typical areas of research include free and forced convection heat transfer, boiling heat transfer and two-phase flow, friction and heat transfer in complex fluids and granular media, as well as studies in cavitation, turbomachinery, and some related areas of hydrodynamics.

Laboratory facilities are available for research in a large number of areas, especially heat transfer, pump dynamics, cavitation, hydrofoil analysis, flow visualization, and internal combustion engines.

Jet Propulsion. The Daniel and Florence Guggenheim Jet Propulsion Center was established at the California Institute of Technology in 1948 to provide facilities for postgraduate education and research in jet propulsion and rocket engineering. Students wishing to pursue courses of study and research in jet propulsion take degrees in aeronautics or mechanical engineering. The program generally emphasizes basic subjects (such as combustion, two-phase flow, turbomachinery, fire research, acoustics) that are applicable to a wide variety of engineering problems. The experimental facilities of the Jet Propulsion Center are located in the Karman Laboratory of Fluid Mechanics and Jet Propulsion. Some of the facilities of the Jet Propulsion Laboratory have also been used under special arrangement.

PHYSICS

Areas of Research

Graduate students in physics will find opportunities for research in the following areas where members of the staff are currently active.

High-Energy Physics. Experiments in elementary particle physics are carried out with accelerators at the Stanford Linear Accelerator Center (SLAC), the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, and the Fermi National Accelerator Laboratory near Chicago. Current activities include the study of ψ and charmed particle decays at SLAC, Y decays at DESY, and probes of fundamental theory at the shortest possible distances at DESY and SLAC. An experiment in a deep underground mine in Ohio is searching for the decay of the proton. Caltech will be part of experiments approved for the new e^+e^- colliding beam accelerators SLC and LEP at SLAC and CERN (Geneva), respectively.

A phenomenology group carries on an active program concentrating on the comparison of theories and experimental data. Current interests involve quantitative tests of quantum chromodynamics (QCD) for lepton and high transverse momentum processes.

Kellogg Radiation Laboratory. A new electrostatic accelerator with the capability of producing very intense particle beams while maintaining highly stable beam quality began operation in fall 1981, enhancing the currently available tandem accelerator facilities. Various nuclear phenomena are studied, with emphasis on reactions of astrophysical importance and processes which probe the nature of the weak interaction. One experiment in progress is using the new accelerator to search for fractionally charged particles. A new program of experiments in medium energy physics at the Los Alamos Meson Physics Facility is now under way; these studies currently include pion absorption in nuclei and production of exotic nuclear states with pions. The Kellogg accelerators are also used for atomic studies with high-velocity atomic beams, for investigations in solid state and surface physics, and for elemental and isotopic analyses of lunar and meteoritic samples.
Nuclear and Particle Physics. This laboratory is engaged in the study of elementary particles and nuclei at low energies. At present, the research emphasizes neutrino physics and the question of time reversal invariance in nuclear processes. A search for neutrino oscillations is currently being conducted at a power reactor in Switzerland. On campus, another experiment is searching for double beta decay in the nucleus 76Ge. This search not only has implications for the mass of the neutrino, but also will provide evidence for another property of neutrinos, that of their symmetry when particles are replaced by antiparticles.

Cosmic Rays and Gamma Ray Astronomy. Measurements of energy and mass spectra of charged particles in space are carried out with sophisticated detectors carried on spacecraft and balloons. The data obtained are of interest for astrophysical phenomena such as element building in stars, astrophysical particle accelerators, and supernovae explosions. The gamma ray astronomy program is a joint effort with the Jet Propulsion Laboratory.

Infrared Astronomy. Astrophysical observations from 1 μm to 1 mm wavelengths are carried out with ground-based telescopes at Mt. Wilson and Palomar and in Chile, with the NASA airborne observatory, and with an infrared telescope in Hawaii. Caltech is a major participant in a recent survey of the infrared sky conducted by the IRAS satellite, from which data are now being compiled.

Radio Astronomy. One 40-meter and two 27-meter antennas are used either individually or in interferometric combinations to investigate the properties of galactic and extragalactic radio sources, of the planets, and of gas clouds in the interstellar medium. Receiving equipment includes multiple narrow-band correlators for interferometric spectrometry, an autocorrelation spectrograph, and a recording terminal for very-long-baseline interferometry. A new correlator for very-long-baseline interferometer observations is also in operation. An interferometer consisting of three 10-meter antennas and sophisticated detectors has recently been brought into operation at Caltech's Owens Valley Radio Observatory. A fourth especially high resolution 10-meter dish will be placed on 14,000-foot Mauna Kea in Hawaii to become the first large telescope for submillimeter observations.

Low Temperature Physics. Applied research includes work on high voltage and high frequency superconducting devices, superconducting electronic and digital devices, and heat transport at interfaces. Areas of fundamental interest are two-dimensional matter, phase transitions in two and three dimensions, phonon physics, and nonequilibrium aspects of the Josephson effect and type II superconductors.

Applied Physics. This group is engaged in the application of the techniques of theoretical and experimental physics to problems in surface physics, planetary science, and materials science. Experimental work is conducted on campus with low-energy particle accelerators and a scanning electron microscope. There is also an active program of off-campus work using the facilities of both industrial and other academic laboratories. Some recent studies have involved thin films, spatial distribution of trace materials near surfaces, sputtering phenomena, track damage by high energy ions, and the flow of granular material.

Gravity. The program of gravitational physics shows a close interplay between theory and experiment. The limits imposed by quantum measurement theory are being explored together with ways of reaching these limits by experiment. A new 40-meter interferometer for the detection of gravitational waves is now in operation and design work on a multikilometer-long detector has just begun.

Theoretical Physics. The principal areas under theoretical investigation are the nature of elementary particles and their high-energy interactions, the structure of atomic nuclei and their reactions, various problems in the area of general relativity and cosmology, the physics of the interplanetary and interstellar media, problems of stellar structure and stellar evolution, the synthesis of elements in stars, and the nature of quasistellar radio sources and pulsars, and various areas of mathematical physics, including quantum field theory, statistical mechanical
models, and the structure of non-relativistic quantum mechanics, especially atomic physics. A new trend is the use of the computer in theoretical physics. Current projects include the construction of large arrays of microprocessors to tackle quantum field theories numerically. A 64-node machine has recently been put into service and a 1024-node machine is under construction.

Physical Facilities
The physics department is housed in six buildings grouped together on the south side of the campus: Norman Bridge Laboratory, Alfred P. Sloan Laboratory of Mathematics and Physics, W. K. Kellogg Radiation Laboratory, George W. Downs Laboratory of Physics, C. C. Lauritsen Laboratory of High Energy Physics, and the Synchrotron Laboratory. Members of the staff also carry out research at the Mount Wilson and Palomar Mountain observatories, and at the Owens Valley Radio Observatory. Several computers—typically PDP11s and VAXs—are available for use in research.

SOCIAL SCIENCE
Social science at Caltech offers a unique program closely integrating the fields of economics, law, political science, quantitative history, and anthropology. The program takes a practical but rigorous approach to social science—designing institutions to solve problems—and involves extensive use of scientific methods and mathematical modeling. Students can use their considerable quantitative talents to great advantage in this area.

The application of experimental methods in economics and political science was pioneered at Caltech. An exciting innovation in teaching as well as in research, experimental economics enables the student actually to participate in different kinds of market activities, and experience how supply and demand work in each context.

The program offers a comprehensive knowledge of economic, political, and legal institutions. Particular emphasis is placed on studying the relationships among economics, politics, and public policy in a vigorous scientific manner.

Areas of Research
The social science program is characterized by collaborative, multidisciplinary research. Often using innovative experimental methods, the faculty in economics, political science, and law explore such areas as group decisionmaking, voting procedures, and market behavior.

Among the areas of basic and applied research are government regulation of business, the effect of consumer information on the prices and quality of goods and services, the design of institutions to solve environmental problems, the relationship between the structure and operating rules of a market and its performance, the adaptation of auction mechanisms to nonmarket as well as market situations, and the strategies of candidates and voters in democratic elections.
INFORMATION FOR
UNDERGRADUATE
STUDENTS

REQUIREMENTS FOR ADMISSION TO
UNDERGRADUATE STANDING

The undergraduate school of the California Institute of Technology is coeducational; there is no set ratio of men to women. Undergraduates are admitted only once a year—in September. All undergraduates at Caltech are expected to carry the regular program leading to the degree of Bachelor of Science in the option of their choice. Special students who wish to take only certain subjects and are not seeking a degree cannot be accepted.

ADMISSION TO THE FRESHMAN CLASS

The freshman class of approximately 215 is selected on the basis of (a) high grades in certain required high school subjects, (b) results of College Entrance Examination Board tests, and (c) recommendations and personal qualifications. The specific requirements in each of these groups are described below. Personal interviews with applicants and two or three of their teachers are held at their schools whenever feasible. An application fee of $25 is due at the time an application for admission is submitted. The fee is not refundable whether or not the applicant is admitted or cancels application, but it is applied on the first-term bills of those who are admitted and register in September. Checks or money orders should be made payable to the California Institute of Technology.

Application for Admission

An application form may be obtained by writing to the Office of Admissions, California Institute of Technology, Pasadena, CA 91125. It is to be returned directly to the Institute.

Completed admission application blanks and the $25 application fee must reach the Admissions Office not later than January 15. (Application to take entrance examinations must be made directly to the College Board at an earlier date.)

Transcripts of records covering three years of high school should be submitted as soon as possible following the application. Students should arrange for a supplemental transcript covering the first semester of the senior year, or the first quarter if they attend a school operating on the quarter system, to be sent as soon as such records are available, but not later than March 1.
High School Credits

Each applicant must be thoroughly prepared in at least 15 units of secondary school work, each unit representing one year's work in a given subject in an approved high school at the rate of five periods weekly. Each applicant must offer all of the units in Group A and at least five units in Group B.

Group A:
- English .. 3
- Chemistry ... 1
- Mathematics ... 4
- Physics ... 1
- United States History and Government 1

Group B:
- Foreign Language, Shop, additional English, Geology, Biology or other Laboratory Science, additional History, Drawing, Commercial subjects, etc. 5

The three units of English are a minimum and four units are strongly recommended. The four-year program in mathematics should include the principal topics of algebra, geometry, analytic trigonometry, and the elementary concepts of analytic geometry and probability. The program should emphasize the principles of logical analysis and deductive reasoning and provide applications of mathematics to concrete problems. A course in calculus is recommended if it is possible to arrange.

Entrance Examinations

In addition to the above credentials, all applicants for admission to the freshman class are required to take the following College Entrance Examination Board examinations: the Scholastic Aptitude Test, the Level II Achievement Test in Mathematics, and the English Achievement Test (with or without essay), plus any one of the following achievement tests: Physics, Chemistry, or Biology. The Level II Mathematics Test is designed for students who are in their fourth year of a mathematics program of the type outlined above. The Level II test does not presuppose an advanced placement course in mathematics. Note that the Scholastic Aptitude, the English Composition, and the Level II Mathematics tests must be taken, and that the choice lies only among Physics, Chemistry, and Biology—of which one must be taken. No substitution of other tests can be permitted. Very occasionally the applications of those who have taken the Level I instead of the Level II Mathematics Test will be considered. It should be pointed out, however, that the Institute feels it can better judge the qualifications of an applicant who has taken the Level II test, and those who have not done so will be handicapped in the competition for admission.

The Scholastic Aptitude Test and achievement tests must be taken no later than the January College Board Series. It is important to note that no applicant can be considered who has not taken the required tests by January, but tests taken on any prior date are acceptable. Students should have their test results sent to the Institute as soon as they are available. Students taking the January tests should submit the results from earlier sittings by February 1. A student seriously interested in the Institute would be well advised to take the Level II Mathematics Test by the December administration if possible. No exception can be made to the rule that all applicants must take these tests.

Full information regarding the examinations of the College Entrance Examination Board is contained in the Bulletin of Information, which may be obtained without charge at most high schools, or by writing to the appropriate address given below. The tests are given at a large number of centers, but if any applicant is located more than 75 miles from a test center, he or she can make special arrangements to take the tests nearer home.
Applicants who wish to take the examinations in the western United States or Canada, or in Mexico, Australia, or the Pacific Islands should address their inquiries by mail to College Entrance Examination Board, P.O. Box 1025, Berkeley, CA 94701. Check the *Bulletin of Information* for the exact dividing line.

Candidates applying for examination in other areas should write to College Entrance Examination Board, P.O. Box 592, Princeton, NJ 08540.

All applications to take examinations in the United States should reach the appropriate office of the Board at least four weeks in advance of the test date. Applications for examinations to be taken abroad need to arrive at least six weeks in advance. Please note that requests to take the examinations and all questions referring exclusively to the examinations are to be sent to the College Entrance Examination Board at the appropriate address as given above and not to Caltech.

Personal Interviews and Recommendation Forms

Enclosed with the Institute's application form are three recommendation forms, which the applicant should distribute to three teachers at the applicant's high school who are best acquainted with his or her capabilities and preparation with the request that they be filled out and returned directly to Caltech. These recommendation forms provide valuable information on candidates. The College Board scores, the last of which will be received by about February 15, provide further important data. Since, however, there are many more applicants to Caltech than our facilities can accommodate, as much information as possible is desired on each candidate for admission. Wherever preliminary information shows that an applicant has a chance of gaining admission, the Institute will attempt to hold a personal interview at the school he or she is attending. It is not possible to visit all of the schools involved. If a personal interview cannot be held, this in no way prejudices an applicant's chances of admission. The applicant has no responsibility with regard to the personal interview unless and until a notice is received giving the time and date when a representative will visit the school. These visits occur generally between March 1 and April 6.

Notification of Admission

Final selections will ordinarily be made and the applicants notified of their admission or rejection well before May 1. Most College Board member colleges have agreed that they will not require any candidate to give final notice of acceptance of admission or of a scholarship before this date. Upon receipt of a notice of admission an applicant should immediately send in the registration fee of $100. In the event he or she subsequently cancels the acceptance, $50 of the registration fee will be refunded if the cancellation occurs before August 1. Places in the entering class will not be held after May 1, if the applicant could reasonably be expected to have received notice at least ten days before that date. Otherwise, places will be held not more than ten days after notification. When the registration fee has been received, each accepted student will be sent an acknowledgement. It is assumed that any academic work in progress will be completed in a satisfactory manner.

Deferral of Entrance

The Institute will consider requests from newly admitted freshmen for a year's deferral of entrance for such purposes as studying abroad, working, or maturing. It is possible that not all requests will be granted: the seriousness and appropriateness of the purpose and the number of requests received will be determining factors.
Students who wish to request a year's deferral of entrance must (1) pay the registration fee by May 1 in the normal manner; (2) make a written request stating the purpose of postponement and the plans for using the extra year.

Early Decision Plan

The Institute will consider a few outstanding candidates who wish to make Caltech their first choice under an early decision plan. Such candidates must have taken the required College Board tests by the end of their junior year or at the following June administration, must have an excellent school record, and must have the thorough backing of their high school.

An applicant for admission under the early decision plan must have his or her credentials on file by October 15 of the senior year. (If the candidate is applying for financial aid, the application should be filed with the College Scholarship Service by the same date.) Early decision applicants will be notified by December 10 whether they have been accepted. An accepted applicant is then expected to withdraw all applications to other colleges. An applicant who is not accepted under the early decision plan will be considered without prejudice for admission at the regular time in April, unless final rejection is received in December.

Advanced Placement Program

A number of high schools and preparatory schools offer selected students the opportunity to accelerate and to take in the senior year one or more subjects that are taught at the college level and cover the material of a college course. The Institute encourages students to take advantage of such courses or to supplement their high school courses with mathematics and science courses at a local college. Credit for such work completed will be granted as appropriate by the faculty at the Institute at the time the student enrolls. Credit is not awarded automatically for Advanced Placement Examinations, International Baccalaureate Examinations, nor for college courses completed.

Chemistry. Students with a particularly strong background in chemistry may elect to take Chemistry 2, Advanced Placement in Chemistry (or, in exceptional cases, Chemistry 21, The Physical Description of Chemical Systems, or Chemistry 41, Chemistry of Covalent Compounds), rather than Chemistry 1, General and Quantitative Chemistry. It is assumed that such students have reasonable competence in the following areas: 1) *elementary* theories of atomic structure and electronic theories of valence, 2) chemical stoichiometry, 3) computations based upon equilibrium relationships, and 4) elementary chemical thermodynamics. For those students who qualify for Advanced Placement in Chemistry, the Institute requirement of 18 units of Ch 1 abc can be satisfied by completing with passing grades two terms of (i) Ch 2 ab (9 units each term), (ii) Ch 21 abc (9 units each term), or (iii) Ch 41 abc (9 units each term). The student's qualification for Advanced Placement in Chemistry will be determined in a personal interview with the Ch 2 instructor.

Mathematics. Normally, an entering freshman will take Ma 1 abc, Freshman Mathematics. This course will cover the calculus of functions of one variable; an introduction to differential equations; vector algebra; analytic geometry in two and three dimensions; infinite series. The course will be divided into a lecture part, discussing primarily the mathematical notions of the calculus and the other topics listed above, and a recitation part, providing active practice in the application of mathematical techniques.

During the summer, entering freshmen will be invited to outline their advanced training in mathematics and take a placement examination. The appropriate course and section for each
student will be determined on the basis of this information. Those students whose preparation permits them to begin with Ma 2 a will receive credit for Ma 1 abc. Exceptionally well-prepared students may receive additional credit for Ma 2 abc.

Physics. The required freshman physics course, Ph 1 abc, is quite unlike most advanced placement work, and entering freshmen are encouraged to take Ph 1, whatever their high school preparation. Students with unusually advanced backgrounds who do well on the Caltech placement test may, however, be given the option of advanced placement.

New Student Orientation

All freshmen are expected to attend the New Student Orientation as a part of the regular registration procedure. Upperclass transfer students are not required to attend.

The orientation, usually off campus, takes place during three days immediately following freshman registration for the fall term. A large number of faculty members and upperclass student leaders participate to help introduce the new student to the Caltech community. The orientation period provides an opportunity for the new student to become acquainted with the campus, the Honor System governing personal conduct, and other aspects of life at Caltech. In addition, he or she can meet classmates and a number of the upperclass students and faculty. Thus the new student can begin to feel at home at Caltech and share in the common agreement on intellectual and moral standards before the pressure of academic work begins.

ADMISSION TO UPPER CLASSES BY TRANSFER

The Institute admits to its sophomore or junior class a small number of students who have made satisfactory records at other institutions of collegiate rank and who do satisfactorily on the transfer entrance examinations. Transfer students are not admitted to the senior year. In general only students whose grades, especially those in mathematics and science, are well above average are permitted to take the entrance examinations.

No application fee is charged in the case of transfer students, but applicants should not come to the Institute expecting to be admitted to the examinations without first receiving definite permission to take them.

Students will be allowed to apply for transfer admission only if they have completed elsewhere essentially the equivalent of the courses required of students at the Institute. This means that applicants for transfer into the sophomore class must have completed at least one full year of calculus and one full year of physics at the college level. For transfer to junior level standing, two years of each of these subjects are required. A student planning to major in chemistry or chemical engineering should also have completed one year of college level chemistry. Students with two years of mathematics and one year of physics would not be granted full standing as a junior.

An applicant for admission as a transfer student must write to the Office of Admissions of the California Institute of Technology stating his or her desire to transfer, the choice of engineering or one of the options in science or humanities, and the number of years of calculus and of physics that will have been completed by the date of transfer. A postage-free return postcard for this purpose may be obtained from the Admissions Office upon request. At the same time the applicant must present a transcript of the record to date, showing in detail the character of his or her previous training and the grades received in college. Transcripts should also clearly indicate courses in progress in the latter half of the year. After the postcard has been received and the transcripts have been evaluated by the Admissions Office, an application blank will be sent, provided the grades and subjects on the transcripts meet the transfer requirements.
Please note that an application blank is not sent until a preliminary letter or the postcard provided by the Admissions Office and transcripts have been received and evaluated. Transcripts are held in the files until such a letter or postcard is received. Application blanks must be on file in the Admissions Office by April 1. Transcripts should, therefore, be sent no later than March 15. Applicants living in foreign countries must have applications and transcripts on file by March 1 at the latest.

Information with regard to acceptance or rejection for all candidates is sent before June 20. Candidates who are admitted to the Institute must send a second transcript of their work showing final grades received for any work in progress during the spring.

All transfer applicants must arrange to have sent in their scores on the Scholastic Aptitude Test (SAT) of the College Entrance Examination Board. If they have taken the SAT in previous years, these scores will be acceptable; but applicants must instruct the College Board (see address on page 59) to send the scores to the Institute. If the SAT has not been taken previously, it must be taken by the March series at the latest. College Board Achievement Tests are not required of transfer applicants. Before their admission to the upper classes of the Institute, all students are required to take entrance examinations in mathematics and physics covering the work for which they desire credit. In addition, an examination in chemistry is required for those desiring to major in chemistry or chemical engineering.

Two examinations of a comprehensive character are offered in mathematics and physics. One examination in each subject covers the work of the first year; the other examination, that of the first and second years. Representative examination papers will be sent to approved applicants along with application materials. The Institute courses for which those admitted will receive credit will be determined by the Committee on Upperclass Admissions and the departments concerned, on the basis of the applicants' previous records and the results of their examinations.

It is not possible to give definite assurance that a transfer student entering the sophomore year will graduate in three years or that one entering as a junior will graduate in two years. Much depends on the amount and nature of the credit granted at the time a student registers in September and on the possibility of fitting deficiency make-ups into the regular schedule.

The first-year chemistry course at Caltech differs from those given at many other colleges because of the inclusion of a substantial amount of quantitative analysis in the laboratory work. A transfer student who has had a one-year college course in inorganic chemistry and qualitative analysis will be considered to have met the first-year chemistry requirements, provided, of course, that grades have been satisfactory. Those wishing to major in biology, chemistry, or geology will be required to take certain portions of freshman chemistry if they have not had the equivalent laboratory work elsewhere.

The transfer examination in chemistry is required only of those wishing to major in chemistry or chemical engineering. This examination is the same for both sophomore and junior standing and covers general chemistry. Transfer students entering the junior year in chemistry will be able to take the sophomore organic chemistry course during their first year at the Institute.

Examinations for admission to upper classes are given in the first two weeks in May. No other examinations for admission to upper classes will be given.

Applicants residing at a distance may take the examinations under the supervision of their local college or university authorities, provided definite arrangements are made well in advance.

Students attending schools abroad whose native language is not English will be required to take the Test of English as a Foreign Language (TOEFL). This test is an Educational Testing Service test and is given all over the world, including the United States, four times a year. This test must be taken by the February series at the latest. Full information on how and where to take the test should be obtained from ETS.

It is not possible to answer general questions regarding the acceptability of courses taken elsewhere. The nature of the work at the Institute is such as to demand that all courses offered for credit be scrutinized individually. In case the standard of the work taken elsewhere is
uncertain, additional examinations may be required before the question of credit is finally
determined.

Transfer students are required to pay a registration fee of $10 upon notification of admission
to the Institute. If the application is cancelled, the registration fee is not refundable unless
cancellation is initiated by the Institute.

The 3-2 Dual Degree Plan

The California Institute of Technology has an arrangement whereby students enrolled in certain
liberal arts colleges may follow a prescribed course for the first three years and then transfer
into the third year of the engineering option at the Institute without further formality, provided
that they have the unqualified recommendation of the officials at the liberal arts college that
they are attending. After two full years' residence at the Institute and after satisfactorily com­
pleting all the remaining work required for a bachelor's degree in engineering, they will be
awarded a Bachelor of Arts degree by the college from which they transferred and a Bachelor
of Science degree by the Institute. Application for admission at the freshman level under this
dual degree plan should be made to the liberal arts college.

The colleges with which these arrangements exist are Bowdoin College, Brunswick, Maine;
Bryn Mawr College, Bryn Mawr, Pennsylvania; Grinnell College, Grinnell, Iowa; Occidental
College, Los Angeles, California; Ohio Wesleyan University, Delaware, Ohio; Pomona College,
Claremont, California; Reed College, Portland, Oregon; Wesleyan University, Middletown,

EXCHANGE PROGRAMS

Exchange programs exist with Occidental College, Scripps College, and Art Center College of
Design, permitting Caltech students to receive credit for courses taken at these colleges. Students
from these colleges also may receive credit for courses taken at the Institute. Tuition payments
are not required but the student may have to pay any special fees. The student must obtain
approval from the instructor of the exchange course. Exchange courses taken by Caltech students
must have prior approval by the student's option, by the division providing courses most similar
to the proposed course, and by the Registrar. Students wishing to take such courses should
obtain the appropriate form at the Registrar's Office, get the required signatures as above, and
return it to the Registrar. Freshmen at Caltech ordinarily cannot participate in this exchange.

In addition, through the office of the Dean of Students, informal exchange programs are
conducted with several colleges and universities throughout the country. The colleges currently
in the program include Antioch, Pomona, Swarthmore, and Williams. Under these programs,
a student can visit another campus for a period ranging from one term to a full academic year,
without the formalities of transfer proceedings or written applications. Any student interested
in the informal program should check with the Dean of Students for details.

ROTC

Through arrangements with the University of Southern California, various Air Force and Navy
Reserves Officers' Training Corps programs are available to qualified Caltech students. These
are available to full-time students on a competitive basis. The Air Force Reserve (AFROTC)
program is a two-year program available to juniors. Successful completion of this program leads
to a commission as a Second Lieutenant in the Air Force Reserve. The Naval Reserve (NROTC)
program is a two-, three-, or four-year program available to juniors, sophomores or freshmen,
respectively. Successful completion of this program leads to a commission as Ensign in the
Navy or Second Lieutenant in the Marine Corps. The four-year program for freshmen must be
applied for by December 1 of the year prior to entering college. Deadlines for the other programs vary, but are generally in the year prior to entering the program. All scholarship recipients receive full tuition, required fees and books, uniforms, and $100 a month. Academic units earned in these programs count toward fulfillment of graduation requirements. Students desiring this credit should request that an official transcript be forwarded to Caltech. In the NROTC all midshipmen are required to take summer cruises. Qualified midshipmen may participate in overseas and surface or submarine nuclear power cruises. The Air Force ROTC program also has a compulsory summer component. For additional information on either program, contact the Department of Aerospace Studies (AFROTC) at the University of Southern California, Los Angeles, CA 90007, (213) 743-2670, or the Department of Naval Science (NROTC) at the University of Southern California, Los Angeles, CA 90007, (213) 743-2663.

REGISTRATION REGULATIONS

Procedures

Students must register in person on the dates specified in the academic calendar. Registration material is to be picked up at a location designated by the Registrar and is returned to the registration area when completed. Students are not registered until they have both

a. turned in a signed registration card with their approved study list, and

b. made satisfactory arrangements with the Office of Student Accounts for the payment of all fees due the Institute.

Any student who has not completed both phases of registration within one week after registration day will be removed from the Institute rolls.

Students are required to maintain continuity of registration until the requirements for the Bachelor of Science degree are fulfilled, except in the case of an approved leave of absence. If continuity is broken by withdrawal without leave, reinstatement is required before academic work may be resumed.

Changes of Registration

All changes in registration must be reported to the Registrar's Office by the student prior to the published deadlines. A grade of F will be given in any course for which a student registers and which he or she does not either complete satisfactorily or drop. A course is considered dropped when a drop card is completed and returned to the Registrar's Office. A student may not at any time withdraw from a course that is required for graduation in his or her option without permission of the Dean.

A student may not add a course after the last day for adding courses, or withdraw from a course after the last date for dropping courses, without the approval of the Undergraduate Academic Standards and Honors Committee. Registration for added courses is complete when an add card has been filed in the Registrar's Office signed by the instructor and the student's adviser. No credit will be given for a course for which a student has not properly registered. The responsibility for submitting drop cards and add cards to the Registrar's Office before the deadlines for dropping or adding courses each term rests entirely with the student. Failure to fulfill the responsibility because of oversight or ignorance is not sufficient grounds to petition for permission to drop or add courses after the deadline. It is the policy of the Undergraduate Academic Standards and Honors Committee that no petitions for the retroactive dropping or adding of courses will be considered except under very extenuating circumstances.
Withdrawal from the Institute

Formal separation from the Institute is effected by filing a completed withdrawal card with the Registrar. The effective date of withdrawal is the date of the signature of the Dean or Associate Dean of Students. Unless the student withdraws with an approved leave of absence (see next section), he or she must petition for reinstatement. Reinstatement rules are the same as those listed under scholastic requirements. No courses or grades will appear on the permanent record card of a student who withdraws on or before drop day of any term. The card of a student who withdraws with leave of absence during the period between drop day and the end of the term will show the list of registered courses with "W" in place of grades. Students withdrawing without leave of absence during that period will receive grades as reported by the instructor. If no grade is reported, an "F" will be recorded.

A student withdrawing at any time during a term without filing a formal withdrawal card will be considered to have withdrawn at the end of the term. Any grades reported by the instructors will be recorded on the permanent record card; the grade of "F" will be recorded for all other courses.

Leave of Absence

Leave of absence must be sought by written petition, and if granted must be filed with the Registrar together with a completed withdrawal card. Leave of up to one year can be granted by the appropriate dean for a student who is in good standing. A student in good standing is defined as a student who does not have to meet special academic requirements as a result of reinstatements. A petition for a medical leave of absence must carry the endorsement of the Director of Health Services or the Director of Counseling Services and may then be granted for a period of up to one year by the appropriate dean. Permission to return from a medical leave must also carry the endorsement of the Director of Health Services or the Director of Counseling Services. Other petitions should be addressed to the Undergraduate Academic Standards and Honors Committee, and the student must indicate the length of time and the reasons for which absence is requested. All leaves of absence may be reviewed by the Committee.

In case of brief absences from any given class activity, arrangements must be made with the instructor in charge.

The Institute may place a student on medical leave of absence if the Dean of Students or the Dean of Graduate Studies, as appropriate, is persuaded by medical opinion submitted to him that the student's continuation at the Institute would be seriously detrimental to the academic performance of other students or to the personal safety of the student or other members of the Institute. A decision by either Dean to place a student on medical leave of absence is subject to automatic review within seven days of the action by the Vice President for Student Affairs (or his designee). Nothing in this statement precludes access to the normal student grievance procedure.

Summer Research

Qualified undergraduate students who are regular students at the Institute are permitted to engage in research during the summer, but in order to receive academic credit the student must have the approval of his or her division and must file a registration card for such summer work in the Office of the Registrar before June 1. Students who are registered for summer research will not be required to pay tuition for the research units.
Auditing Courses

Persons not regularly enrolled in the Institute may audit courses, if they obtain the consent of the instructor in charge of the course and the chairman of the division concerned, and pay the required fee. Auditing fees for non-academic staff members may be covered by the Institute Tuition Support Plan. Auditing cards may be obtained in the Registrar's Office.

Regularly enrolled students and faculty members of the Institute staff are not charged for auditing. Auditing cards are not required, but the instructor's consent is necessary in all cases. No grades for auditors are reported to the Registrar's Office, and no official record is kept of the work done.

SCHOLASTIC REQUIREMENTS: GRADING

General Regulation

Every student is expected to satisfy the requirements in each of the courses he or she is registered for, as the instructor may determine.

Grades

All permanent grades recorded for freshmen will be either "P," indicating passed, or "F," indicating failed. The temporary grade of "I" may be used as it is for upperclassmen. The temporary grade of "E" may be given to freshmen as described below for upperclassmen. It may also be used in a continuing course if the performance of the freshman concerned is not significantly below the current passing level, and in addition the student is maintaining a steady and substantial improvement; an "E" given for this reason will be automatically changed to a "P" if the freshman earns a "P" for the following term, and will change to an "F" if the student receives an "F" for the following term. The grade may not be used in this way for two successive terms nor for the last term of the course.

If a freshman is enrolled in a course in which the instructor gives letter grades, the Registrar will record "P" for all passing grades. No grades given to a freshman will be used in computing the cumulative grade-point average.

For students beyond the freshman year, letter grades will ordinarily be used to indicate the character of the student's work: "A" excellent, "B" good, "C" satisfactory, "D" poor, "E" conditioned, "F" failed, "I" incomplete. Exceptions are allowed only where the instructor uses the grade "P" instead of a passing letter grade for all students in the course, or where the student elects to take the course on a pass/fail basis. This rule regarding exceptions applies whether the student is repeating a course failed at an earlier time or taking the course for the first time. In addition, grades of A+, A-, B+, B-, C+, C-, and D+ may be used for undergraduates only. In any situation in which no grade is reported the grade shall be assumed to be "E".

The grade "E" indicates deficiencies that may be made up without actually repeating the course. The instructor giving the grade of "E" should state on the grade sheet the nature of the deficiencies and the time limit within which the work must be completed. At the end of this time period the instructor should submit the appropriate letter grade, including "P" or "F," and this will be placed on the student's record.

The grade "I" is given only in case of sickness or other emergency that justifies non-completion of the work at the usual time. An incomplete will be recorded only if the reasons for giving it are stated on the instructor's final grade report and only if, in the opinion of the
Undergraduate Academic Standards and Honors Committee, the reasons justify an incomplete.
If, in the opinion of the committee, the incomplete is not justified, a condition will be recorded.
The Undergraduate Academic Standards and Honors Committee has authorized the Dean of Students or the Associate Dean of Students to authorize the awarding of the grade "I." As with the grade "E" the time period within which the grade "I" is to be made up should be indicated on the grade sheet.

Students receiving grades of "E" or "I" should consult with their instructors not later than the beginning of the next term in residence as to the work required. This time should, in most cases, coincide with the date fixed in the Calendar for removal of conditions and incompletes (Add Day), and in fact if no other time is specified, this date will be assumed. Further, under no circumstances may the time for the completion of the work be extended for more than three terms in residence after the end of the term in which the grade of "E" or "I" was given. At the end of the specified time, unless there is a written request from the instructor to the contrary, or in any event at the time of graduation or at the end of three terms in residence, whichever occurs first, all "E"s and "I"s not otherwise reported will be changed to "F." Grades of "E" and "I" shall not be considered in calculating a student's grade point average.

"Failed" means that no credit will be recorded for the course. The units, however, count in computing the student's grade-point average, unless the course was taken on a pass/fail basis. He or she may register to repeat the subject in a subsequent term and receive credit without regard to the previous grade, the new grade and units being counted as for any other course, but the original "F" and units for the course remain on the record. An "F," once recorded, will be changed to a passing grade only on the basis of error. Such a change may be made only with the approval of the Undergraduate Academic Standards and Honors Committee or of the Graduate Studies Committee, whichever has jurisdiction.

Each course in the Institute is assigned a number of units corresponding to the total number of hours per week devoted to that subject, including classwork, laboratory, and the normal outside preparation. The units used at Caltech may be reduced to semester hours by multiplying the Institute units by the fraction ¾. Credits are awarded as shown in the following table.

<table>
<thead>
<tr>
<th>No. of Units</th>
<th>A+</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>13</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>22</td>
<td>18</td>
<td>15</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>43</td>
<td>39</td>
<td>35</td>
<td>30</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>56</td>
<td>51</td>
<td>47</td>
<td>42</td>
<td>37</td>
<td>33</td>
<td>28</td>
<td>23</td>
<td>19</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
Grade-Point Average is computed by dividing the total number of credits earned in a term or an academic year by the total number of units taken in the corresponding period. Units for which a grade of "F" has been received are counted, even though the course may have subsequently been repeated. Physical education units and credits as well as grades of "P" or "F" obtained in courses graded on a pass/fail basis are not included in computing grade-point average.

Pass/Fail Grading: The following regulations apply:
1) Freshmen receive pass/fail grades in all courses by virtue of their classification as freshmen by an admissions committee or, for students whose status after the first year is uncertain, by the Undergraduate Academic Standards and Honors Committee.
2) All other students, undergraduate and graduate, in courses with numbers under 200 will receive letter grades unless the course is designated "Graded pass/fail" or unless, when it is allowed, the student files with the Office of the Registrar a completed Pass/Fail Course Selection Card not later than the last day for dropping courses.
3) In courses with numbers 200 or greater that are not designated either "Graded pass/fail" or "Letter grades only," the instructor may decide separately for each student what class of grades to use.
4) All research courses shall be designated "Graded pass/fail." All reading courses, seminar courses, or other courses that do not have a formal class structure shall be designated "Graded pass/fail" unless the option secures an exemption from the Curriculum Committee or the Graduate Studies Committee and from the Faculty Board.
5) A grade on the pass/fail system should be "P" if it would have been a "D" or better on the letter grade system. (Note that there is no "D -" grade.) The standards of failure in courses in which only pass/fail grades are used should be the same as they would be if the course were letter graded.
6) Any instructor may, at his or her discretion, specify prior to preregistration that his or her course, if not classified by the above regulations, is to be graded on a "Letter grades only" basis or is to be graded pass/fail only, subject to possible review by the responsible option. The Registrar must be notified of such specification two weeks before the beginning of preregistration.
7) Each term any student may select, subject to such requirements as may be imposed by the option, one elective course in which he or she is to be graded on a pass/fail basis if it is not designated as "Letter grades only" and is not specifically required for the degree in his or her option. To make this election, a completed Pass/Fail Course Selection Card must be submitted to the Office of the Registrar on or before the last day for dropping courses that term. This election may be reversed or reinstated at any time before the deadline. The election must be approved and the card signed by the student's adviser. The instructor must be notified and should sign the card to indicate that this has been done; the instructor must allow any eligible student to make this election.
8) Of the units offered to satisfy the requirements for the Bachelor of Science degree, no more than 81 may be in courses graded pass/fail because of the student's election.

Scholastic Requirements

All undergraduates are required to meet certain scholastic standards as outlined below.

Ineligibility for Registration. Eligibility to register is determined by the student's record as of Registration Day of the term in which registration is sought. Undergraduates who register for programs that make it appear they are no longer candidates for a B.S. degree or who are not making satisfactory academic progress may be refused further registration by the Undergraduate
Academic Standards and Honors Committee. Freshmen who have accumulated 27 or more units of E or F, exclusive of P.E., are ineligible to register for subsequent terms and must petition the Committee for reinstatement if they wish to continue as students. The Dean of Students or the Associate Dean may act on the petition if the student has received fewer than 42 units of E or F, exclusive of P.E. For other petitions action can be taken only by the Committee. Freshmen who have been reinstated will be ineligible to register if in any subsequent term of their freshman year they obtain 6 or more units of E or F exclusive of P.E. In this situation, action can be taken only by the Committee.

Undergraduate students, except freshmen, are ineligible to register for another term:
(a) If they fail during any one term to obtain a grade-point average of at least 1.4.
(b) If they fail to obtain a grade-point average of at least 1.9 for the academic year.

Students who have completed at least three full terms of residence at the Institute and have been registered for their senior year shall no longer be subject to the requirement that they make a grade-point average of at least 1.9 for the academic year. Seniors are subject to the requirement, however, that they must receive a grade-point average of at least 1.4 each term to be eligible for subsequent registration.

c) Undergraduate students, including seniors, who have been reinstated and who fail to complete a full load of at least 36 units in the following term with a grade point average of at least 1.9 are ineligible to register.

d) If a late grade makes a student ineligible after the start of the next term, the permanent record card shall show the ineligibility and a reinstatement. If the late grade is reported to the Registrar before midterm deficiency notices are due for the subsequent term, the student shall be held to the condition in (c) above.

e) No student ineligible to register on Registration Day will be permitted to register unless a petition for reinstatement has been submitted and acted upon as described below.

(f) If a late grade received on or before the last day for adding classes makes a student who has been reinstated eligible, the ineligibility and the reinstatement will be removed from the student's record.

Students ineligible for registration because of failure to meet the requirements stated in the preceding paragraphs may submit a petition to the Undergraduate Academic Standards and Honors Committee for reinstatement, giving any reasons that may exist for their previous unsatisfactory work and stating any new conditions that may lead to better results. Each such petition will be considered on its merits. For the first such ineligibility, the petition will be acted upon by the appropriate dean, after consultation with the student and examination of the record. At the dean's discretion, such cases may be referred to the Undergraduate Academic Standards and Honors Committee for action. All subsequent reinstatements must be acted upon by the Committee. Reinstated students who again fail to fulfill the scholastic requirements for registration must petition the Undergraduate Academic Standards and Honors Committee, and action can only be taken by the Committee. In any case being considered by the Committee, the students may, if they wish, appear before the Committee or, on request by the Committee, they may be required to appear. A second reinstatement will be granted only under exceptional conditions.

Departmental and Option Regulations

Continuing in an Option. Students whose grade-point averages are less than 1.9 at the end of an academic year in a specific group of subjects designated by their department or option may, at the discretion of their department, be refused permission to continue the work of that option. Such disbarment does not prevent the students from continuing in some other option or from repeating courses to raise their average in their original option. Students without an option will fall under the direct jurisdiction of the Dean of Students. Students may remain without an option for no more than one year.
Change of Option. An undergraduate in good standing at the Institute shall be permitted to transfer into any option of his or her choice provided he or she has (a) a 1.9 G.P.A. in subjects required for graduation in that option or in a specific group of subjects designated by that option or (b) permission of the option representative or committee. A change of option is effected by obtaining a Change of Option petition from the Registrar's Office. The completed petition must then be signed by the option representative for the new option (who will assign a new adviser), and filed with the Registrar's Office. Institute regulations require that a student who has made normal progress at the Institute be able to change options at any time up to the end of the sophomore year without penalty either as to time to graduation or as to excessive unit requirements in any term.

Term Examinations will be held in all subjects unless the instructor in charge of any subject shall arrange otherwise. No student will be exempt from these examinations. When conflicts exist in a student's schedule, it is the student's responsibility to report the conflict to the instructor in charge of one of the conflicting examinations and make arrangements for another time.

Satisfactory Academic Progress. A student who has earned, on the average, 36 units or more for each term in residence is considered to be making satisfactory progress toward a degree. Satisfactory progress is normally determined at the end of the third term of each academic year.

Graduation Requirement. To qualify for graduation a student must complete the prescribed work in one of the options with a passing grade in each required subject and with a grade-point average of 1.9. A grade of "F" in an elective course need not be made up, provided the student has received passing grades in enough other accepted units to satisfy the minimum total requirements of the option.

Graduation in the Normally Prescribed Time. Any undergraduate student who fails to complete the requirements for graduation at the end of the normally prescribed time must petition the Undergraduate Academic Standards and Honors Committee for approval to register for further work.

Residence Requirement. All transfer students who are candidates for the Bachelor of Science degree must complete at least one full year of residence in the undergraduate school at the Institute immediately preceding the completion of the requirements for graduation. A full year of residence is interpreted as meaning the equivalent of registration for three terms of not less than 36 units each.

Requirement for a Second Bachelor of Science Degree. Under exceptional circumstances a student may be permitted to return to study for a second Bachelor of Science degree. As a general rule this second degree must be in an option which is not in the same division as that of the original degree. To receive this permission the student must petition the Curriculum Committee. If the petition is approved the student must then register for three consecutive terms of additional study, completing in each term at least 36 units, and must meet all the requirements for graduation in the second option. If additional time is needed to complete the degree, the student must also petition the Undergraduate Academic Standards and Honors Committee for an extension. A student admitted for a second Bachelor of Science degree in a particular option may not change to another option without first submitting a new petition to the Curriculum Committee and receiving the explicit approval of that committee.

Honor Standing. At the close of each academic year the Committee on Undergraduate Academic Standards and Honors awards Honor Standing to students in the sophomore and junior classes, based on the scholastic records of the students.
Graduation with Honor. Students who have achieved a high scholastic standing or who have carried out creative research of high quality may be recommended to the Faculty for graduation with honor by the Committee on Undergraduate Academic Standards and Honors. The Committee shall consider for graduation with honor those students who have achieved an overall grade-point average of 3.5 and others who, on the basis of exceptional creativity, have been recommended to the Committee by a faculty member or by a Division of the Institute.

Excess of or Fewer than Normal Units (Overloads and Underloads). An overload is defined as registration for more than 58 units and an underload is registration for fewer than 36 units. A student who wishes to carry an overload in any term must obtain the approval of his or her adviser and the approval of the Undergraduate Academic Standards and Honors Committee. Petitions for overload will not be accepted later than the last day for adding classes in any term.

Underloads must also be approved by the Undergraduate Academic Standards and Honors Committee. An underload may be granted if the student’s record is such that at the end of the term in question a minimum of 43 units per term in residence will have been completed. Approval of an underload under other conditions will not be granted to any student not a senior except in extraordinary circumstances. The Undergraduate Academic Standards and Honors Committee has the latitude, however, to grant part-time status to a small number of exceptional, highly motivated students with at least junior standing for reasons deemed valid by the committee.

Miscellany

Transfer of Credit from Other Institutions. Regularly enrolled students who want to obtain credit for college courses taken elsewhere should have a copy of the transcript of their work sent to the Registrar’s Office. The student should then obtain an “Allowance of Credit” form from the Registrar’s Office; credit will be granted when this form, with the appropriate signatures, is returned to the Office.

Selection of Option. At the beginning of the third term, freshmen must notify the Registrar’s Office of their selection of an option in engineering, humanities, social sciences, or science to be pursued in subsequent years. Upon the selection of an option, a freshman will be assigned an adviser in that option, whose approval must then be obtained for preregistration for the following year.

An undergraduate may be allowed to major in two options for the Bachelor of Science degree. As a general rule, the two options should not be in the same division. The student must obtain the approval of the Curriculum Committee prior to the beginning of the senior year. He or she will then be assigned an adviser in each option.

Candidacy for the Bachelor’s Degree. A student must file with the Registrar a declaration of his or her candidacy for the degree of Bachelor of Science on or before the first Monday of November preceding the date on which he or she expects to receive the degree. All subjects required for graduation, with the exception of those for which the candidate is registered during the last term of his or her study, must be completed by the second Monday of May preceding commencement.

Transcripts of Records. A student, or former student, may request that official transcripts of his or her records be forwarded to designated institutions or individuals. Requests should be filed at the Registrar’s Office at least five days before the date on which the transcripts are to be mailed.
ATHLETICS AND PHYSICAL EDUCATION

Before graduation each undergraduate is required to successfully complete three terms of physical education. This requirement may be satisfied entirely or in part by participation in intercollegiate athletics, successful completion of a physical education class, or successful completion of a student-designed program of physical fitness.

Participation as a bona fide member of an intercollegiate team for the period covered by a sport in a given term satisfies the requirement for that term. Students dropping from an intercollegiate team before the end of the term or the season must enroll in a physical education class immediately, if they wish to receive credit for physical education.

A broad program of instruction is provided each term. Enrollment in classes is conducted in the gymnasium and pool on the day of General Registration. Students planning to enroll in sailing must pass a swimming test. Standards for evaluation of student performance will be clearly defined at the beginning of each class. Participation in intramural sports will count toward the successful completion of an instructional activity.

Student-designed programs of physical fitness are submitted in writing to the Department of Physical Education during the first week of each term. These programs must provide for regular participation in vigorous physical activity at least three days per week. The programs may consist of individual or group participation and may include intramural sports participation. At the end of the term the student files a brief written report with the Department of Physical Education reviewing his or her accomplishment of prestated objectives. It is assumed that students proposing their own programs of physical fitness are competent in these activities.

UNDERGRADUATE EXPENSES

For freshmen applying for admission, there is a $25 Application Fee. This fee is not refundable, but it will be applied to tuition fees upon registration.

For freshmen and transfer students, there is a $10 Registration Fee payable upon notification of admission. This fee is not refundable, but it will be applied to tuition fees upon registration. Housing contracts, accompanied by a $50 deposit, must be submitted to the Master's Office by the date specified in the instructions accompanying the contract. The deposit will be applied to the first term room charge.

Expense Summary 1984-85

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Deposit</td>
<td>$25.001</td>
</tr>
<tr>
<td>Tuition</td>
<td>9,400.00</td>
</tr>
<tr>
<td>Student Body Dues, including The California Tech</td>
<td>60.002</td>
</tr>
<tr>
<td>Assessment for Big T</td>
<td>24.002</td>
</tr>
<tr>
<td>Total General</td>
<td>$9,509.00</td>
</tr>
</tbody>
</table>

Other:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student House Living Expenses, including 10 meals per week while Institute is in session</td>
<td>$2,869.053</td>
</tr>
<tr>
<td>Room and Board rates are subject to change</td>
<td></td>
</tr>
<tr>
<td>Dues</td>
<td>60.00</td>
</tr>
<tr>
<td>Meals not covered by board contract are available</td>
<td></td>
</tr>
<tr>
<td>at Chandler Dining Hall (approx.)</td>
<td>945.00</td>
</tr>
<tr>
<td>Books and Supplies (approx.)</td>
<td>375.00</td>
</tr>
<tr>
<td>Total Other</td>
<td>$4,249.05</td>
</tr>
</tbody>
</table>
The following is a list of undergraduate student fees at the California Institute of Technology for the Academic Year 1984–85 together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.

<table>
<thead>
<tr>
<th>Term</th>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 19, 1984 (Freshmen)</td>
<td>General Deposit</td>
<td>$25.00</td>
</tr>
<tr>
<td></td>
<td>Tuition</td>
<td>3,134.00</td>
</tr>
<tr>
<td>September 24, 1984 (All Others)</td>
<td>Associated Student Body Dues</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>Assessment for Big T</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Room and Board (for on-campus residence)</td>
<td>1,077.90</td>
</tr>
<tr>
<td></td>
<td>Student House Dues</td>
<td>20.00</td>
</tr>
<tr>
<td>January 7, 1985</td>
<td>Tuition</td>
<td>$3,133.00</td>
</tr>
<tr>
<td></td>
<td>Associated Student Body Dues</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>Assessment for Big T</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Room and Board (for on-campus residence)</td>
<td>915.00</td>
</tr>
<tr>
<td></td>
<td>Student House Dues</td>
<td>20.00</td>
</tr>
<tr>
<td>April 1, 1985</td>
<td>Tuition</td>
<td>$3,133.00</td>
</tr>
<tr>
<td></td>
<td>Associated Student Body Dues</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>Assessment for Big T</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Room and Board (for on-campus residence)</td>
<td>876.15</td>
</tr>
<tr>
<td></td>
<td>Student House Dues</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Tuition Fees for fewer than normal number of units:

<table>
<thead>
<tr>
<th>Units</th>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 35 units</td>
<td>Full Tuition</td>
<td>$87.00</td>
</tr>
<tr>
<td>Per unit per term</td>
<td></td>
<td>870.00</td>
</tr>
<tr>
<td>Minimum tuition per term</td>
<td></td>
<td>870.00</td>
</tr>
<tr>
<td>Audit Fee $87.00 per lecture hour, per term.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1This charge is made only once during residence at the Institute.
2Fees subject to change by action of the Board of Directors of the Associated Students of the California Institute of Technology.
3A few single rooms are available that will rent for an additional $1.00 per day. Room contracts are on a term basis for all students.

Other Items of Interest

Refunds. Students withdrawing from the Institute or reducing their number of units during the first three weeks of a term are entitled to a partial refund of tuition based on the period of attendance. The schedule for the specific percentage of tuition to be refunded for specific days of attendance is shown below. The days in attendance are the number of days counted from the first day of the term to:

1. The date of approval of the request by the Dean of Students for withdrawals;

2. The date that registration for the reduced units is approved by the Undergraduate Academic Standards and Honors Committee or the date that drop cards are filed in the Registrar's Office, whichever is later, for reduction in units.
Board contracts are prorated according to the number of days a student has been on campus. Room contracts are charged on a term basis for all students. Early termination of a room contract will be granted only with the approval of the Master of Student Houses.

Tuition Refund Schedule. Tuition is refunded according to the following schedule:

<table>
<thead>
<tr>
<th>Days</th>
<th>Percent of tuition due the Institute</th>
<th>Days</th>
<th>Percent of tuition due the Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>20.00</td>
<td>15</td>
<td>40.00</td>
</tr>
<tr>
<td>8</td>
<td>30.67</td>
<td>16</td>
<td>41.33</td>
</tr>
<tr>
<td>9</td>
<td>32.00</td>
<td>17</td>
<td>42.67</td>
</tr>
<tr>
<td>10</td>
<td>33.33</td>
<td>18</td>
<td>44.00</td>
</tr>
<tr>
<td>11</td>
<td>34.67</td>
<td>19</td>
<td>45.33</td>
</tr>
<tr>
<td>12</td>
<td>36.00</td>
<td>20</td>
<td>46.67</td>
</tr>
<tr>
<td>13</td>
<td>37.33</td>
<td>21</td>
<td>48.00</td>
</tr>
<tr>
<td>14</td>
<td>38.67</td>
<td>22</td>
<td>100.00</td>
</tr>
</tbody>
</table>

ASCIT Dues. As a service to the Associated Students of the California Institute of Technology, Inc., or ASCIT, dues, of $60 per year and an assessment of $24 for the college annual, the Big T, are collected by the Institute and turned over to ASCIT. A subscription to the student newspaper, *The California Tech*, is included in these dues, and the balance is used in the support of student activities as deemed appropriate by the ASCIT Board of Directors. Students not wishing to join ASCIT or to purchase the Big T should so indicate at the time of registration.

General Deposit. Each new student is required at his or her first registration to make a general deposit of $25, to cover possible loss and/or damage of Institute property. Upon graduation or withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Fees for Late Registration. Registration is not complete until the student has personally turned in the necessary forms for a program approved by his or her adviser and has paid tuition and other fees. A penalty fee of $10 is assessed for failure to register within five days of the scheduled dates.

Student Houses. Students in the Houses must supply their own blankets. Bed linens and towels are furnished and laundered by the Institute.

Application for rooms in the Student Houses may be made by addressing the Master of Student Houses, 0-54, California Institute of Technology, Pasadena, CA 91125.

Special Fees. Students taking the Summer Field Geology course (Ge 123) should consult with the division about travel and subsistence arrangements and costs.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts will not be released until all bills have been paid or satisfactory arrangements for payment have been made with the Office of Student Accounts.

FINANCIAL AID

Caltech offers financial assistance to students from families whose resources are insufficient to meet the total cost of education. Family contributions are calculated using federally approved formulas, and are based on an analysis of information provided on the financial aid forms and supporting documents that are filed with the Financial Aid Office each year. Financial need is the difference between a standard budget and family financial resources. Components of the
budget include actual tuition and fees, room and board, an allowance for meals not covered in the Institute board contract, books and supplies, personal expenses, other allowable expenses approved by the Director of Financial Aid, and a limited travel allowance (see page 72 for a breakdown of the basic budget for 1984–85). Note: a travel allowance is not included for students whose residence is outside the U.S., Canada, or Mexico.

Eligibility for each type of assistance varies, depending upon the source of funds. Most students who attend Caltech receive some kind of financial aid from Caltech, federal and state agencies, outside organizations such as foundations and businesses, and/or lending institutions. Assistance offered by Caltech includes federal and institutional grants, low-interest loans, and subsidized jobs. Students with complete financial aid applications on file will be considered for all types of need-based assistance. A renewal application must be submitted each year. In general, assistance is available to eligible students for the first 12 terms of registration (or the equivalent for transfers), providing they maintain satisfactory academic progress as defined on page 70.

Although Caltech expects students and families to finance the cost of education to the fullest extent possible, the Institute will make every effort to assist those who need help, including those whose financial circumstances change during the year. In addition to direct financial assistance, information is offered about education payment plans and financial planning resources. (For information on non-need-based scholarships, see page 79.)

All students who believe they will need assistance to attend Caltech are encouraged to submit financial aid applications to the Financial Aid Office. Application procedures are outlined below.

The financial aid staff is happy to talk with students and their families at any time to explain the application process and our computations. For further information on determination of financial need, application procedures, and financial aid awards and programs, refer to the Caltech Financial Resources Handbook or contact the Director of Financial Aid, California Institute of Technology, 10-31, Pasadena, CA 91125, 818-356-6280.

How to Apply for Financial Aid

There are slightly different rules for each category of students who apply for financial aid. The categories are:

- Early Decision Admission Candidates
- Freshman Admission Candidates
- Transfer Admission Candidates
- All International Student Applicants (except Canadians and Mexicans)
- Returning Students
- Self-Supporting Students

Note: In addition to the categorical requirements there are several additional documents that are necessary to complete an applicant's file. These documents are discussed under the section General Requirements.

Early decision admission candidates must file an Early Version Financial Aid Form with the College Scholarship Service by November 1 of the year preceding the year in which they hope to enter Caltech (regular FAFs and Student Aid Applications for California (SAACs) cannot be filed until January 1). Caltech should be designated as a recipient of the form (code 4034). Students accepted to Caltech will receive a preliminary offer of financial aid with their offer of admission. Between January 1 and February 1 they must also complete the application procedures for prospective freshmen (see below).
Freshman admission candidates (other than international students — see below) must submit a copy of the Financial Aid Form (FAF), completed on both sides, to the College Scholarship Service between January 1 and February 1 and designate Caltech as a recipient (code 4034). California residents must use the Student Aid Application for California (SAAC) instead of the FAF, completing both sides. A preliminary award will accompany the admissions offer. After review of the supporting documents the financial aid staff will make any appropriate adjustments and send a final award.

Transfer admission candidates must submit a Financial Aid Form (FAF) or Student Aid Application for California (SAAC), completed on both sides, and listing Caltech as a recipient (code 4034), to the College Scholarship Service by February 1. (Students should note on the FAF or SAAC whether they are 3-2, special, or regular transfer candidates.) In addition, they must submit to Caltech a Financial Aid Transcript (FAT) from each college previously attended, whether or not they received financial aid from the college(s). FATs are available from the financial aid office of the school the student is currently attending.

International student applicants (with the exception of Canadians and Mexicans, who should follow the procedures for the appropriate group of domestic students listed above) must submit to the Financial Aid Office by February 1 the Foreign Students' Financial Aid Application and Declaration (in place of the Financial Aid Form or Student Aid Application for California). This must be done at the time they apply for admission to Caltech. (Those applying as transfer students should note on their application whether they are 3-2, special, or regular candidates.) Admitted students will be notified at that time of their financial aid award. Those offered assistance will be eligible to apply for aid in subsequent years. Returning international students must pick up financial aid packets in the Financial Aid Office in December and file them with the Financial Aid Office by April 15. International students who do not apply for aid at the time of admission, or are denied aid, will be ineligible for aid for any other academic period while they are undergraduates at Caltech. (Canadian and Mexican students are exempt from this rule.)

Returning students (other than international students) must pick up a financial aid application packet along with necessary supporting forms (e.g., Business/Farm supplements) from the Financial Aid Office in December. The Student Aid Application for California (SAAC) is appropriate for most students attending Caltech; those having a grant from another state might have to file a Financial Aid Form (FAF) or other application form to satisfy that state’s requirements. Both sides of the SAAC must be completed. The SAAC, listing Caltech as a recipient (code 4034), must be submitted to the College Scholarship Service in Berkeley by March 26.

Self-supporting students attending Caltech are few in number. Specific criteria are used in determining whether a student may be considered self-supporting. Generally, such a student must have been living and working on his or her own for three years prior to the year in which application is made for financial assistance. In special cases (wards of the court, veterans, students from extremely adverse family situations that can be attested to by people in his or her community), the three-year rule can be waived.

The basic application procedures are otherwise as outlined above for each category. Married students and students with dependent children of their own generally must have an interview with a financial aid counselor to determine their appropriate budget.
General Requirements

All applicants must file some or all of the documents described below. All items followed by an asterisk (*) are provided to new students with the preliminary award letter, and to returning students in the application packet available each December.

Tax Returns

All financial aid applicants must submit signed copies of their own and their parents' federal tax returns for the year prior to the year for which they apply for financial aid (for 1985-86 it is the 1984 return). Students, or their parents, who did not file a federal return should submit a Personal Income Statement. *

Note: International students must submit returns from their country of nationality and/or from the country where their parents are employed. Many countries restrict the exchange of currency; however, a number of those countries will grant special permission for students pursuing particular courses of study abroad. Such a waiver must be requested and proof of the acceptance or denial of the waiver must be provided along with the tax forms.

Business/Farm Supplements must be filed with the College Scholarship Service by all students and parents who own businesses or farms, along with the Financial Aid Form (FAF) or Student Aid Application for California (SAAC). A separate form must be completed for each business or farm; if separate tax returns are filed for these enterprises (examples, IRS forms 1120 or 1120S), copies of those returns must be submitted to the Financial Aid Office.

All California residents must apply for a Cal Grant between January 1 and February 1 if they have never had such a grant. Applications are available in high school guidance and financial aid offices. Students who have previously received Cal Grants must submit the Cal Grant renewal form to the College Scholarship Service by March 26.

All U.S. citizens and permanent residents must apply for a Pell Grant by checking the appropriate box on the Financial Aid Form (FAF) or Student Aid Application for California (SAAC). Students who apply for a Pell Grant will receive a Student Aid Report (SAR) from the Department of Education within six weeks of submitting the FAF/SAAC. This document may consist of one, two, or three parts, depending upon the student's eligibility and application status. SARs must be submitted to the Financial Aid Office.

All students who apply for federal aid (grants, loans and/or work) must file a "Draft Registration Compliance Statement"* with the Financial Aid Office.

CIT Supplements are required of all applicants. Supplements are used for the awarding of restricted need-based scholarships and summer work-study. Students are encouraged to provide as much information as possible about their activities, interests, employment history, and research experience. CIT Supplements are submitted directly to the Financial Aid Office.

Financial Aid Funds

Applicants for admission who have a complete financial aid application on file will be considered for all financial aid administered by the Institute. Financial need can be met either by a single type of aid or by a combination of scholarships or grants, loans, and student employment.
Scholarships and Grants

There are various kinds of grants and scholarships awarded by Caltech. "Name" scholarships are derived from money given to the Institute as endowments or annual gifts by individuals or organizations for scholarship purposes and are named by or for the donor. Students who meet the specifications of the donor are considered for "name" scholarships. One-year Caltech and Institute Grants are funds derived from endowments specially set aside for the purpose of assisting undergraduates. Eligible students receive Pell Grants and can be awarded Supplemental Educational Opportunity Grants, both of which are federally funded. The amount of a scholarship or grant award depends on financial need and the restrictions of the donor or funding agency.

Student Aid Loan Funds

Loans are available to members of all undergraduate classes, including entering freshmen, who are eligible for such aid. Loans are awarded as part of the total financial aid package offered by the Financial Aid Office. The four sources of loan funds, which are described below, are awarded to the extent of available funds.

1. Caltech loan funds are available to undergraduate students. No interest is charged and no repayment of principal is required during undergraduate residence at the Institute, as long as residence is continuous (the term "residence" includes the usual vacation periods). For those who transfer or continue on to graduate school, interest is charged but repayment of principal is not required until termination of formal education. Repayment terms, including interest rates, may be obtained from the Office of Student Accounts.

Loan amounts for international students are limited. It is inadvisable for foreign students from countries with seriously adverse rates of exchange to borrow much more than they can repay from savings earned in the United States from employment during the "training period" following graduation. Further, students from countries that prohibit currency exchange are not eligible for loans.

2. Federal loans under the National Direct Student Loan (NDSL) Program are available to undergraduate students who are citizens or permanent residents of the United States. The program limits borrowing to $3,000 during the first two years, with a maximum of $6,000 while in undergraduate status. The borrower must demonstrate financial need. No interest is charged on these loans until six months after a student reduces his or her status to less than half-time. Repayment of principal and interest begins six months after termination of formal education. During repayment, interest is charged at the rate of 5 percent per annum on the unpaid balance.

3. The Guaranteed Student Loan Program (GSL) provides up to $2,500 per academic year with an aggregate maximum of $12,500 for undergraduate education. The interest rate for first-time borrowers in 1984-85 is 8 percent. Further information on this program, including application forms, may be obtained from the Financial Aid Office.

4. Auxiliary Loans to Assist Student (ALAS), also known as PLUS or CLAS, are federal loans that enable graduate and professional students, independent undergraduates, and parents of dependent undergraduates to prorate payment of their contribution toward educational costs. Interest for parents begins to accrue immediately, and repayment must begin sixty (60) days after the loan is made. The current interest rate is 12 percent. Parents may borrow an annual maximum of $3,000 and an aggregate maximum of $15,000 per dependent child. In California, the program is called California Loans to Assist Students (CLAS). A parent does not have to be a resident of this state to apply for a CLAS loan on behalf of a Caltech undergraduate; however, parents will be required to demonstrate credit worthiness (rules for student borrowers are different). Details about CLAS loans and application forms can be obtained from the Financial Aid Office.
Student Employment

Students who desire part-time or summer employment may receive job location assistance from the Career Development Center. If an undergraduate student is a financial aid recipient, any term-time campus or JPL earnings must be considered part of the student’s financial aid package regardless of whether the wages are subsidized through the work-study program. Because academic requirements are so demanding, undergraduate students must receive approval from the Dean of Students to work more than 16 hours per week. In addition, any freshman seeking employment must receive permission from the Dean before he or she may work. We do not recommend that freshmen commence employment until after the end of the first term.

College Work-Study Program. This federally funded program is designed to pay part of the salaries of undergraduate and graduate students who are citizens or permanent residents of the United States. In addition to the above general employment constraints, College Work-Study employment is limited to students who are employed by Caltech and JPL and who demonstrate financial need. Further information is available through the Financial Aid Office. Work-study job listings and general advice on job seeking is available in the Career Development Center.

Foreign Student Employment Program. This is a program funded by Caltech that provides part-time employment for needy undergraduates from foreign countries to provide them with the same opportunity that U.S. citizens have to earn part of their aid. Students eligible to work under the FSEP program are limited to on-campus employment. Since this program was designed to accomplish the same results as College Work-Study, the same rules and guidelines are applicable to its administration.

No-Need Scholarships

A number of scholarships are available to students regardless of financial need. Merit scholarships include Caltech and Carnation prizes and several other private and corporate scholarships that are awarded to upperclassmen who have outstanding academic and/or research records.

In 1983-84, 22 Caltech undergraduates were awarded prizes of $4,000. The honor is recorded on transcripts and listed in the commencement program when prize scholars graduate. Several corporations, including Kodak, General Motors, Hughes Aircraft, and Xerox offer partial or full tuition scholarships to students who have demonstrated particular facility in the options that represent the types of expertise the corporations need in their research and development groups. Students may generally apply for such scholarships in the spring of their sophomore year.

Other organizations announce competitions throughout the year; eligibility criteria and deadlines are periodically advertised by the Financial Aid Office in the student newspaper, The California Tech.

Financial Payment Plans

The following organizations offer financial payment plans to help cover the costs of education at Caltech:

1. Academic Management Services, 1110 Central Avenue, Pawtucket, RI 02861, (800-556-6684), offers a nine-month annual budget payment plan. Payment under this plan begins June 1. Cost of this program is a $40 annual fee. A Life Benefit Coverage is provided at no additional cost.
2. The Richard C. Knight Insurance Agency, Inc., 53 Beacon St., Boston, MA 02108, (617)742-3911, makes available two plans of monthly repayment. The Insured Tuition Payment Plan allows payment of university expenses in a monthly payment plan while attending school. Payments to the university are made for you from an individual money market account established in your name and insured by FDIC. No interest is charged. Life insurance is automatically scaled to cover future payments if applicable. The Extended Repayment Plan is a low-cost loan that allows the extension of monthly payments beyond the student's graduation. The Plan pays the university, and the student repays the loan in 48, 60, or 80 months. Interest is at an attractive variable rate and is charged on the actual amount paid to the university and not yet repaid.

3. The Tuition Plan Inc., Concord, NH 03301, (800-258-3640) offers a Deferred Monthly Payment Plan (Loan Program) to cover tuition, fees, and any related educational expenses of schooling over a period of one to four years. Life insurance is available to all insurable parents. Monthly repayment starts one month after the first check is received from the Tuition Plan. Cost of this program is for interest expense of 17.5 percent and insurance premiums (if coverage is desired). The maximum number of months allowed for repayment is 96. A prepayment program is available that provides monthly budgeted expenses in advance of each school term. Cost of this plan is a $30 initial fee, and insurance is available to insurable parents (if coverage is desired).

PRIZES

Eric Temple Bell Undergraduate Mathematics Research Prize

In 1963 the Department of Mathematics established an Undergraduate Mathematics Research Prize honoring the memory of Professor Eric Temple Bell and his long and illustrious career as a research mathematician, teacher, author, and scholar. His writings on the lives and achievements of the great mathematicians continue to inspire many hundreds of students at Caltech and elsewhere. A prize of $500 is awarded annually to one or more juniors or seniors for outstanding original research in mathematics, the winners being selected by members of the mathematics faculty. The funds for this prize come from winnings accumulated over the years by Caltech undergraduate teams competing in the William Lowell Putnam Mathematics Contest, an annual nationwide competition.

Donald S. Clark Memorial Awards

From a fund contributed by the Caltech Alumni Association, annual awards of $500 are made to two juniors in engineering options in recognition of service to the campus community and grade point averages equal to or greater than those required for graduation with honor. The awards honor the work of Professor Clark, class of 1929, both in the field of engineering and in his service to the Alumni Association.

Haren Lee Fisher Memorial Award in Junior Physics

Mr. and Mrs. Colman Fisher have established the Haren Lee Fisher Memorial Award in Junior Physics in memory of their son. The General Electric Foundation also contributed to the fund under the matching plan of their Corporate Alumni Program. A prize of $250 will be awarded annually to a junior physics major, to be selected by a physics faculty committee as demonstrating the greatest promise of future contributions to physics.
Henry Ford II Scholar Awards

Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund, a nonprofit organization supported primarily by contributions from the Ford Motor Company. Each award, up to $5,000, will be made annually either to the engineering student with the best academic record at the end of the third year of undergraduate study, or to the engineering student with the best first-year record in the graduate program. The chairman of the Division of Engineering and Applied Science names the student to receive the award.

Jack E. Froehlich Memorial Award

The family and friends of the late Jack E. Froehlich, who did his undergraduate and graduate work at Caltech and was later the project manager for Explorer I for the Jet Propulsion Laboratory, have established a prize fund that will provide an award of $500 to a junior in the upper five percent of his or her class who shows outstanding promise for a creative professional career. The student is selected by the division chairmen and the deans together with the Undergraduate Academic Standards and Honors Committee.

George W. Green Memorial Prize

The George W. Green Memorial Prize was established in 1963 based on contributions given in memory of George W. Green, who for fifteen years served on the staff of the Caltech business office and was from 1956 to 1962 Vice President for Business Affairs. The prize of $750 is awarded annually to an undergraduate student in any class for original research, an original paper or an essay, or other evidence of creative scholarship beyond the normal requirements of specific courses. The student is selected by the division chairmen and the deans together with the Undergraduate Academic Standards and Honors Committee.

Arie J. Haagen-Smit Memorial Fund

The Arie J. Haagen-Smit Memorial Award was established in 1977 to honor the memory of the late pioneering bio-organic chemist who discovered the chemical constituents of smog. Dr. Haagen-Smit was a member of the Caltech faculty for 40 years, and his family and friends have arranged for a prize of $500 to be given at the end of the sophomore or junior year to a student in biology or chemistry who has shown academic promise and who has made recognized contributions to Caltech. The selection is made by a committee of representatives from the biology and chemistry divisions and the deans.

Frederic W. Hinrichs, Jr., Memorial Award

The Board of Trustees of the California Institute of Technology established the Frederic W. Hinrichs, Jr., Memorial Award in memory of the man who served for more than twenty years as dean and professor at the Institute. In remembrance of his honor, courage, and kindness, the award bearing his name is made annually to the senior who throughout his or her undergraduate years at the Institute has made the greatest contribution to the student body and whose qualities of character, leadership, and responsibility have been outstanding. At the discretion of the deans, more than one award or none may be made in any year. The award, presented at commencement without prior notification, consists of a cash award and a certificate.
David Joseph Macpherson Prize in Engineering

The David Joseph Macpherson Prize in Engineering was established in 1957 by Margaret V. Macpherson in memory of her father, a graduate of Cornell University in civil engineering, class of 1878. A prize of $400 is awarded annually to a graduating senior in engineering who exemplifies excellence in scholarship. The winning student is selected by a faculty committee of three, appointed annually by the chairman of the Division of Engineering and Applied Science. This prize is available only to U.S. citizens.

Mary A. Earl McKinney Prize in Literature

The Mary A. Earl McKinney Prize in Literature was established in 1946 by Samuel P. McKinney, M.D., of Los Angeles. Its purpose is to promote proficiency in writing. The terms under which it is given are decided each year by the literature faculty. It may be awarded for essays submitted in connection with regular literature classes, or awarded on the basis of a special essay contest. The prize consists of cash awards amounting to $750.

Robert L. Noland Leadership Scholarship

The Robert L. Noland Leadership Scholarship is a cash award of $1,500 for upperclass students who exhibit qualities of outstanding leadership. The kind of leadership to be recognized is most often expressed as personal actions that have helped other people and that have inspired others to fulfill their leadership capabilities. The scholarship was set up by Ametek in 1978 in honor of their president, Robert L. Noland, a Caltech alumnus. Two or more awards are generally made.

Don Shepard Award

Relatives and friends of Don Shepard, class of 1950, have provided this award in his memory. The award is presented to a student, the basic costs of whose education have already been met but who would find it difficult, without additional help, to engage in extracurricular activities and in the cultural opportunities afforded by the community. The recipients, upperclassmen, are selected on the basis of their capacity to take advantage of and to profit from these opportunities rather than on the basis of their scholastic standing.

Sigma Xi Award

In accordance with the aim of The Society of the Sigma Xi to encourage original investigation in pure and applied science, the Institute Chapter of the Society annually awards a prize of $750, funded from membership dues, to a senior selected for an outstanding piece of original scientific research. The student is selected by the division chairmen and the deans together with the Undergraduate Academic Standards and Honors Committee.

Morgan Ward Prize

The Morgan Ward Prize was established by the Department of Mathematics in 1963 to honor the memory of Professor Morgan Ward in recognition of his long service to mathematics and to the Institute. The competition is open only to freshmen or sophomores. An entry consists of a mathematical problem together with a solution or a significant contribution toward a solution. One or more winners are selected by a faculty committee acting on the advice of student judges. Each prize of $75 is funded by the same source used to sponsor the Eric Temple Bell Prize.
GRADUATION REQUIREMENTS, ALL OPTIONS

To qualify for a Bachelor of Science degree at the Institute, a student must obtain passing grades in each of the required courses listed below, must satisfy the additional requirements listed under the undergraduate options, and must achieve a grade-point average of not less than 1.9. The student must also register for programs that make normal progress toward a B.S. degree.

Students must register for the Institute requirements below, in the year specified, unless they have previous credit. If for some reason they are not able to complete the requirements at the proper time, they must register at the earliest possible opportunity. (The Curriculum Committee may in unusual cases excuse undergraduate students from any of the following Institute or option requirements upon presentation of petitions.)

The Institute unit system is described in the opening paragraphs of Section 5.

Institute Requirements, All Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Freshman Mathematics (Ma 1 abc)</td>
<td>.27</td>
</tr>
<tr>
<td>2. Sophomore Mathematics (Ma 2 abc)</td>
<td>.27</td>
</tr>
<tr>
<td>3. Freshman Physics (Ph 1 abc)</td>
<td>.27</td>
</tr>
<tr>
<td>4. Sophomore Physics (Ph 2 abc or Ph 12 abc)</td>
<td>.27</td>
</tr>
<tr>
<td>5. Freshman Chemistry (Ch 1 abc)</td>
<td>.18</td>
</tr>
<tr>
<td>6. Freshman Chemistry Laboratory (Ch 3 a)</td>
<td>.6</td>
</tr>
<tr>
<td>7. Additional Freshman Laboratory</td>
<td>.9</td>
</tr>
<tr>
<td>8. Computing</td>
<td>.6</td>
</tr>
<tr>
<td>9. Humanities Courses (as defined below)</td>
<td>.36</td>
</tr>
<tr>
<td>10. Social Sciences Courses (as defined below)</td>
<td>.36</td>
</tr>
<tr>
<td>11. Additional Humanities and Social Sciences Courses</td>
<td>.36</td>
</tr>
<tr>
<td>12. Physical Education</td>
<td>.9</td>
</tr>
</tbody>
</table>

1This requirement can also be met by completing Ch 2 ab or any two terms of Ch 41 abc.

Freshman Laboratory Requirement. All freshmen are required to take at least 15 units of laboratory work in experimental science including Ch 3 a (6 units). The additional 9 units of laboratory work must be chosen from APh 9 (6 units), Bi 1 (3 units), Bi 10 (6 units), Ch 3 b (5 units), Ch 4 ab (6 units per term), ChE 10 (3 units), CS/EE 11 (6 units), E 5 (6 units), Ge 1 (3 units), Ph 3 (6 units), Ph 4 (6 units).

Computing Requirement. All students must satisfactorily complete 6 units of coursework in computing. The units must be chosen from CS 10 (9 units), E 1 a (3 units), E 1 b (3 units), AMa 98 c (3 units), Ma 4 a (6 units), Ma 4 b (6 units), CS 112 (9 units), Ph 20 (3 units), Ph 21 (3 units), Ph 22 (3 units), Ph 76 (6 units).

Humanities and Social Science Requirements. All students must complete satisfactorily 108 units in the Division of the Humanities and Social Sciences. Of these 108 units, 36 must be in the humanities (art, history, humanities, literature, music, philosophy, and, with certain restrictions, languages and linguistics) and 36 in the social sciences (anthropology, economics, political science, psychology, social science), in each case divided equally between introductory and advanced courses. The remaining 36 may be drawn from either. They may include work done under the HSS Tutorial Program. They may include (to the limit of 27 units) courses in business economics and management (BEM). They may not include reading courses unless granted credit by petition. No more than 27 units of Freshman Humanities may be taken, 9 units of which may be employed to fulfill the final 36-unit HSS requirement.
Entering freshmen are required to take two terms of “Freshman Humanities” (humanities courses numbered 20 or below in the catalog). These courses may be taken in any two terms of the freshman year. Freshmen who score below 1200 on the combined verbal SAT and English achievement test of the CEEB, or those not taking the second test who score below 600 on the verbal SAT, will be required to take a diagnostic English examination before the beginning of first term. Students who fail this examination will not be allowed to enter Freshman Humanities courses until they complete successfully a remedial English program to be offered during the first term. This program will not count toward the 108-unit requirement nor the requirements for Freshman Humanities. The common denominator of freshman humanities courses is 4,000 words of essay writing a term. Successful completion of two terms is a prerequisite for advanced humanities (numbered above 20), but not for introductory social sciences.

A student must take 18 units of advanced humanities courses that require essay writing. Courses that count toward the advanced humanities requirement are marked in the catalog by an asterisk. Courses numbered from 21 through 199 without the asterisk can be taken to fulfill the final 36 units of the 108-unit HSS requirement unless otherwise noted. The first four terms of a foreign language do not count toward the 36-unit humanities requirement; however, every term receives credit towards the final 36 units of the 108-unit requirement in HSS. In addition, either the fifth or the sixth term of a language (but not both) may count towards the 18-unit advanced humanities requirement.

Students are required to take 18 units of introductory social science courses, consisting of two courses of 9 units each, chosen from the following: Anthropology: An 122, Economics: Ec/SS 11, Law: SS 130a or SS 133, Political Science: PS/SS 12, and Psychology: Psy 11 or Psy 12.

Students must also take an additional 18 units of courses numbered 100 or above, selected from the following categories: anthropology, economics, political science, philosophy, psychology, and social science, but only from a field in which they have completed an introductory course.

Courses that are cross-listed between Humanities and Social Science disciplines (e.g., psychology and literature, or history and economics) will not count toward either upper-division requirement unless so listed in the catalog.
First Year Course Schedule, All Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 1 abc</td>
<td>Freshman Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>Classical Mechanics and Electromagnetism (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 1 abc</td>
<td>General and Quantitative Chemistry (3-0-3)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Ch 3 a</td>
<td>Experimental Chemical Science (0-6-0)(^1)</td>
<td>6 or 6 or 6</td>
</tr>
<tr>
<td></td>
<td>Introductory courses in the humanities and social</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sciences. A wide choice of alternatives will be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>available to students; the Registrar will announce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the offerings for each term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshman Laboratory Courses(^2)</td>
<td>x x x</td>
</tr>
<tr>
<td></td>
<td>Additional Electives(^3)</td>
<td>x x x</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education(^4)</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

\(x\)—Except for the minimum laboratory unit requirement, the number of units chosen here is optional. If the student chooses no electives except physical education and takes the minimum permissible laboratory courses, the total unit load will be 42 for two terms and 39 for one term. A total load—including electives—of more than 51 units per term is considered a heavy load. A load of more than 58 units requires formal approval of a petition for overload.

\(^1\)This course is offered in each of the three terms.
\(^2\)The additional 9 units of laboratory work must be chosen from APh 9—6 units; Bi 1—3 units; Bi 10—6 units; Ch 3 b—5 units; Ch 4 ab—6 units per term; ChE 10—3 units; CS/EE 11—6 units; E 5—6 units; Ge 1—3 units; Ph 3—6 units; Ph 4—6 units.
\(^3\)A partial list of electives particularly recommended for freshmen includes the following: APh 3, APh/MS 4, Ay 1, Bi 1, Bi 2, ChE 10, CS/EE 4, CS 10, E 1 a, E 1 b, EE 5, Env 1, Ge 1, Ph 20, Ph 21, Ph 22.
\(^4\)Three terms (9 units) of PE are required for the B.S. degree. Students need not elect to take the required PE in the freshman year. It may be taken in any three terms before graduation.

Applied Mathematics Option

The undergraduate option in applied mathematics is for those students who want to combine their basic studies in mathematics with considerable involvement in applications. The program is similar in general outline to the mathematics option, with additional requirements to ensure a balance between courses that develop mathematical concepts and courses that show the interplay of these concepts with a variety of applications. Complete programs will be worked out with faculty advisers.

Option Requirements

1. Ma 5 abc, A Ma 95 abc or Ma 108 abc, and A Ma 101 abc
2. One of the following (or an approved combination): A Ma 98 abc, A Ma 151 abc, A Ma 152 abc, A Ma 153 abc, A Ma 181 abc, or A Ma 104 and two of A Ma 105-109.
3. One of the following (or an approved combination): Ma 118 abc, Ma 120 abc, Ma 121 abc, Ma 142 abc, or Ma 137 and Ma 143 ab. Ma 108 abc may be accepted if not used to satisfy requirement 1.
4. Passing grades must be obtained in a total of 483 units, including the courses listed above.
Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Waves, Quantum Mechanics, and Statistical Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>Introduction to Abstract Algebra (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units per term</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 95 abc</td>
<td>Introductory Methods of Applied Mathematics (4-0-8)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>or Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Humanities Electives</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 101 abc</td>
<td>Methods of Applied Mathematics (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Electives<sup>1</sup></td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Units per term</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

¹See items 2 and 3 under option requirements.

Applied Physics Option

The applied physics option is designed to connect what is conventionally considered "engineering" and "pure physics." Research in applied physics is an effort to answer questions related to problems of technological concern. Since the interests of both engineering and pure physics cover fields that overlap, a definite dividing line cannot be drawn between them. Realizing this, the applied physics option draws its faculty from the Divisions of Physics, Mathematics and Astronomy; Engineering and Applied Science; Chemistry and Chemical Engineering; and Geological and Planetary Sciences. This interdivisional aspect of the option allows a flexibility and range in curriculum, appropriate to the student's particular research interests, that may end up being a mixture of courses and research in different divisions.

Specific subject areas of interest in the program cover a broad spectrum of physics related to different fields of technology. Solid state physics includes work in superconductivity, ferromagnetism, and semiconducting solid state. Work on electromagnetic waves extends from antenna problems into lasers and nonlinear optics. Fluid physics includes magnetohydrodynamics, high-temperature plasmas and superfluids. Transport phenomena in gases, liquids, and solids form another active area related to nuclear and chemical engineering.

The undergraduate curriculum attempts to reflect and maintain a close relationship with the various disciplines. This facilitates a transition to or from any of these, if at any time in the student's course of study and research this would be considered to his or her benefit.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed below under option requirements may be refused permission to continue work in this option.
Option Requirements

1. Any three of the following: APh 24, Ph 3, Ph 5, Ph 6, Ph 7
2. APh 50 abc and APh 106 abc or Ph 106 abc
3. AMa 95 abc
4. Either APh 78 abc, or one term of APh 77 and one chosen from the following: APh 77, APh 154, Ph 77, EE 91, Ch 6, Ae/APh 104 bc, ChE 126, CS/EE 121, MS 130, MS 131, MS 132
5. 54 additional units of APh courses numbered over 100, which must include one of the following: APh 101 abc, APh 105 abc, APh 114 abc, APh 156 abc, APh 181 abc, APh 190 abc. None of these courses shall be elected by the student to be taken on a pass/fail basis. Note that APh 100 and APh 200 do not satisfy this requirement.
6. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc</td>
<td>1st 2nd 3rd</td>
</tr>
<tr>
<td>Waves, Quantum Mechanics, and Statistical Physics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Laboratory Electives</td>
<td>6 6 6</td>
</tr>
<tr>
<td>APh 17 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Thermodynamics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>51 51 51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 50 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Topics in Applied Physics</td>
<td>2 2 2</td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Introductory Methods of Applied Mathematics (4-0-8)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>18 18 18</td>
</tr>
<tr>
<td>50 50 50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 78 abc</td>
<td>6 6 6</td>
</tr>
<tr>
<td>or APh 77</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 106 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>or Ph 106 abc</td>
<td>18 18 18</td>
</tr>
<tr>
<td>Senior Thesis, Experimental 3</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Laboratory in Applied Physics 3</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Topics in Classical Physics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh Electives 2</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>51-54 51-54 51</td>
</tr>
</tbody>
</table>

1 See item 1, option requirements.
2 See item 5, option requirements.
3 See item 4, option requirements.
Suggested Electives

The student may elect any course that is offered in any term provided he or she has the necessary prerequisites for that course. The following subjects are suggested as being especially suitable for a well-rounded course of study. They need not be taken in the year suggested.

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 23</td>
<td>APh 77</td>
<td>APh 77</td>
</tr>
<tr>
<td>APh 24</td>
<td>Ph 77 ab</td>
<td>APh 100</td>
</tr>
<tr>
<td>Ge 1</td>
<td>EE 114 abc</td>
<td>Ae/APh 101 abc</td>
</tr>
<tr>
<td>Ge 2</td>
<td>Ch 6 ab</td>
<td>APh 105 abc</td>
</tr>
<tr>
<td>Bi 1</td>
<td>Ge 154 abc</td>
<td>APh 114 abc</td>
</tr>
<tr>
<td>Ay 1</td>
<td>APh 100</td>
<td>AMa 101 abc</td>
</tr>
<tr>
<td>ME 1 ab</td>
<td></td>
<td>AMa 104</td>
</tr>
<tr>
<td>ME 19 abc</td>
<td></td>
<td>AMa 105 ab</td>
</tr>
<tr>
<td>EE 14 abc</td>
<td></td>
<td>Ch 125 abc</td>
</tr>
<tr>
<td>EE 90 abc</td>
<td></td>
<td>Ph 125 abc</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td></td>
<td>Ph 129 abc</td>
</tr>
<tr>
<td>MS 15 abc</td>
<td></td>
<td>Ph 77 ab</td>
</tr>
</tbody>
</table>

More Specialized Courses

APh/MS 126 abc	APh 181 abc	Ch 113 abc
APh 140 abc	APh 190 abc	EE 91 abc
APh 153 abc	APh 195 ab	EE 155 abc
APh 154	AM 135 abc	Ge 104 abc
APh 156 abc	ChE 103 abc	Ge 166
APh 161 abc	ChE 126 abc	

Astronomy Option

The astronomy option is designed to give the student an understanding of the basic facts and concepts of astronomy, to stimulate his or her interest in research, and to provide a basis for graduate work in astronomy. The sophomore-junior sequence (Ay 20, 21, 22, 101, 102) constitutes a solid introduction to modern astronomy. More advanced courses may be taken in the junior and senior years.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed in the Division of Physics, Mathematics and Astronomy may, at the discretion of his or her department, be refused permission to continue the work in this option.

Option Requirements

1. Ay 20, Ay 21 or 102, Ay 101, 14 units of Ay electives excluding Ay 1, Ph 3, Ph 5 or 6, Ph 7, Ph 98 abc or Ph 125 abc, and Ph 106 abc
2. 54 additional units of Ay or Ph courses
3. 27 additional units of science or engineering electives of which 18 must be outside the Division of Physics, Mathematics and Astronomy
4. Passing grades must be earned in a total of 516 units, including the courses listed above.
Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc</td>
<td>Waves, Quantum Mechanics and Statistical Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ay 20</td>
<td>Basic Astronomy and the Galaxy (3-2-6)</td>
<td>11</td>
<td>.</td>
</tr>
<tr>
<td>Ay 21</td>
<td>Galaxies and Cosmology (3-0-6)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Ph 3, 5, 6, 7</td>
<td>Physics Laboratory</td>
<td>0-6</td>
<td>0-6</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>0-9</td>
<td>3-6</td>
<td>12-15</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>38-53</td>
<td>39-48</td>
<td>45-48</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 98 abc</td>
<td>Quantum Physics (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>Topics in Classical Physics (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ay 101</td>
<td>The Physics of Stars (3-2-6)</td>
<td>.</td>
<td>11</td>
</tr>
<tr>
<td>Ay 102</td>
<td>Plasma Astrophysics and the Interstellar Medium (3-0-6)</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18-24</td>
<td>9-12</td>
<td>9-15</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>45-51</td>
<td>47-50</td>
<td>45-51</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomy or Physics Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18-24</td>
<td>18-24</td>
<td>18-24</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>45-51</td>
<td>45-51</td>
<td>45-51</td>
</tr>
</tbody>
</table>

Students are encouraged (but not required) to undertake research leading to a senior thesis; credit for this work is provided through Ay 42.

Suggested Electives

The student may elect any course that is offered in any division in a given term, provided that he or she has the necessary prerequisites for that course. The following list contains courses useful to work in various fields of astronomy and astrophysics: Bi 1, EE 5, Ge 1, Ge 2, Ma 5 abc, AMa 95 abc, AMa 105 ab, Ma 112 ab, EE 14 abc, EE 90 abc, Ge 152, Ge 155, Ge 166 a, Ge 166 b, Ph 77 ab, Ph 125 abc, Ph 136 abc, Ay 22, Ay 110, Ay 141, Ay 151, Ay 152, Ay 153, Ay 154, Ay 155, and Ay 156.

1 Students are required to take (a) Ph 3 if not already taken, (b) Ph 5 or Ph 6, and (c) Ph 7.

2Sophomore electives include at least 27 units of science and engineering courses, of which at least 18 units shall be in subjects other than mathematics, physics, and astronomy. It is desirable for a student to acquire as broad a background as possible in other related fields of science and engineering.

3 Students who plan to do graduate work in astronomy should elect some of these courses during their third and fourth years, on consultation with their advisers.
Biology Option

The undergraduate option in biology is designed to build on a solid foundation in mathematics and physical science by providing an introduction to the basic facts, concepts, problems, and methodologies of biological science. The option serves as a basis for graduate study in any field of biology or for admission to the study of medicine. Instruction is offered in the form of participation in the ongoing research programs of the division, as well as in formal course work. Course work emphasizes the more general and fundamental properties of living organisms, and areas of current research interest, rather than the traditional distinct fields within the life sciences.

The division encourages undergraduate participation in its research program and believes that research participation should be a part of each student's program of study at the Institute. Students may elect to prepare an undergraduate thesis (Bi 90). Research opportunities may be arranged with individual faculty members or guidance may be obtained from a student's individual faculty adviser in the division or from the Biology Undergraduate Student Adviser.

The requirements listed below for the biology option are minimal requirements. An adequate preparation for graduate work in biology will normally include additional elective research or course work in biology and/or advanced course work in other sciences or mathematics. Flexibility to accommodate varied individual scientific interests, within the broad scope of biology, is achieved through the provision of elective courses, arrangements for individual research (Bi 22), and tutorial instruction (Bi 23). In addition, arrangements may be made to take courses at neighboring institutions in fields of biology that are not represented in our curriculum.

Premedical Program. The undergraduate course for premedical students is essentially the same as that for biology students and is intended as a basis for later careers in research as well as in the practice of medicine. It differs in some respects from premedical curricula of other schools; however, it has been quite generally accepted as satisfying admission requirements of medical schools. Slight modifications in the curriculum may be required for admission to certain medical schools, or in cases in which the student wishes to try to complete admission requirements in three years instead of four.

It is recommended that all students contemplating application to medical school consult with the premedical adviser, Dr. Marlene Coleman.

Option Requirements
1. Specific courses: Bi 1, Bi 7, Bi 9, Bi/Ch 110 abc, Bi 122, Bi 150, and Ch 41 abc.
2. An additional 55 units of Bi courses. At least 10 of these units must be in Bi 22 or laboratory courses (Bi 10, Bi 111, Bi 161, Bi 180).
3. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves, Quantum Mechanics, and Statistical Physics (4-0-5)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry of Covalent Compounds (3-0-6)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Bi 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Biology (3-3-6)</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology (3-0-6)</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>9-15</td>
<td>0-3</td>
<td>0-6</td>
</tr>
</tbody>
</table>

Units per term: 45-51 48-51 45-51
Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Bi 7</td>
<td>9</td>
</tr>
<tr>
<td>Organismic Biology (3-3-3)</td>
<td>9</td>
</tr>
<tr>
<td>Bi/Ch 110 abc</td>
<td>12</td>
</tr>
<tr>
<td>Biochemistry (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Bi 122</td>
<td>12</td>
</tr>
<tr>
<td>Genetics (3-3-6)</td>
<td>12</td>
</tr>
<tr>
<td>Electives^1,2,3</td>
<td>15-21</td>
</tr>
<tr>
<td></td>
<td>24-30</td>
</tr>
<tr>
<td></td>
<td>12-18</td>
</tr>
<tr>
<td></td>
<td>45-51</td>
</tr>
</tbody>
</table>

Recommended Electives^2

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 21 abc</td>
<td>9</td>
</tr>
<tr>
<td>The Physical Description of Chemical Systems</td>
<td>9</td>
</tr>
<tr>
<td>Ch 24 ab</td>
<td>9</td>
</tr>
<tr>
<td>Introduction to Biophysical Chemistry</td>
<td>9</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Bi 150</td>
<td>10</td>
</tr>
<tr>
<td>Neurobiology (4-0-6)</td>
<td>26-32</td>
</tr>
<tr>
<td>Electives^3</td>
<td>36-42</td>
</tr>
<tr>
<td></td>
<td>45-51</td>
</tr>
</tbody>
</table>

Suggested Electives

Second Year

Second Term: Bi/Ph 50, Ch 4 a

Third Term: Bi 10, Ch 4 b

Third Year

First Term: Bi 22, Bi 23, Bi 114, Bi/Ph 131, Bi 135, Bi 136, Ch 21 a, L 1 a, L 32 a, L 50 a

Second Term: Bi 22, Bi 23, Bi 106, Ch 21 b, Ch 24 a, Ch 90, L 1 b, L 32 b, L 50 b

Third Term: Bi 22, Bi 23, Bi 115, Bi 137, Bi/Ph 151, Bi 156, Bi 157, Bi 158, Ch 21 c, Ch 24 b, Env 144, L 1 c, L 32 c, L 50 c

Fourth Year

In addition to those listed for the third year:

First Term: Bi 90a, Bi 217, Ch 144 a, Ch 244 a

Second Term: Bi 90b, Bi 125, Bi/Ch 132 a, Bi 152, Bi 161, Bi 220, Bi 222, Bi 225, Bi 230, Ch 144 b, Ch 244 b, Env 145 a

Third Term: Bi 90c, Bi/Ch 132 b, Bi 218, Bi 219, Bi 220, Bi 241, Env 145 b, Ge 5

^1Electives must include sufficient units of work in biology to complete the graduation requirement for 143 units of work in biology.

^2Ch 21 or the combination of Ch 21 a, Ch 24 ab is strongly recommended for students interested in chemical biology, as many graduate programs expect entering students to have taken a course in physical chemistry.

^3The sequence of courses Bi 150, Bi 152, Bi 156, and Bi 157 is designed to provide a comprehensive introduction to the field of neurobiology.
Chemical Engineering Option

Chemical Engineering is one of the broader of the engineering disciplines, involving the application of mathematics, physics, chemistry, and economics to a variety of problems, mainly characterized by chemical change. Study in this option leads, especially when followed by graduate work, to research and development in industry and government laboratories or to research and teaching in universities.

Freshman and sophomore students normally take the fundamental courses in chemistry, physics and mathematics (Ch 1 abc, Ch 41 abc, Ph 1 abc, Ph 2 abc, Ma 1 abc, and Ma 2 abc). Students who show themselves to be qualified may, however, elect to take more advanced courses.

Students interested in an introduction to the breadth of chemical engineering are encouraged to take ChE 10. The open-ended projects in ChE 10 also offer an opportunity to become acquainted with some of the faculty in chemical engineering.

In the second year, students normally take a basic course in chemical engineering thermodynamics, ChE 63 abc. In addition, there are 27 units of elective courses.

Juniors take courses in the physical description of chemical systems, an introduction to the techniques of applied mathematics, and a unified course in transport phenomena involving the study of transfer of momentum, energy, and materials in situations of practical interest. They also take a course in applied chemical kinetics involving the basic study of chemical reactions combined with transport processes in systems of practical interest. Seniors take courses in separation processes and the fundamentals of the control of dynamic systems. The work in kinetics and control and other previous chemical engineering courses is used in senior courses in the optimal design and simulation of chemical systems. Seniors may also take the chemical engineering laboratory during the second and third terms.

Undergraduate research is emphasized, and students are encouraged even in the freshman year to participate in research in association with staff members. Over the past year such research has resulted in a number of publications in scientific journals.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed under the Division of Chemistry and Chemical Engineering may at the discretion of the faculty in this division be refused permission to continue the work of this option.

Option Requirements

1. Ch 41 abc, ChE 63 abc, AMa 95 abc, Ch 21 abc, ChE 101, ChE 103 abc, ChE 104, ChE 105, ChE 110 ab, ChE 126 a or Ch 6 a and ChE 126 b, and either Ec/SS 11, Ec 15, or BEM 100a
2. 18 units of chemistry electives
3. 27 units of science and engineering electives
4. Passing grades must be earned in a total of 516 units, including the courses listed below.

1These 9 units partially satisfy the Institute requirements in humanities and social sciences.
2In addition to chemistry courses taught within the Division of Chemistry and Chemical Engineering, other courses such as Bi 110 and Env 142 may be used to satisfy this requirement.
3If research units (ChE 80) are to be used to fulfill elective requirements in the chemical engineering option, a written research report approved by the research director must be submitted in duplicate before May 10 of the year of graduation.
Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Third Year</th>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>AMa 95 abc</td>
<td>ChE 104</td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td>Sophomore Mathematics (4-0-8)</td>
<td>Separation Processes (3-0-6)</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Ch 21 abc</td>
<td>ChE 105</td>
</tr>
<tr>
<td>Sophomore Physics (4-0-5)</td>
<td>The Physical Description of Chemical Systems (3-0-6)</td>
<td>Process Control (3-0-6)</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>ChE 101</td>
<td>ChE 110 ab</td>
</tr>
<tr>
<td>Sophomore Chemistry (3-0-6)</td>
<td>Chemical Kinetics and Reactor Design (3-0-6)</td>
<td>Optimal Design of Chemical Systems (3-0-9)</td>
</tr>
<tr>
<td>ChE 63 abc</td>
<td>ChE 103 abc</td>
<td>ChE 126 ab</td>
</tr>
<tr>
<td>Chemical Engineering Thermodynamics (3-0-6)</td>
<td>Transport Phenomena (3-0-6)</td>
<td>Chemical Engineering Laboratory (1-6-2)</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemistry Option

Study in the chemistry option leads, especially when followed by graduate work, to careers in teaching and research in colleges and universities, in research in government and industry, in operation and control of manufacturing processes, and in management and development positions in the chemical industry.

A first-year general chemistry course is taken by all freshman students. The emphasis is on fundamental principles and their use to systematize descriptive chemistry. Students who show themselves to be qualified and receive the instructor’s consent may elect to take an Advanced Placement first-year chemistry course (at least two terms from Ch 2 ab, Ch 21 abc, or Ch 41 abc). The one-term required laboratory course (Ch 3 a) presents basic principles and techniques of synthesis and analysis and develops the laboratory skills and precision that are fundamental to experimental chemistry. The laboratory in the following two terms (Ch 4 ab), normally taken concurrently with Ch 41, introduces the student to methods of synthesis, separation, and instrumental analysis used routinely in research.

Beyond the freshman year, each student in the chemistry option, in consultation with his or her adviser, selects a suitable course of study under the supervision of the division. The requirements of the option are listed below. A student wishing to deviate from these requirements...
should submit with justification an alternate curriculum for consideration by his or her adviser and the Undergraduate Study Committee.

Undergraduates in the option must also take chemistry courses below the 100 level for a letter grade with the exception of the following courses, which are only offered on a pass/fail basis: Ch 1, Ch 2, Ch 3 a, Ch 90, and if taken during the freshman year, Ch 4 ab, Ch 21 abc, and Ch 41 abc. Within the total period of undergraduate study there are additional Institute requirements for Ma 1 abc, Ph 1 abc, Ma 2 abc, Ph 2 abc, and 108 units of humanities and/or social science as well as 9 units of PE.

The group of courses listed below would constitute a common core for many students in the option.

Any student of the chemistry option whose grade-point average is less than 1.9 will be admitted to the option for the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

Option Requirements
1. Ch 14, Ch 21 abc (or Ch 21 a, Ch 24 ab), Ch 41 abc, Ch 90.
2. A minimum of five terms of laboratory work chosen from Ch 4 ab, Ch 5 ab, Ch 6 ab, Ch 15, and Bi 111.
3. A minimum of five terms of advanced chemistry electives from chemistry course offerings at the 100 and 200 level, including cross-listed offerings such as Bi/Ch 110 abc, Bi/Ch 132 ab, and ChE/Ch 164, but excluding Ch 180 and Ch 280.
4. Passing grades must be earned in the courses that constitute the approved program of study, including those listed above.
5. Passing grades must be earned in a total of 516 units, including courses listed above. This new requirement becomes effective for freshmen entering 1984-85.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Chemistry of Covalent Compounds (3-0-6)</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Waves, Quantum Mechanics, and Statistical Physics (4-0-5)</td>
</tr>
<tr>
<td>Ch 5 a</td>
<td>Advanced Techniques of Synthesis and Analysis (1-6-2)</td>
</tr>
<tr>
<td>Electives</td>
<td>6-9</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education (0-3-0)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Chemical Equilibrium and Analysis (2-0-4)</td>
</tr>
<tr>
<td>Ch 15</td>
<td>Chemical Equilibrium and Analysis Laboratory (0-6-4)</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>The Physical Description of Chemical Systems (3-0-6)</td>
</tr>
<tr>
<td>Ch 90</td>
<td>Oral Presentation (1-0-1)</td>
</tr>
<tr>
<td>Electives</td>
<td>18-22</td>
</tr>
<tr>
<td></td>
<td>43-47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ch 6 a</td>
<td>Application of Physical Methods to Chemical Problems (0-6-4)</td>
</tr>
<tr>
<td>Electives</td>
<td>47-51</td>
</tr>
<tr>
<td></td>
<td>47-51</td>
</tr>
</tbody>
</table>
This core program is not rigorously required for graduation in the option, nor is it in any sense a complete program. Students are expected to work out individual programs suitable for their interests and professional goals in consultation with their advisers. Several representative programs, including sets of possible electives, are shown below. These may well approximate choices by students who intend to do graduate work in conventional areas of chemistry.

Suggested Representative Courses of Study for Those Intending To Do Graduate Work in Particular Areas of Chemistry\(^1,2\)

<table>
<thead>
<tr>
<th>Inorganic Chemistry</th>
<th>Chemical Physics</th>
<th>Organic Chemistry</th>
<th>Chemical Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore Year</td>
<td>Sophomore Year</td>
<td>Sophomore Year</td>
<td>Sophomore Year</td>
</tr>
<tr>
<td>Ch 5 ab(^3)</td>
<td>Ch 21 abc(^7)</td>
<td>Ch 5 ab(^3)</td>
<td>Ch 5 a(^3)</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Ch 6 ab(^7)</td>
<td>Ch 41 abc</td>
<td>Ch 41 abc</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Ch 14</td>
<td>Ma 2 abc</td>
<td>Ch 14</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Ma 2 abc</td>
<td>Ph 2 abc</td>
<td>Ma 2 abc</td>
</tr>
<tr>
<td>HSS elective</td>
<td>Ph 2 abc</td>
<td>HSS elective</td>
<td>Ph 2 abc</td>
</tr>
<tr>
<td>other elective(s)</td>
<td>HSS elective</td>
<td>other elective(s)</td>
<td>HSS elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior Year</td>
<td>Junior Year</td>
<td>Junior Year</td>
<td>Junior Year</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Ch laboratory(^8)</td>
<td>Ch 14</td>
<td>Ch laboratory(^11)</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Ch 41 abc(^7)</td>
<td>Ch 21 abc</td>
<td>Ch 21 a</td>
</tr>
<tr>
<td>Ch elective(s)(^4)</td>
<td>Ch elective(s)(^9)</td>
<td>Ch elective(s)(^10)</td>
<td>Ch 24 ab (or Ch 21 bc)</td>
</tr>
<tr>
<td>Ch laboratory(^5)</td>
<td>Ch 80(^6)</td>
<td>Ch laboratory(^5)</td>
<td>Ch 80(^6) (or Bi 22)</td>
</tr>
<tr>
<td>Ch 80(^6)</td>
<td>Ch 90</td>
<td>Ch 80(^6)</td>
<td>Ch 90</td>
</tr>
<tr>
<td>HSS elective</td>
<td>Am 95 ab</td>
<td>Ch 90</td>
<td>Bi/Ch 110 ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSS elective</td>
<td>Bi 111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HSS elective</td>
</tr>
<tr>
<td>Senior Year</td>
<td>Senior Year</td>
<td>Senior Year</td>
<td>Senior Year</td>
</tr>
<tr>
<td>Ch electives(^4,5)</td>
<td>Ch 125 abc</td>
<td>Ch electives(^5,10)</td>
<td>Ch (Bi) electives(^11,12)</td>
</tr>
<tr>
<td>Ch 80(^6)</td>
<td>Ch electives(^8,9)</td>
<td>Ch 80(^6)</td>
<td>Ch 80(^6) (or Bi 22)</td>
</tr>
<tr>
<td>HSS elective</td>
<td>Ch 80(^6)</td>
<td>HSS elective</td>
<td>HSS elective</td>
</tr>
<tr>
<td></td>
<td>HSS elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1A significant fraction of the chemical literature, especially in organic chemistry, is in German. A reading knowledge of German is therefore useful in research at the doctoral level. Russian is another important language for chemistry; however, the leading Russian periodicals are translated and published in English.

2Experience in computer programming and use is now important to all areas of chemistry.

3Requires Ch 4 ab; if Ch 4 ab was not taken in the freshman year, it can be taken in the sophomore year, and Ch 5 ab deferred to the junior year.

4Ch 112, Ch 117, Ch 120 ab, Ch 122 abc, Ch 135 ab, Ch 144 ab, Ch 154, Ch 212, Ch 213 abc, Ch 241 ab, Ch 242 ab, Ch 247 ab.

5Ch 15, Ch 26 ab, Ch 118 ab, Bi 111.

6See “Research Opportunities for Undergraduates in Chemistry,” which may be obtained from the Chairman of the Undergraduate Studies Committee.

7Students without sufficient math preparation may delay Ch 21 abc and Ch 6 ab until their junior year and take Ch 5 ab and Ch 41 abc during their sophomore year.

8Ch 5 ab\(^3\), Ch 15, Ch 118 ab, Bi 111.

9Ch 120 ab, Ch 127 ab, Ch 130 ab, Ch 135 ab, Ch 144 ab, Ch/Ch 164, Ph 106 ab, Am 105 ab.

10Ch 112, Ch 120 ab, Ch 122 ab, Ch 135 ab, Ch 144 ab, Ch 154, Ch 241 ab, Ch 242 ab, Ch 247 ab.

11Ch 5 b, Ch 15, Ch 26 ab, Ch 118 ab.

12Ch 122 abc, Ch 131, Bi/Ch 132 ab, Ch 144 ab, Ch 154, Ch 242 ab, Ch 244, Ch 247 ab.
Suggested Elective Courses for the Chemistry Option

1. Chemical Engineering: Chemical Engineering Systems (ChE 10), Chemical Engineering Thermodynamics (ChE 63), Undergraduate Research (ChE 80), Chemical Kinetics and Reactor Design (ChE 101), Transport Phenomena (ChE 103), Advanced Polymer Science (ChE 167), Polymer Science Laboratory (ChE 168), Optimal Control Theory (Ae/ChE 172), Advanced Transport Phenomena (ChE 173).

2. Biology: Introduction to Biology (Bi 1), Cell Biology (Bi 9), Genetics (Bi 122).

4. Physics: Physics Laboratory (Ph 3, Ph 4, Ph 5, Ph 6, Ph 7), Topics in Classical Physics (Ph 106), Quantum Mechanics (Ph 125), Mathematical Models of Physics (Ph 129), Statistical Physics (Ph 127).

5. Humanities: Introduction to Microeconomics (Ec/SS 11), Introduction to Macroeconomics: Principles and Problems (Ec 15), Elementary French (L 102) or Elementary German (L 130) or Elementary Russian (L 141).

6. Miscellaneous: Introduction to Astronomy (Ay 1), Introductory Geology (Ge 1), Introduction to Geochemistry (Ge 130), Advanced Calculus (Ma 108).

Economics Option

The principal objectives of the economics option are to provide a useful, working knowledge of the economic system and its most important institutions and to present a rigorous curriculum in the conceptual basis and practical applications of modern economics. The upper division courses in microtheory, macrotheory, and econometrics build upon the methods of analysis provided in the Institute freshman and sophomore science and mathematics requirement, offering students comprehensive, scientific development of the fundamentals of modern economic theory. The remaining courses apply the tools of economic analysis to particular areas of public concern where economics is most relevant. The program provides students with an excellent preparation for graduate study in economics, and for an economics oriented plan of study in a graduate professional school of business or law.

Option Requirements

1. Ec/SS 11, Ec 121 ab, Ec 122, and Ec 126 ab
2. Ma 112 a
3. 54 additional units of advanced economics and social science courses (not including Business Economics and Management). Students may take AMa 181 ab in partial fulfillment of this requirement.
4. 45 units of science, mathematics, and engineering courses. This requirement cannot be satisfied by freshman laboratory courses or courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year. Note: AMa 181 ab may count toward either this requirement or the economics electives requirement, but not toward both.
5. Passing grades must be earned in a total of 516 units, including courses listed above.
Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td></td>
</tr>
<tr>
<td>Ec/SS 11</td>
<td></td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>PS/SS 12</td>
<td></td>
</tr>
<tr>
<td>Ec 15</td>
<td></td>
</tr>
<tr>
<td>Electives<sup>1</sup></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ec 121 a</td>
<td>9</td>
</tr>
<tr>
<td>Ec 122</td>
<td></td>
</tr>
<tr>
<td>Ec 126 ab</td>
<td>9</td>
</tr>
<tr>
<td>Ma 112 a</td>
<td>9</td>
</tr>
<tr>
<td>Electives<sup>1</sup></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives<sup>1</sup></td>
<td>45</td>
</tr>
</tbody>
</table>

¹See requirements 4 and 5 above.
Electrical Engineering Option

The electrical engineering option is designed to provide a broad exposure to the fundamentals of the electrical sciences while allowing some degree of specialization in a particular aspect of modern electrical engineering. Study in this option leads, especially when followed by graduate work, to research and development in industry and government laboratories or to research and teaching in universities.

Students electing this option normally begin their work in electrical engineering with the theory and laboratory practice of electronics in their sophomore year in EE 14 abc and EE 90 ab, although many may have already been introduced to the field through freshman electives. The junior year program features a choice of alternative courses in passive and active circuit design and two one-term courses designed to introduce important areas of modern electrical engineering: energy processing systems, EE 40, and communications systems, EE 60. The digital electronics course CS/EE 4 may also be taken in the junior year if it has not previously been taken. In his or her senior year the student will ordinarily take an advanced course in electricity and magnetism, EE 151 abc, and demonstrate his or her ability to formulate and carry out a research or development project, through either the senior thesis, EE 78 abc, or the senior projects laboratory, EE 91 abc. The senior student may elect advanced courses to continue special interests begun in the required courses or in the electives taken in the sophomore and junior years; alternatively, a senior may select a broader range of topics from EE or other engineering or science courses.

A student whose interests lie in the electrical sciences but who wishes to pursue a broader course of studies than that allowed by the requirements of the electrical engineering option may elect the engineering and applied science option.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed under electrical engineering may be refused permission to continue work in this option.

Option Requirements
1. E 10
2. AMa 95 abc
3. EE 14 abc, EE 32 ab, EE 40, EE 51 ab, EE 90 ab, EE 151 ab, EE 160
4. CS/EE 4 or CS 112
5. EE 78 abc or two terms of EE 91 abc
6. In addition to the above courses, 27 units selected from EE, CS/EE, or EE/Ma courses numbered over 100.
7. Passing grades must be earned in a total of 516 units, including courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc</td>
<td></td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td></td>
</tr>
<tr>
<td>EE 14 abc</td>
<td></td>
</tr>
<tr>
<td>EE 90 ab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1st 2nd 3rd</td>
</tr>
<tr>
<td>Waves, Quantum Mechanics and Statistical Physics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Introduction to Electronic Engineering (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Laboratory in Electronics (0-3-1)</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Electives</td>
<td>12 9 9</td>
</tr>
<tr>
<td></td>
<td>48 49 49</td>
</tr>
</tbody>
</table>

Note: 1: Humanities Electives include courses in literature, history, philosophy, and the social sciences, each of which is 1 unit.
Third Year

AMa 95 abc Introductory Methods of
Applied Mathematics (4-0-8) 12 12 12
Humanities Electives¹ 9 9 9
EE 32 ab Introduction to Linear Systems (3-0-6) 9 9 9
EE 40 Fundamentals of Energy
Processing Systems (3-0-6) 9 9 9
EE 51 ab Engineering Electromagnetics (3-0-6) 9 9 9
EE 160 Communication System Fundamentals (3-0-6) . . 9 9 9
Electives .. 48 48 48

Fourth Year

Humanities Electives¹ 9 9 9
E 10 Technical Seminar Presentations (1-0-1) 2 2 2
EE 91 ab² Experimental Projects in Electronic Circuits 6 6 6
Electives .. 42 44 45

¹See Institute requirements for specific rules regarding humanities.
²See option requirement 5.

Suggested Electives

First-year students interested in electrical engineering should consider selecting one or two courses per term from APh 3, APh 9, CS/EE 4, CS 10, CS/EE 11, Gr 1, E 5, EE 5, Ph 3.

Suggested elective course sequences for the second, third, and fourth year for various specializations within electrical engineering are given below. Students interested in other areas of specialization or interdisciplinary areas are encouraged to develop their own elective program in consultation with their faculty adviser.

COMMUNICATIONS

Second Year
Selected from APh/ME 17 abc, APh 23, APh
24, CS 112, CS 114, CS/EE 121

Third Year
EE 160 (Requirement 3), EE 162, CS/EE 183
ab, Ma 112 a

Fourth Year
Selected from CS/EE 119 abc, EE/Ma 126,
EE/Ma 127, EE 162, EE 163 ab, EE 165,
CS/EE 183 ab, EE 194

COMPUTER ENGINEERING

Second Year
CS 112, CS 114

Third Year
Selected from CS/EE 121, CS 137, CS 138,
CS 139, CS 140, APh/ME 17 abc

Fourth Year
Selected from CS/EE 121, CS/EE 181, EE
114 abc, CS/EE 119 abc, CS/EE 183 ab

CONTROL

Second Year
APh/ME 17 abc

Third Year
E 101, EE 117 ab, EE 160, EE 162

Fourth Year
E 102 abc, Ae/ChE 172 abc, and selections
from EE 112 abc, EE 114 abc, CS/EE 119 abc

ELECTRONIC CIRCUITS

Second Year
Selected from APh/ME 17 abc, E 101

Third Year
Selected from CS 112, CS 114, CS/EE 121

Fourth Year
Selected from EE 112 abc, EE 117 ab, CS/
EE 119 abc, EE 160.
QUANTUM ELECTRONICS
Second Year
APh/ME 17 abc, APh 23, APh 24
Third Year
APh 50 abc
Fourth Year
Selected from APh 105 abc, APh 114 abc, APh 153 abc, APh 190 abc, APh 195 abc, EE 155 abc, EE 194, Ph 125 abc

SOLID-STATE ELECTRONICS
Second Year
APh/ME 17 abc
Third Year
APh 50 abc
Fourth Year
APh 181 abc and selections from APh 105 abc, APh 114 abc

Engineering and Applied Science Option
The engineering and applied science option offers the opportunity for study in challenging areas of science and technology. In this option the student may undertake work in such diverse fields as environmental engineering science, solid state physics, energy engineering, the physics of fluids, applied mathematics, earthquake engineering, quantum electronics, aerodynamics, bioinformation systems and computer science, solid mechanics, the science of materials, soil mechanics, engineering science, elasticity and plasticity, plasma physics, and the theory of waves and vibrations. For those students who, in later life, hope to apply the science they learn to the useful and productive solution of the problems now confronting society, the option in engineering and applied science offers an unusually broad curriculum that permits students to tailor a course of study to their individual needs.

The first year of the four-year course of study leading to a Bachelor of Science degree is common for all students of the Institute, although freshman elective subjects are available as an introduction to various aspects of engineering and applied science. At the end of the first year, students who elect the engineering and applied science option are assigned advisers in their general fields of interest, and, together, they develop programs of study for the next three years. Beyond the Institute-wide requirements of physics, mathematics, and humanities, these programs require one year of applied mathematics and a certain number of units selected from a wide variety of engineering and applied science courses from which the students and the advisers may build a solid foundation for the kinds of engineering and applied science activities that the students desire to learn. Engineering design (synthesis), as distinct from analysis, is considered an essential part of every engineer's capability. Advisers will expect students to select a sufficient number of courses that place emphasis on design.

Although a special electrical engineering option is available, students whose main interest is in electrical sciences may nevertheless choose the engineering and applied science option if they wish to pursue a broader course of studies.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in subjects with the prefix Ae, Am, BIS, CE, ChE, CS, E, EE, Es, Env, Gr, Hy, JP, MS or ME may, at the discretion of the division faculty, be refused permission to continue the work of that option.

Option Requirements
1. E 10
2. AMa 95 abc or Ma 108 abc. Neither course may be taken pass/fail.
3. 126 additional units in courses in the following: Ae, AM, BIS, CE, ChE, CS, E, EE, ES, Env, Gr, Hy, JP, MS, or ME. Note that the student cannot exercise the pass/fail option on any courses offered to meet this requirement.
4. 9 units\(^1\) of courses taken from the following list: APh 24, APh 77, APh 91 abc, Ae/APh 104 bc, AM 155, CE 105, CE 180, CS/EE 121, CS 140, CS/EE 181 abc, EE 90 abc, EE 91 abc, EE 194, Env 116, Env 143, Hy 111, Hy 121, JP 170, MS 90, MS 130, MS 131, MS 132, ME 126
5. 9 units\(^1\) of additional laboratory\(^2\) excluding those for which freshman laboratory credit is allowed.
6. Passing grades must be earned in a total of 516 units, including courses listed above.

\(^1\)These units will partially satisfy requirement 3 when in appropriate subjects.
\(^2\)These electives must either be from the list in item 4 or they must be from courses with the word "laboratory" in the title.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>AMa 95 abc or Ma 108 abc</td>
<td>12</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>E 10</td>
<td>2</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

NOTES:
I. Suggested electives suitable for particular fields of interest are given below.
II. The programs formed with these suggested electives are only samples of typical programs and are not meant to represent special option requirements.
III. These electives must be chosen so as to satisfy the laboratory requirements given above.

Suggested Electives

AERONAUTICS

First Year
One course per term selected from: APh/MS 4, ChE 10, E 5, CS/EE 4, CS 10

Second Year
APh/ME 17 abc; one course per term selected from: E 13, ME 1 ab, MS 15 abc, APh 23, APh 24, Ay 1, EE 5

Third Year
AM 97 abc, ME 19 abc; one course per term selected from: APh 50 abc, AM 96 abc, EE 90 abc, ME 5 abc, ME 22 abc, MS 5 abc, E 101
Fourth Year
Ae/APh 101 abc, or Hy 101 abc, or Ae/AM 102 abc, and three courses per term selected from: Ae 103 abc, Ae/APh 104 abc, Ae/AM 108 abc, AMa 101 abc, AM 151 abc, E 102 abc, Hy 111, ME 102 abc, ME 126, JP 121 abc, APh 105 abc, APh 153 abc, MS 105, MS 126 abc

APPLIED MECHANICS
First Year
One course per term selected from: E 5, Ge 1, CS/EE 4, CS 10, CS/EE 11

Second Year
One course per term selected from: APh/ME 17 abc, MS 15 abc, Ge 1, Bi 1, AM 96 abc, Ma 31, E 13

Third Year
AM 97 abc or AM 151 abc, ME 19 abc; one course per term selected from: Ge 2, Ma 112 ab, EE 90 abc, APh 50 abc, MS 5 abc

Fourth Year
AM 151 abc or AM 97 abc, AM 125 abc or AMa 101 abc; one or two courses per term selected from: ME 126, AM 96 abc, AM 135 abc, AM 141 abc, Hy 101 abc, Ph 106 abc, AMa 104, AMa 105, AMa 106

COMPUTER SCIENCE
First Year
CS 10, CS/EE 4, CS/EE 11

Second Year
CS 112, CS 114, CS 121, Ma 6 abc

Third and Fourth Years
CS 137, CS/Ma 138 ab, CS 139 ab, Ma 116 abc, CS/EE 181 abc, CS 141 abc; one or two courses per term selected from: CS 171 ab, CS/EE 119 abc, CS 140 ab, CS 144 abc, CS/EE 183 ab, Lin 101 ab, Lin/SS 105

ENERGY ENGINEERING
First Year
One course per term selected from: APh 3, APh/MS 4, APh 9, ChE 10, E 5, CS/EE 4, CS/EE 11, Env 1, Gr 1, CS 10

Second Year
APh/ME 17 abc or ChE 63 abc; one course per term selected from: Env 20, EE 5, E 13, EE 14 abc, Ec/SS 11 ab, Ge 1, Ge 5, ME 1 ab, MS 15 abc

Third Year
ME 19 abc; one course per term selected from: APh 50 abc, AM 96 abc, Ch 21 abc, EE 90, ME 5 abc, ME 126, Ph 106 abc

Fourth Year
ME 102 abc, JP 131, ChE 101 ab; one or two courses selected from: Ae/APh 101 abc, Ae 103 abc, Ae 107 abc, AM 97 abc, APh 105 abc, ChE/Env 157, Hy 101 abc, ME 22 abc, ME 118 abc, ME 126, MS 15 abc, Env/Ge 103 abc, ChE 103 abc

NOTE: Humanities electives particularly appropriate to energy studies are Ec 115, Ec 116, Ec 118, SS 130 abc, SS 150 abc.

ENVIRONMENTAL ENGINEERING SCIENCE
First Year
Env 1; one course per term selected from: ChE 10, Bi 1, Bi 9, Ch 3 bc, E 5, Ge 1, CS 10

Second Year
APh/ME 17 abc or ChE 63 abc; one course per term selected from: Env 144, Ch 14, Ch 15, Ch 41 abc, CS/EE 4, CS/EE 11, E 13, Ge 5, MS 15 abc

Third Year
Env 20, ME 19 abc, Ch 21 abc, Ch 24 abc, Bi/Ch 110 abc, Ec 118

Fourth Year
Env 142 ab and Env 143 or ChE/Env 151 abc, and Env 116 or Env 112 abc, Hy 111; choose from: Env/Ge 103 abc, Hy 101 abc, Env 145 ab, Env 146 abc, AMa 101 abc, AMa 104, AMa 105, ChE 103 abc
FLUIDS AND THERMAL ENGINEERING

First Year
One course per term selected from: Gr 1, E 5, CS 10

Second Year
APh/ME 17 abc, APh 3, Env 20, CS/EE 4, APh/MS 4, EE 5, ME 1 ab, ChE 63 abc

Third Year
ME 19 abc, AM 96 abc; one course per term selected from: MS 15 abc, E 13, EE 14 abc

Fourth Year
ME 118 abc, JP 121 abc; one course per term selected from: Hy 101 abc, AM 97 abc, ME 22 abc, ME 102 abc, Hy 111, ME 126, JP 170, E 101, ME 5 abc

HYDRAULICS AND WATER RESOURCES

First Year
One course per term selected from: Gr 1, CS 10, E 5, Ge 1, Ge 2, Env 1

Second Year
One course per term selected from: APh/ME 17 abc, Ph 3, Ph 4, CS/EE 4, CS/EE 11, MS 15 abc, Gr 1, E 13, AM 96 abc

Third Year
AM 97 abc, ME 19 abc, Ec/SS 11 a, Ec 11 b

Fourth Year
CE 10 abc, CE 115 ab and CE 150, Hy 111 or ME 126, Hy 113 ab, Env 112 abc or Env 146 abc

MATERIALS SCIENCE

First Year
One course per term selected from: E 5, CS/EE 4, CS 10, ChE 10, APh 3, APh 9, APh/MS 4

Second Year
APh/ME 17 abc; one course per term selected from: ME 1 ab, EE 5, Gr 1

Third Year
AM 97 abc, MS 5 abc, APh 50 abc, MS 15 abc, MS 90

Fourth Year
MS 105, MS 120

MECHANICAL DESIGN

First Year
One course per term selected from: Gr 1, E 5, EE 5

Second Year
ME 1 ab, APh/ME 17 abc, MS 15 abc

Third Year
ME 19 ab, AM 97 abc; one course per term selected from: ME 5 abc, ME 126, CS 10, EE 90, AM 96 abc

Fourth Year
AM 151 abc, MS 15 abc; two courses per term selected from: Ae 107 abc, ME 22 abc, E 13, E 101, and ME 101 abc

STRUCTURAL AND SOIL MECHANICS

First Year
One course per term selected from: Gr 1, CS 10, E 5, Ge 1, Ge 2

Second Year
One course per term selected from: APh/ME 17 abc, Ph 3, Ph 4, CS/EE 4, CS/EE 11, MS 15 abc, Gr 1, AM 96 abc

Third Year
AM 97 abc, ME 19 abc

Fourth Year
CE 10 abc, CE 115 ab and CE 105, AM 151 abc, CE 180, CE 181, and CE 182 or Hy 113 ab and Hy 111, Env 112 abc or Env 146

STRUCTURE AND PROPERTIES OF ALLOYS

First Year
One course per term selected from: E 5, CS 10, Gr 1, ChE 10, CS/EE 4, APh 3, APh 9, APh/MS 4

Second Year
APh/ME 17 abc; one course per term selected from: ME 1 ab, MS 15 abc, EE 5

Third Year
AM 97 abc, MS 5 abc, APh 105 abc, Ch 21 abc, APh 50 abc

Fourth Year
APh 114 abc, MS 90, MS 120, Ph 125 abc, MS 130, MS 131, MS 132
The aim of the undergraduate program in the geological sciences is to provide thorough training in basic geological disciplines and, wherever possible, to integrate the geological studies with and build upon the courses in mathematics, physics, chemistry, and biology taken during the earlier years at the Institute. Field work is emphasized because it provides firsthand experience with geological phenomena that can never be satisfactorily grasped or understood solely from classroom or laboratory treatment. Options are offered in geology (including paleontology and paleoecology), geophysics, planetary science, and geochemistry. Electives permit students to follow lines of special interest in related scientific and engineering fields. Those who do well in the basic sciences and at the same time have a compelling curiosity about the earth and its natural features are likely to find their niche in the geological sciences, especially if they possess flexible minds that enable them to grapple with complex problems involving many variables. Most students majoring in the earth sciences now find further training at the graduate level necessary.

Undergraduate Research and Bachelor's Thesis. The division encourages undergraduate research, particularly of such scope and caliber as to merit the preparation of a Bachelor's Thesis. Guidance in seeking research opportunities and in drawing up a research plan leading to the Bachelor's Thesis is available from the divisional Undergraduate Research Counselor.

Attention is called to the fact that any student whose grade-point average in science and mathematics courses is less than 1.9 at the end of an academic year may be refused permission to register in the geological sciences options.

Option Requirements and Typical Course Schedules

<table>
<thead>
<tr>
<th>YEAR</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>S</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 1 abc</td>
<td>Freshman Mathematics</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>Freshman Physics</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 1 abc</td>
<td>General and Quantitative Chemistry</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 3 a</td>
<td>Experimental Chemical Science</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities and Social Science Electives</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>PE 1 abc</td>
<td>Physical Education</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE Electives</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Sophomore Physics</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore Science and Engineering Electives</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total required courses</td>
<td>126</td>
<td>108</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1These 27 units of sophomore electives should be used to broaden the students' backgrounds in science and engineering and to help them select an option. None of the introductory courses in the division, including Ge 1, Ge 4, and Ge 5, is specifically required of majors, but the election of one or more of these is highly recommended in the second year. The division recommends that an additional 9 units of physics, chemistry and/or engineering laboratory courses be completed in the second year. The units may be selected from the first-year physics, chemistry, and engineering courses, e.g., Ph 5, Ph 6, Ph 7, and Ch 15.
Geological and Planetary Sciences

Division Requirements—All Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 100</td>
<td>Geology Club recommended.</td>
<td>1</td>
</tr>
<tr>
<td>Ge 102</td>
<td>Oral Presentation</td>
<td>2</td>
</tr>
<tr>
<td>Ge 104 ab</td>
<td>Introduction to Mineralogy and Petrology</td>
<td>18</td>
</tr>
<tr>
<td>Ge 105</td>
<td>The Geologic Record</td>
<td>9</td>
</tr>
<tr>
<td>Ge 106</td>
<td>Structural Geology</td>
<td>9</td>
</tr>
<tr>
<td>Ge 107</td>
<td>Geologic Field Mapping</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Language Elective¹</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total required courses¹</td>
<td>126</td>
</tr>
</tbody>
</table>

¹The division requires 30 units of French, German, or Russian for graduation. Students with a good knowledge of one of these languages may petition the Academic Officer for waiver of this requirement. These units may be used as part of the 108 units of humanities and social sciences. Two years of language are highly recommended for students planning to do graduate work.

Geochemistry Option Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 114</td>
<td>Optical and X-Ray Mineralogy</td>
<td>12</td>
</tr>
<tr>
<td>Ge 115 ab</td>
<td>Petrology and Petrography</td>
<td>24</td>
</tr>
<tr>
<td>Ge 123</td>
<td>Summer Field Geology</td>
<td>15</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>The Physical Description of Chemical Systems¹</td>
<td>27</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Chemical Equilibrium and Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Ch 15</td>
<td>Chemical Equilibrium and Analysis Laboratory</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total required courses</td>
<td>126</td>
</tr>
</tbody>
</table>

¹Ch 41 abc or other chemistry courses may be substituted with prior consent of adviser and option representative.

Geology Option Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 110</td>
<td>Sedimentary Geology</td>
<td>9</td>
</tr>
<tr>
<td>Ge 114</td>
<td>Optical and X-Ray Mineralogy</td>
<td>12</td>
</tr>
<tr>
<td>Ge 115 ab</td>
<td>Petrology and Petrography</td>
<td>24</td>
</tr>
<tr>
<td>Ge 123a</td>
<td>Summer Field Geology</td>
<td>15</td>
</tr>
<tr>
<td>Ge 121 ab</td>
<td>Advanced Field and Structural Geology</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Advanced Chemistry or Physics²</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Geology Electives²</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Total required courses</td>
<td>126</td>
</tr>
</tbody>
</table>

¹Ch 21, Ch 41, or Ph 106 recommended.

²These 27 units may include Ge electives taken in other years and are taken in the fourth year if French, German, or Russian is taken in the third year. The student should particularly note the opportunity for undergraduate research provided by Ge 40 and Ge 41.
Geophysics and Planetary Science Option Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 106 abc Topics in Classical Physics</td>
<td>27</td>
</tr>
<tr>
<td>AMa 95abc Introductory Methods of Applied Mathematics</td>
<td>36</td>
</tr>
<tr>
<td>Option Electives</td>
<td></td>
</tr>
<tr>
<td>Total required courses</td>
<td>126</td>
</tr>
</tbody>
</table>

1. These courses may include most mathematics, science, engineering, geophysics, or planetary science courses pertinent to the student's interest, but must be chosen with the advice and consent of the student's adviser.

History Option

History majors must take not less than 99 units of H courses during their four years as undergraduates. Of these, not less than 45 must be in junior and senior tutorial (H 97 ab and H 99 abc), and another 18 may be in H 98 ab if students wish and their instructors agree.

The courses and tutorials in the history option cover four areas: medieval Europe to 1500, modern Europe, the United States, and Asia. Each history major will concentrate in one of these areas and write a research paper in it; each student must also take at least 36 units of history in other areas as approved by the adviser or the history option.

A student considering the history option when he or she comes to Caltech will be well advised to take H 1, 2, 6 or 8. In the sophomore year the student should take middle- or upper-level history courses, but this is also a good time to pursue the study of literature or philosophy, to begin or continue a foreign language (particularly desirable if the area of concentration is to be Europe or Asia), and to do introductory work in the social sciences. A student will normally make a commitment to an area of concentration early in the junior year, exploring this area through regular course work supplemented, the second and third terms, by tutorial study in H 97 ab. At the beginning of the senior year a history major will enroll in H 99 abc and be assigned to a faculty member in his or her chosen area. After a period of preparation that may consume part or all of the first term, a student will embark on serious research, the end result of which will be a substantial research paper.

Since statistics can be a useful tool in historical analysis, the option recommends that two of the science and math courses which a history major takes beyond the sophomore year (to satisfy the 54-unit Institute requirement) be Ma 112 a and 112 b. Students who wish to write their senior research papers in the history of science are encouraged to use the rest of the 54 units to advance their understanding of one or two particular scientific disciplines.

Option Requirements

1. H 97 ab, H 99 abc
2. 54 additional units of H courses (including, if appropriate, H 98 ab), of which 36 must be in an area or areas other than the area of concentration.
3. 54 additional units of science and engineering courses. This requirement cannot be satisfied by freshman laboratory courses or courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year.
4. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

A suggested program follows. Requirements are underlined; courses in parentheses are recommended.
Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc (4-0-5)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc (4-0-5)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Middle- or Upper-Level History,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature, Philosophy, or Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Introductory Social Science</td>
<td>9 (Ec/SS 11)</td>
<td>9 (PS/SS 12)</td>
<td>9 (Ec 15)</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 97 ab (2-0-7)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Science or Math</td>
<td>9</td>
<td>9</td>
<td>9 (Ma 112 a)</td>
</tr>
<tr>
<td>History electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other electives</td>
<td>27</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 99 abc (1-0-8)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Science or Math</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>History electives</td>
<td>9 (H 98 a)</td>
<td>9 (H 98 b)</td>
<td>9</td>
</tr>
<tr>
<td>Other electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Independent Studies Program

The Independent Studies Program (ISP) is an undergraduate option that allows the student to create his or her own scholastic requirements, under faculty supervision, and to pursue positive educational goals that cannot be achieved with a normal option. A student's program may consist of normal Caltech courses, research courses, courses at other schools, and independent study courses (item 5 below). In scope and depth the program must be comparable to a normal undergraduate program, but it need not include the specific courses or groups of courses listed in the formulated Institute requirements for undergraduates.

The ISP Committee, a standing committee of the faculty, has overall responsibility for the program. In addition, each student has his or her own committee of three advisers, two of whom must be professorial faculty. The Registrar keeps records and transcripts of all ISP students, and has application materials for admission into ISP.

Administrative Procedures and Guidelines

1. The student submits a written proposal describing his or her goals, reasons for applying and plan of study for at least the next year. The student must also recruit three faculty members, representing at least two divisions of the Institute, who approve of his or her plans and agree to act as an advisory "committee of three."

2. The committee of three forms the heart of the program and bears the chief responsibility for overseeing the student's progress. The chairman and one other member must be on the professorial staff. The third member may be any qualified individual such as a postdoctoral fellow, graduate student or faculty member of another institution.

3. The ISP committee considers each proposed program in consultation with the prospective members of the committee of three. If the program seems suitable, a three-party written contract
is drawn up among the ISP committee, the committee of three, and the student. This contract includes the agreed-upon content of the student’s program and the methods for ascertaining satisfactory progress for those parts of the student’s program that are not standard Institute courses. Copies of the student’s contract, along with all ISP records for each student and his or her transcript, are kept in permanent files in the Registrar’s Office.

4. The progress of each student in the ISP is monitored at least every quarter by consultation between the ISP committee and each committee of three. Standards for acceptable progress and satisfactory completion of the terms of the three-party contract are the responsibility of the ISP committee. When the ISP committee is satisfied that the terms of the contract have been fulfilled by the student, it recommends the student to the faculty for graduation.

5. A plan of study may include special ISP courses to accommodate individual programs of study or special research that falls outside ordinary course offerings. The student and the instructor first prepare a written course contract specifying the work to be accomplished and the time schedule for reports on progress and for work completed. The units of credit and form of grading are decided by mutual agreement between the instructor, the student, and his or her committee of three. ISP courses are recorded on the student’s transcript in the same manner as are other Caltech courses.

Literature Option

Students majoring in literature are offered a wide range of courses that enable them to concentrate on either English or American literature. In addition a number of courses in literature in translation enrich the curriculum. All majors are assigned an adviser who will help them select the courses best suited to their needs. Majors preparing for graduate work will be well advised to go beyond the minimum requirements listed below. All literature courses must be taken for grades. It is recommended that literature majors take electives in such related fields as the arts, languages, history, philosophy, and psychology.

Option Requirements

1. 108 units in the Lit 100-180 group of courses. Within these 108 units, the following are required:
 a. 18 units (two terms) of Shakespeare, Lit 114 a and b.
 b. 27 units (three terms) selected from the following group of courses in pre-twentieth-century English literature: Lit 106 a, Lit 112 a or b, Lit 116, Lit 120, Lit 122 a or b, Lit 125 a and b, Lit 126
 c. 27 units (three terms) selected from the following courses in American Literature: Lit 132, Lit 134, Lit 136, Lit 138, Lit 140, Lit 142 a or b or c, Lit 146 a, Lit 147
2. L 102 abc or L 130 abc or L 141 abc or the equivalent
3. 54 units of science, mathematics, and engineering courses. This requirement cannot be satisfied by freshman laboratory courses or courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year.
4. Passing grades must be earned in a total of 516 units, including the courses listed above.
Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td>24 24 24</td>
</tr>
<tr>
<td>Waves, Quantum Mechanics, and</td>
<td>42 42 42</td>
</tr>
<tr>
<td>Statistical Physics (4-0-5)</td>
<td></td>
</tr>
<tr>
<td>Electives(^1)</td>
<td></td>
</tr>
</tbody>
</table>

| Third Year | |
| Electives | 45 45 45 |

| Fourth Year | |
| Electives | 45 45 45 |

\(^1\) 81 of these units partially fulfill the Institute requirement in humanities and social science.

Mathematics Option

The four-year undergraduate program in mathematics leads to the degree of Bachelor of Science. The purpose of the undergraduate option is to give students an understanding of the broad outlines of modern mathematics, to stimulate their interest in research, and to prepare them for later work, either in pure mathematics or allied sciences. Unless students have done exceptionally well in their freshman and sophomore years, they should not contemplate specializing in mathematics. An average of at least "B" in mathematics courses is expected of students in order to major in mathematics.

Since the more interesting academic and industrial positions open to mathematicians require training beyond a bachelor's degree, students who intend to make mathematics their profession must normally plan to continue with graduate study. Some students use their background in mathematics as an entry to other fields such as physics, economics, computer science, business, or law. Students expecting to pursue a Ph.D. degree in mathematics should realize that many mathematics departments require a reading knowledge of one or two foreign languages.

The schedule of courses in the undergraduate mathematics option is flexible. It enables students to adapt their programs to their needs and mathematical interests and gives them the opportunity of becoming familiar with creative mathematics early in their careers. Each term during the junior and senior years students normally take 18 units of courses in mathematics or applied mathematics, including the required course Ma 108. Any course listed under applied mathematics is regarded as an elective in mathematics and not as an elective in science, engineering or humanities. Sophomores who have not taken Ma 5 must take this course as juniors. Overloads in course work are strongly discouraged; students are advised instead to deepen and supplement their course work by independent reading.

Attention is called to the fact that students whose grade-point averages are less than 1.9 at the end of the academic year in the subjects under mathematics and applied mathematics may, at the option of the department, be refused permission to continue the work of the mathematics option.
Option Requirements
1. Ma 5 abc, Ma 108 abc
2. One of the following one-year courses: Ma 102 abc, Ma 116 abc, Ma/CS 117 abc, Ma 118 abc, Ma 120 abc, Ma 121 abc, Ma 122 abc, Ma 123 abc, Ma/EE 126 a followed by Ma/EE 127 ab, Ma 137 a followed by Ma 143 ab, Ma 142 abc, Ma 144 abc, Ma 147 abc, Ma 150 abc, Ma 152 abc, Ma 160 abc
3. 27 additional units in Ma or AMa
4. Passing grades must be earned in a total of 483 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td></td>
</tr>
<tr>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td></td>
</tr>
<tr>
<td>Waves, Quantum Mechanics, and Statistical Physics (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td></td>
</tr>
<tr>
<td>Introduction to Abstract Algebra (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Electives in Science, Engineering or Humanities</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td></td>
</tr>
<tr>
<td>Advanced Calculus (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Selected courses in Mathematics, minimum</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>18</td>
</tr>
<tr>
<td>Electives in Science, Engineering, or Humanities</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Selected course in Mathematics</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>18</td>
</tr>
<tr>
<td>Electives in Mathematics, Science, Engineering or Humanities</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

Physics Option

The distinctive feature of the undergraduate work in physics at Caltech is the creative atmosphere in which students at once find themselves. This results from the combination of a large and very productive graduate school with a small and carefully selected undergraduate body.

In order to provide the thorough training in physics required by those who are going into scientific or engineering work, two full years of general physics are required of all students. This first course in physics introduces modern ideas at the beginning of the first year and develops these along with the principles of classical mechanics and electromagnetism as they apply to the dynamics of particles. More complex problems, including quantum mechanics, atomic structure, and statistical mechanics, are treated in the second year. Those who want to major in physics may choose a more intensive course in their second year. Junior and senior courses provide an unusually thorough preparation for graduate work. The curriculum provides for the teaching of classical and modern physics from the first year through the entire under-
graduate course of study. Elective courses during the junior and senior years provide flexibility that enables the students to select a program to fit their individual requirements. Many of the undergraduate students who elect physics are also given an opportunity to participate in some of the 30 to 60 research projects that are always under way and in the graduate seminars that are open to undergraduates at all times.

Attention is called to the fact that any student whose grade-point average for one academic year is less than 1.9 in the subjects listed under this division will normally be refused permission to continue in the physics option.

Option Requirements

1. Ph 3 or Ph 4
2. Ph 5, Ph 6, APh 24, or EE 90 (8 units maximum)
3. Ph 7
4. Ph 106 or APh 106
5. Ph 98 or Ph 125
6. 18 units of Ph 77, APh 77, or Ph 78 in any combination
7. 54 additional units of any of the following: Ph 76 ab, Ph 78 abc, Ph 79 abc, Ph 101 abc, Ph 103 abc, Ph 127 abc, Ph 129 abc, Ph 135 abc, Ph 136 abc, APh 105 abc, APh 114 abc, APh 156 abc, Ae/APh 101 abc, AMa 101 abc or any physics graduate course numbered 200 or greater. Note that the student cannot exercise a pass/fail option for any courses offered to meet this requirement.
8. 27 units of science and engineering courses outside of Ph, APh, Ma, and AMa
9. Passing grades must be earned in a total of 516 units, including courses listed above, but no more than 9 units per term of Ph 171, Ph 172, or Ph 173 may be counted.

Some laboratory courses from other options have considerable physics content, and students wishing to use such a course to satisfy this requirement may petition the Physics Undergraduate Committee to do so.

Students who took Ph 2 in their second year may take Ph 125 or an elective in place of Ph 98.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ph 2 abc or Ph 12 abc</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Humanities</td>
<td>9</td>
</tr>
<tr>
<td>Physics Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>Electives</td>
<td>48</td>
</tr>
<tr>
<td>Ph 106</td>
<td>9</td>
</tr>
<tr>
<td>AMa 95 or Ma 108</td>
<td>12</td>
</tr>
<tr>
<td>Ph 98</td>
<td>9</td>
</tr>
<tr>
<td>Humanities</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Ph 106</td>
<td>9</td>
</tr>
<tr>
<td>AMa 95 or Ma 108</td>
<td>12</td>
</tr>
<tr>
<td>Ph 98</td>
<td>9</td>
</tr>
<tr>
<td>Humanities</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
</tr>
</tbody>
</table>

1See option requirements 1, 2 and 3.
2See option requirements 1, 2 and 3.
Undergraduate Information

Fourth Year
Ph 77 ... 9 9 0
Electives ... 27 27 36
Humanities ... 9 9 9

45 45 45

Physics Laboratory Requirements
Students choosing a major in physics must complete the following laboratory requirements by the end of the second year:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 3 or Ph 4</td>
<td>6 units</td>
</tr>
<tr>
<td>Ph 5 or Ph 6'</td>
<td>9 units</td>
</tr>
<tr>
<td>Ph 7</td>
<td>9 units</td>
</tr>
</tbody>
</table>

24 units

The courses will be offered as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 3</td>
<td>6</td>
</tr>
<tr>
<td>Ph 4</td>
<td>6</td>
</tr>
<tr>
<td>Ph 5</td>
<td>6</td>
</tr>
<tr>
<td>Ph 6</td>
<td>6</td>
</tr>
<tr>
<td>Ph 7</td>
<td>9</td>
</tr>
</tbody>
</table>

1Several lower-division laboratory courses from other options (APh 24, EE 90, etc.) have considerable physics content, and students wishing to substitute such a course for the requirement of Ph 5 or Ph 6 may petition the Physics Undergraduate Committee to do so.

Suggested Electives

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 5 abc</td>
<td>Ay 21</td>
</tr>
<tr>
<td>Ge 1</td>
<td>Ay 22</td>
</tr>
<tr>
<td>Ge 4</td>
<td>ME 1 ab</td>
</tr>
<tr>
<td>Bi 1</td>
<td>APh/ME 17 abc</td>
</tr>
<tr>
<td>Ay 20</td>
<td>CS/EE 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 76</td>
<td>Ge 101 abc</td>
</tr>
<tr>
<td>Ph 77 ab</td>
<td>Ge 166</td>
</tr>
<tr>
<td>Ph 171</td>
<td>Bi 9</td>
</tr>
<tr>
<td>Ph 172</td>
<td>Ay 101</td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>Ay 102</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 78 abc</td>
<td>Ph 129 abc</td>
</tr>
<tr>
<td>Ph 79 abc</td>
<td>Ph 135 abc</td>
</tr>
<tr>
<td>Ph 101 abc</td>
<td>Ph 136 abc</td>
</tr>
<tr>
<td>Ph 103 abc</td>
<td>APh 77 ab</td>
</tr>
<tr>
<td>Ph 127 abc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 105 abc</td>
<td>APh 105 abc</td>
</tr>
<tr>
<td>Ph 114 abc</td>
<td>APh 114 abc</td>
</tr>
<tr>
<td>Ph 140 abc</td>
<td>APh 140 abc</td>
</tr>
<tr>
<td>Ph 156 abc</td>
<td>APh 156 abc</td>
</tr>
</tbody>
</table>
Social Science Option

The social science program is designed to provide undergraduates with a multidisciplinary training in social science. The program focuses on the processes of social, political and economic change and the analytical methods used by social scientists to describe and predict them. The program is designed to be sufficiently flexible to provide an excellent preparation for students intending to attend graduate school in any social science discipline, law or business.

Option Requirements
1. Ec/SS 11, PS/SS 12, Ec 121 a, Ma 112 a, Ec 122, PS/SS 122.
2. One of the following: An 22, An 101 a, or Psy 13.
3. 45 additional units of science, mathematics, and engineering courses. This requirement cannot be satisfied by freshman laboratory courses or courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year. Note: AMa 181 ab may count toward either this requirement or the social science electives requirement, but not toward both.
4. 54 additional units of social science courses, which include any course listed under the following headings: anthropology, economics, political science, psychology, and social science.
5. Passing grades must be earned in a total of 516 units, including courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>EC/SS 11</td>
<td>9</td>
</tr>
<tr>
<td>PS/SS 12</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 112 a</td>
<td>9</td>
</tr>
<tr>
<td>Ec 121 a</td>
<td>9</td>
</tr>
<tr>
<td>Ec 122</td>
<td>9</td>
</tr>
<tr>
<td>PS/SS 122</td>
<td></td>
</tr>
<tr>
<td>An 101 a or</td>
<td>9</td>
</tr>
<tr>
<td>An 22 or</td>
<td></td>
</tr>
<tr>
<td>Psy 11</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives(^1)</td>
<td>45</td>
</tr>
</tbody>
</table>

\(^1\)Students may concentrate on research by taking 54 units of supervised research in their senior year.
The Institute offers graduate work leading to the degrees of Master of Science and Doctor of Philosophy. In addition, it offers the following intermediate degrees: Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer.

The academic work of the Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; the Humanities and Social Sciences; and Physics, Mathematics and Astronomy.

Graduate work at the Institute is further organized into graduate options, which are supervised by those professors whose interests and research are closely related to the area of the option, within the administrative jurisdiction of one or more of the divisions. The graduate student working for an advanced degree in one of the graduate options is associated with an informal group of those professors who govern the option, other faculty including research associates and fellows, and other graduate students working for similar degrees.

A faculty member from each area of graduate study is available for consultation on problems concerning academic programs, degree requirements, financial aid, etc. The representatives for 1984–1985 are as follows:

<table>
<thead>
<tr>
<th>Aeronautics</th>
<th>Prof. A. Roshko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics</td>
<td>Prof. H. O. Kreiss</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td>Prof. F. S. Buffington</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>Prof. P. M. Bellan</td>
</tr>
<tr>
<td>Astronomy</td>
<td>Prof. G. Mould</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Prof. C. J. Brokaw</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Prof. F. Shair</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Prof. P. J. Dervan</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Prof. F. S. Buffington</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Prof. A. J. Martin</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>Prof. H. C. Martel</td>
</tr>
<tr>
<td>Environmental Engineering Science</td>
<td>Prof. F. S. Buffington</td>
</tr>
<tr>
<td>Geological and Planetary Sciences</td>
<td>Prof. D. S. Burnett</td>
</tr>
<tr>
<td>Materials Science</td>
<td>Prof. F. S. Buffington</td>
</tr>
</tbody>
</table>
Admission to Graduate Standing

Apply to the Dean of Graduate Studies, California Institute of Technology, 02-31, Pasadena, CA 91125, for an application form for admission to graduate studies. Admission will be granted only to a limited number of students of superior ability, and application should be made as early as possible. No application fee is required. In general, admission to graduate standing is effective for enrollment only at the beginning of the next academic year. The California Institute of Technology encourages applications from both men and women, including members of minority groups. Students wishing to apply for assistantships or fellowships may do so in the appropriate section of the application for admission. Completed applications are due in the Graduate Office no later than January 15. Some options will review an application received after the deadline date, but that applicant may be at a disadvantage in the allocation of financial assistance or in the priority for admission.

Although the application form asks the applicant to state his or her intended major field of study and special interests, the application may actually be considered by two or more divisions or interdisciplinary programs.

To be admitted to graduate standing an applicant must in general have received a bachelor's degree representing the completion of an undergraduate course in science or engineering substantially equivalent to one of the options offered by the Institute. He or she must, moreover, have attained such a scholastic record and present such recommendations as to indicate that he or she is fitted to pursue, with distinction, advanced study and research. In some cases examinations may be required. Admission sometimes may have to be refused solely on the basis of limited facilities in the department concerned.

Admission to graduate standing does not of itself admit the student to candidacy for a degree. Application for admission to candidacy for the degree desired must be made as provided in the regulations governing work for the degree. The student is responsible for seeing that admission is secured at the proper time.

Students from non-English-speaking countries are expected to read, write, and speak English and comprehend the spoken language. Applicants whose first or native language is not English are required to take the Test of English as a Foreign Language (TOEFL) as part of their application procedure. This test is given at centers throughout the world on several dates each year. The testing schedule and registration information may be obtained by writing to TOEFL, Educational Testing Service, Princeton, NJ 08540. Results of the test should be sent to the Graduate Office. Special no-credit classes in English are sometimes offered at Pasadena City College for those students who need to improve their command of the language or who wish to perfect it. Information regarding these classes can be obtained from the Chairman of the Faculty Committee on Foreign Students and Scholars or from the International Desk. It is strongly recommended, however, that students who achieve a low TOEFL score make arrangements for remedial work during the summer preceding their registration.

Students may be admitted in exceptional cases as Special Graduate Students to carry out full-time studies at the Institute without being candidates for a degree from Caltech. This status is ordinarily restricted to students who are registered in, or are on leave of absence from, an advanced degree program at another institution and who need to make use of resources available.
at Caltech. Admission to such status requires application through an appropriate option or directly to the Dean of Graduate Studies, following the same procedures as for regular graduate students.

Graduate Residence

One term of residence shall consist of one term's work of not fewer than 36 units of advanced work in which a passing grade is recorded. If fewer than 36 units are successfully carried, the residence will be regarded as shortened in the same ratio; but the completion of a greater number of units in any one term will not be regarded as increasing the residence. The residency requirements for each degree will be found under the degree regulation. In general, the degree requirements are: Master of Science, after a minimum of three terms (one academic year) of graduate work; Aeronautical Engineer, Civil Engineer, Electrical Engineer, and Mechanical Engineer, after a minimum of six terms (two academic years) of graduate work; and Doctor of Philosophy, after a minimum of nine terms (three academic years) of graduate work.

Advanced work is defined as study or research in courses whose designated course number is greater than or equal to 100.

Registration

Students are required to register and file a program card in the Registrar's Office at the beginning of each term of residence, whether they are attending a regular course of study, carrying on research or independent reading only, writing a thesis or other dissertation, or utilizing any other academic service or campus facility.

Before registering, students should consult with members of the department in which they are taking their major work to determine the studies that they can pursue to the best advantage.

The number of units allowed for a course is so chosen that one unit corresponds roughly to one hour a week of work throughout the term for a student of superior ability.

Students will not receive credit for courses unless they are properly registered. The students themselves are charged with the responsibility of making certain that all grades to which they are entitled have been recorded.

Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Except by specific action of the Committee on Graduate Study, graduate students will be required to register for at least 36 units during each of their first three terms of attendance at the Institute. Exceptions for part-time students are subject to regulations detailed in the following section on *Part-Time Programs*. A graduate student who is registered for 36 or more units is classed as a full-time student.

Graduate students will be required to maintain their admission status until all requirements for a degree are fulfilled, whether by continuity of registration or on the basis of approved leave of absence. In case of lapse in graduate standing, readmission must be sought before academic work may be resumed or requirements for the degree completed.

Graduate students are encouraged to continue their research during the whole or a part of the summer. The student must file a registration card for such summer work in the Registrar's Office in May. A minimum of ten units must be taken. There is no tuition charge for summer research units.

All changes in registration must be reported, on drop or add cards, to the Registrar's Office by the student. Such changes are governed by the last dates for adding or dropping courses as shown on the academic calendar on pages 4 and 5. A student may not withdraw from or add a course after the last date for dropping or adding courses without his or her department's consent and the approval of the Dean of Graduate Studies.

In registering for research, students should indicate on their program card the name of the instructor in charge, and should consult with him or her to determine the number of units to
which the proposed work corresponds. At the end of the term the instructor in charge may
decrease the number of units for which credit is given in case he or she feels that the progress
of research does not justify the full number originally registered for.

A graduate student who undertakes activities related to the Institute (studies, research, an
assistantship, or other employment) aggregating more than 62 hours per week must receive
approval from the Dean of Graduate Studies. Petition forms for this purpose may be obtained
from the Graduate Office and must carry the recommendation of the student's major department
option representative before submission to the Graduate Office.

Registration is required for the term or summer period in which the requirements for an
advanced degree are completed. For Ph.D. candidates, registration is required for the period
including the submission of a copy of the Ph.D. thesis, which must be done at least two weeks
before the date of the Ph.D. thesis examination, the Ph.D. thesis examination itself, and the
final submission of the thesis. Registration with minimum tuition will be allowed for, at most,
one term, except for summer registration. Registration for 10 units may be granted for the term
in which the Ph.D. examination is taken, subject to the approval of the Dean of Graduate
Studies.

With the approval of the Committee on Graduate Study, any graduate student whose work is
not satisfactory may be refused registration at the beginning of any term by the department in
which the student is doing his or her major work.

Part-Time Programs

Part-time graduate study programs at the Institute are subject to the following rules:

Degree Programs
a. Applicants for the part-time program must submit a regular application form.
b. Any research work done for academic credit shall be supervised by a Caltech faculty
 member.
c. Students admitted to the part-time program are required to take at least 27 units of graduate
course work or research work each term during the academic year. They may not commit
themselves to work for more than 20 hours per week for the sponsoring organization.
d. Part-time studies in the program will be limited to the first two years of academic residence
 for each student. Beyond the initial period, students continuing their graduate work must
do so on a full-time basis.
e. The program will, in each option, be restricted each year to at most 20 percent of the
 planned number of new graduate students, with the understanding that adjustments to this
 limit are permissible for small options.
f. Any option at the Institute retains the right not to participate in the program or to accept
 it under more stringent conditions.

Non-Degree Programs
Caltech employees, both campus and JPL, are eligible to apply to take one or more graduate
courses for credit. Participants in this program will not be considered to be working toward a
Caltech degree, in contrast to the part-time program for graduate degrees described above, and
courses taken under this program cannot be used to fulfill the requirements for a Caltech degree.

At least one month prior to the start of the term, the employee should have initial discussion
with the option representative of the option in which the course is to be taken. Application
should be made to the Graduate Office by completing the special form provided for this purpose,
and providing a transcript of academic work and one letter of recommendation. The employee
must meet the prerequisites for the course, and must obtain the written permission of the
instructor. Individual options may require further information such as GRE scores. The decision
on admission to take each course will be made by the Option Admissions Committee, with final
approval by the Dean of Graduate Studies. Taking an additional course at a later time will require full reapplication. It is the employee's responsibility to arrange a revised work schedule with the appropriate supervisor. Approval of the employee's division is required.

Part-time non-degree students are subject to the Honor System (see p. 22) and are under the purview of the Dean of Graduate Studies. They may take only courses numbered 100 or higher. Research courses are excluded from the program. For courses in which a letter grade is offered, these students may not register to receive a pass/fail grade in the course, nor can credit for the course be obtained by examination. The option may limit the number of non-degree students admitted to any one course.

Working at Special Laboratories

a. Any student who desires to take advantage of the unique opportunities available at the Special Laboratories, e.g., JPL or EQL, for Ph.D. thesis work, should be allowed to do so, provided he or she maintains good contact with academic life on campus, and the Laboratories commit support for the duration of the thesis research, and provided that all Caltech graduate thesis research carried out at the Special Laboratories be under the supervision of Caltech faculty members.

b. A student's request to carry out thesis work at a Special Laboratory should be formally endorsed by the appropriate committee of his or her option and by the Special Laboratory on a petition submitted through the option representative to the Dean of Graduate Studies. The Special Laboratory would recognize its commitment of special equipment or any other resources required for the thesis work. Approval of the Special Laboratory should also indicate that the thesis topic is a sensible one from its point of view, but that the subject is not likely to be preempted from the student.

c. Special Laboratories support of Caltech students doing thesis research at the Special Laboratories should be provided, if possible, through a campus graduate research assistantship (GRA) under a suitable work order. In this way a student would be eligible for a tuition award on the same basis as a campus thesis student.

d. Employment by the Special Laboratories of a graduate student for work not connected with his or her thesis should be regarded as equivalent to other outside employment.

Grades

Term examinations are held in all graduate courses unless the instructor, after consultation with the chairman of the division, shall arrange otherwise. No student taking a course for credit shall be exempt from these examinations.

Grades for all graduate work are reported to the Registrar's Office at the close of each term. The following system of grades is used to indicate class standing in graduate courses: "A" excellent, "B" good, "C" satisfactory, "D" poor, "E" conditioned, "F" failed, "Inc" incomplete. Pass/fail grading may also be used. The definitions and procedures for all these grades are the same as those for undergraduate courses.

Exchange Program with Scripps Institution of Oceanography

An exchange program has been established with the Scripps Institution of Oceanography (SIO), University of California, San Diego, permitting Caltech graduate students to enroll in and receive credit for graduate courses offered by SIO. Arrangements should be made through the student's major department and the Office of the Dean of Graduate Studies. The student must obtain the advance approval of the instructors of courses to be taken at SIO. In some cases,
when it is in the best interests of the student, arrangements may be made for the student to be temporarily in full-time residence at SIO.

Thesis research done partly at SIO may be arranged directly by the student's department and the staff of appropriate research laboratories at SIO, without the necessity of enrolling for SIO courses designated for research; in this case the student will continue to be under the supervision of his or her Caltech thesis adviser and will enroll for Caltech research units.

DEGREE REGULATIONS

Degree of Master of Science

The Master of Science degree is a professional degree intended to prepare a student for teaching, for further graduate studies, or for more advanced work in industry. Detailed requirements are based primarily on professional studies, and the program should be planned in consultation with the faculty in the appropriate discipline. Under normal circumstances, the requirements for the M.S. degree can be completed in one academic year.

A student who enters the Institute holding a master's degree from another institution will not normally be awarded a master's degree in the same field from the Institute unless the initial admission to Caltech graduate standing indicated that the student was to be a master's candidate. A student may not normally be awarded two master's degrees from the Institute.

Special regulations for the master's degree are listed under each graduate option.

Residence and Units of Graduate Work Required. At least one academic year of residence at the Institute and 135 units of graduate work subsequent to the baccalaureate degree are required for the master's degree. Included in these units are at least 27 units of free electives or of required studies in the humanities. Courses used to fulfill requirements for the bachelor's degree may not be counted as graduate residence.

To qualify for a master's degree, a student must complete the work indicated in the section on special regulations for his or her option with a grade-point average for the approved M.S. candidacy courses of at least 1.9.

In special cases, with the approval of the instructor and the Dean of Graduate Studies, courses taken elsewhere before enrollment at the Institute may be offered for credit. An examination may be required to determine the acceptability of such courses. Course credit, if granted, shall not be construed as residence credit.

Registration. Continuity of registration must be maintained until all requirements for the master's degree have been completed, with the exception of summer terms and authorized leaves of absence.

Admission to Candidacy. Before mid-term of the first term of the academic year in which the student expects to receive the degree, he or she should file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. On the candidacy form, the student will submit a proposed plan of study, which must have the approval of his or her department. This plan of study, if approved, shall then constitute the requirements for the degree, and changes in the schedule will not be recognized unless initialed by the department representative and submitted to the Graduate Office at least two weeks before Commencement.

All changes in registration must be reported on drop or add cards to the Registrar's Office.

Engineer's Degree

The work for an engineer's degree must consist of advanced studies and research in the field appropriate to the degree desired. It must conform to the special requirements established for the degree desired and should be planned in consultation with the members of the faculty
concerned. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a new petition to continue graduate work toward the desired degree. Students who have received an engineer's degree will not in general be admitted for the doctor's degree.

Residence. At least six terms of graduate residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for an engineer's degree. Of these, at least the last three terms must be at Caltech. It must be understood that these are minimum requirements, and students must often count on spending a somewhat longer time on graduate work.

To qualify for an engineer's degree a student must complete the work prescribed by his or her supervising committee with a grade-point average of at least 1.9. Work upon research and the preparation of a thesis must constitute no fewer than 55 units. More than 55 units may be required by certain departments, and the student should determine the particular requirements of his or her department when establishing his or her program.

Registration. Continuity of registration must be maintained until all requirements for the engineer's degree have been completed, with the exception of summer terms and authorized leaves of absence.

Admission to Candidacy. Before mid-term of the first term of the academic year in which the student expects to receive the degree, he or she must file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. Upon receipt of this application, the Dean, in consultation with the chairman of the appropriate division, will appoint a committee of three members of the faculty to supervise the student's work and to certify to its satisfactory completion. One of the members of the committee must be in a field outside the student's major field of study. The student should then consult with this committee in planning the details of this work. The schedule of his or her work as approved by the committee shall be entered on the application form and shall then constitute a requirement for the degree. Changes in the schedule will not be recognized unless initialed by the proper authority. No course that appears on the approved schedule and for which the applicant is registered may be removed after the last date for dropping courses as listed in the catalog.

The student will be admitted to candidacy for the degree when the supervising committee certifies: (a) that all the special requirements for the desired degree have been met, with the exception that certain courses of not more than two terms in length may be taken after admission to candidacy; (b) that the thesis research has been satisfactorily started and probably can be finished at the expected time.

Such admission to candidacy must be obtained by mid-term of the term in which the degree is to be granted.

Thesis. At least two weeks before the degree is to be conferred, each student is required to submit to the Dean of Graduate Studies two copies of his or her thesis in accordance with the regulations that govern the preparation of doctoral dissertations, which may be obtained from the Graduate Office. The candidate must obtain written approval of the thesis by the chairman of the division and the members of the supervising committee, on a form obtained from the Office of the Dean of Graduate Studies.

The use of "classified" research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the Dean of Graduate Studies before the research is undertaken.

Examination. At the discretion of the option in which the degree is desired, a final examination may be required. This examination would be conducted by a committee appointed by the candidate's supervising committee.
The degree of Doctor of Philosophy is conferred by the Institute primarily in recognition of breadth of scientific attainment and of power to investigate scientific problems independently and efficiently, rather than for the completion of definite courses of study through a stated period of residence. The work for the degree must consist of scientific research and the preparation of a thesis describing it, and of systematic studies of an advanced character, primarily in science or engineering. In addition, the candidate must have acquired the power of clear and forceful self-expression in both oral and written language.

Subject to the general supervision of the Committee on Graduate Study, the student's work for the degree of Doctor of Philosophy is specifically directed by the department in which he or she has chosen the major subject. Each student should consult his or her department concerning special divisional and departmental requirements.

Admission. With the approval of the Committee on Graduate Study, students are admitted to graduate standing by the department in which they choose their major work toward the doctor's degree. In some cases, applicants for the doctor's degree may be required to register for the master's or engineer's degree first; however, these degrees are not general prerequisites for the doctor's degree. Students who have received the master's degree and wish to pursue further studies leading toward either the engineer's or the doctor's degree must file a request to continue graduate work toward the desired degree. Students who have received an engineer's degree will not, in general, be admitted for the doctor's degree. A student who holds a Ph.D. degree from another institution will not normally be admitted to graduate standing at Caltech to pursue a second Ph.D. degree. A student will not normally be awarded two Ph.D. degrees from the Institute.

Minor Programs of Study. The Institute has no required minor program for the degree of Doctor of Philosophy, but individual options may have minor requirements at their discretion and on the approval of the Graduate Study Committee. A student who has satisfied the requirements for a minor program of study will be given recognition by explicit mention of the minor field on the Ph.D. diploma.

Residence. At least nine terms (three academic years) of residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for the doctor's degree. Of this at least one year must be in residence at the Institute. It should be understood that these are minimum requirements, and students must usually count on spending a somewhat longer time in residence. However, no student will be allowed to continue work toward the doctor's degree for more than five academic years (15 terms) of graduate residence, nor more than 18 terms for full- or part-time academic work without approval of a petition by the Dean of Graduate Studies in consultation with the option representative. A student whose undergraduate work has been insufficient in amount or too narrowly specialized, or whose preparation in his or her special field is inadequate, must count upon spending increased time in work for the degree.

Registration. Continuity of registration must be maintained until all requirements for the doctor's degree have been completed, with the exception of summer terms and authorized leaves of absence.

Admission to Candidacy. On recommendation of the chairman of the division concerned, the Committee on Graduate Study will admit a student to candidacy for the degree of Doctor of Philosophy after the student has been admitted to work toward the doctor's degree and has been in residence at least one term thereafter; has initiated a program of study approved by the major department and, if needed, by the minor department; has satisfied the several departments concerned by written or oral examination or otherwise that he or she has a comprehensive grasp of the major and minor subjects as well as of subjects fundamental to them; has fulfilled any necessary language requirements; and has shown ability in carrying on research with a research subject approved by the chairman of the division concerned. For special departmental regula-
tions concerning admission to candidacy, see entries under the graduate options. Members of
the Institute staff of rank higher than that of assistant professor are not admitted to candidacy
for a higher degree.

A standard form, to be obtained from the Dean of Graduate Studies, is provided for making
application for admission to candidacy. Such admission to candidacy must be obtained before
the close of the second term of the year in which the degree is to be conferred. The student is
responsible for seeing that admission is secured at the proper time. A student not admitted to
candidacy before the beginning of the fourth academic year of graduate work at the Institute
must petition through his or her division to the Dean of Graduate Studies for permission to
register for further work.

Foreign Languages. The Institute believes in the importance of the knowledge of foreign
languages and encourages their study as early as possible, preferably before admission to
graduate standing. Although there is no Institute-wide foreign language requirement for the
degree of Doctor of Philosophy, graduate students should check for possible specific require­
ments set by their division or smaller academic unit. Previous work is recognized, and further
study as a graduate student is possible.

Examination. Each doctoral candidate shall be examined broadly and orally on the major
subject, the scope of the thesis, and its significance in relation to the major subject. The
examination, subject to the approval of the Committee on Graduate Study, may be taken at such
time after admission to candidacy as the candidate is prepared, except that it must take place at
least two weeks before the degree is to be conferred.

The examination may be written in part, and may be subdivided into parts or given all at one
time at the discretion of the departments concerned. The student must petition for this exami­
nation, on a form obtained from the Graduate Office, not less than two weeks before the date
of the examination. Ordinarily more than two weeks are needed for the necessary arrangements.
The date of the examination and the composition of the examining committee will not be
approved by the Dean of Graduate Studies until the thesis is submitted in final form—i.e.,
ready for review by the Dean, the members of the examining committee, and the Graduate
Office proofreader. (See Thesis below.)

Thesis. The candidate is to provide a copy of his or her completed thesis to the members of
the examining committee at least two weeks before the final oral examination. The date of the
examination and the composition of the examining committee will not be approved by the Dean
of Graduate Studies until the thesis is submitted in completed form, i.e., ready for review by
the Dean, the members of the examining committee, and the Graduate Office proofreader. A
student may petition the Dean of Graduate Studies for registration for 10 units and for minimum
tuition charges if the student supplies a copy of the thesis, schedules the examination, and
submits the necessary petitions for the Ph.D. examination and for the 10 units registration prior
to 5:00 p.m. of the third Friday of the term in which the examination will be taken. A student
need not register and will not be charged tuition for the term in which the thesis examination
is taken, provided the examination is taken and passed before 5:00 p.m. of the first Friday of
that term. In addition, all necessary procedures must be followed, including adherence to the
deadline dates mentioned above and maintaining continuity of registration or being on an author­
ized leave of absence.

The last date for submission of the final, corrected thesis to the Dean of Graduate Studies is
two weeks before the degree is to be conferred. Two copies of the thesis are to be submitted in
accordance with the regulations governing the preparation of doctoral dissertations, obtainable
from the Graduate Office. For special departmental regulations concerning theses, see specific
graduate options.

Before submitting the final, corrected thesis to the Dean of Graduate Studies, the candidate
must obtain approval of the thesis by the chairman of his or her division and the members of
the examining committee, on a form that can be obtained at the Office of the Dean.
With the approval of the department concerned, a portion of the thesis may consist of one or more articles published jointly by the candidate and members of the Institute staff or other co-authors. In any case, however, a substantial portion of the thesis must be the candidate’s own exposition of his or her own work.

The use of “classified” research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the Dean of Graduate Studies before the research is undertaken.

Regulations and directions for the preparation of theses may be obtained from the Office of the Dean of Graduate Studies, and should be followed carefully by the candidate.

GRADUATE EXPENSES

The tuition charge for all students registering for graduate work is currently $9,400 per academic year, payable in three installments at the beginning of each term. Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Students desiring permission to register for fewer than 36 units should therefore petition on a form obtained from the Registrar. If reduced registration is permitted, the tuition for each term is at the rate of $87 a unit for fewer than 36 units with a minimum of $870 a term. Adjustments of tuition charges may be arranged for changes in units if reported during the first three weeks of a term. Additional tuition will be charged to students registering for special courses made available to them that are not part of the normal educational facilities of the Institute.

The payment of tuition by graduate students is required (a) without reference to the character of the work by the student, which may consist of the performance of research, of independent reading, or of the writing of a thesis or other dissertation, as well as attendance at regular classes; (b) without reference to the number of terms in which the student has already been in residence; and (c) without reference to the status of the student as an appointee of the Institute, except that members of the academic staff of rank of Instructor or higher are not required to pay tuition.

Students who register for summer work, and who have not paid full tuition at the Institute during the preceding academic year, may be subject to a summer health fee of $40.

Each graduate student is required to make a general deposit of $25 to cover loss of, or damage to, Institute property used in connection with work in regular courses of study. Upon completion
of graduate work, or upon withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are past due may be refused registration for the term following that in which the past due charges were incurred. Transcripts will not be released until all bills due have been paid or satisfactory arrangements for payment have been made with the Office of Student Accounts.

Information regarding fellowships, scholarships, and assistantships is discussed on the following pages. Students of high scholastic attainment may be awarded special tuition awards covering all or a part of the tuition fee. Loans also may be arranged by making an application to the Faculty Committee on Scholarships and Financial Aid.

Expense Summary 1984–85

General:
- General Deposit .. . $ 25.00
- Tuition .. 9,400.00
- Graduate Student Council Dues 9.00

Other:
- Books and Supplies (approx.) $600.00
- Graduate House Living Expenses
 - Room—$1,620.00 to $1,710.00 per academic year
 (Room rates are subject to change.)
- Meals—Available at Chandler Dining Hall or the Athenaeum (members only)

The following is a list of graduate fees at the California Institute of Technology for the Academic Year 1984–85, together with the dates on which these charges are due. Fees are subject to change at the discretion of the Institute.

<table>
<thead>
<tr>
<th>Term</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 24, 1984</td>
<td></td>
</tr>
<tr>
<td>General Deposit</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>3,134.00</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 7, 1985</td>
<td></td>
</tr>
<tr>
<td>Tuition</td>
<td>3,133.00</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1, 1985</td>
<td></td>
</tr>
<tr>
<td>Tuition</td>
<td>3,133.00</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Tuition fees for fewer than normal number of units:
- Over 35 units .. Full Tuition
- Per unit per term ... 87.00
- Minimum per term ... 870.00
- Audit Fee, $87.00 per lecture hour, per term

1This charge is made only once during residence at the Institute.
2Graduate students registered during the summer term are required to pay an additional $3.00 Graduate Student Council dues.
3Room rent is billed one month in advance and is payable upon receipt of the monthly statement.
Fees for Late Registration. Registration is not complete until the student has personally turned in the necessary registration forms for a program approved by his or her adviser and has paid tuition and other fees. A penalty fee of $10 is assessed for failure to register within five days of the scheduled dates.

ASCIT Dues. Graduate students are eligible for membership in the Associated Students of the California Institute of Technology, Inc., or ASCIT, pursuant to by-laws thereof. Dues are $60 annually.

Graduate Student Council Dues. Dues of $9 are currently charged to each graduate student for the academic year. In addition, $3 is collected for each graduate student registered during the summer. The council uses the dues to support a program of social and athletic activities and of other activities it deems beneficial to graduate student life.

Refunds. Students withdrawing from the Institute or reducing their number of units during the first three weeks of a term are entitled to a partial refund of tuition based on the period of attendance. The schedule for the specific percentage of tuition to be refunded for specific days of attendance appears on page 74. The days in attendance are the number of days counted from the first day of the term to the date that the petition for withdrawal, leave of absence, or reduction of units (to fewer than 36) is approved by the Dean of Graduate Studies.

Housing Facilities. The Institute has four residence houses providing single rooms for 167 graduate students. These handsome and comfortable residences, located on campus, were donated by William M. Keck, Jr., Samuel B. Mosher and Earle M. Jorgensen, the David X. Marks Foundation, and the family of Carl F Braun. In September 1984, the Institute completed construction on an additional housing complex that will provide an additional 156 single rooms.

Rates for housing vary depending upon the accommodations and services provided. A contract is required to live in these houses for the academic year. During the summer only, rooms may be rented on a month-to-month basis. A $50 deposit must accompany each housing application. The deposit will be refunded if there is no delinquent rent or damages. Complete information and reservations can be obtained by writing to the Housing Office, Mail Code 1-56, California Institute of Technology, Pasadena, CA 91125.

The Institute also owns a limited number of apartments and single family houses that are available for rental to married graduate students. The rental period is 12 months. Because of the limited availability relative to demand, there is a waiting list for these properties, and priorities are assigned to various categories of students and dependents. For additional information and sign-up forms, contact the Housing Office, Mail Code 1-56, California Institute of Technology, Pasadena, CA 91125.

The Off-Campus Housing Office maintains a current file of available rooms, apartments, and houses in the Pasadena area. The listings are available for use upon arrival at Caltech. Please note: The Institute cannot make negotiations for individual housing off campus.

Dining Facilities. Graduate students are granted the privilege of joining the Athenaeum (faculty club), which affords the possibility of contact with fellow graduate students and with others using the Athenaeum, including The Associates of the Institute, distinguished visitors, and members of the professional staffs of the Huntington Library and the California Institute of Technology.

The Chandler Dining Hall, located on the campus, is open Monday through Friday and most weekends when the Institute is in session. Breakfast, lunch, dinner, and snacks are served cafeteria style.

Health Services. Health services available to graduate students are explained in Section 2.

The International Desk. The International Desk is maintained to help foreign students and visiting scholars with non-academic problems. They will find the services of the desk very helpful, particularly when they first arrive on campus. The International Desk operates under the advice of the Faculty Committee on Foreign Students and Scholars.
FINANCIAL ASSISTANCE

The Institute offers in each of its divisions a number of fellowships, tuition scholarships, and graduate assistantships. In general, tuition scholarships may be for full or partial tuition charges; assistantships provide cash stipends; and fellowships often provide both tuition scholarship awards and stipends. Graduate assistants are eligible to be considered for Special Tuition Awards.

A request for financial assistance is included on the application for admission to graduate standing. These applications should reach the Graduate Office by January 15. Some options will review applications received after the deadline date, but that applicant may be at a disadvantage in the allocation of financial assistance. Appointments to fellowships, scholarships, and assistantships are for one year only; and a new application must be filed with option representatives each year by all who desire appointments for the following year, whether or not they already hold such appointments.

Graduate students receiving any form of financial aid from the Institute are required to report any financial aid from other sources to the Dean of Graduate Studies. Students may accept outside employment if the time commitment does not interfere with their graduate studies. However, the number of hours per week being spent with outside employment must be reported to the Dean of Graduate Studies.

Loans are available to graduate students who need such aid to continue their education. Application should be made to the Graduate Office.

Graduate Assistantships

Graduate assistants help with teaching, laboratory work, or research of a character that affords them useful experience. Teaching assistantships are for 12 or 15 hours per week during the academic year devoted to preparation, grading, and consulting with students. Laboratory assistantships and research assistantships usually are for 15 hours per week, sometimes up to 20 hours per week during the academic year and 30 hours per week during the summer. Combined teaching and research assistantships are possible. Assistantships ordinarily permit carrying a full graduate residence schedule also.

Graduate Scholarships, Fellowships, and Research Funds

The Institute offers a number of endowed fellowships and scholarships for tuition and/or stipend to graduate students of exceptional ability who wish to pursue advanced study and research.

In addition to the National Science Foundation, the Department of Health and Human Services, the Department of Energy, and the California State Graduate Fellowship program, gifts are received from other donors to support graduate study.

A number of governmental units, industrial organizations, educational foundations, and private individuals have contributed funds for the support of fundamental research related to their interests and activities. These funds offer financial assistance to selected graduate students in the form of graduate research assistantships.

Work-Study Programs

Limited opportunities are available for work-study programs in certain areas of interest. At the present time the sponsors of such programs are the Hughes Aircraft Company, Scientific Education Office, World Way, P.O. Box 90515, Los Angeles, CA 90009, and the Jet Propulsion Laboratory of the California Institute of Technology. Potential students wishing to
consider participation in the Hughes program may make inquiry to the address above as well as making application for graduate study at the Institute. Those wishing to be considered for the JPL program should consult JPL and their option. In general such programs require some part-time employment during the academic year, as well as full-time work during the summer.

Loans

There are three sources of loans available to graduate students: Federal loans under the National Direct Student Loan (NDSL) program, loans under the Guaranteed Student Loan (GSL) program, and loans from special funds of the California Institute of Technology. The amount of loans available from the programs of the federal government is limited by the appropriate government regulations. NDSL borrowers are subject to the same repayment terms and qualification requirements as those outlined for undergraduate students on page 78. Caltech loan funds are also listed on page 78. Repayment terms, including interest rates, may be obtained from the Office of Student Accounts.

PRIZES

William F. Ballhaus Prize

A prize of $500 will be awarded, not more than once each year, for an outstanding doctoral dissertation in aeronautics, to be selected by the aeronautics faculty. This award is made possible by a gift from Dr. William F. Ballhaus, a California Institute of Technology alumnus, who received his Ph.D. degree in aeronautics in 1947.

Bohnenblust Travel Grants in Mathematics

Special grants may be awarded to outstanding graduate students in mathematics to enable them to travel here or abroad to further their mathematical education. The Mathematics Department established these awards in 1978 to honor H. F. Bohnenblust, who served Caltech as Professor of Mathematics, Executive Officer for Mathematics, and Dean of Graduate Studies. Application forms and further details are available in the Mathematics Office, 253 Sloan.

W. P. Carey & Co., Inc. Prize in Applied Mathematics

A prize of $500 will be awarded by a faculty committee in applied mathematics for an outstanding doctoral dissertation. All applied mathematics Ph.D. theses submitted during each 12-month period beginning June 1 will be considered, but the prize will not necessarily be given every year. This award has been made possible by gifts from William Polk Carey and from W. P. Carey & Co., Inc.

Richard Bruce Chapman Memorial Award

A prize of $200 will be awarded annually to a graduate student who has distinguished himself or herself in research in the Division of Engineering and Applied Science. The chairman of the division will choose the student from among those whose field is hydrodynamics.

Bruce Chapman was awarded an M.S. from Caltech in 1966 and a Ph.D. in 1970, both in engineering science. He died of cancer on June 20, 1981, and this award has been established in his memory by his family and friends.
Milton and Francis Clauser Doctoral Prize

An annual prize of $1,500 is awarded to the Ph.D. candidate whose research is judged to exhibit the greatest degree of originality as evidenced by its potential for opening up new avenues of human thought and endeavor as well as by the ingenuity with which it has been carried out. Eligible candidates are those individuals who receive Ph.D. degrees at commencement, and nominations are made by Caltech faculty members.

The Milton and Francis Clauser Doctoral Prize is made possible by gifts from the family and friends of these twin alumni, who received bachelor’s degrees in physics in 1934, master’s degrees in 1935, and doctor’s degrees in aeronautics in 1937.

Henry Ford II Scholar Awards

The Henry Ford II Scholar Awards are funded under an endowment provided by the Ford Motor Company Fund, a nonprofit organization supported primarily by contributions from the Ford Motor Company. Each award, up to $5,000, will be made annually either to the engineering student with the best academic record at the end of the third year of undergraduate study, or to the engineering student with the best first-year record in the graduate program. The chairman of the Division of Engineering and Applied Science names the student to receive the award.

Ernest E. Sechler Memorial Award in Aeronautics

An award of $500 is made annually to an aeronautics student who has made the most significant contribution to the teaching and research efforts of the Graduate Aeronautical Laboratories of the California Institute of Technology (GALCIT). The nominee is selected by the aeronautics faculty, and preference is given to students working in structural mechanics.

The Ernest E. Sechler Memorial Award in Aeronautics was established in 1980 in memory of Ernest E. Sechler, who was one of the first graduates of GALCIT and who then served as a GALCIT faculty member for 46 years. Throughout his career Ernest Sechler was the faculty adviser for aeronautics students. In addition, he made many contributions to structural mechanics in areas ranging from aeronautics to the utilization of energy resources.

SPECIAL REGULATIONS OF GRADUATE OPTIONS

Aeronautics

Aims and Scope of Graduate Study in Aeronautics

The Institute offers graduate programs in aeronautics leading to the degrees of Master of Science, Aeronautical Engineer, or Doctor of Philosophy. The programs are designed to provide intense training in the foundations of the aeronautical sciences, with emphasis on research and the experimental method. Entering graduate students should have a thorough background in undergraduate mathematics, physics, and engineering science. Applicants for graduate study should submit Graduate Record Examination scores with their applications.

In working for a degree in aeronautics a student may do major study in, for example, one of the following areas: physics of fluids, technical fluid mechanics, structural mechanics, mechanics of fracture, aeronautical engineering and propulsion, and aero-acoustics.

While research and course work in aeronautics at the Institute cover a very broad range of subjects, a choice of one of the above fields allows students to specialize in their own interests.
while still taking advantage of the breadth of interests of the aeronautics group. A student with an interest in energy-related subjects will find many courses and research projects of particular use. Subjects of major importance in the efficient use of energy in transportation and power production, such as turbulent mixing, drag reduction, and lightweight structures, have historically been the focus of research activity in the aeronautics option.

A student and his or her adviser may design a program of study in one of the above fields, consisting of the fundamental courses prescribed in the regulations for the separate degrees listed below and of electives selected from the list of aeronautics courses. Special attention is called to the list of courses numbered Ae 210 or higher that are offered each year to interested students.

Degree of Master of Science in Aeronautics

Admission. Students with a baccalaureate degree equivalent to that given by the Institute are eligible for admission to work toward the Master's Degree in Aeronautics.

Course Requirements. Of the 135 units of graduate work required by Institute regulations, at least 108 units must be in the following subject areas:

- Fluid mechanics .. 27 units
- Solid mechanics .. 27 units
- Experimental technique and laboratory work 27 units
- Mathematics or applied mathematics .. 27 units

In addition, three units of Ae 150 are required. Each student must have a proposed program approved by his or her adviser prior to registration for the first term of work toward the degree.

Degree of Aeronautical Engineer

The degree of Aeronautical Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on academic research than is appropriate to the degree of Ph.D.

Admission. Students with a baccalaureate degree or with a Master of Science degree equivalent to those given by the Institute are eligible for admission to work for the Engineer's degree.

Program Requirements. The degree of Aeronautical Engineer is awarded after satisfactory completion of at least 135 units of graduate work equivalent to the Master of Science program described above, plus at least 135 additional units of advanced graduate work. This latter program of study and research must consist of:

a. not less than 60 units of research in aeronautics or jet propulsion (Ae 200 or JP 280);
b. three units of an advanced seminar such as Ae 208, Ae/AM 209, or JP 290; and
c. satisfactory completion (with a grade of C or better) of at least 27 units of aeronautics courses numbered Ae 200 or higher, excluding research and seminars.

A proposed program conforming to the above regulations must be approved by the student's adviser prior to registration for the first term of work toward the degree.

A thesis is required based on the research program and may consist of the results of a theoretical and/or experimental investigation or may be a comprehensive literature survey combined with a critical analysis of the state-of-the-art in a particular field.

No student will be allowed to continue to work toward the degree of Aeronautical Engineer for more than six terms of graduate residence beyond the baccalaureate degree (not counting summer registrations) except by permission after petition to the aeronautics faculty.

Degree of Doctor of Philosophy in Aeronautics

Admission. Students with a baccalaureate degree or with a Master of Science degree equivalent to those given by the Institute are eligible for admission to work for the Ph.D. degree.
Qualifying Examination. Because of the broad spectrum in the backgrounds of graduate students entering the Ph.D. program in Aeronautics, the student must pass a qualifying examination to determine whether he or she is qualified to pursue problems typical of Ph.D. work. This examination should be taken before the student has completed six terms of graduate residence after the baccalaureate degree (not counting summer registration), and after having made a satisfactory beginning on research in his or her chosen field. Emphasis in the qualifying examination is directed at any or all of the following: a) establishing the student’s ability to formulate research plans, b) determining the extent of the student’s knowledge in his or her field of interest, and c) determining the extent of the student’s ability to use mathematical and physical principles for original work in the chosen discipline.

Candidacy. To be recommended for candidacy for the Ph.D. in aeronautics the applicant must have satisfactorily completed at least 135 units of graduate work equivalent to the above Master of Science program and, in addition, must pass with a grade of C or better:

a. one of the following, or its equivalent:

- AMa 101 abc Methods of Applied Mathematics
- AM 125 abc Engineering Mathematical Principles
- Ma 108 abc Advanced Calculus
- Ph 129 abc Mathematical Methods of Physics

b. at least 45 units of aeronautics courses numbered Ae 200 or higher, excluding research and seminars

c. at least 54 units of courses outside of the applicant’s chosen discipline, approved by the aeronautics faculty.

If any of the above subjects were taken elsewhere than at the Institute, the candidate may be required to pass special examinations indicating an equivalent knowledge of the subject.

To be admitted to candidacy, the applicant must pass a candidacy examination at least one year before the degree is to be conferred.

Foreign Languages. The student is encouraged to discuss with his or her adviser the desirability of studying foreign languages.

Thesis and Final Examination. By the beginning of the third term of the year in which the degree is to be conferred, a candidate for the degree of Doctor of Philosophy must deliver rough drafts of the thesis to the supervising committee. Not less than two weeks after the submission of the thesis rough drafts, the candidate is expected to give a seminar covering the results of his or her research, and this seminar will be followed by a thesis examination by the supervising committee. The seminar should be given as early as possible, but not later than two months before the degree is to be conferred.

Subject Minor in Aeronautics

A student majoring in a field other than aeronautics may, with the approval of the aeronautics faculty, elect aeronautics as a subject minor. A minimum of 54 units in subjects acceptable to the aeronautics faculty is required, and the student must be examined orally by a representative of the aeronautics faculty.

Applied Mathematics

Aims and Scope of Graduate Study in Applied Mathematics

A program for graduate study in applied mathematics is organized jointly by the Division of Physics, Mathematics and Astronomy and the Division of Engineering and Applied Science. The course of study leads to the Ph.D. degree and requires three or four years. This program is aimed at those students with a background in mathematics, physics, or engineering who wish to obtain a thorough training and to develop their research ability in applied mathematics. Students will be admitted to one of the two divisions according to background and interests.
As the joint sponsorship by the two divisions indicates, several different groups in the Institute contribute to the teaching and supervision of research. Conversely, students in applied mathematics should combine their basic mathematical studies with deep involvement in some field of application. In accordance with this, basic general courses are listed specifically under applied mathematics; these are to be supplemented according to the student's interest from the courses offered under mathematics, and from the whole range of Institute courses in specific areas of physics, engineering, etc.

There is also an applied mathematics colloquium in which visitors, faculty, and students discuss current research.

Admission

Each new graduate student admitted to work for the Ph.D. in applied mathematics will be given an informal interview on Thursday or Friday of the week preceding the beginning of instruction for the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him or her in mapping out a course of study. The work of the student during the first year will usually include some independent reading and/or research.

Categories of Courses

Courses that are expected to form a large part of the student's program are divided into three categories as follows:

Group A. Courses in mathematics and mathematical methods. Examples of these would include: AMa 101, AMa 104, AMa 105, AMa 106, AMa 107, AMa 108, AMa 109, AMa 201, AMa 204, Ma 109, Ma 137, Ma 143, Ma 144.

Group B. Courses of a general nature in which common mathematical concepts and techniques are applied to problems occurring in various scientific disciplines. Examples of these include: AMa 110, AMa/CS/Ph 146, AMa 151, AMa 152, AMa 153, AMa 170, AMa 181, AMa 220, AMa 251, AMa 260.

Group C. Courses dealing with special topics in the sciences. A complete list cannot be given here but examples are courses in elasticity, fluid mechanics, dynamics, quantum mechanics, electromagnetism, communication theory, computer science, etc.

Master's Degree in Applied Mathematics

Entering graduate students are normally admitted for the Ph.D. program. The master's degree may be awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units of advanced graduate work should be in applied mathematics.

Degree of Doctor of Philosophy in Applied Mathematics

The Oral Candidacy Examination. In order to be recommended for candidacy the student must, in addition to satisfying the general Institute requirements, pass an oral candidacy examination. This examination will normally be given during the first term of the second graduate year. It will be based upon one year's work in courses of the type described in Group A above, and upon one year's work in courses of the type described in Groups B and C. The examination will also cover any independent study carried out by the student during his or her first graduate year.

Further Requirements. In order to be recommended for the Ph.D. in applied mathematics, the student must do satisfactory work in a program containing at least 45 units of work in courses of the type indicated in Group A, and at least 45 units of courses chosen from Groups B and C. This is intended to prevent undue specialization in either the more mathematical or the more engineering type of courses.

Submission of Thesis. On or before the first Monday in April of the year in which the degree is to be conferred, a candidate for the degree of Ph.D. in applied mathematics must deliver a typewritten or printed copy of the completed thesis to his or her research supervisor.
Final Examination. The final oral examination will be held as nearly as possible four weeks after the submission of the thesis. The examination will cover the thesis and related areas.

Subject Minor in Applied Mathematics
Students majoring in other fields may take a subject minor in applied mathematics, provided the program consists of 45 units sufficiently far removed from their major program of study and is approved by the applied mathematics faculty.

Applied Mechanics

Master's Degree in Applied Mechanics
Study for the degree of Master of Science in Applied Mechanics ordinarily will consist of three terms of coursework totaling at least 135 units. AM 125 abc: Engineering Mathematical Principles, and E 150 abc: Engineering Seminar, are required. However, with faculty approval, AM 125 abc may be replaced by Ma 108 abc: Advanced Calculus, AMa 101 abc: Methods of Applied Mathematics, or other satisfactory substitute. A minimum of 54 units of graduate-level courses (numbers 100 and above) must be selected from courses in AM, AMa, Ae, Hy, JP, CE and ME with the approval of the student's adviser and the faculty in applied mechanics. Students are encouraged to consider a humanities elective as part of their free electives.

Students admitted for study toward a Master's degree but interested in pursuing subsequent study toward a Ph.D. degree in Applied Mechanics should also read the following section concerning the Ph.D. degree.

Degree of Doctor of Philosophy in Applied Mechanics
The degree of Doctor of Philosophy in Applied Mechanics will ordinarily involve a second year of graduate work in advanced courses and research, plus at least one additional year on a comprehensive thesis research project. Such study and research programs are individually planned to fit the interests and background of the student.

Counseling. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in Applied Mechanics in order to advise the student on a suitable course program. The committee member closest to the student's current interests acts as committee chairman and interim adviser until this responsibility is assumed by the dissertation supervisor.

In addition, a special joint faculty committee is appointed annually by the faculties in Applied Mechanics, Civil Engineering, Materials Science, and Mechanical Engineering, which meets both collectively and individually with first-year graduate students aiming at the doctoral degree in order to provide further perspective on graduate study and research, as well as to discuss the student's evolving interests.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in Applied Mechanics, and all other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee referred to above, is confined to elementary but basic topics in the general areas represented by the committee. One purpose of this examination is to identify possible deficiencies in the student's background with a view toward appropriate remedial measures; in addition, the examination contributes to the information used in assessing the student's promise for successful doctoral studies.

Admission to Candidacy for the Ph.D. in Applied Mechanics. To be recommended for candidacy for the Ph.D. degree in applied mechanics, the student must, in addition to meeting the general Institute requirements:
a. complete 12 units of research;
b. complete at least 108 units of advanced courses arranged by the student in conference with his or her adviser and approved by the faculty in applied mechanics. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in applied mechanics;
c. pass with a grade of at least C an advanced course in mathematics or applied mathematics such as AM 125 abc, Ph 129 abc or AMa 101 abc, acceptable to the faculty in applied mechanics. The requirement in mathematics shall be in addition to requirement (b) above and shall not be counted toward a minor;
d. pass an oral examination on the major subject, and, if the student has a minor, examination on the subject of that program may be included at the request of the discipline offering the minor.

Language Requirements. The student is encouraged to discuss with his or her adviser the desirability of taking foreign languages, which may be included in a minor with proper approvals. Foreign languages are not required.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his or her specialized field of research.

Subject Minor in Applied Mechanics
A student majoring in another branch of engineering, or another division of the Institute, may elect applied mechanics as a subject minor, with the approval of the faculty in applied mechanics and the faculty in his or her major field. The group of courses shall differ markedly from the major subject of study or research, and shall consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student's major.

Applied Physics
Aims and Scope of the Graduate Program in Applied Physics
A graduate student in applied physics may be admitted to work toward a master's degree or toward the Ph.D. degree.

A professional in the field should be able to cope with any physics problem that confronts him or her in a technological context. Graduate study in applied physics should therefore cover considerable ground with the least possible loss of depth. Independent and original research is essential, but not for the purpose of acquiring advanced knowledge in a narrow specialty. In the rapidly changing technology of today an applied physicist should not expect to remain precisely within the field of thesis research; instead through research he or she should have gained the confidence to be able to contribute actively and rapidly to any related field in physics.

Master's Degree in Applied Physics
Of the 135 units required for this degree, at least 54 units must be selected from APh 114, Ch 125 or Ph 125, APh 105, Ae/APh 101, and APh 156. Topics in Applied Physics, APh 110 abc, is required. The remaining portion of the 135 units is to be made up from electives approved by the option representative. No more than 27 units may be earned in APh 200.

Suggested electives include: APh 105, APh 114, Ae/APh 101, APh/MS 126, APh 140, APh 153, APh 156, APh 181, APh 190, APh 200, Ph 125, Ph 129, AMA 101, AMA 104, AMA 105, AM 135, Che 103, CheE 165, Ch 120, Ch 125, Ge 104, Ge 154, Ge 166. As a result of consultation with his or her adviser, a student may be required to take AM 113 abc, depending on his or her previous experience.
Degree of Doctor of Philosophy in Applied Physics

Candidacy. To be recommended for candidacy for the doctor's degree the applicant must satisfy the requirements listed below:

a. Competence must be demonstrated in the following subjects, at the levels indicated.
 1. Classical Physics: Mechanics and Electromagnetism
 course level: Ph 106 or APh 106
 2. Quantum Mechanics
 course level: Ph 125 or Ch 125
 3. Mathematical Methods
 course level: AMa 101, AM 125, or Ph 129
 4. Statistical Physics and Thermodynamics
 course level: APh 105
 5. Solid-State Physics or Fluid Dynamics or Plasma Physics
 course level: APh 114, Ae/APh 101, or APh 156

Competence will be demonstrated in either of two ways. The applicant may complete an appropriate Caltech course with a grade no lower than C. Alternatively, should he or she supply evidence of having done equivalent course work elsewhere, the student will be permitted to demonstrate competence through an oral examination. Separate examinations will be required for each area.

b. Oral candidacy examination. The student will prepare a brief presentation on a topic agreed upon by the student and the student's proposed thesis research adviser, normally the projected research topic. The candidacy examination will be based upon the student's background in applied physics and its relation to this presentation.

The oral examination will be given only after the student has demonstrated competence in the five areas and must be completed before the close of the student's second year of residency.

c. Competence in research must be demonstrated as follows: The student must have a doctoral thesis adviser and must have completed 18 units of research with this adviser no later than the beginning of the student's third year of residence.

The Minor. By its nature, applied physics spans a variety of disciplines and the major requirement reflects this. A minor is not required of students majoring in applied physics. They are, however, encouraged to take advanced courses appropriate to their particular interests.

Thesis and Final Examination. The candidate is required to take a final oral examination covering his or her doctoral thesis, its significance and relation to his or her major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Applied Physics

Graduate students electing a subject minor in applied physics must complete 54 units of graduate courses in applied physics. The courses may be selected from any of the applied physics courses with numbers greater than 100, excluding APh 110 and APh 200.

The student's proposed program must be approved by the Applied Physics Graduate Studies Committee. The committee will examine the course program to determine which of the following areas of interest in applied physics it includes:

Group A: Ae/APh 101, APh 156.
Group B: APh 105, APh 114, APh 140, APh 181, APh 214.
Group C: APh 153, APh 190, APh 154.

It is recommended that the program include courses from more than one of the above areas.

The Applied Physics Graduate Studies Committee may recommend an oral examination based upon its evaluation of the course program. When the program includes more than one of the above areas of interest, then an oral examination may not be required.
Astronomy

Admission
All applicants for admission to graduate study in astronomy, including those from foreign countries, are required to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and the advanced test in physics.

Placement Examination
Each student admitted to work for an advanced degree in astronomy is required to take the Placement Examination in physics (see Placement Examinations, page 163) covering material equivalent to Ph 106, Ph 125, and Ph 129. This examination will test whether the student's background is sufficiently strong to permit advanced study in astronomy. If it is not, students will be required to pass the appropriate courses.

Master's Degree in Astronomy
The choice of astronomy and other science elective courses must be approved by the department. At least 36 units of the 135 units must be selected from Ay 151, Ay 152, Ay 153, Ay 154, Ay 155, Ay 156. The courses Ph 106, Ph 125, and Ph 129 may be required of those students whose previous training in some of these subjects proves to be insufficient. At least 27 units of advanced courses not in astronomy are required.

Degree of Doctor of Philosophy in Astronomy
Astronomy Program: The student's proposed overall program of study must be planned and approved by the department during the first year. Required courses for candidacy are Ay 151, Ay 152, Ay 153, Ay 154, Ay 155, and Ay 156. The student should take these courses as soon as they are offered. Also required are research and reading projects, starting in the second term of the first academic year. Credit for this work will be given under courses Ay 142 and Ay 143. Written term papers dealing with the research or reading done will be required at the end of each term.

Physics Program: The student's program during the first two years of graduate study should include at least 36 units of physics courses, exclusive of Ph 106, Ph 125, and Ph 129. This requirement may be reduced on written approval of the department for students who take substantial numbers of units in Ph 106, Ph 125, and Ph 129. Students in radio astronomy may substitute an advanced course in electrical engineering or applied mechanics for up to 9 units of the required 36 units of physics. Theoretical astrophysics students should include at least 54 units of physics courses in their programs. Students in planetary physics may substitute appropriate advanced courses in geophysics and geochemistry. All the above courses must be passed with a grade of C or better.

The Minor: It is recommended that students take a subject minor in physics. Other fields in which subject minors are taken include geology or engineering, depending on the student's field of specialization.

Language Requirement: To be admitted to candidacy for the Ph.D. degree in astronomy, the student must demonstrate a knowledge of Russian, German, Spanish, or French sufficient for the reading of technical material in his or her field. Students will be required to take a special examination administered by the staff in fulfillment of this requirement.

Admission to Candidacy: To be recommended for candidacy for the Ph.D. degree in astronomy, a student must, in addition to meeting the general Institute requirements:

a. complete satisfactorily 36 units of research, Ay 142, or reading, Ay 143;

b. pass with a grade of C or better, or by special examination, Ay 151, Ay 152, Ay 153, Ay 154, Ay 155, Ay 156;

c. pass a written examination (see below);
d. pass an oral examination (see below);

e. fulfill the language requirement (see above); and

f. be accepted for thesis research by a member of the faculty, or by special arrangement, a
staff member of the Mt. Wilson and Las Campanas Observatories.

The written examination will be given in October of the second year. It will cover the material
from the required astronomy courses and will consist of two three-hour papers. The oral exam­
ination must be taken before the end of the first term of the third year. It will cover matters
related to the subject of the candidate's proposed thesis. Special permission will be required for
further registration if the candidacy course requirements and the written and oral examinations
are not satisfactorily completed by the end of the third year of graduate work.

Final Examination: A final draft of the thesis must be submitted at least six weeks before the
commencement at which the degree is to be conferred. At least two weeks after submission of
the thesis, the student will be examined orally on the scope of his or her thesis and its relation
to current research in astronomy.

Subject Minor in Astronomy

The program for a subject minor in astronomy must be approved by the department before
admission to candidacy. In addition to general Institute requirements, the student must complete
satisfactorily, with a grade of C or better, 45 units in advanced courses in astronomy.

Biology

Aims and Scope of Graduate Study in Biology

Graduate students in biology come with very diverse undergraduate preparation—majors in
physics, chemistry, mathematics, or psychology, as well as in biology and its various branches.
The aims of the graduate program are to provide, for each student, individual depth of experience
and competence in a particular chosen major specialty; perception of the nature and logic of
biology as a whole; sufficient strength in basic science to allow continued self-education after
formal training has been completed and thus to keep in the forefront of changing fields; and
the motivation to serve his or her field productively through a long career. In accordance with
these aims, the graduate study program in biology includes the following parts: (a) the major
program, which is to provide the student with early and intense original research experience in
a self-selected subject of biology, supplemented with advanced course work and independent
study in this subject; (b) an optional minor program, usually designed to provide the student
with professional insight into a subject outside the major one and consisting of specialized
course work, or course work and a special research program; and as a rule (c) a program of
course work designed to provide a well-rounded and integrated training in biology and the
appropriate basic sciences, and adjusted to special interests and needs. An individual program
will be recommended to each student in a meeting with the student's advisory committee (see
below). The Division of Biology does not encourage applications from students who have
pursued undergraduate study in biology at the Institute, because the broader perspective to be
gained from graduate study in a different setting is considered to be essential for the full
development of each student's potential. Exceptions to this policy may be considered by the
faculty of the division if there are circumstances, such as completion of an advanced degree at
another institution, which indicate that it would be in the best interests of a student to pursue
graduate study at the Institute.

Admission

Applicants are expected to meet the following minimal requirements: mathematics through
calculus, general physics, organic chemistry, physical chemistry (or the equivalent), and ele­
mentary biology. Students with deficient preparation in one or more of these categories may be
admitted but required to remedy their deficiencies in the first years of graduate training, no
graduate credit being granted for such remedial study. This will usually involve taking the courses in the categories in which the student has deficiencies. In certain instances, however, deficiencies may be corrected by examinations following independent or supervised study apart from formal courses. Furthermore, the program in biology is diverse, and in particular fields such as psychobiology and experimental psychology or in interdisciplinary programs, other kinds of undergraduate preparation may be substituted for the general requirements listed above.

When feasible, visits to the campus for personal interviews will be arranged before a final decision for admission is made. Graduate Record Examinations (verbal, quantitative, and an advanced test in any science) are required of applicants for graduate admission intending to major in biology. Applicants are encouraged to take these examinations and request that the scores be transmitted to Caltech, in November or earlier, to ensure unhurried consideration of their applications.

Advisory Committees
An advisory committee will be constituted for each student, to provide consultation and advice throughout the period of study until admission to candidacy. Each advisory committee will consist of three or four faculty members, including a student's current research supervisor and at least one member of the Graduate Admissions Committee who will serve as chairman of the advisory committee. The composition of the committee will be adjusted as necessary if the student changes research supervisors or areas of interest. Each student meets with his or her advisory committee at the time of beginning work in the division to formulate a plan of study, again in the third term of the first year of study to discuss progress and subsequent plans, and at other times when problems arise or advice is needed.

Teaching Requirements for Graduate Students
All students must acquire teaching experience.

Master's Degree in Biology
The Biology Division does not admit students for work toward the M.S. degree. In special circumstances the M.S. degree may be awarded, provided Institute requirements are met. In general the degree is not conferred until the end of the second year of residence. The degree does not designate any of the disciplines of the division, but is an M.S. in Biology.

Degree of Doctor of Philosophy in Biology
Major Subjects of Specialization. A student may pursue major work leading to the doctoral degree in any of the following subjects:

- Biophysics
- Cell Biology
- Developmental Biology
- Genetics
- Immunology
- Molecular Biology
- Neurobiology

At graduation, a student may choose if the degree is to be awarded in biology or in the selected subject. If the award is to be in biology, a minor will be designated only if it is from another division of the Institute.

Minor Subjects. The Division of Biology does not have a requirement for a minor, but encourages students to undertake work outside of their major subject. Recognition of such work on a student's diploma requires completion of a formal minor program, which usually consists of 45 units of advanced course work or research, either in another division of the Institute in accordance with the regulations of that division, or in one of the major subjects of specialization in biology that is not closely related to a student's major field. Students should consult with their advisory committee in planning such a program.

Admission to Candidacy. To be recommended by the Division of Biology for admission to candidacy for the doctor's degree, the student must have demonstrated an ability to carry out
original research and have passed, with a grade of B or better, the candidacy examination in
the major.

Thesis Committee. At the time of admission to candidacy, a thesis advisory committee is
appointed for each student by the chairman of the division upon consultation with the student
and the major professor. This committee will consist of the student's major professor as chairman
and four other appropriate members of the faculty, including a member of the faculty of the
minor (if any). The thesis committee will meet with the student soon after admission to can­
didacy and at intervals thereafter to review the progress of the thesis program. This committee
will, with the approval of the Dean of Graduate Studies, also serve as the thesis examination
committee (see below).

Thesis and Final Examination. Two weeks after copies of the thesis are provided to the
examination committee, the candidate collects the copies and comments for correction. At this
time, the date for the final examination is set at the discretion of the major professor and the
division chairman, to allow as necessary for such matters as publication of the examination in
the Institute calendar, thesis correction, preparation of publications, and checking out and
ordering of the student's laboratory space. The final oral examination covers principally the
work of the thesis, and according to Institute regulation must be held at least two weeks before
the degree is conferred. Two copies of the thesis are required of the graduate for the Institute
library. A third copy is required for the division library.

Minor in Biology
A student majoring in another division of the Institute may, with the approval of the Biology
Division, elect a subject minor in any of the subjects listed above under major subjects of
specialization. Requirements for such a minor are determined by the faculty committee desig­
nated for each subject. A minor program in biology is also available to students of other
divisions. Such a program shall consist of 45 units of upper division course work in the Biology
Division, each course passed with a grade of "C" or better. Approval of each program must be
obtained from the Biology Graduate Advisory Committee. A student majoring in another divi­sion who elects a subject minor in biology may if desired arrange to have the minor designated
as biology, rather than with the name of the specific minor subject.

Chemical Engineering

Aims and Scope of Graduate Study in Chemical Engineering
The Institute was one of the earliest schools to emphasize instruction on basic subjects rather
than on specialized material relating primarily to particular industries or processes. The general
objective of the graduate work in chemical engineering is to produce individuals who are
exceptionally well trained to apply the principles of mathematics, the physical sciences, and
engineering to the fundamental understanding of systems involving chemical reactions and
transport phenomena and to the development of new processes and materials.

Admission
It is expected that each applicant for graduate study in the Division of Chemistry and Chemical
Engineering will have studied mathematics, physics, and chemistry substantially to the extent
that these subjects are covered in the required undergraduate courses at Caltech. In case the
applicant's training is not equivalent, the division may prescribe additional work in these subjects
before recommending him or her as a candidate.

Master's Degree in Chemical Engineering
The master's degree is intended for students who plan to pursue careers in design, process
engineering, development, or management. The degree is normally obtained in one calendar
year.
Course Requirements. The requirements include engineering mathematics, AM 113 abc, if an equivalent course has not been taken previously. The M.S. requirements also include 36 units of advanced courses in chemical engineering, which should ordinarily constitute a coherent program of study, for example including ChE 173 ab, or ChE 164, 165, or ChE 161, 162. Other courses may be substituted upon approval by the chemical engineering faculty. In addition to the required courses, there are 45 units of electives, 18 units of which must be in science and engineering subjects and 27 units of which may include science and engineering subjects, humanities and social science subjects, or research. Finally, the M.S. requirements include at least 18 units of research, ChE 280, which represent two terms of research under the supervision of a chemical engineering faculty member or a two-term industrial research or development project performed with a member of the faculty in cooperation with professional staff at a local industrial laboratory. A research report must be submitted on the work performed under ChE 280 at least three weeks before the end of the final term of residence to a designated member of the faculty, who will ask that it be read and approved by three members of the faculty. A copy of each approved M.S. report will be kept in the chemical engineering library.

Degree of Doctor of Philosophy in Chemical Engineering

The work leading to the Ph.D. degree prepares students for careers in universities and in the research laboratories of industry and government, although Ph.D. graduates are also well qualified for the areas listed for the master's degree. Usually the first year of graduate work is principally devoted to course work in chemical engineering and related subjects. Time is also devoted during this period to the choice of a research project and to its initiation. During the second year the student is expected to spend at least half time on research, and to complete the course work and candidacy requirements. Some time is available for elective courses. It is expected that the research project will occupy full time during the third and subsequent years. If summers are spent on research and other academic pursuits, the Ph.D. requirements could be completed in three calendar years.

Admission. During the Friday preceding General Registration for the first term of graduate study, students admitted to work for the Ph.D. degree are required to consult with the professor in charge of the courses in chemical thermodynamics, transport phenomena, and applied chemical kinetics. This informal consultation is aimed at planning course work for each student.

Course Requirements. Although there are no formal chemical engineering course requirements, all Ph.D. students must take a selected number of courses outside of chemical engineering to provide both a broadening experience and an opportunity for obtaining further depth in the general thesis area. This requirement may be satisfied by completion of a subject minor in another option, or by completion of an integrated program of study, which normally consists of a total of 54 units (the equivalent of two one-year courses), and must be approved in advance by the Graduate Study Committee in chemical engineering. Generally, AM 113 will not be allowed, nor will research units from other options. A grade of C or better is required in any course that is to be included in the program.

Candidacy Requirements. To be recommended for candidacy the student must demonstrate proficiency at the graduate level in chemical engineering. This will be done by way of chemical engineering courses, an oral subject examination, which is to be taken at the end of the third term of the student's first year of graduate residence at the Institute, and a written progress report on his or her research, to be submitted before the end of the second term of the student's second year of graduate residence. The oral examination will cover thermodynamics, applied chemical kinetics and transport phenomena, with emphasis at the discretion of the committee. Approval of the research report constitutes the final step for admission to candidacy. A student who fails to satisfy the division's candidacy requirements by the end of the third term of his or her second year of graduate residence at the Institute will not be allowed to register in a subsequent academic year except by special permission of the Division of Chemistry and Chemical Engineering.
Thesis and Final Examination. See page 123 for regulations concerning theses and final examinations. A copy of the corrected thesis is to be submitted to the chemical engineering graduate secretary for the chemical engineering library.

The final examination will be concerned with the candidate's oral presentation and defense of a brief resume of his or her research.

Subject Minor in Chemical Engineering
Graduate students electing a subject minor in chemical engineering must complete 45 units of graduate courses in chemical engineering that are approved by the chemical engineering faculty. In general, this program of courses should include ChE 173/174 or ChE 101/161/162 or ChE 164/165/169 or ChE 110/111. A grade of C or better is required for each course included in the program. In order to satisfy the requirements for a subject minor, the candidate must pass a short oral examination given by the department.

Chemistry

Aims and Scope of Graduate Study in Chemistry
The graduate program in chemistry emphasizes research. This emphasis reflects the Institute's traditional leadership in chemical research and the conviction that has permeated the Division of Chemistry and Chemical Engineering from its founding, that participation in original research is the best way to awaken, develop, and give direction to creativity.

As a new graduate student, soon after you arrive in the laboratories, you will attend a series of orienting seminars that introduce you to the active research interests of the staff. You then talk in detail with each of several staff members whose fields attract you, eventually settle upon the outlines of a research problem that interests you, and begin research upon it early in the first year. You can elect to do research that crosses the boundaries of traditionally separate areas of chemistry, for in this relatively compact division, you are encouraged to go where your scientific curiosity drives you; you are not confined to a biochemical or physical or organic laboratory. A thesis that involves more than one adviser is not uncommon, and interdisciplinary programs with biology, physics, and geology are open and encouraged.

An extensive program of seminars will enable you to hear of and discuss notable work in chemical physics, organic chemistry, inorganic and electrochemistry, organometallic chemistry, and chemical biology. Graduate students are encouraged also to attend seminars in other divisions.

Placement Examination
During the week preceding registration for the first term of graduate study, students admitted to work for advanced degrees will be required to take a written placement examination in the fields of inorganic, organic, and physical chemistry and chemical equilibrium. In general, it will be designed to test whether you possess an understanding of general principles and a power to apply these to specific problems. You will be expected to demonstrate a proficiency in the above subjects not less than that acquired by abler undergraduates.

In the event that you fail to show satisfactory performance in any area of the placement examination, you will be required to complete satisfactorily a prescribed course, or courses, in order to correct the deficiency.

Course Program
For an advanced degree, no graduate courses in your principal area of research are required. You should plan a program of advanced courses in consultation, at first with a representative of the divisional Committee on Graduate Study, and later with your research adviser.
Master's Degree in Chemistry

Students are ordinarily admitted to graduate work leading to an M.S. degree, but the master's program is available. All master's programs for the degree in chemistry must include at least 40 units of chemical research and at least 30 units of advanced courses in science. The remaining electives may be satisfied by advanced work in any area of mathematics, science, engineering, or humanities, or by chemical research. Two copies of a satisfactory thesis describing this research, including a one-page digest or summary of the main results obtained, must be submitted to the divisional graduate secretary at least ten days before the degree is to be conferred. The copies of the thesis should be prepared according to the directions formulated by the Dean of Graduate Studies and should be accompanied by a statement approving the thesis, signed by the staff member directing the research, and by the chairman of the Committee on Graduate Study of the division.

Degree of Doctor of Philosophy in Chemistry

Candidacy. There is no formal course work required in your major field of interest (for minor requirements, see below). However, to be recommended for candidacy for the doctor's degree in chemistry, in addition to demonstrating an understanding and knowledge of the fundamentals of chemistry, you must give satisfactory evidence of proficiency at a high level in your primary field of interest, as approved by the division. This is accomplished by an oral candidacy examination, which must be held during or before your fifth term of graduate residence (excluding summer terms). At this examination you will be asked to demonstrate scientific and professional competence and promise by discussing a research report and propositions as described below.

The research report should describe your progress and accomplishments to date and plans for future research. Two propositions, or brief scientific theses, must accompany the report, and at least one must be well removed from your field of research. These propositions should reflect your breadth of familiarity with the literature, originality, and ability to pose and analyze viable scientific research problems. Students enrolled in the Caltech chemistry graduate program before January 1, 1983, may choose to satisfy the proposition requirement under the above policy or under the former policy in effect at their matriculation whereby three propositions are required. The propositions should not all be in your own field of research. Whichever proposition policy you choose for your candidacy examination must also be followed for your Ph.D. examination. The research report and propositions must be in the hands of your examining committee one week before the examination regardless of which candidacy proposition policy you select.

The result of the candidacy examination may be either (a) pass, (b) fail, or (c) conditional. Conditional status is granted when the committee decides that deficiencies in a student's research report, propositions, or overall progress can be remedied in a specific and relatively brief period of time. In order to change conditional to pass status, you will have to correct the indicated deficiencies or in some cases schedule a new examination the following term. You must be admitted to candidacy at least three terms before your final oral examination. You cannot continue in graduate work in chemistry (nor can financial assistance be continued) past the end of the sixth term of residence without being admitted to candidacy, except by petitioning the division for special permission. This permission, to be requested by a petition submitted to the divisional graduate studies committee stating a proposed timetable for correction of deficiencies, must be submitted before registration for each subsequent term (including the summer following the sixth term of residence) until admission to candidacy is achieved.

Language Requirements and Candidacy. Satisfactory completion of the language requirement and removal of placement examination requirements are also necessary before you can be admitted to candidacy. Ph.D. chemists must demonstrate proficiency in one foreign language: French, German, or Russian. This demonstration can be by test, by good performance in a course at Caltech, or by sufficient undergraduate course work in the language. A grade of "B" or better is required in all courses.
The Minor. In order to provide breadth in your graduate experience, you are required either to (a) complete a subject minor in another option (the requirements being set by that option) or (b) complete an approved program of course work outside your principal area of research. This program consists of at least 36 units of course work (the equivalent of approximately four standard one-term courses) outside the scientific area in which your dissertation research is performed (exclusive of courses taken in fulfillment of the chemistry language requirement). These courses may be either inside or outside the chemistry option. Courses for the minor shall be taken on a letter grade basis unless the course is offered with only a pass/fail option. A grade of C or better is required for credit toward the minor. Your adviser has the responsibility of determining which courses fulfill the requirement in your particular case, subject to final approval by the chemistry graduate studies committee.

Thesis and Final Examination. The final examination will consist in part of oral presentation and defense of a brief resume of your research and in part of the defense of a set of propositions prepared by you. Three propositions are required. No more than one of these may be a carry-over from the candidacy examination, and at least one must be well removed from your field of research. Each proposition shall be stated explicitly and the argument presented in writing with adequate documentation. The propositions should display originality, breadth of interest, and soundness of training; you will be judged on your selection and formulation of the propositions as well as on your defense of them. You should begin formulating a set of propositions early in the course of graduate study.

To emphasize the importance of these propositions there will be a separate examination on the three propositions by your Ph.D. examining committee. This examination on the propositions must be held not less than ten weeks in advance of the Ph.D. examination. You must submit a copy of the propositions along with suitable abstracts to the examining committee and to the division graduate secretary not less than two weeks before the propositions examination. These propositions must be acceptable to the committee before you can schedule your final Ph.D. examination.

A copy of your thesis must be submitted to each member of the examining committee not less than two weeks before your final examination. A copy of your thesis should be submitted to the Institute Graduate Office for proofreading three weeks prior to your final examination. One reproduced copy of the thesis, corrected after proofreading, is to be submitted to the division graduate secretary for the divisional library. Two final copies (one on *Permalife paper) are to be submitted to the Institute Graduate Office.

Students enrolled in the Caltech chemistry graduate program before January 1, 1983, may choose to satisfy the propositions requirement for the final examination under the above policy or, unless the new proposition policy was selected for the candidacy examination, under the former policy in effect at their matriculation whereby five propositions are required. Not more than two of the five propositions shall be related to the immediate area of your thesis research. Propositions of exceptional quality presented at the time of the candidacy examination may be included among the five submitted at the time of the final examination. Under the five-proposition policy, you must submit a copy of the thesis and propositions in final form to the chairman and to each member of the examining committee, and a copy of the propositions, along with an abstract of the propositions to the division graduate secretary, not less than two weeks prior to your final examination.

Subject Minor in Chemistry
Graduate students in other options taking chemistry as a subject minor will be assigned a faculty adviser in chemistry by the chemistry graduate studies committee. In consultation with this adviser, the student will work out an integrated program of courses, including at least 45 units of formal course work at the 100 level or above. This program must be approved by the chemistry graduate studies committee, and a grade of C or better in each course in the approved program will be required.
Civil Engineering

Aims and Scope of Graduate Study in Civil Engineering

Students who have not specialized in civil engineering as undergraduates, as well as those who have, may be admitted for graduate study. As preparation for advanced study and research, a good four-year undergraduate program in mathematics and the sciences may be substituted for a four-year undergraduate engineering course with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his or her program in consultation with a member of the faculty. In some cases the student may be required to make up deficiencies in engineering science courses at the undergraduate level. However, in every case the student will be urged to take some courses that will broaden an understanding of the overall field of civil engineering, as well as courses in his or her specialty. Most graduate students are also required to take further work in applied mathematics.

Master's Degree in Civil Engineering

Although the first year of graduate study involves specialized engineering subjects, the student working for the Master of Science degree is encouraged not to overspecialize in one particular field of civil engineering. For the M.S. degree a minimum of 138 units of academic credit is required. The program must include 3 units of CE 130 abc and 108 units (minimum) of graduate level courses (numbers 100 and above) from at least three of the five general subject areas of structures and solid mechanics, soil mechanics, hydraulics and water resources, environmental engineering science, and mathematics. Students who have not had AM 95 abc or its equivalent will be required to include AM 113 abc in their program. The faculty encourages students to take 27 units in the humanities and social sciences.

Degree of Civil Engineer

Greater specialization is provided by work for the engineer's degree than for the master's. The candidate for this degree is allowed wide latitude in selecting his or her program of study, and is encouraged to elect related course work of advanced nature in the basic sciences. The degree of Civil Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer's degree.

Degree of Doctor of Philosophy in Civil Engineering

Upon admission to work toward the Ph.D. degree in civil engineering, a counseling committee of three members of the faculty is appointed to advise the student on his or her program. One member of the committee who is most closely related to the student's field of interest serves as interim chairman and adviser. The student's thesis adviser is chosen by the student and the advisory committee at a later time, when the student's research interests are more clearly defined.

In addition, a special joint faculty committee is appointed annually by the faculties in applied mechanics, civil engineering, materials science, and mechanical engineering, which meets both collectively and individually with first-year graduate students aiming at the doctoral degree in order to provide further perspective on graduate study and research, as well as to discuss the student's evolving interests.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in civil engineering, and other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third
term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee referred to above, is confined to basic topics in the general areas of mechanics and mathematics. One purpose of this examination is to identify possible deficiencies in the student's background with a view toward appropriate remedial measures; in addition, the examination contributes to the information used in assessing the student's promise for successful doctoral studies.

Major Subjects of Specialization. A student may pursue major work leading to the doctor's degree in civil engineering in any of the following disciplines: structural engineering and applied mechanics, earthquake engineering, soil mechanics, hydraulics, coastal engineering, and environmental engineering. Other disciplines may be selected with approval of the civil engineering faculty.

Course Requirements. A student must complete at least 108 units of advanced courses, arranged in conference with his or her adviser and approved by the faculty in civil engineering. Students are expected to take not less than 45 units of work in subjects, other than the required mathematics, not closely related to their thesis research. If a student elects to take a subject minor, the units so taken may be included in the total 108, and shall be subject to the approval of the faculty in civil engineering.

Admission to Candidacy. To be recommended to candidacy for the Ph.D. degree in civil engineering the student must, in addition to meeting the general Institute requirements:

a. complete a program of advanced courses as arranged in consultation with his or her advisory committee, and approved by the faculty in civil engineering;

b. pass at least 27 units of course work in advanced mathematics, such as AM 125, AMa 101, Ph 129, or a satisfactory substitute. For a student whose program is more closely related to the sciences of biology or chemistry than physics, AMa 104 and AMa 105 (or AMa 104 and AMa 181 ab) will be an acceptable substitute for the mathematics requirement;

c. pass an oral candidacy examination on the major subject, and if the student has a subject minor, examination on the minor subject may be included at the request of the discipline offering the minor.

The oral candidacy examination must be taken before registration day of the fifth term of residence as a post-M.S. student or equivalent and will comprise:

a. a section where the student will be questioned on the content of courses taken during graduate residence in which he or she will be expected to demonstrate an understanding of the major field of interest;

b. a discussion of a brief research report describing accomplishments to date, including reading, study, and plans for future research. The student must present the report to the examining committee at least ten days before the examination.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks prior to the examination. The date for the final oral examination is decided at the discretion of the major professor and the division chairman to allow, as necessary, for such matters as publication of the examination in the Institute calendar. The oral examination covers principally the work of the thesis; the examining committee will consist of such individuals as may be recommended by the chairman of the division and approved by the Dean of Graduate Studies.

Subject Minor in Civil Engineering

A student majoring in another branch of engineering, or in another division of the Institute, may, with the approval of the faculty in civil engineering, elect civil engineering as a subject minor. At least 54 units of approved courses must be taken, and an oral examination must be passed.
Master's Degree in Computer Science

There are five general requirements to fulfill for an M.S. in computer science.

1. **Units outside immediate area of interest.** Of the 135 units of advanced work (courses numbered 100 or greater) required for the M.S., 27 must be outside the student’s major area of interest. Neither computer science (CS) courses nor courses in closely related fields in other departments can be counted.

2. **B.S. equivalent preparation.** As part of the degree requirements, M.S. students should demonstrate competence in four of the following areas: (a) theory, (b) hardware, (c) systems, (d) software, and (e) applications. Competence can be demonstrated by passing the appropriate course offered at Caltech or by suitable undergraduate preparation.

3. **Advanced work in computer science.** M.S. students must pass at least 54 units of advanced CS courses in addition to units earned for reading, research project, and the M.S. thesis.

4. **Hardware course work.** Of the 54 units mentioned above, at least 9 must be in hardware-related courses, including CS 181, CS 171, CS/EE 11 or related courses offered by the electrical engineering or applied physics faculties.

5. **M.S. thesis.** Completion of an M.S. thesis, acceptable to the computer science faculty, is required for the M.S. degree.

Completion of a total of 135 units is required for the M.S. degree; a typical course is 9 units per term, and a typical program of 45 units/term is outlined below.

<table>
<thead>
<tr>
<th>First term</th>
<th>Second and third terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS courses: 27 units</td>
<td>CS courses: 18 units</td>
</tr>
<tr>
<td>Elective: 9 units</td>
<td>Elective: 9 units</td>
</tr>
<tr>
<td>M.S. thesis project: 9 units</td>
<td>M.S. thesis project: 18 units</td>
</tr>
</tbody>
</table>

Degree of Doctor of Philosophy in Computer Science

All first year Ph.D. students are required to complete the M.S. program, or its equivalent.

Candidacy. To be admitted to candidacy, a student must have completed the M.S. program or its equivalent, have entered upon a course of research approved by his or her thesis adviser, and have passed a candidacy oral examination on his or her major subject.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his or her specialized fields of research.

Subject Minor in Computer Science

A subject minor is not required for the Ph.D. degree in computer science; however, students majoring in other fields may take a subject minor in computer science, provided the program consists of 45 units sufficiently removed from their major program of study.

Electrical Engineering

Aims and Scope of Graduate Study in Electrical Engineering

The Bachelor of Science degree may be followed by graduate study leading either to the Master of Science degree in Electrical Engineering, usually completed in one year, or the more advanced degrees of Electrical Engineer or Doctor of Philosophy, usually completed in three to five years. The doctoral candidate may first obtain the Master of Science degree or may enter directly into studies for the degree of Doctor of Philosophy. In judging admission for the Ph.D. degree, the EE faculty places particular emphasis on any evidence of future research potential. The graduate
curriculum is flexible. Students participate in graduate seminars and in research projects. Applicants for graduate study should submit Graduate Record Examination scores with their applications.

Master's Degree in Electrical Engineering
135 units are required as approved by the electrical engineering graduate student adviser. E 150 abc, Engineering Seminar, is required. Students are urged to consider including a humanities course in the remaining free electives.

The attention of students interested in energy-related studies is drawn to EE 114 abc, Electronic Circuit Design; EE 117, Power Electronics; EE 291, Advanced Work in Electrical Engineering (in the Power Electronics Laboratory); ME 102 abc, Principles of Energy Conversion and Distribution; and to additional courses listed under other engineering options.

Degree of Electrical Engineer
To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor's degree.

Degree of Doctor of Philosophy in Electrical Engineering
Admission. A student may apply for admission to work directly for the degree of Doctor of Philosophy, or he or she may first enroll in study for the Master of Science degree and later apply for admission. This application will be judged in part on the academic performance during B.S. or M.S. studies, but great weight will be given to his or her future research potential. New Ph.D. students, and M.S. students who wish to transfer to Ph.D. studies, are required to make an oral presentation to a faculty committee at the beginning of the second term.

Candidacy. To be recommended for candidacy for the doctor's degree the applicant must satisfy the following requirements:

a. complete 18 units of research in his or her field of interest.

b. obtain approval of a course of study consisting of at least 189 units of advanced courses in electrical engineering or the related subjects listed under the Master's Degree, except that units in research (e.g., EE 191 and 291) may not be counted in this total. The course taken to satisfy requirement (c) may be included in this total. Courses taken to fulfill the requirements for the Master of Science degree may be included also.

c. pass one of the following subjects with no grade lower than C: AMa 101 abc, AM 125 abc, Ma 108 abc, Ph 129 abc. An applicant may also satisfy any of the above course requirements by taking an examination in the subject with the instructor in charge. This examination will cover the whole of the course specified, and the student may not take it either in parts or more than twice.

d. pass a qualifying oral examination covering broadly his or her major field and minor program of study. This examination is normally taken near the end of the second year of graduate study.

Thesis and Final Examination. The candidate is required to take a final oral examination covering the doctoral thesis and its significance in and its relation to his or her major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and before its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Electrical Engineering
A student majoring in another option at the Institute may elect a subject minor in electrical engineering. He or she must obtain approval from the electrical engineering faculty of a course of study containing at least 45 units of advanced courses with an EE listing (excluding EE 191 and 291). In addition, an oral examination is required, normally taken following completion of the course of study.
Aims and Scope of Graduate Study in Engineering Science
The engineering science option at Caltech is designed for students of subjects that form the core of the new "interdisciplinary" sciences. These branches of science provide the basis for modern technology. Students may choose physics and applied mathematics as their minor subjects and choose a thesis adviser within the Division of Engineering and Applied Science.

Students wishing to pursue graduate studies in nuclear engineering may apply for admission in this option. Students who wish to follow a program in the biological engineering sciences or bioinformation systems may do so in engineering science.

Master's Degree in Engineering Science
One of the following courses in mathematics is required: AMa 101 abc, Methods of Applied Mathematics I; AM 125 abc, Engineering Mathematical Principles; or Ph 129 abc, Mathematical Methods of Physics. Students emphasizing bioinformation systems should refer to different requirements given below.

A minimum of 54 units of courses must have the approval of the student's adviser and the faculty in engineering science.

Degree of Doctor of Philosophy in Engineering Science
Course Requirements. To be recommended for candidacy for the Ph.D. degree in engineering science, the student must, in addition to meeting the general Institute requirements:

a. complete 12 units of research;

b. complete at least 50 units of advanced courses arranged by the student in conference with his or her adviser and approved by the faculty in engineering science;

c. pass with a grade of at least C an advanced course in mathematics or applied mathematics such as AM 125 abc, Ph 129 abc, or AMa 101 abc, acceptable to the faculty in engineering science. This requirement shall be in addition to requirement (b) above, and shall not be counted toward any minor requirements. Students emphasizing bioinformation systems should refer to different requirements given below.

Language Requirements. Students are encouraged to discuss with their advisers the desirability of taking foreign languages. Foreign languages are not required.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidates' knowledge in their specialized fields of research.

Subject Minor in Engineering Science
A subject minor is not required for the Ph.D. degree in engineering science; however, students majoring in other fields may take a subject minor in engineering science, provided the program consists of 45 units sufficiently far removed from their major program of study and is approved by the appropriate faculty group and by the option representative.

Master's Degree in Engineering Science with Emphasis on Bioinformation Systems
See description on page 46. M.S. degrees are given in this area under the option of Engineering Science. A minimum of 54 units must be selected from applied mathematics, computer science, and biology courses, as approved by the faculty in bioinformation systems.

Degree of Doctor of Philosophy in Engineering Science with Emphasis on Bioinformation Systems
See description on page 46. Ph.D. degrees are given in this area under the option of engineering science.
Course Requirements. To be recommended for candidacy for the Ph.D. degree in engineering science with emphasis on bioinformation systems, the student must, in addition to meeting the general Institute requirements:

a. complete 12 units of research;

b. complete at least 50 units of advanced courses arranged by the student in conference with his or her adviser and approved by the faculty in bioinformation systems;

c. take at least an additional 27 units of advanced mathematics as approved by the faculty in bioinformation systems.

Other requirements are the same as listed under engineering science above.

Environmental Engineering Science

Aims and Scope of Graduate Study in Environmental Engineering Science

Environmental problems cut across many disciplines. Graduate study in environmental engineering science emphasizes environmental problem areas and the application of information from several fields in achieving solutions. Opportunities for interactions among several branches of engineering, science, and social science are numerous.

In selecting courses and research topics, each student is advised to plan for both breadth of study of the environment and depth of understanding in a particular subject area. The curriculum has been developed primarily for students pursuing the Ph.D. degree. The purpose of the Ph.D. program is to prepare students for careers in specialized research, advanced engineering, and management in various aspects of the environment including, for example, environment-energy relationships. The M.S. degree is also offered for students who plan careers in engineering, or management in some aspect of environmental engineering. Although all graduate students are encouraged to develop an awareness of the wide range of environmental problems, the environmental engineering science program is not designed to train environmental generalists.

Admission

Students with a bachelor's degree in engineering, science, or mathematics may apply for admission to work for either the M.S. or Ph.D. degree. Programs of study are arranged individually by each student in consultation with a faculty adviser. In some instances a student may need to take additional undergraduate courses in preparation for graduate work in this field.

Master's Degree in Environmental Engineering Science

For the M.S. degree a minimum of 135 units of work in advanced courses is required. Each student selects a program with the approval of a faculty adviser. The program should be well balanced, with courses in several areas of concentration to avoid too narrow specialization.

The M.S. program has been approved by the Accreditation Board for Engineering and Technology (ABET). For an ABET accredited degree, students must fulfill certain ABET-stipulated requirements with respect to the content of humanities and social science and engineering design in their combined B.S. and M.S. degrees. Students must consult with their faculty adviser to be sure their planned program satisfies these criteria.

The program must contain at least 63 units of electives chosen from Group A below, including 3 units of Seminar (Env 150 abc), plus at least 45 units chosen from Group A or Group B. The remaining units are for free electives of any graduate courses at the Institute. Students who have not had AMa 95 abc or its equivalent are required to include AM 113 abc as part of their Group B or free elective units.

Group A. Env/Ge 103, Env 112 abc, Env 116, Env 142 ab, Env 143, Env 144, Env 145 ab, Env 146 ab, Env 150 abc, ChE/Env 157 abc.
Graduate Information

Group B. Env 100, Env 200, Env/Ge 203 abc, Env 206, Env 214 abc, Env 250, Env 300, AMa 101 abc, AMa 104, AMa 105 ab, AMa 181 abc, AM 113 abc, AM 125 abc, Bi/Ch 110 ab, Bi/Ch 132 abc, Bi 111, Ch 117, Ch 118 ab, ChE 101 ab, ChE 103 abc, ChE 162, ChE/Ch 164, ChE 165 ab, Ae/ChE 172 abc, ChE 173 ab, CE 115 ab, Ec 115, Ec 118, Ec 122 ab, Ec 128 abc, Ge 1 11 ab, Ge 130, Ge 137 ab, Ge 244 ab, Hy 101 abc, Hy 111, Hy 113 ab, Hy 121, Hy 213, CS/SS 142 abc, SS 130 abc, SS 132, H/SS 150, SS 222 ab.

Degree of Doctor of Philosophy in Environmental Engineering Science
Upon a student's admission to work toward the Ph.D. degree in environmental engineering science, a faculty adviser is appointed to assist in the design of an academic program. The faculty adviser will act as chairman of the three-member counseling committee appointed for each student. The student chooses a thesis adviser at a time when his or her major research interest has become clearly defined.

The program of courses for the Ph.D. should be designed to meet the student's need in preparation for research, to provide depth in the major area, and to give breadth of outlook. Each Ph.D. program must receive the approval of the environmental engineering science faculty, upon the recommendation of the faculty adviser and the counseling committee. Students should submit their schedule of courses for the Ph.D. to the faculty for approval early in the first year of enrollment.

Major Areas of Specialization. Students may do major study in the following areas: air pollution control, aerosol physics and chemistry, water quality control, aquatic chemistry, marine ecology, environmental fluid mechanics, water resources, environmental health engineering, hydraulic engineering, coastal engineering, environmental economics, and systems analysis.

Course Requirements. A student is expected to complete at least 135 units of advanced courses in addition to the units required to satisfy the minor program requirement and the advanced mathematics requirement. At least 45 of these units should represent work in science or engineering beyond that encountered in introductory courses in the student's immediate area of specialization.

Minor Program Requirements. The purpose of the minor program is to broaden the student's outlook by acquaintance with subject matter outside the major field. Each student is expected to elect a subject minor of at least 45 units. The subject minor requires the approval of the minor option and of the EES faculty. Under exceptional circumstances, the EES faculty may approve an alternative minor program of 45 or more units comprising two or three closely related courses offered by two divisions or options, provided that the program has coherence.

Admission to Candidacy. To be recommended for admission to candidacy for the Ph.D. degree in environmental engineering science the student must, in addition to meeting the general Institute requirements:

a. complete most of the program of advanced courses as arranged in consultation with the advisory committee, and approved by the faculty of environmental engineering science, in accordance with guidelines established by that faculty;

b. pass at least 27 units of course work in advanced mathematics, such as AM 125, AMa 101, Ph 129, AMa 104, and AMa 105 ab, or a satisfactory substitute.

c. pass a candidacy examination on the major subject.

The candidacy examination will be in two parts. Part A must be passed before registration day of the spring quarter of the second year of graduate study, except that for students entering with an M.S. (or equivalent) the time limit is registration day of the spring quarter of the first year of their graduate study at Caltech. Part A of the examination will take the form of a review of the student's scholastic record by an examining committee recommended by the executive officer in environmental engineering science, and may require the student to provide an oral defense of his or her preparation to be admitted to candidacy for the Ph.D.

Part B of the examination must be passed before registration day of the winter quarter of the third year of graduate study, except that for students entering with an M.S. (or equivalent), the
time limit is registration day of the winter quarter of the second year of their graduate study at Caltech. The examination, by an examining committee recommended by the executive officer in environmental engineering science, will comprise a discussion of a brief written research report provided by the student to the examining committee at least ten days before the examination. The report will describe accomplishments to date, including reading, study, and plans for future research.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks before the examination. The final oral examination covers principally the work of the thesis and, according to Institute regulations, must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the graduate, one of which is deposited in the Institute library and one with University Microfilms. The examining committee will consist of such individuals as may be recommended by the Chairman of the Division of Engineering and Applied Science and approved by the Dean of Graduate Studies.

Subject Minor in Environmental Engineering Science
A doctoral student in another major field who wishes to take a subject minor in environmental engineering science should submit a proposed minor program to the option representative for approval. The proposed program must consist of 45 or more units in EES courses or in closely related courses of other options. Upon completion of these courses the student must pass an oral examination.

Geological and Planetary Sciences

Aims and Scope of Graduate Study
Graduate students in the Division of Geological and Planetary Sciences enter with very diverse undergraduate preparation—majors in physics, astronomy, chemistry, and mathematics, as well as in geology, geophysics, and geochemistry. Graduate study and research within the division is equally diverse, and the graduate program aims to provide for students a depth of competence and experience in their major field, sufficient strength in the basic sciences to allow them to continue self-education after their formal training has been completed, and the motivation and training to keep them in the forefront of their field through a long and productive career.

Graduate Record Examination Test Scores
All North American applicants for admission to graduate study in the Division of Geological and Planetary Sciences are required to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and the advanced test in geology, or their field of undergraduate specialty if other than geology. Non-North American applicants are very strongly urged to submit Graduate Record Examination scores and TOEFL (Test of English as a Foreign Language) scores to assist in proper evaluation of the applications.

Placement Examinations
On Wednesday, Thursday, and Friday of the week preceding registration for the first term of graduate work, students will be required to take placement examinations covering basic aspects of the earth sciences and including elementary physics, mathematics, and chemistry. These examinations will be used to determine the students' understanding of basic scientific principles and ability to apply these principles to specific problems. A degree of proficiency comparable to that attained by undergraduate students at Caltech is expected. Students who have demonstrated proficiency in earlier residence at the Institute may be excused from these examinations. The past record and performance in the placement examinations will be used to determine whether the student should register for certain undergraduate courses.
Adviser
Each member of the division faculty serves as an academic adviser to a small number of graduate students. All graduate students will be notified, prior to arrival, who their advisers will be, and prior to registration day they should seek the counsel of their advisers in planning a program for each term. Students can and should consult with other staff members concerning this program of study and research. It is the responsibility of the advisers to see that students register at the earliest possible time for the proper courses to fulfill the division requirements and to correct any deficiencies indicated by the placement exam. It is the responsibility of the students to seek and consider their advisers’ advice. If students elect to do a Ph.D. thesis under their academic adviser, another staff member will then be appointed as their academic adviser, as distinct from the thesis adviser.

Registration for Early Research
It is the wish of the division that its graduate students become productively research-minded as early as possible. To that end it is strongly recommended that each student register for not less than 8 units of research in two out of the first three terms of residence. Each of these terms of research should be under the direction of different staff members. Guidance in arranging for research should be sought from the student’s adviser and from individual members of the staff. The primary objective is to communicate to the students the excitement of discovery based on original investigations. An important by-product can be the formulation of propositions for the Ph.D. oral examination or an orientation toward Ph.D. thesis research.

Master’s Degree in the Geological and Planetary Sciences
Master’s degree students in geology, geochemistry, geophysics, or planetary science will be expected to have satisfied, either before arrival or in their initial work at the Institute, the basic requirements of the Caltech undergraduate curriculum. Particular attention is called to requirements in petrology, field geology, chemistry, physics, and mathematics; competence in these subjects will be evaluated during the placement examination. Students in geophysics or planetary science may petition the Academic Officer for permission to satisfy the basic division requirement for the Ph.D. program in place of the undergraduate petrology and field geology requirement. The Institute requires a year of residence and a total of 135 graduate units for a Master’s degree. These 135 units of courses numbered over 100 may include as many as 27 units of courses required in the appropriate undergraduate option and may include as many as 27 units of humanities or other free electives. For most students, two years will be required to meet the Master’s degree requirements.

Degree of Doctor of Philosophy in the Geological and Planetary Sciences
Major Subject. The work for the doctorate in the Division of Geological and Planetary Sciences shall consist of advanced studies and of research in some discipline in the geological sciences that will be termed the “major subject” of the candidate. The division will accept as major subjects the disciplines listed herewith.

- Geology and Geobiology
- Geochemistry
- Geophysics
- Planetary Science
- Geophysics

Admission to Candidacy. Students may be admitted to candidacy for the Ph.D. degree by vote of the division staff upon meeting the following requirements.

a. Pass the qualifying examination.
b. Satisfy minimum course requirements in their major and minor subjects.
c. Satisfy the language and oral presentation requirements.
d. Satisfy their academic and thesis advisers that their course work has prepared them to undertake research in their major subject.
e. Be accepted for thesis research by a division staff member.
Students admitted to work for the Ph.D. degree must file with the division before the end of the ninth term of residence the regular form for admission to candidacy with evidence of having met these requirements. Subsequent to completion of the preliminary qualifying examination, the Ph.D. program of each student will be monitored by the faculty of one of the four major subjects within the division. All students must choose one of these options during their second year. The faculty of each option will formally review each year the progress of the students in the option; students may be asked to present to the faculty their research work and other evidence of progress. For students in their sixth year of graduate residence (or fifth year beyond the M.S.) such a presentation and review is specifically required before the faculty may vote to continue to award financial aid for, at most, one additional year. The option representatives have the responsibility to organize these reviews and to make recommendations to the full division faculty, which may deny permission to continue in the Ph.D. program for any student showing inadequate progress. For a student who has passed the Ph.D. preliminary qualifying examination, permission to continue toward the Ph.D. degree may be withdrawn only upon action of the division as a whole.

Qualifying Examination. This examination will consist of the oral defense of two propositions, each supported by a succinct one-paragraph statement of the problem and of the candidate’s specific approach to it. The propositions offered must represent a knowledge and breadth of interest judged acceptable by the division in terms of the student’s maturity. Students have the privilege of consultation and discussion with various staff members concerning their ideas on propositions, but the material submitted must represent the work of the student and not a distillation of comments and suggestions from the staff. Candidates should realize that propositions based on field investigations are just as acceptable as those arising from laboratory or theoretical work. In general, the examination is designed to evaluate the student’s background in the earth sciences and allied fields, and his or her capabilities in applying scientific principles to the solution of specific problems. The ideal candidate will display originality and imagination as well as scholarship.

All first-year students must submit to the Core Committee by May 15 a preliminary status report of their choice of proposition topics. The statement should be as specific as possible, and should preferably give the specific titles of propositions already formulated. The Core Committee will review the preliminary status report for the required breadth, scope, and substance and will make appropriate recommendations. Final propositions must be submitted to the division office at least one week before registration day of the fourth term of residence, and the examination will be taken within the ensuing two-week period at a time and before a committee arranged by the division.

Graduate students are encouraged to register for as many as 15 units per term of advanced study (Ge 297) under appropriate staff members to gain experience and background for preparation of their propositions.

Minimum Course Requirements for the Ph.D.
Basic Division Requirement: The solution of many problems in each of the subdisciplines or major subjects included within the division requires some basic understanding of the other subdisciplines. Therefore all graduate students are required to take at least 45 units within the division in subjects other than their own major subject. The courses are chosen in consultation with the student’s adviser, and are subject to the approval of the staff at admission to candidacy. Ge 101 abc is specifically required and should be taken during the first year. Ge 104 ab and Ge 160 are especially recommended as part of these courses. Students in geophysics and planetary sciences may take Ge 105 in lieu of Ge 101 b. Students may be exempted from one or more quarters of Ge 101 by the instructor and the Academic Officer on the basis of previous work taken. Where appropriate these 45 units may be counted as part of a subject minor within the division. Students who take a subject minor in another division or who show evidence of similar graduate course work elsewhere may, by petition to the Academic Officer, be excused from up
to 27 units of such courses. Throughout their graduate work students are expected to participate
in departmental seminars and in seminar courses led by distinguished visitors.

Geology and Geobiology: In addition to the general Institute and basic division requirements, candidates for the Ph.D. in geology or geobiology must successfully complete a minimum of 90 units of 100-200-level courses, including the 200-level courses most pertinent to their major field, but excluding languages, research and reading courses, and certain courses constituting basic preparation in their field as follows: Ma 1, Ma 2, Ph 1, Ph 2, Ch 1, Ge 104, Ge 105, Ge 106, Ge 114, Ge 115, Ge 123. At least 36 of the 90 units must be taken outside the geology division (with a grade of C or better) and may be used as part of the minor; Ch 21 abc may be included as part of these units. Knowledge of field geology equivalent to Ge 121 abc is required of all majors. For good work in most modern earth science fields a proficiency in mathematics equivalent to that represented by AM 113 (Engineering Mathematics) is essential. Summer study and research at a marine biology laboratory are required of most candidates in geobiology.

Geochemistry: In addition to the basic Institute and Division requirements, students in the geochemistry academic program must satisfy course requirements in the following areas, either by taking these courses or by equivalent course work elsewhere: A. Core courses in geological sciences: Ge 104 ab, Ge 105, Ge 140 ab, one term of field geology (Ge 107, Ge 123 a or one term of Ge 121). B. Core chemistry courses: Ch 14, Ch 21 abc. C. 27 units of advanced chemistry or physics with course numbers greater than 100. D. Advanced mathematics through differential equations (AM 113 abc or Ph 129 abc acceptable). E. Advanced geochemistry courses: 18 units from Ge 203, Ge 212, Ge 214, Ge 232, Ge 240, Ge 242. F. Science electives: 54 units of physical or biological science, courses greater than 100. Courses A and F can be used to satisfy the Basic Division requirements (above).

Geophysics: In addition to the general Institute and basic division requirements, the Ph.D. candidate in geophysics must successfully complete a minimum of 90 units of 100-200-level courses chosen from the three categories listed below. At least 18 units must be completed in each group.

- **Group A.** Courses in mathematics and applied mathematics: Ph 129, AMa 101, AMa 110, AMa 151, AMa 201, AMa 204, Ma 142, Ma 143, AM 113, EE 255. A minimum proficiency in basic mathematical methods at the level of Ph 129 or AMa 101 is required.

- **Group B.** Courses in physics, applied physics, and chemical physics: Ph 106, Ph 125, AM 141, APh 114, APh 214, Ph 127, Ph 205, Ph 236, MS 205, Ch 21, Ch 125. Geophysics courses cannot be substituted for courses in this group.

- **Group C.** Courses in geophysics: Ge 160, Ge 166, Ge 176, Ge 177, Ge 260, Ge 261.

The recommended courses in these three categories are only representative of the required level, and substitutions may be made upon consultation with the student's adviser. Students with an exceptionally strong background in one or more of the areas represented by these groups may, upon petition to the option representative, be excused from up to 18 units of the overall 90 unit requirement. Research and reading courses cannot be used to satisfy these requirements but are highly recommended as preparation for the oral qualifying examination.

Planetary Science: In addition to general Institute and basic division requirements, the candidate for a Ph.D. degree in planetary science shall acquire at least a minimum graduate background in each of three categories of course work: (1) The Earth Sciences, (2) Physics, Mathematics, Chemistry, and Astronomy, and (3) Planetary Science.

These requirements may be met by successful completion of at least 45 units of suitable course work at the 100 or higher level in each category. The requirements in the first category coincide with the basic division requirement. Reading and research courses may not be used, although students are expected to take such courses and to devote each summer to research in planetary science. Planetary Science Seminar (Ge 225 abc) is required each year for all planetary science students.

Students shall demonstrate professional competence in a second scientific field distinct from their specialization within planetary science. This may be accomplished either by: (1) satisfac-
tory completion of a subject minor or (2) submission of publications that demonstrate an equival­ent competence. Courses used to satisfy this secondary requirement may also be used to satisfy the requirements in one of the 45-unit categories.

Four academic years should normally be adequate for completion of the Ph.D. in planetary science. Accordingly, students are expected to meet the following schedule unless specific written waivers are obtained by them from the Academic Officer or planetary science option representative.

End of second academic year: 1) satisfactory completion of divisional oral examination; 2) tentative approval of courses in the major and secondary fields; 3) tentative thesis topic in planetary science.

End of third academic year: 1) satisfactory completion of major requirements; 2) satisfactory completion of secondary requirements; 3) satisfactory progress on thesis; 4) admission to candidacy.

End of fourth academic year: completion of Ph.D. thesis.

Fifth academic year or beyond: satisfactory thesis progress required each quarter.

Minor Requirement. A minor is required in the planetary science option to give diversification of training and a broadening of outlook. It should involve basic approaches, techniques, and knowledge distinct from those of the major field. A minor must be comprehensive enough to give students a fundamental knowledge of the field, and their diplomas and degrees will indicate both the major and minor fields. The division prefers that students take a subject minor in other divisions of the Institute, but students may take a subject minor within the division in a different field from their major.

Students taking a minor within the division must then demonstrate a competency in the minor field markedly exceeding that normally expected by their major fields and markedly exceeding the undergraduate requirements in the field. Such a minor will include at least 45 units, normally including one or more 200-level courses as well as the 100-level supporting courses.

A proposed minor program should be discussed with the adviser and the option representative and submitted to the staff for preliminary evaluation before the end of the sixth term of residence. Final approval will be given only after completion of all courses.

Language Requirement. Due to the diversity of fields within geological and planetary sciences, the division does not have a uniform language requirement. All entering graduate students are expected to have some knowledge of French, German, or Russian. (Other languages may be acceptable in particular cases.) A student who has not had either one year of college study in one of these languages or the equivalent thereof will be expected to make up this deficiency in the first two years. In some fields of study, additional linguistic skills are important and may be required by a student's thesis adviser in consultation with the student. However, the division strongly encourages the acquisition of additional language skills.

Oral presentation (Ge 102) is required of all candidates for degrees in the division.

Thesis and Paper for Publication. Doctoral candidates must complete a thesis in their option and submit it in final form by May 10 of the year in which the degree is to be conferred. A first draft of the thesis must be submitted to the division chairman by March 1 of the year in which it is proposed to take the degree.

Candidates are expected to publish the major results of their thesis work. The manuscript should be reviewed by the member of the staff supervising the major research before being submitted for publication. The published paper should have a California Institute of Technology address and a Division of Geological and Planetary Sciences Contribution Number, and at least five reprints should be sent to the division.

Final Examination. The final oral examination for the doctorate will be scheduled following submission of the thesis and, in conformity with an Institute regulation, it must be scheduled at least two weeks before the degree is to be conferred.
Minor in Geophysical and Planetary Sciences
A student majoring in another division of the Institute may, with the approval of the Division of Geophysical and Planetary Sciences, elect a minor in any one of the major subjects listed above. Such a subject minor will include at least 45 units normally, including one or more 200-level courses as well as the 100-level supporting courses. Normally, a member of the division faculty will participate in the oral thesis defense.

History
The program for a subject minor in history must be approved by the department before the admission to candidacy. In addition to meeting general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in history.

Materials Science

Aims and Scope of Graduate Study in Materials Science
Students may enter the graduate program in materials science with undergraduate preparation in physics, chemistry, or engineering, as well as materials science. The program is designed to give the students a thorough grounding in areas fundamental to an understanding of materials properties, with strong emphasis on research in the areas of ongoing faculty work. This work includes studies of defects in crystals and the structure and properties of amorphous materials. Energy-related studies include radiation damage problems relevant to fast breeder and controlled thermonuclear reactor systems, and studies of amorphous and crystalline silicon relevant to solar cell technology.

Master's Degree in Materials Science
Study for the degree of Master of Science in Materials Science ordinarily will consist of three terms of course work totaling at least 135 units. Each student is assigned to a member of the faculty, who will serve as the student's adviser and who will assist the student in planning his or her course of study. The original program of study and any subsequent changes must be approved by the adviser and by the option representative.

Requirements
a. E 150 abc, seminar, total of 3 units
b. At least 54 units chosen from:
 MS 105, Mechanical Behavior of Metals
 MS 120, Kinetics of Crystal Imperfections
 MS 130, Metallography and Pyrometry
 MS 131, Crystal Defects
 MS 132, X-ray Metallography Laboratory
 APh 105 abc, States of Matter
 APh 114 abc, Solid State Physics
 APh/MS 126 abc, The Electronic Structure of Metals and Alloys
At least 18 of these 54 units must be in the laboratory courses MS 130, MS 131, or MS 132.
c. Electives sufficient to give a total of at least 135 units for the year.

Electives
Students who have not had the equivalent of AMa 95 abc are required to include AM 113 abc among the elective units.
Electives which are particularly encouraged are courses in mathematics, applied mathematics, and applied mechanics: Ma 112 ab, AMa 101 abc, AMa 104, AMa 105 ab, Ac/AM 102 abc, AM 125 abc, AM 141 abc, AM 151 abc, AM 155; courses in applied physics: APh 153 abc, APh 181 abc; courses in physics: Ph 106 abc, Ph 125 abc, Ph 129 abc; courses in aeronautics: Ae/AM 102 abc, Ae 213, Ae 221; courses in mechanical engineering: ME 101 abc, ME 118 abc; and courses in chemical engineering: ChE 166 ab, ChE 167.

Students admitted for study toward a Master's degree but interested in pursuing subsequent study toward a Ph.D. degree in materials science, should also read the following section concerning the Ph.D. degree.

Degree of Doctor of Philosophy in Materials Science

Work toward the degree of Doctor of Philosophy in Materials Science requires a minimum of three years following completion of the bachelor's degree or the equivalent. Approximately two years of this time are devoted to research work leading to a doctoral thesis.

Counseling. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in materials science in order to advise the student on a suitable course program. The committee member closest to the student's current interests acts as committee chairman and interim adviser until this responsibility is assumed by the dissertation supervisor.

In addition, a special joint faculty committee is appointed annually by the faculties in applied mechanics, civil engineering, materials science, and mechanical engineering, which meets both collectively and individually with first-year graduate students aiming at the doctoral degree in order to provide further perspective on graduate study and research, as well as to discuss the student's evolving interests.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in materials science, and all other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee referred to above, is confined to elementary but basic topics in the general areas represented by the committee. One purpose of this examination is to identify possible deficiencies in the student's background with a view toward appropriate remedial measures; in addition, the examination contributes to the information used in assessing the student's promise for successful doctoral studies.

To be recommended for candidacy for the Ph.D. degree in materials science, the student must, in addition to the general Institute requirements:

a. complete 12 units of research;

b. complete at least 108 units of advanced courses arranged by the student in conference with his or her adviser and approved by the counseling committee and the faculty in materials science. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in materials science;

c. pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, or AMa 101 abc, acceptable to the student's committee and the faculty in materials science. The requirement in mathematics shall be in addition to requirement (b) above, and shall not be counted toward a minor;

d. pass an oral examination on the major subject, and if the student has chosen a subject minor, examination on the subject of that program may be included at the request of the discipline offering that subject minor.

A final oral examination will be given after the thesis has been formally completed. This examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his or her specialized field of research.
Subject Minor in Materials Science

A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in materials science and the faculty in his or her major field, elect materials science as a subject minor. The group of courses shall differ markedly from the major subject of study or research, and consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student’s major.

Mathematics

Aims and Scope of Graduate Study in Mathematics

The principal aim of the graduate program is to equip the student to do original research in mathematics. Independent and critical thinking is encouraged by participation in seminars and by direct contact with faculty members; an indication of the current research interests of the faculty is found on page 52. In order to enable each student to acquire a broad background in mathematics, individual programs of study and courses are mapped out in consultation with faculty advisers. The normal course of study leads to the Ph.D. degree.

Admission

Each new graduate student admitted to work for an advanced degree in mathematics will be given an interview on Thursday or Friday of the week preceding the beginning of instruction in the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him or her to map out a course of study. The work of the student during the first year will include independent reading and/or research.

Course Program

The graduate courses that are offered are listed in Section 5. They are divided into three categories. The courses numbered between 100 and 199 are basic graduate courses open to all graduate students. The course Ma 108 is the fundamental course in analysis. It is a prerequisite to most courses, and its equivalent is expected to have been part of the undergraduate curriculum of the entering graduate student. The basic course in algebra, Ma 120, presupposes an undergraduate introductory course in modern algebra similar to Ma 5 abc. The seminar Ma 190 is required of all first-year graduate students and restricted to them. It is intended to stimulate independent work, to train students in the presentation of mathematical ideas, and to develop an independent critical attitude. In addition to Ma 190, the first-year graduate program normally consists of two or three 100-series courses.

The courses in the second category are numbered between 200 and 290. They are taken normally by second-year and more advanced graduate students. They are usually given in alternate years. The 300 series includes the more specialized courses, the research courses, and the seminars. They are given on an irregular basis depending on demand and interest.

Beginning with the second year at the latest, the student will be expected to begin independent research work and will be strongly encouraged to participate in seminars.

Bohnenblust Travel Grants in Mathematics

Special grants may be awarded to outstanding graduate students in mathematics to enable them to travel here or abroad to further their mathematical education. The Mathematics Department established these awards in 1978 to honor H. F. Bohnenblust, who served Caltech as Professor of Mathematics, Executive Officer for Mathematics, and Dean of Graduate Studies. Application forms and further details are available in the Mathematics Office, 253 Sloan.
Master's Degree in Mathematics
Entering graduate students are normally admitted directly to the Ph.D. program, since the Institute does not offer a regular program in mathematics leading to the master's degree. This degree may be awarded in exceptional circumstances either as a terminal degree or as a degree preliminary to the Ph.D. degree. Sufficiently advanced undergraduates may be admitted to graduate standing to pursue a master's degree simultaneously with the bachelor's program.

The recipient of a master's degree will be expected to have acquired, in the course of studies as an undergraduate or graduate student, a comprehensive knowledge of the main fields of mathematics comparable to 180 units of work in mathematics at the Institute with course numbers greater than 90.

The general Institute requirements specify that the recipient of a master's degree must have taken at least 135 units of graduate work as a graduate student at the Institute, including at least 81 units of advanced graduate work in mathematics. This advanced work is interpreted as work with a course number greater than 115 and may include a master's thesis.

Degree of Doctor of Philosophy in Mathematics
Candidate Examination. Before being admitted to candidacy for the Ph.D. in mathematics the student is expected to have acquired an understanding of the main fields of modern mathematics and to have demonstrated an ability to do competent research in a particular field.

The first graduate year is usually spent in acquiring basic background knowledge. In order to determine as early as possible the candidate's progress toward this objective, written candidacy examinations will be given toward the end of the first year of graduate study. These examinations will consist of two 3-hour papers, one covering the field of algebra, the other, real and complex analysis. They emphasize the ability to apply basic mathematical ideas and theorems to specific cases. A syllabus is available to graduate students describing the topics on which the examinations are based.

During the summer following the first year of graduate work, each graduate student in mathematics is expected to plan a program of independent study and research work under the guidance of some member of the mathematics staff. This summer program should provide the student with an opportunity to acquire new mathematical knowledge and to generate new mathematical ideas. Shortly after the beginning of the fall term, the faculty will make an overall evaluation of the progress and research potential of these graduate students. The results of this evaluation will be reported to the student and will be used in consultation with the student to plan a subsequent academic program. At this time each student is expected to arrange with a member of the faculty to act as a research adviser.

Language Requirement. The language requirement for mathematics may be satisfied by demonstrating a good reading knowledge of at least two foreign languages or an extensive knowledge of at least one foreign language, chosen among French, German, and Russian. Credit will be given for previous language study.

Thesis and Final Examination. On or before the first Monday in April of the year in which the degree is to be conferred, candidates for the degree of Doctor of Philosophy must deliver typewritten or reproduced copies of their theses to their supervisors. These copies must be complete and in the exact form in which they will be presented to the members of the examining committees. Candidates are also responsible for supplying the members of their examining committees, at the same time or shortly thereafter, with reproduced copies of their theses. The department will assign to the candidates, immediately after the submission of their theses, a topic of study outside their fields of specialization. During the next four weeks the candidates are expected to assimilate the basic methods and the main results of the assigned topic with the aim of recognizing the direction of further research in this field.

The final oral examination in mathematics will be held as closely as possible to four weeks after the date the theses have been handed in. It will cover the theses and fields related to them and the assigned topics of study.
Subject Minor in Mathematics
Students majoring in other fields may take a subject minor in mathematics. Minor programs must include 54 units of advanced work approved by a representative of the mathematics department who will insure that the work represents a concentrated study in one or more of the main fields of mathematics. A special oral examination in the subject minor will be given soon after completion of the minor program.

Mechanical Engineering

Master's Degree in Mechanical Engineering
Study for the degree of Master of Science in Mechanical Engineering ordinarily will consist of three terms of course work totaling at least 135 units. The program is intended to be completed within the nine months of the academic year, even by students who hold assistantships. Each student is assigned to a member of the faculty, who will serve as the student's adviser and who will assist the student in planning a course of study. The program of study must be approved by the adviser, and any subsequent changes must also have the adviser's approval.

Students admitted for study toward a Master's degree but interested in pursuing subsequent study toward a Ph.D. degree in mechanical engineering should also read the following section concerning the Ph.D. degree.
The schedules of courses for the master's degree are given below:

Mechanical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per term</th>
<th>Approved electives</th>
<th>Free electives</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-0)</td>
<td>1</td>
<td>Minimum 81</td>
<td>Minimum 51</td>
<td>Minimum 135</td>
</tr>
<tr>
<td></td>
<td>Approved electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Minimum 135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved electives: Courses from Ae, AM, AMa, ME, JP, MS, and Hy with numbers of 100 and above will generally meet the conditions for the approved electives.

Program Suggested for Propulsion

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per term</th>
<th>Approved electives</th>
<th>Free electives</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-0)</td>
<td>1</td>
<td>Minimum 98</td>
<td>Minimum 27</td>
<td>Minimum 135</td>
</tr>
<tr>
<td>JP 121 abc</td>
<td>Jet Propulsion Systems and Trajectories (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Minimum 135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved electives: Ae/AM 102, Ae 104, AM 151, Hy 101, JP 131, JP 170, ME 102, ME 118, ME 126.

Program Suggested for Energy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per term</th>
<th>Approved electives</th>
<th>Free electives</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-0)</td>
<td>1</td>
<td>Minimum 98</td>
<td>Minimum 27</td>
<td>Minimum 135</td>
</tr>
<tr>
<td>ME 102 abc</td>
<td>Principles of Energy Conversion and Distribution (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Minimum 135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved electives: Ae 103, APh 140, ChE 101, ChE/Env 157, EE 151, Env/Ge 103, Hy 101, JP 131, ME 118, Ph 106.

1Elective units may be divided among the three terms in any desired manner. Students who have not had the equivalent of AMa 95 abc are required to take AM 113 abc, which must be included in the free electives and cannot be included in the approved electives. Substitution for approved electives may be made with the approval of the student's adviser and the faculty in mechanical engineering.

2Students are urged to consider including a humanities course in the free electives.

Degree of Mechanical Engineer

Work toward the degree of Mechanical Engineer requires a minimum of two years following completion of the bachelor's degree or the equivalent. Upon a student's admission to work toward the M.E. degree, an advisory committee of three members of the faculty is appointed. The member of the committee who is most closely related to the student's field of interest serves as the adviser and the chairman. The student should meet with the committee before registration for the purpose of planning his or her work.

Not less than 55 units of work shall be for research and thesis; the exact number shall be determined by a supervising committee, appointed by the Dean of Graduate Studies, which succeeds the counseling committee. Courses should be closely related to mechanical engineering. The specific courses (to be taken and passed with a grade of C or better by the candidate)
will be planned with the counseling committee and finally determined by the supervising committee. The courses must include an advanced course in mathematics or applied mathematics, such as AM 125 abc or AMa 101 abc, that is acceptable to the faculty in mechanical engineering. A suitable course program may usually be organized from the more advanced courses listed under AM, AMa, Hy, JP, ME, MS, and Ae.

Degree of Doctor of Philosophy in Mechanical Engineering

Work toward the degree of Doctor of Philosophy in Mechanical Engineering requires a minimum of three years following completion of the bachelor's degree or the equivalent. Approximately two years of this time are devoted to research work leading to a doctoral thesis.

Counseling. A counseling committee of three faculty members is appointed for each student upon his or her admission to work toward a Ph.D. degree in mechanical engineering in order to advise the student on a suitable course program. The committee member closest to the student's current interests acts as committee chairman and interim adviser until this responsibility is assumed by the dissertation supervisor.

In addition, a special joint faculty committee is appointed annually by the faculties in applied mechanics, civil engineering, materials science, and mechanical engineering, which meets both collectively and individually with first-year graduate students aiming at the doctoral degree in order to provide further perspective on graduate study and research, as well as to discuss the student's evolving interests.

Admission to or Continuation in Ph.D. Status. All new students admitted for study toward the Ph.D. degree in mechanical engineering, and all other graduate students wishing to become eligible for study toward this degree, are required to take a short oral examination early in the third term of their first year of graduate study at the Institute. This examination, which is conducted by the special joint faculty committee referred to above, is confined to elementary but basic topics in the general areas represented by the committee. One purpose of this examination is to identify possible deficiencies in the student's background with a view toward appropriate remedial measures; in addition, the examination contributes to the information used in assessing the student's promise for successful doctoral studies.

To be recommended for candidacy for the Ph.D. degree in mechanical engineering, the student must, in addition to meeting the general Institute requirements:

a. complete 12 units of research;

b. complete at least 108 units of advanced courses arranged by the student in conference with his or her adviser and approved by the counseling committee and the faculty in mechanical engineering. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in mechanical engineering;

c. pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, or AMa 101 abc, acceptable to the student's committee and the faculty in mechanical engineering. The requirement in mathematics shall be in addition to requirement (b) above, and shall not be counted toward a minor;

d. pass an oral examination on the major subject, and if the student has chosen a subject minor, an examination on the subject of that program may be included at the request of the discipline offering that subject minor.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in the specialized field of research.

Subject Minor in Mechanical Engineering

A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in mechanical engineering and the faculty in his or her major
field, elect mechanical engineering as a subject minor. The group of courses shall differ markedly from the major subject of study or research, and consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student's major.

Physics

Aims and Scope of Graduate Study in Physics
The physics department offers a program leading to the degree of Doctor of Philosophy in Physics. This program prepares students for careers in scientific research or research combined with teaching, so that independent research is an essential part of the graduate program. Courses are offered that will help a beginning graduate student prepare for research and will provide a broad, sound knowledge of physics. These courses are not required; each student takes only those courses that are needed. Instead of formal course requirements, each student must pass a candidacy examination that seeks to determine his or her readiness to undertake original research and his or her basic knowledge of physics. However, part of the candidacy exam requirement may be satisfied by completion of certain courses.

To broaden the student's experience beyond the narrow limits of his or her own research interest, each student is required to take 27 units of advanced physics courses on topics in physics outside their research specialty. Students are also required to take two terms of Physics Seminar, Ph 242, which provides an overview of physics research.

A Master of Science degree may be awarded upon the completion of what is typically a four-term program of courses. A student is not normally admitted to work toward the M.S. degree in physics unless he or she is also working for a Ph.D.

Admission
Application blanks for admission to graduate standing and for assistantships should be obtained from the Dean of Graduate Studies, California Institute of Technology, Pasadena, CA 91125, and submitted as early as is convenient. While late applications will be considered, applications should whenever possible reach the Graduate Office by January 15. Special inquiries will be welcomed by the chairperson of the Physics Graduate Admissions Committee. Applicants must take the Graduate Record Aptitude Test and Advanced Physics Test. Information may be obtained from the Educational Testing Service, 20 Nassau Street, Princeton, NJ 08540.

Placement Examinations
On the Thursday preceding the beginning of instruction for his or her first term of graduate study, a student admitted to work for an advanced degree in physics is required to take placement examinations to be used as a guide in selecting the proper course of study. These examinations will cover material in mechanics and electromagnetism, quantum mechanics, and mathematical physics, approximately as covered in Ph 106, Ph 125, and Ph 129. In general, they will be designed to test whether the student possesses an understanding of general principles and the ability to apply these to concrete problems, rather than detailed informational knowledge. The results of the placement exam are not formally recorded as a part of the student's record. In cases in which there is a clear basis for ascertaining the status of the entering graduate student, the placement examinations may be waived.

Master's Degree in Physics
A student is not normally admitted to work toward the M.S. degree in physics unless he or she is also working for a Ph.D.

A Master of Science degree in physics will be awarded upon satisfactory completion of a program approved by the departmental representative that fulfills the following requirements:
Graduate Information

Ph 125 abc .. 27 units
(If this course was taken as part of an undergraduate program or an equivalent course was taken elsewhere, it may be replaced by 27 units of any graduate courses.)

Physics electives .. 81 units
These must be selected from Ph 118, Ph 127, Ph 129, Ph 135, Ph 136, Ph 203, Ph 205, Ph 208, Ph 209, Ph 213, Ph 222, Ph 224, Ph 228, Ph 229, Ph 230, Ph 231, Ph 234, Ph 236, Ph 237, Ph 240, Ph 242.

Other electives ... 27 units
These must be graduate courses from physics or any other option, including humanities.

With the approval of the department representative, a student who has the proper preparation may substitute other graduate courses in science or engineering for some of those listed above.

Doctor of Philosophy Degree in Physics

Requirements for the Ph.D. include passing a written candidacy examination, typically taken in the first or second year, covering basic material in physics; two terms of Physics Seminar, Ph 242; an oral candidacy exam in the area in which the student proposes to do research; 27 units (equivalent to 6 semester-hours) of advanced electives in physics; writing a thesis that describes the results of independent research; and passing a final oral examination based on this thesis and research.

Graduate students working toward the Ph.D. degree should complete the requirements for admission to candidacy for the doctor's degree as soon as possible. No courses are specifically required for candidacy, but the average student will profit from taking several of the basic graduate courses, such as Ph 125, Ph 129, Ph 135, Ph 136, and Ph 209.

Course Requirements. In order to be recommended for the Ph.D. degree, each candidate must, in addition to meeting the requirements for candidacy and the general Institute requirements for a Ph.D. degree, pass satisfactorily 27 units (3 terms of the usual 9 unit course) in advanced physics courses outside their area of research specialization. The courses should be selected from Ph 118, Ph 127, Ph 203, Ph 205, Ph 208, Ph 213, Ph 222, Ph 224, Ph 228, Ph 229, Ph 230, Ph 231, Ph 234, Ph 236, Ph 237, APh 140, APh 156, APh 190, APh 214, Ay 151-156, Ay 218. The appropriate courses for this requirement will normally be clear, but the chairperson of the Physics Graduate Committee will advise students in cases of doubt. The 27 units requirement may be satisfied with (three terms of) one course or spread among several courses. Students will normally take many more advanced courses, especially in their area of specialization, than necessary to satisfy the 27 units requirement.

The student is expected to obtain a grade of C or better in each course. If he or she obtains grades below C in courses, or an unsatisfactory grade on the written or oral candidacy examination, the Physics Graduate Committee will review the student's entire record, and if it is unsatisfactory will refuse permission to continue work for the Ph.D.

Candidacy Examinations. A written candidacy examination, in several sections and requiring a total of about 15 hours, must be passed as one of the requirements for the Ph.D. degree. Several of the sections of the examination may be satisfied by passing certain courses. This examination covers that body of knowledge felt to be essential no matter what the candidate's ultimate field of specialization may be. The examination will be offered at frequent intervals, typically once a term, and the separate sections may be taken at different times. At least two sections must be attempted before the end of the first year, all must be attempted by the end of the second year, and all must be passed before the end of the third year. Further guidelines concerning the expected rate of progress in passing parts of the examination are available in the Physics Graduate Office. The flexible scheduling of the written candidacy examination allows students to prepare for the separate sections while simultaneously learning about research areas through either advanced courses or reading and research courses.
The written candidacy exams ensure that students have mastered a broad range of techniques in physics. Students should also have a general knowledge of modern physics research areas, and to this end they are required to pass two terms of Physics Seminar, Ph 242. This course usually consists of a weekly seminar on research areas at Caltech and an oral exam based on this material at the end of the term. Students will also find that attendance at this course will help them to choose their Ph.D. research specialty.

An oral candidacy examination is also required. This examination may be taken after the written candidacy exams are passed, and is primarily a test of the candidate's suitability for research in his or her chosen field. The candidate must have passed the two terms of Ph 242 before taking the oral candidacy examination. A student who is admitted to work toward the Ph.D. degree and who does not pass both these examinations before the end of the third year of graduate study at the Institute will not be permitted to register for a subsequent academic year.

We note that the vast majority of students admitted for graduate study in the physics option pass the candidacy requirements. These requirements are not used to "weed out" students but rather to ensure that before beginning research, students have both adequate preparation in their research specialty and a broad general knowledge of physics.

The physics seminar and the written and oral candidacy examinations are the only departmental requirements for admission to candidacy, beyond the general Institute requirements.

Research Requirements. There is no specific research requirement but in general a substantial effort is required to master the techniques in a given field and carry out a significant piece of original research. Each student is strongly advised to start research as soon as possible and carry it on in parallel with course work. Students are advised to take reading and research units (Ph 171, 172, 173) and not just formal courses even before their admission to candidacy. In general, students will find it desirable to continue graduate study and research for two years after admission to candidacy.

The Minor. A minor is not required, but a student may elect to pursue a minor in another option.

Language Requirements. There are no language requirements for a Ph.D. in physics, but mastery of one or more foreign languages will be highly advantageous.

Thesis and Final Examination. A final oral examination will be given not less than two weeks after the thesis has been presented in final form. This examination will cover the thesis topic and its relation to the general body of knowledge of physics. The candidate is responsible for completing the thesis early enough to allow the fulfillment of all division and Institute requirements, having due regard for possible conflicts in the scheduling of more than one final oral examination per day.

Subject Minor in Physics
Students desiring a subject minor in physics should discuss their proposed program with the chairperson of the Physics Graduate Committee. Forty-five units are required for approval of a subject minor in physics. Physics courses with numbers over 100 will be allowed for the subject minor. At least 18 of the 45 units must be chosen from the physics electives list (see list under Master's Degree in Physics), excluding Ph 129 and any specific courses in physics required for the student's major program. An oral exam will normally be required and this should be arranged with the chairperson of the Physics Graduate Committee. This exam will include both academic topics and those on current physics research areas. The oral exam may be waived if at least one term of Ph 242 has been taken successfully.
Aims and Scope of Graduate Study in Social Science

In recent years, industry, academia, and government have placed increasing value on the work of analysts who have a thorough technical training in the theories and modeling methods of several social scientific disciplines. There is a need for people with a strong background and interest in applying these techniques to the real decision-making problems that face organizations in both public and private sectors. The graduate program in social science produces scholars who can meet this need.

The problems faced by contemporary business and government are complex, and often require basic research in the theories and methods of several disciplines if they are to be solved successfully. The course of instruction in the graduate social science program enables students to do this work.

The first-year curriculum focuses on microeconomic theory, game theory, formal political theory, quantitative methods, and the analytical techniques of policy research. The course of instruction gives students the basic scientific tools that will serve as a technical foundation for more specialized and applied work in subsequent years. It also gives students time enough to acquire additional skills in mathematics.

The second-year curriculum allows students to develop specialties that will enable them to work in the vanguard of research in these fields. Advanced course work is offered in microeconomic theory, political science, several fields of public policy, econometrics, field research methods of anthropology, experimental methods in social science, and quantitative social scientific history. In addition, students can participate in research workshops in economics, political science, law, history, and policy analysis that introduce them to the techniques of theoretical and applied social scientific research. In developing research projects, students are encouraged to work with faculty members in law, in the physical sciences, and in engineering. Second-year research activities give students experience in the art of formulating and executing complicated, policy-relevant projects.

Graduates of the program, depending on their fields of specialization, are qualified to take positions in university departments of economics or political science, schools of public policy, or in decision science or managerial economics departments in schools of business. They are also prepared to take positions in economic analysis, program evaluation, and planning offices in government agencies. In addition, a special program has been developed to enable students to obtain joint degrees in social science from Caltech and law from cooperating schools of law. Graduates of this program are qualified for teaching positions in schools of law and for legal practice as well as for other positions in academia and government.

Admission

The only specific requirements for admission to the graduate program in social science are in the field of mathematics. Mathematical requirements consist of (1) courses in calculus at the levels of Ma 1 abc and Ma 2 abc; (2) a course in linear algebra and/or matrix algebra at the level of AMa 104; (3) courses in elementary mathematical statistics at the level of Ma 112 a. The completion of courses in advanced calculus or applied mathematics is also recommended. Under certain circumstances, students may be permitted to complete some of the mathematical requirements after entering the program. Students will find that courses in abstract algebra, functional analysis, topology, and probability theory will be of significant help in their graduate work, and they will be expected to take whatever courses in mathematics are directly relevant to their research after entering the program.
Placement Examinations
Entering students will take placement examinations in mathematics to determine their level of attainment. Required remedial work, if any, will be determined by the division Director of Graduate Studies in consultation with the student and will be based primarily on the results of the placement examinations and review of the student's undergraduate program. In cases where there is a clear basis for ascertaining the status of entering students, the placement examinations may be waived.

Course Program
No specific graduate courses are required for an advanced degree in social science. However, students will, in consultation with the Director of Graduate Studies for the option and their research advisers, develop a program that will allow them to prove their competence in three major areas.

a. Theory: Since the commitment of the program is the application of theory to applied problem areas, the central core of the course offerings is designed to provide students with a substantial knowledge of existing theory that is relevant to those problems and to introduce them to the revisions that must be effected if they are to work across disciplines. The areas of competence must include microeconomics and analytical political science.

b. The Testing of Theory: Students must know how to test theory as they attempt to use it to predict or explain phenomena of the real world. Such tests involve the generation of relevant data, the manipulations that are required to compare the data with the predictions yielded by the theory, and the techniques needed to handle data efficiently. Here the areas of competence must include econometrics and computer modeling and data analysis. Normally students will acquire the necessary theory and measurement background by completing the four-term core program. A part of that core can be omitted, if the division Director of Graduate Studies thinks that preparation has been adequate.

c. Applications of Theory and Measurement: Neither the theory nor the problems of measurement are relevant unless they are related to actual problems of policy. Thus a substantial part of the Ph.D. program will be devoted to attempts at solutions of some of these problems. Opportunities for applied research will vary according to the work being carried on in various parts of the Institute and at the Jet Propulsion Laboratory. Of prime importance to this phase of the program will be the research seminar that all graduate students will be expected to attend.

Master's Degree in Social Science
Entering graduate students are admitted for the Ph.D. program. The M.S. degree is awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units should be advanced work in social science.

Degree of Doctor of Philosophy in Social Science
Requirements for the Ph.D. include passing a written candidacy examination covering basic material in social science (to be taken before the start of the fifth term of residency), completion of six workshops, writing a thesis that describes the results of independent research, and passing a final oral examination based on the thesis and research. Students are expected to have completed all requirements for the Ph.D. degree no later than the end of their fourth year of residency.

Subject Minor in Social Science
Graduate students taking social science as a subject minor shall complete a program of not less than 45 units in advanced courses in a program of study that has been approved by the option committee.
Courses numbered below 100 are taken primarily by undergraduate students. Those numbered from 100 to 199 are taken by both undergraduates and graduates, and those numbered 200 and above are taken primarily by graduate students.

The school year is divided into three terms. The number of units assigned in any term to any subject represents the number of hours spent in class, in laboratory, and estimated to be spent in preparation per week. In the following schedules, figures in parentheses denote hours in class (first figure), hours in laboratory (second figure), and hours of outside preparation (third figure).

At the end of the seventh week of each term, a list of courses to be offered the following term is published by the Registrar's Office. On the day of registration (see Academic Calendar), an updated and revised course schedule is published announcing the courses, class hours, and room assignments for the term.

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>An</td>
<td>Anthropology</td>
</tr>
<tr>
<td>AMA</td>
<td>Applied Mathematics</td>
</tr>
<tr>
<td>AM</td>
<td>Applied Mechanics</td>
</tr>
<tr>
<td>APH</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>ART</td>
<td>Art</td>
</tr>
<tr>
<td>AY</td>
<td>Astronomy</td>
</tr>
<tr>
<td>BIS</td>
<td>Bioinformation Systems</td>
</tr>
<tr>
<td>BI</td>
<td>Biology</td>
</tr>
<tr>
<td>BEM</td>
<td>Business Economics and Management</td>
</tr>
<tr>
<td>CHE</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>CH</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>EC</td>
<td>Economics</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>E</td>
<td>Engineering</td>
</tr>
<tr>
<td>GR</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>ES</td>
<td>Engineering Science</td>
</tr>
<tr>
<td>EN</td>
<td>English</td>
</tr>
<tr>
<td>ENV</td>
<td>Environmental Engineering Science</td>
</tr>
<tr>
<td>GE</td>
<td>Geological and Planetary Sciences</td>
</tr>
<tr>
<td>H</td>
<td>History</td>
</tr>
<tr>
<td>HUM</td>
<td>Humanities</td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>HY</td>
<td>Hydraulics</td>
</tr>
<tr>
<td>ISP</td>
<td>Independent Studies Program</td>
</tr>
<tr>
<td>JP</td>
<td>Jet Propulsion</td>
</tr>
<tr>
<td>L</td>
<td>Languages</td>
</tr>
<tr>
<td>LIN</td>
<td>Linguistics</td>
</tr>
<tr>
<td>LIT</td>
<td>Literature</td>
</tr>
<tr>
<td>MS</td>
<td>Materials Science</td>
</tr>
<tr>
<td>MA</td>
<td>Mathematics</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MU</td>
<td>Music</td>
</tr>
<tr>
<td>PA</td>
<td>Performance and Activities</td>
</tr>
<tr>
<td>PI</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>PH</td>
<td>Physics</td>
</tr>
<tr>
<td>PS</td>
<td>Political Science</td>
</tr>
<tr>
<td>PSY</td>
<td>Psychology</td>
</tr>
<tr>
<td>SS</td>
<td>Social Science</td>
</tr>
</tbody>
</table>
AERONAUTICS

Ae 100. Research in Aeronautics. Units to be arranged. Open to suitably qualified undergraduates and first-year graduate students under the direction of the staff.

Ae/APh 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. The course begins with the study of one-dimensional flows and then moves to consideration of flows with progressively more complex dimensionality. During the third term viscous flows are treated. Topics to be discussed include: thermodynamics of fluid flow, equations of motion; one-dimensional compressible flow, shock waves, nonsteady flow; acoustics, thin airfoil theory; potential flow; kinematics of fluid flow, stress, vorticity; vortex flows; dynamics of real fluids, viscous flow, boundary layer theory. Instructor: Dimotakis.

Ae/AM 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 35 abc or equivalent. Static and dynamic stress analysis. Two- and three-dimensional theory of stressed elastic solids. Analysis of structural elements with applications in a variety of fields. Variational theorems and approximate solutions, finite elements. A variety of special topics will be discussed in the third term. Instructor: Babcock.

Ae 103 abc. Vehicle Performance and Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95. Performance and dynamic behavior (stability and control) of vehicles moving in a continuum (air or water) will be discussed in a unified way. Examples to be discussed will include the dynamics and performance of vehicles such as submarines, VTOL and STOL aircraft, subsonic and supersonic aircraft and rockets. Topics include speed performance, climb and descent, range, take-off and landing distances, static longitudinal and lateral stability, equations of unsteady motion, dynamic stability, responses to controls and disturbances. Instructor: Culick.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-5 second and third terms). Prerequisites: AMa 95 abc or equivalent (may be taken concurrently), Ae/APh 101 abc (may be taken concurrently). Lectures on experiment design and implementation. Measurement methods, transducer fundamentals, instrumentation, optical systems, signal processing, noise theory, analog and digital electronic fundamentals, data acquisition and processing systems. Experiments (second and third terms) in solid and fluid mechanics with emphasis on current research methods, on low-speed and high-speed aerodynamics, laser Doppler velocimetry, signal noise. Instructor: Coles.

Ae 107 abc. Case Studies in Engineering. 9 units (3-0-6); first, second, third terms. Each term, the case history of a major engineering project will be treated in detail. Cases will include aerospace projects and other current engineering programs. Lecturers will, in general, be specialists in their fields from industrial or research organizations. Starting with the economic, political, and technological environment in which the concept originated, the course will proceed to the project initiation, detailed engineering and design, manufacturing operations, and future growth potential. Both project successes and difficulties will be discussed. Instructor: Sturtevant.

Ae/AM 108 abc. Finite Element Methods. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. Numerical analysis by the finite element method covering fundamental concepts and computer implementation. Solution of systems of linear equations and eigenvalue problems. Solution of the partial differential equations of heat transfer, solid and structural mechanics, and fluid mechanics. Transient and nonlinear problems. Instructor: Hall.

Ae 150 abc. Aeronautical Seminar. 1 unit (1-0-0); first, second, third terms. Speakers from campus and outside research and manufacturing organizations discuss current problems and advances in aeronautics. Graded pass/fail only. Instructor: Lees.

Ae 200. Advanced Research in Aeronautics. Units to be arranged. Ae.E. or Ph.D. thesis level research under the direction of the staff.

Ae 201 abc. Advanced Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh 101 or Hy 101; AM 125 or AMA 101 (may be taken concurrently). Foundations of the mechanics of real fluids. Basic concepts will be emphasized. Subjects covered (not necessarily in the order listed) include: physical properties of real gases; the equations of motion of viscous and inviscid fluids; the dynamical significance of vorticity; exact solutions; motion at high Reynolds number; inviscid compressible flow theory; shock waves; similarity for subsonic, transonic, supersonic and hypersonic flows. Instructor: Kubota.

Ae 204 abc. Technical Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh 101, Hy 101 or equivalent. External and internal flow problems encountered in engineering for which only empirical methods exist. Turbulent shear flow, separation, transition, three-dimensional and nonsteady effects. Basis of engineering practice in design of devices such as mixers, ejectors, diffusers, control valves. Studies of flow-induced oscillations, wind effects on structures, vehicle aerodynamics. Instructor: Roshko.

Ae 208 abc. Fluid Mechanics Seminar. 1 unit (1-0-0); first, second, third terms. A seminar course in fluid mechanics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Instructor: Coles.

Ae/AM 209 abc. Seminar in Solid Mechanics. 1 unit (1-0-0); first, second, third terms. A seminar for staff and students of all divisions whose interests lie in the general field of solid mechanics. Reports on current research by staff and students on the campus are intermixed with seminars given by invited lecturers from companies and other research institutions. Instructors: Staff.

Note: The following courses, with numbers greater than Ae 210, are one-, two-, or three-term courses offered each year to interested students. Depending on conditions, some of the courses may be taught as tutorials or reading courses, while others may be conducted more formally.

Ae 212. Shell Theory. 9 units (3-0-6); first term. Prerequisite: instructor's permission. General mathematical formulation of the theory of thin elastic shells. Membrane and bending stresses in shells. Elastic stability. Surveys of recent advances in the nonlinear theories of stressing and buckling of shells. Instructor: Babcock.

Ae/AM 213 abc. The Mechanics of Fracture. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae 202 or equivalent and instructor's permission. A course discussing the currently practiced analytical and experimental techniques used in the study of fracture in metallic
and nonmetallic solids. Topics could include: the mechanics of brittle and ductile fracture in structural materials, the modelling of brittle fracture, near tip elastic fields, techniques of stress analysis. Elastic-plastic analysis of crack extension, dislocation mechanisms, cleavage, ductile fracture by void growth, the establishment of relevant fracture criteria. Transitional behavior, rate sensitivity, running cracks. Static and dynamic fracture testing and structural design considerations. Additional topics could include the application of fracture mechanics to geophysics, e.g., dynamic shear crack models, fault mechanics and its relation to earthquake prediction, etc. Instructors: Rosakis, Knauss.

Ae 221. Theory of Viscoelasticity. 9 units (3-0-6); third term. Prerequisites: Ae 102 or equivalent and instructor's permission. Material characterization and thermodynamic foundation of the stress-strain laws. Correspondence rule for viscoelastic and associated elastic solutions and integral formulation for quasi-static boundary value problems. Treatment of time-varying boundary conditions such as moving boundaries and moving loads. Stress waves. Approximate methods of viscoelastic stress analysis. Not offered in 1984–85.

Ae/AM 223 abc. Plasticity. 9 units (3-0-6); first, second terms. Prerequisite: Ae/AM 102 or instructor's permission. Theory of dislocations in crystalline media. Characteristics of dislocations and their influence on the mechanical behavior in various crystal structures. Application of dislocation theory to single and polycrystal plasticity. Theory of the inelastic behavior of materials with negligible time effects. Experimental background for metals and fundamental postulates for plastic stress-strain relations. Variational principles for incremental elastic-plastic problems, uniqueness. Upper and lower bound theorems of limit analysis and shakedown. Slip line theory and applications. Additional topics may include soils, creep and rate sensitive effects in metals, the thermodynamics of plastic deformation, and experimental methods in plasticity. Not offered in 1984–1985.

Ae 225. Special Topics in Solid Mechanics. 9 units (3-0-6); first, second, third terms. Subject matter will change from term to term depending upon staff and student interest but may include such topics as structural dynamics; aeroelasticity; thermal stress; mechanics of inelastic materials; and nonlinear problems. Instructors: Staff.

Ae 231. Wing Theory. 9 units (3-0-6); second term. Prerequisites: Ae/APh 101, AM 113 or equivalent and instructor's permission. Application of potential flow theories and boundary layer theories to flows around airfoils and wings. Topics are selected from two-dimensional airfoils, three-dimensional wings at subsonic, transonic, and supersonic Mach numbers. Not offered in 1984–85.

Ae 232 abc. Numerical Methods in Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh 101, AM 113 or equivalents and instructor's permission. Problem-oriented review of numerical methods in fluid mechanics. Topics are selected from: boundary layers, shock-wave structure, one-dimensional flow with chemical reactions, nonsteady one-dimensional flow, two-dimensional inviscid and viscous flows. Instructors: Staff.

Ae 239. Turbulent Shear Flows. 9 units (3-0-6); third term. Similarity arguments for classical shear flows; jet, wake, plume, mixing layer, boundary layer. Survey of current research on large coherent structures. Role of such structures in mixing, entrainment, and transport. Not offered in 1984–1985.
Ae 240. Special Topics in Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Subject matter will change from term to term depending upon staff and student interest. Instructors: Staff.

ANTHROPOLOGY

An 22. Introduction to the Anthropology of Development. 9 units (3-0-6); first term. Introduction to the study of social change in contemporary tribal and peasant societies. Emphasis will be placed on the impact of modernization, especially through urbanization, industrialization and the intensification of agriculture. Instructor: Scudder.

An 123. The Anthropology of Rapid Social Change. 9 units (3-0-6); second term. Prerequisite: An 22. Detailed studies of selected peasant and tribal societies in developing areas, focusing on two types of rapid social change: that which is induced from outside through the efforts of government and other planning organizations, and that which is induced from within through local experimentation, innovation, revitalization and migration. Instructor: Scudder.

An 124. The Evolution and Current Status of Small-Scale Human Societies. 9 units (3-0-6); third term. Prerequisite: An 22. Lectures deal with human and cultural evolution prior to the rise of the pre-industrial city; reading and student projects deal with the implications of the contemporary world for small-scale human societies, and for the Navajo in particular. Instructor: Scudder.

APPLIED MATHEMATICS

AMa 95 abc. Introductory Methods of Applied Mathematics. 12 units (4-0-8); first, second, third terms. Prerequisites: Ma 1 abc, Ma 2 abc, or equivalent. The topics studied include introductions to the following: functions of complex variables; linear ordinary differential equations; special functions; eigenfunction expansions; integral transforms; linear partial differential equations and boundary value problems. Instructors: List, Wu.

AMa 101 abc. Methods of Applied Mathematics I. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 or Ma 108. Review of basic complex variable analysis; asymptotic expansions; ordinary linear differential equations; Sturm-Liouville theory; eigenfunction expansions; integral transforms; special functions; integral equations; introduction to partial differential equations; elementary theory of nonlinear differential equations. Instructor: Whitham.

AMa 104. Matrix Theory. 9 units (3-0-6); first term. Prerequisite: AMa 95 or equivalent. Linear transformations, theory of linear vector spaces, Hilbert spaces. Matrix calculus, vector and matrix norms. Eigenvalue and eigenvector theory, canonical forms, singular value decompositions, inverses and pseudo-inverses, computational linear algebra, etc. Instructor: Kreiss.
AMa 105. Computational Linear and Non-Linear Algebra. 11 units (3-2-6); third term. Prerequisites: AMa 95 and 104 or equivalent. Solution of linear systems by direct and iterative methods; eigenvalue and eigenvector computation, iterative solution of non-linear systems, Newton's Method. Continuation and homotopy procedures. Coding principles, computational efficiency, stability and error analysis are discussed. Computer assignments will be given. Not offered in 1984–1985.

AMa 106. Numerical Methods for Ordinary Differential Equations. 11 units (3-2-6); first term. Prerequisites: AMa 95 and 104 or equivalent; may be taken concurrently. Basic theory and survey of numerical techniques for linear and non-linear initial and boundary value and eigenvalue problems. The discussion of the numerical techniques will focus on consistency, accuracy, stability, stiffness, numerical efficiency, etc. Computer assignments will be given. Instructor: Lorenz.

AMa 108. Numerical Methods for Partial Differential Equations. 11 units (3-2-6); second term. Prerequisites: AMa 95 and 104 or equivalent. Survey of finite difference and other discrete methods for the numerical solution of partial differential equations. Classification of PDE's, well posedness, numerical consistency, accuracy, stability, iterative and direct methods for elliptic and parabolic equations, etc. Computer assignments will be given. Instructor: Lorenz.

AMa 109. Finite Element Methods. 11 units (3-2-6). Prerequisites: AMa 95, 104, and 108 or equivalent. Variational principles and their numerical approximation for elliptic systems. Techniques for initial value problems, eigenvalue problems, elasticity theory, etc. Study of some basic finite elements and their approximation properties. Least square, Galerkin and penalty methods. Computer assignments will be given. Instructor: Lorenz.

AMa 110. Introduction to the Calculus of Variations. 9 units (3-0-6); first term. Prerequisite: AMa 95 or Ma 108 or equivalent. The first variation and Euler's equation for a variety of classes of variational problems from mathematical physics. Natural boundary conditions. Subsidiary conditions. The theory of extremal fields for single-variable variational problems. Conjugacy and the second variation. Hamilton-Jacobi theory. An introduction to the direct methods of Rayleigh, Ritz, and Tonelli and their application to equilibrium and eigenvalue problems. Some simple aspects of control problems. Not offered in 1984–1985.

AMa/CS/Ph 146 ab. Concurrent Algorithms. 9 units (3-3-3); first, second terms. Prerequisites: Basic knowledge of mathematical methods and some programming experience. A course on concurrent algorithms and applications for the emerging area of concurrent computation. Homework assignments will include programming an experimental multiprocessor system. Topics: overview of vector computers, ensemble architectures (collections of concurrently executing processors), and their programming; sorting, searching, graph problems, linear recurrences, matrix algebra, linear systems of equations, ordinary and partial differential equations; applications to turbulence, statistical mechanics, lattice gauge theories, and astrophysical problems. Not offered in 1984–1985.

AMa 151 abc. Perturbation Methods. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 101 or equivalent; may be taken concurrently with instructor's permission. The course discusses uniformly valid approximations in various physical problems. Generalized boundary layer technique. Coordinate straining techniques; Poincaré's method. Problems with several time scales; averaging techniques; method of Krylov Bogoliubov. Eigenvalue problems. Examples taken from various fields of science. Instructor: Cohen.
AMa 152 abc. Linear and Nonlinear Wave Propagation. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 101 or equivalent; may be taken concurrently with instructor's permission. Mathematical formulation, hyperbolic equations, characteristics, shocks. Combined effect of nonlinearity and diffusion. Wave propagation with relaxation effects. Dispersive waves, group velocity, geometry of waves, nonlinear dispersive waves. Diffraction theory. The emphasis is on solving physical problems and the mathematical theory is developed through a wide variety of problems in gasdynamics, water waves, plasma physics, electromagnetism. Not offered in 1984–1985.

AMa 170. Mathematical Topics in Ecology and Biology. 9 units (3-0-6); second term. Prerequisite: AMa 101 or equivalent. Discrete and continuous population models; predator-prey systems; pest control and harvesting models; enzyme kinetics; biological oscillators and switches; chemotaxis and inflammation models; reaction-diffusion theory; biological pattern formation. The course will involve the modeling of real situations and the analysis of the resulting models, mainly difference or differential equations. Practical implications will be indicated. No previous biology will be assumed. Not offered in 1984–1985.

AMa 190. Reading and Independent Study. Units by arrangement. Graded pass/fail only.

AMa 201 ab. Methods of Applied Mathematics II. 9 units (3-0-6); second, third terms. Prerequisite: AMa 101 or equivalent. First order partial differential equations; classification and theory of linear and nonlinear higher order partial differential equations; well-posed problems; maximum principles; fundamental solutions and Green's functions; spectral theory; integral operators; special techniques. Not offered in 1984–1985.

AMa 251 abc. Applications of Group Theory. 9 units (3-0-6); first, second terms. Prerequisite: some knowledge of linear algebra. Applications of group theory to differential equations and to physics will be discussed. Mathematical topics to be covered include: Basic concepts of group theory. Infinitesimal transformations and Lie algebras. General notions of group representations. Detailed discussion of some classical Lie groups. Not offered in 1984–1985.

AMa 260. Special Topics in Continuum Mechanics. 9 units (3-0-6); third term. Prerequisites: AMa 101 and instructor's permission. A course designed to reflect recent and current research interests of the staff and students. 1984–85 topics will be vortex motion and turbulence. Instructor: Saffman.

AMa 290. Applied Mathematics Colloquium. Units by arrangement.

AMa 300. Research in Applied Mathematics. Units by arrangement.

Other courses particularly suitable in making up a program in Applied Mathematics include: Ma 109, Ma 143, Ma 144, AM 135, AM 136, AM 175, Ph 125, and Ph 209.

APPLIED MECHANICS

AM 35 abc. Statics and Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. Introduction to statics and dynamics of rigid and deformable bodies. Equilibrium of force systems, principle of virtual work, distributed force systems, friction, static analysis of rigid and deformable structures, kinematics, particle dynamics, rigid body dynamics, dynamics of deformable systems, vibrating systems, Lagrange's equations and Hamilton's principle. Instructor: Knauss.

AM 96 abc. Applied Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc. Basic principles and applications of classical mechanics. Analytical description of motion, including relative motion. Particle mechanics, including energy and momentum principles. Generalized coordinates, principle of virtual work, stability, Lagrange's equations and Hamilton's principle. Rigid body dynamics. Response of mechanical systems to periodic and transient excitations. Applications to such problems as planetary motion, effects of the Earth's rotation, rocket motion, impact, gyroscopic motions, vibration isolation, vibration instrumentation, etc. Not offered in 1984–1985.

Ae/AM 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 35 abc or equivalent. For course description, see Aeronautics.

Ae/AM 108 abc. Finite Element Methods. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. For course description, see Aeronautics. Instructor: Hall.

AM 113 abc. Engineering Mathematics. 12 units (4-0-8); first, second, third terms. A course for graduate students who have not had the equivalent of AMa 95 abc. Prerequisite: Ma 1 abc, Ma 2 abc, or equivalent. Linear differential equations, including power series solutions and special functions. Introduction to complex variable theory with applications. Linear differential equations and special functions in the complex domain. Fourier series and orthogonal functions. Solution of boundary value problems for partial-differential equations by conformal mapping, separation of variables and integral transforms. Instructors: Knowles, Smith.

AM 125 abc. Engineering Mathematical Principles. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc or AM 113 abc. Topics include: linear spaces, operators and matrices, integral equations, variational principles, differential equations, stability, perturbation theory. Applications to problems in engineering and science are stressed. Instructor: Beck.

AM 135 abc. Mathematical Elasticity Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. Cartesian tensors. Kinematics and kinetics of continuous media, constitutive relations for elastic solids. Fundamental problems and related theorems of linearized elastostatics and elastodynamics. Integration theory and applications to specific problems of engineering interest. Instructor: Horgan.

AM 136 abc. Advanced Mathematical Elasticity Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 135 abc or equivalent. Topics drawn from the more advanced linear theory and nonlinear theory. Specific content varies according to interests of students and instructor. Instructors: Knowles, Sternberg.

AM 175 abc. Advanced Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: AM 125 abc and AM 151 abc or equivalents. Topics considered will include linear and nonlinear vibrations of discrete and continuous systems, stability and control of dynamical systems, and stochastic processes with applications to random vibrations. Instructors: Staff.
AM 200. Special Problems in Advanced Mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in independent studies in mechanics. Hours and units by arrangement.

Ae/AM 209 abc. Seminar in Solid Mechanics. 1 unit (1-0-0); first, second, third terms. For course description, see Aeronautics.

Ae/AM 213 abc. The Mechanics of Fracture. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae 202 or equivalent and instructor's permission. For course description, see Aeronautics.

Ae/AM 223 abc. Plasticity. 9 units (3-0-6); first, second terms. Prerequisite: Ae/AM 102 or instructor's permission. For course description, see Aeronautics.

AM 250 abc. Research in Applied Mechanics. Research in the field of applied mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in research. Hours and units by arrangement.

APPLIED PHYSICS

APh 3. Solid-State Electronics for Integrated Circuits. 6 units (2-1-3); first term. This course gives an overview of the physics that underlies the revolution in integrated circuits and computers. Starting with metals, semiconductors, and insulators, it proceeds to metal-semiconductor contacts (Schottky diodes), light-emitting diodes (LED’s), pn diodes, bipolar transistors, metal-oxide-semiconductor (MOS) capacitors, MOS transistors, MOS logic circuits, and MOS integrated circuits. The course will discuss how to make integrated circuits, and will introduce computer-controlled analysis instruments and computer-aided design (CAD) for developing integrated circuits. The course leads to APh 9, a laboratory to make these devices, and CS/EE 4, a lecture course that begins with logic elements and ends with the design of a simple computer. Graded pass/fail. Instructor: Rutledge.

APh/MS 4. Introduction to Materials Science. 6 units (2-0-4); third term. Selected engineering systems, such as jet engines, superconducting transmission lines and nuclear reactors, are discussed in terms of the critical role played by materials in their construction and performance. Those material properties of greatest significance are explored to show how they are governed by the structure and basic physics and chemistry of the material. Graded pass/fail. Instructor: Wood.

APh 9. Solid-State Electronics for Integrated Circuits Laboratory. 6 units (0-4-2); second term. Prerequisite: APh 3, six units credit allowed toward freshman laboratory requirement. This course allows each student to make many of the integrated-circuit devices discussed in APh 3. Students make a light-emitting diode (LED), a Schottky diode, a pn diode, and a metal-oxide-semiconductor (MOS) capacitor, and a MOS transistor. The course teaches photolithography and how to use high-vacuum equipment, furnaces, computer-controlled analysis instruments, and computer-aided design (CAD) tools. Graded pass/fail. Instructor: Rutledge.

APh 23. Demonstration Lectures in Optics. 6 units (2-0-4); first term. Prerequisite: Ph 1 abc. Nine demonstration lectures, covering the fundamentals of optics with an emphasis on modern optical applications, are intended to exhibit basic optical phenomena including interference, dispersion, birefringence, diffraction, and laser oscillation, and the applications of these phenomena in optical systems employing two-beam and multiple-beam interferometry, Fourier-transform image processing, holography, electro-optic modulation, optical detection and heterodyning. System examples will be selected from optical communications and radar, adaptive optical systems. Instructor: Psaltis.

APh 24. Introductory Modern Optics Laboratory. 6 units; second term. Prerequisite: APh 23. Laboratory experiments to acquaint students with the contemporary aspects of modern optical research and technology. Experiments encompass many of the topics and concepts covered in APh 23. Instructor: Psaltis.

APh 50 abc. Quantum Physics of Matter. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc, Ma 2 abc, or equivalents. Quantum mechanics and applications to problems of the three states of matter: solids, gases, and liquids. Topics include discussion of bound and free particles, the electromagnetic field, diatomic molecules, quantum systems in thermal equilibrium, and perturbation theory. Additional topics will be selected from plasma physics and electron transport in solids. Applications such as lasers and semiconductor electronics will be treated along with other topics in physics depending on the instructor and interests of the students. Instructor: Comgold.

APh 77. Laboratory in Applied Physics. 9 units. Selected experiments in applied physics that are chosen so as to familiarize the student with laboratory equipment and procedures in differing areas of applied physics such as cryogenics, magnetism, plasmas, fluids, semiconductors, optics, and materials properties. Instructor: Mercereau.

APh 78 abc. Senior Thesis, Experimental. 9 units; first, second, third terms. Prerequisite: instructor's permission. This course is intended to provide supervised experimental research experience, and is open only to senior applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Students desiring additional units should register in APh 100. Not offered on a pass/fail basis. Instructors: Culick and the applied physics faculty.

APh 79 abc. Senior Thesis, Theoretical. 9 units; first, second, third terms. Prerequisite: instructor's permission. This course is intended to provide supervised theoretical research experience, and is open only to senior applied physics majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Applied Physics Undergraduate Committee. Not offered on pass/fail basis. This course cannot be used to satisfy the laboratory requirement in APh. Instructors: Culick and the applied physics faculty.

APh 91 abc. Experimental Projects in Applied Physics. Units by arrangement. 6 units minimum each term. Prerequisite: Ph 7 or EE 90 abc or equivalent; open to seniors only upon acceptance by the instructor of a suitable proposal. A non-structured project laboratory designed to give the student an opportunity to do original experiments in applied physics. Emphasis is placed upon the selection of significant projects, the formulation of the experimental approach and the interpretation of data as well as upon the use of modern laboratory techniques. Facilities are available for experiments in cryogenics, lasers, quantum electronics, ferromagnetism, optics, microwaves, plasma physics, and semiconducting solid state. Text: Literature references. Not offered in 1984–85.
APh 100. Advanced Work in Applied Physics. Special problems relating to applied physics will be arranged to meet the needs of students wishing to do advanced work. Primarily for undergraduates. Students should consult with their advisers before registering for this course. Graded pass/fail.

Ae/APh 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. For course description, see Aeronautics.

Ae/APh 104 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-5 second and third terms). Prerequisites: AMa 95 abc or equivalent (may be taken concurrently), Ae/APh 101 abc (may be taken concurrently). For course description, see Aeronautics.

APh 105 abc. States of Matter. 9 units (3-0-6); first, second, third terms. Prerequisite: APh/ME 17 or equivalent. A survey of current ideas about the states of matter emphasizing unifying concepts, such as order parameters, scaling laws, quasi-particle excitations and correlation functions. Topics will include long-range ordered states such as crystals, superfluids and ferromagnets, phase transitions of first and higher orders, critical phenomena, band theory of solids, liquids, ideal classical and degenerate gases, fluctuations, and noise. Instructor: McGill.

APh 106 abc. Topics in Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc, Ma 2 abc. An intermediate course in the application of the basic principles of classical physics to a wide variety of subjects. It is intended that roughly half of the year will be devoted to mechanics, and half to electromagnetism. The basic content of this course will be similar to Ph 106, but the selection of applications and some topics may be different. Not offered in 1984–85.

APh 107. Advanced Dynamics. 9 units (3-0-6); third term. Prerequisite: Ph 106 a, b or equivalent. Lectures will deal with advanced topics in classical mechanics, such as integrable vs. non-integrable systems, maps and flows, and “stochasticity.” An introduction to non-equilibrium statistical mechanics will follow, with examples drawn from plasma physics and from the theory of condensed matter. Instructor: Corngold.

APh 110. Topics in Applied Physics. 2 units (2-0-0); first, second, third terms. A seminar course designed to acquaint juniors and first-year graduate students with the various research areas represented in the option. Lecture each week given by a different faculty member of the option, reviewing, in general terms, his or her field of research. Graded pass/fail. Instructors: Bellan and applied physics faculty.

APh 114 abc. Solid State Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 50 or Ph 92 abc or equivalent. A lecture and problem course dealing on an introductory level with experimental and theoretical problems in solid-state physics. The topics to be discussed include: crystal structure, symmetries in solids, lattice vibrations, electronic states in solids, transport phenomena, semiconductors, superconductivity, magnetism, ferroelectricity, defects, and optical phenomena in solids. Instructor: Johnson.

APh/MS 126 abc. The Electronic Structure of Metals and Alloys. 9 units (3-0-6); first, second, third terms. Prerequisite: an introductory course in quantum mechanics. The basic principles of quantum mechanics and thermodynamics applied to understanding electronic band structure, metallic cohesion, structural stability, phase equilibrium and the kinetics of phase transitions, metastable states, lattice dynamics and elastic behavior, transport properties, superconductivity, magnetism, and the physics of metallic surfaces and thin metals films. Comparison of theory with experimental data and phenomenological concepts will be offered with some discussion of current technological areas of application including superconducting devices and high field magnets, magnetic memory devices, radiation damage to metals, and corrosion resistance. Not offered in 1984–85.
APh 140 abc. Cryogenics. 9 units (3-0-6); first, second, third terms. An introductory course on the behavior of condensed matter at low temperatures. Topics include superfluidity, superconductivity, quantum phase coherence, liquid He\(^3\), ultralow temperature experiments, cryogenic techniques, and macroscopic quantum devices. Not offered in 1984–85.

APh 150. Topics in Applied Physics. Units and term to be arranged. The content of this course will vary from year to year. Its treatment will be at a level suitable for advanced undergraduate or beginning graduate students. Topics of current interest will be chosen according to the interests of students and staff. Visiting faculty may present portions of this course from time to time. Instructors: Staff.

APh 153 abc. Modern Optics. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc. The emphasis is on fundamental principles of modern optics and on understanding contemporary optical systems. Geometrical optics, ray matrices, and the Hamiltonian analogy will introduce the wave equation and its solutions. Topics include: Fresnel and Fraunhofer diffraction, Fermat's principle, the analysis of systems based on e.m. theory, Gaussian beam propagation, interferometry, holography, speckle, van der Lugt filters, pattern recognition, fiber optics, light modulation, diffraction by sound, radiometry, detectors, sources. Not offered in 1984–85.

APh 154. Advanced Modern Optics Laboratory. 9 units (0-4-5); third term. Prerequisites: APh 23/24 for undergraduates, or APh 153 ab and/or APh 190 ab for graduate students, and consent of instructor. Four experiments designed to provide students with theoretical background and experimental skills in selected areas of modern optics such as computer-aided lens design, laser cavities, holography, acousto-optic and electro-optic modulation, interferometry, Fourier optics, spatial filtering and fiber optics. Instructor: Psaltis.

APh 156 abc. Plasma Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc or equivalent. An introduction to the principles of plasma physics. Topics presented will include: orbits of charged particles in electric, magnetic, and gravitational fields; continuum magnetohydrodynamics and elementary stability theory; transport processes such as conductivity and diffusion, Vlasov equation, waves, and oscillations in plasmas. Examples from plasmas used in controlled thermonuclear fusion research (e.g., tokamaks, mirrors, pinches) will be discussed. Instructor: Bellan.

APh 181 abc. Physics of Semiconductors and Semiconductor Devices. 9 units (3-0-6); first, second, third terms. Introduction to the concepts of semiconductor devices based on underlying physical properties of semiconductors. Electronic and chemical equilibrium in the bulk semiconductor and near interfaces, e.g., p-n junctions, surfaces. Kinetics of carrier generation-recombination and transport to first order. Traditional and novel methods of device fabrication. Applications will be made to a wide variety of devices and attention given to feasible schemes for device construction. Instructor: Nicolet.

APh 190 abc. Quantum Electronics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125, or equivalent. This course covers generation, manipulations, propagation, and applications of coherent radiation. Starting with the basic theory of the interaction of electromagnetic radiation with resonant atomic transitions, the course continues with laser oscillation, important laser media, Gaussian beam modes, the electro-optic effect, nonlinear-optics theory, second harmonic generation, parametric oscillation, stimulated Brillouin and Raman scattering. Other topics include: Light modulation, diffraction of light by sound, integrated optics, phase conjugate optics, and quantum noise theory. Instructor: Yariv.
APh 200. **Applied Physics Research.** *Units in accordance with work accomplished.* Offered to graduate students in applied physics for research or reading. Students should consult their advisers before registering for the course. Graded pass/fail.

APh 214 abc. **Advanced Solid-State Physics.** *9 units (3-0-6); first, second, third terms. Prerequisites: APh 114 abc and Ch 125 abc or Ph 125 abc.* A course in experimental and theoretical solid-state physics. Topics include: phonons; electronic excitation in solids; electron-phonon interactions; optical transport and magnetic properties; superconductivity; ferroelectricity. The emphasis will be mainly theoretical with frequent comparison between theoretical predictions and experimental results. Not offered in 1984–85.

APh 250. **Advanced Topics in Applied Physics.** *Units and term to be arranged.* The content of this course will vary from year to year. Topics of current interest will be chosen according to the interests of students and staff. Visiting faculty may present portions of this course from time to time. Instructors: Staff.

APh 300. **Thesis Research in Applied Physics.** *Units in accordance with work accomplished.* APh 300 is elected in place of APh 200 when the student has progressed to the point where his or her research leads directly toward a thesis for the degree of Doctor of Philosophy. Approval of the student's research supervisor and of his or her department adviser or registration representative must be obtained before registering. Graded pass/fail.

ART

Art 1 ab. **Introduction to Art History.** *9 units (3-0-6); An introduction to the elements of artistic representation from the Renaissance to the twentieth century, including perspective, description, narration, and symbolism. Works by a number of major artists, among them Michelangelo, Rembrandt, Cézanne, and Picasso, will be considered in the light of these concerns. Instructor: Ward.*

Art 101. **Selected Topics in Art History.** *9 units (3-0-6). Advanced credit to be determined on a course-by-course basis by the instructor. Instructors: Staff.*

Art 102. **British Art of the Georgian Period.** *9 units (3-0-6); first term. An introduction to the visual arts and the vocabularies of analysis for the study of painting through an in-depth study of the British art of the Georgian period in the collection of the Huntington Art Gallery. Instructor: Wark.*

Art 103. **Romanticism and Realism.** *9 units (3-0-6). A study of European painting from ca. 1800 and of critical approaches to it. To satisfactorily complete the course it is necessary to view the actual paintings in local museums. Instructor: Ward.*

Art 104. **Impressionism and Post-Impressionism.** *9 units (3-0-6); A study of French painting from c. 1860 to 1900 and of critical approaches to it. Field trips to local museums are required. Instructor: Ward.*

Art 105. **Early Modern Art, 1900–1940.** *9 units (3-0-6); second term. An introduction to early modern art and its major movements via selected artists, including Matisse, Picasso, Mondrian, Duchamp, and Miro. Participation in field trips to local museums is required. Instructor: Ward.*

Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
Art 106. Contemporary Art, 1940–Present.* 9 units (3-0-6); third term. An introduction to contemporary art and its major movements via important artists, including Pollock, Rothko, Dubuffet, Rauschenberg, Stella, Warhol, and Hesse. Field trips to local museums are required. Instructor: Belloli.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

ASTRONOMY

Ay 1. Introduction to Astronomy. 9 units (3-1-5); third term. This course, primarily for freshmen, surveys astronomy and astrophysics, emphasizing the application of physics in astronomy. Graded pass/fail. Instructor: M. Cohen.

Ay 20. Basic Astronomy and the Galaxy. 11 units (3-2-6); first term. Prerequisites: Ma 1 abc, Ph 1 abc. Astronomical terminology. Stellar masses, distances and motions. Star clusters and their galactic distributions. Stellar spectra, magnitudes and colors. Structure and dynamics of the galaxy. Laboratory exercises including double star orbits and the use of an astrograph. Instructors: Schmidt, Oke.

Ay 30. Current Trends in Astronomy. 3 units (2-0-1); second term. Weekly seminar designed for sophomore astronomy majors only; to be held in faculty homes in the evening. Purpose is to introduce the students to the faculty and their research. Graded pass/fail. Instructors: Staff.

Ay 42. Research in Astronomy and Astrophysics. Units in accordance with work accomplished. Properly qualified undergraduates may, in their senior year, undertake independent or guided research with the goal of preparing a senior thesis. Graded pass/fail. Instructors: Staff.

Ay 43. Reading in Astronomy and Astrophysics. Units in accordance with work accomplished. Student must have a definite reading plan and obtain permission of instructor before registering. Graded pass/fail. Instructors: Staff.

Ay 102. Physics of the Interstellar Medium. 9 units (3-0-6); third term. Prerequisite: Ay 20. An introduction to fluid mechanics; sound waves and shock waves. Introduction to magnetohydrodynamics; Alfven waves and plasma waves with applications to the interstellar medium. Supernova remnants. The interstellar magnetic field. The physics of H I and H II regions. Instructor: Scoville.

*See also Ge 101 a.
Ay 110. **Senior Seminar in Astrophysics.** 6 units (2-0-4); third term. Designed for Ay seniors. Seminar on astrophysical topics of current interest. The lectures will be given by the students. The emphasis will be on topics that require a synthesis of previous formal course work. Instructor: Sargent.

Ay 134. **The Sun.** 9 units (3-1-5); first term. The physical state of the sun as derived from observations from the ground and from space. The solar wind and other solar-terrestrial effects. Students will have the opportunity to do a small research topic with materials from the Big Bear Solar Observatory. Given in alternate years; offered in 1983–84. Instructor: Zirin.

Ay 141 abc. **Research Conference in Astronomy.** 2 units (1-0-1); first, second, third terms. These conferences consist of reports on investigations in progress at the Mount Wilson, Las Campanas, Palomar, and Big Bear observatories and the Owens Valley Radio Observatory, and on other researches that are of current interest. Graded pass/fail.

Ay 142. **Research in Astronomy and Astrophysics.** Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of research outlined with him or her. Approval of the student’s adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 143. **Reading and Independent Study.** Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of reading and independent study outlined with him or her. Approval of the student’s adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 151. **Stellar Atmospheres and Radiative Transfer.** 9 units (3-0-6); first term. Prerequisites: Ay 101 (undergraduates); Ph 125 or equivalent (graduates). A basic course on radiative transfer in stellar atmospheres. Stellar spectra, radiation theory, sources of opacity, line formation, abundance analysis, non-LTE atmospheres. Instructor: Mould.

Ay 152. **Stellar Interiors and Evolution.** 9 units (3-0-6); second term. Prerequisites: Ay 101 (undergraduates); Ph 125 or equivalent (graduates). A basic course on stellar structure and evolution, polytropes, radiative transport, convection, nuclear energy generation, main sequence, Hayashi track, advanced stages of evolution, pulsations, rotation, binary systems, white dwarfs, neutron stars, black holes. Instructor: Oke.

Ay 153. **Astronomical Measurements.** 9 units (3-0-6); first term. Prerequisite: Ph 106 or equivalent. A basic course on measurement and signal analysis techniques throughout the electromagnetic spectrum. Telescopes and interferometers; detectors and receivers; photometry and radiometry; imaging devices and image processing; spectrometers; space telescopes. Instructors: Lo, J. Cohen.

Ay 154. **Galactic and Extragalactic Astronomy.** 9 units (3-0-6); second term. Prerequisite: Ay 21 (undergraduates); Ph 106 or equivalent (graduates). A basic course on the structure and properties of galaxies; kinematics and dynamics of our galaxy; spiral arms; stellar composition, masses and rotation of external galaxies; star clusters; galactic evolution; binaries, groups, and clusters of galaxies. Instructor: Sargent.

Ay 155. **High Energy Astrophysics and Cosmology.** 9 units (3-0-6); third term. Prerequisite: Ay 21 and Ph 106 (or equivalent). A basic course on high energy astrophysics and cosmology; synchrotron radiation; inverse Compton scattering; pulsars; extragalactic radio sources; active galactic nuclei; black holes; extragalactic distance scale; cosmological models; galaxy formation; thermal history of universe; nucleosynthesis. Instructor: Blandford.

Ay 156. **Interstellar Medium.** 9 units (3-0-6); third term. Prerequisite: Ay 102 (undergraduates). A basic course on physical processes in the interstellar medium. Atomic and molecular
spectroscopy, thermal and dynamic balance of interstellar medium, molecular clouds, magnetic fields, H II regions, supernova remnants, star formation, global structure of interstellar medium. Instructor: Lo.

Ay 211. Extragalactic Astronomy. 9 units (3-0-6); first term. A course for graduate students in astronomy including a discussion of recent research in extragalactic astronomy and cosmology. Not offered in 1984–85.

Ay 212. Topics in Astronomy. 9 units (3-0-6); second term. A course for graduate students in astronomy. The topic for 1984–85 is stellar populations. Instructor: Mould.

Ay 215. Seminar in Theoretical Astrophysics. 9 units (3-0-6); second term. Prerequisite: instructor’s permission. Seminar for advanced students on recent developments in astrophysics. The current theoretical literature will be discussed by the students. Given in alternate years; offered in 1984–85. Instructor: Goldreich.

Ay 218. High-Energy Astrophysics. 9 units (3-0-6); third term. Prerequisites: Ay 155, Ph 106, and Ph 125 or equivalent. Topics will be chosen from the following: Equation of state and physical processes at high densities and high temperatures; hydrodynamics; shock waves; magnetohydrodynamics; radiation processes; relativistic gravity. Given in alternate years; not offered in 1984–85.

Ay 234. Seminar in Radio Astronomy. 6 units (2-0-4); second term. Prerequisites: Ay 155, Ay 156. Recent developments in radio astronomy for the advanced student. Current publications and research in progress will be discussed by students and staff. Given in alternate years; not offered in 1984–85.

BIOINFORMATION SYSTEMS

BIS 80 abc. Undergraduate Research. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. This course is intended to provide supervised research by undergraduates. The topic of research must be approved by the supervisor and a formal final report must be presented at the completion of the research. Graded pass/fail. Course supervisor: Fender.

BIS/Bi 121 abc. Biosystems Analysis. 6 units (2-0-4); three terms. Prerequisite: Bi 150 or instructor’s permission. Systematic consideration and application of the methods of systems analysis, information theory and computer logic to problems in neurobiology. The subjects to be considered include the mechanical properties of striated muscle, the analysis of neuronal integrative mechanisms, and reflex behavior in terms of logical net theory. The course will seek to describe some aspects of human cortical activity in terms of information theory and conceptual modeling. The course will be conducted as a research seminar and the detailed subject matter will change from year to year. Instructor: Fender.

BIS 280. Research in Bioinformation Systems. Units in accordance with work accomplished. Approval of student’s research adviser and his or her department adviser must be obtained before registering.

BIS 282. Reading in Research Areas. 6 units or more by arrangement; first, second, third terms. Prerequisites: CS 137, CS 138 or equivalent. A seminar in which a small group of students and the instructor discuss and summarize the literature of a potential research area. Only qualified students will be admitted after consultation with the instructor. A written report will usually be required. Instructor: Fender.
BIOLOGY

Bi 1. Introduction to Biology. 12 units (3-3-6); second term. This course and its sequel, Bi 9, cover biology at the cellular level. After introducing basic concepts which are necessary for understanding biological systems at the molecular level, Bi 1 emphasizes the cellular processes that are involved in the organization and expression of genetic information, including what is commonly called molecular biology and an introduction to topics in developmental biology and immunology. Graded pass/fail. Instructors: Abelson, Wold.

Bi 2. Current Research in Biology. 6 units (2-0-4); first term. An elective course, open only to freshmen. Current research in biology will be discussed, on the basis of reading assigned to students in advance of the discussions, with members of the divisional faculty. Graded pass/fail. Instructors: Revel and staff.

Bi 7. Organismic Biology. 9 units (3-3-3); first term. Prerequisite: Bi 1. A survey of the principal kinds of organisms and the problems they have solved in adapting to various environments. Instructors: Brokaw and staff.

Bi 9. Cell Biology. 9 units (3-0-6); third term. Bi 9 continues the coverage of biology at the cellular level, begun in Bi 1. Topics covered include cytoplasmic structure, membrane structure and function, cell motility, and cell-cell recognition. Emphasis is placed on both the ultrastructural and biochemical approaches to understanding these topics. Instructors: Lazarides and staff.

Bi 10. Cell Biology Laboratory. 6 units (0-4-2); third term. Prerequisite: Bi 1; this course is designed to be taken concurrently with Bi 9. An introduction to basic methods in cell biological research, including subcellular fractionation, practical enzymology and immunochrometry, use of radioisotopes, gel electrophoresis of proteins and nucleic acids, and light and electron microscopy. Instructors: Kennedy and Davis.

Bi 22. Undergraduate Research. Units to be arranged; first, second, third terms. Special problems involving laboratory research in biology; to be arranged with instructors before registration. Graded pass/fail. Instructors: Staff.

Bi 23. Biology Tutorial. Units to be arranged; first, second, third terms. Study and discussion of special problems in biology, usually involving regular tutorial sessions with instructors. To be arranged through the Undergraduate Adviser before registration. Graded pass/fail. Instructors: Strauss and staff.

Bi/Ph 50. Introduction to Biophysics of the Nervous System. 9 units (3-0-6); second term. Prerequisites: Ph 2 a or Ph 12 a, and an introductory biology course in high school or at Caltech. Selected topics illustrating areas where physics plays a key part in the function of the nervous system or in our attempts to understand it. Subject matter will include movement of ions across cell membranes, the action potential, the synapse, sensory transduction in the visual system, visual information processing, and psychophysics. Instructor: Pine.

Bi 90 abc. Undergraduate Thesis. 12 or more units per term, first, second, third terms. Prerequisites: 18 units of Bi 22 or equivalent research experience in the research area proposed for the thesis, and instructor's permission. This course is intended to extend the opportunities for research provided by Bi 22 into a coherent individual research project, carried out under the supervision of a member of the biology faculty. It normally involves three or more consecutive terms of work in the junior and senior years. The student will formulate a research problem based in part on work the student has already carried out, evaluate previously published work in the field, and present new results, in a thesis format. First two terms graded pass/fail; final term graded by letter on the basis of the completed thesis. Instructors: Revel and staff.
Bi 106. Developmental Biology of Animals. 6 units (2-0-4); second term. Recommended prerequisite: Bi/Ch 110. Lectures and discussions dealing with various aspects of embryological development; cytoplasmic localization and cell interaction in early development, gene function and oogenesis, the role of accessory cells, gene regulation, the evolution of developmental processes and patterns of macromolecular syntheses in early embryological life. Given in alternate years; offered in 1984-85. Instructor: Davidson.

Bi/Ch 110 abc. Biochemistry. 12 units (4-0-8); first, second, third terms. Prerequisite: Ch 41 or instructor's permission. Lectures and discussions on the molecular basis of biological structure and function. The course emphasizes macromolecular structure and the metabolic processes involved in energy storage and utilization and considers the storage, transmission, and expression of genetic information in prokaryotes and eukaryotes. It also includes other topics in biochemistry of higher organisms, such as molecular regulatory mechanisms and the biochemistry of cell membranes. Instructors: Campbell, Parker, Raftery, Richards.

Bi 114. Immunology. 12 units (4-0-8); first term. Prerequisite: Bi 122 or equivalent. A course on the principles and methods of immunology and their application to various biological problems. Instructors: Rothenberg and staff.

Bi 115. Virology. 6 units (2-0-4); third term. Prerequisites: Bi 1, Bi 9. An introduction to the chemistry and biology of viruses. The emphasis of the course will be on the replication strategies of the animal viruses, but consideration will be given to the epidemiology of viruses, the nature and control of virus diseases, the evolution of viruses, and some aspects of bacterial and plant virus replication. Given in alternate years; not offered in 1984-85. Instructor: Strauss.

BIS/Bi 121 abc. Biosystems Analysis. 6 units (2-0-4); first, second, third terms. Prerequisite: Bi 150 or instructor's consent. For course description, see Bioinformation Systems.

Bi 122. Genetics. 12 units (3-3-6); third term. Prerequisite: Bi 1 or Bi 9, or instructor's permission. A lecture, discussion, and laboratory course covering the basic principles of genetics. Instructors: Meyerowitz, Lewis.

Bi 125. Principles and Methods of Gene Transfer and Gene Manipulation in Eukaryotic Cells. 9 units (3-0-6); second term. Prerequisite: Bi/Ch 110. A lecture and discussion course dealing with modern approaches to "genetic intervention" in eukaryotic cells. Topics discussed will include mutagenesis of cultured animal cells and selection schemes, gene transfer into cultured cells mediated by naked DNA, chromosomes and viruses, transformation of yeast by chromosomal DNA and plasmids, neoplastic transformation of plant cells by Agrobacteria plasmids, nuclear transplantation and gene injection into amphibian eggs and oocytes, selective drug-induced gene amplification in cultured animal cells, somatic cell hybridization. Given in alternate years; not offered in 1984-85. Instructor: Attardi.

Bi/Ph 131. Topics in Biophysics. 6 units (2-0-4); first term. Prerequisite: Consent of instructor. A lecture, reading, and discussion course on topics of current interest involving the application of mathematical or physical techniques to the solution of biochemical or biological problems. Given in alternate years; offered in 1984-85. Instructor: Berg.

Bi/Ch 132 ab. Biophysics of Macromolecules. 9 units (3-0-6); second, third terms. Prerequisite: Ch 21 ab or Ch 24 a or equivalent. Biophysical chemistry of nucleic acids, including: helix-random coil equilibria; reassociation kinetics; polymer statistic and conformations; sedimentation; gel electrophoresis; and other methods of separating nucleic acids. Bi/Ch 132 b is taught jointly with Ch 24 b. Instructors: Chan and Davidson.

Bi 135. Optical Methods in Biology. 6 units (2-0-4); first term. Prerequisite: Ph 1 or instructor's permission. The course will present principles and practice of the operation of various types of light and electron microscopes including phase contrast and interference microscopes.
as well as transmission electron microscopes and scanning electron microscopes of various
types. Specimen preparation will be discussed and the interpretation of electron micrographs
analyzed. Given in alternate years; not offered in 1984–85. Instructor: Revel.

Bi 136. Optical Methods in Biology Laboratory. 8 units (0-6-2); first term. Laboratory
accompanying Bi 135. Enrollment limited. Given in alternate years; not offered in 1984–85.
Instructor: Revel.

Bi 137. Multicellular Assemblies. 9 units (3-0-6); third term. Prerequisite: Bi 9 or consent of
instructor. Aspects of the cellular interactions involved in the formation and maintenance of the
hierarchy of tissues and organs in multicellular organisms. Topics covered will include cell
membranes, cell movements and aggregation, cellular adhesion, intercellular communication,
the organization of epithelial and connective tissues, and the histophysiology of a few typical
organs. Given in alternate years; offered in 1984–85. Instructor: Revel.

Bi 150. Neurobiology. 10 units (4-0-6); first term. Lectures and discussions on general prin­
ciples of the organization and function of nervous systems, providing both an overview of the
subject and a foundation for advanced courses. Topics include neurocytology and gross neuro­
anatomy; developmental neurobiology; the biophysical basis for action potentials, synaptic
transmission, and sensory transduction; and the integration of these processes in sensory and
motor pathways of the central nervous system. Laboratory demonstrations offer experience with
the experimental preparations discussed in the course. Instructors: Van Essen, Tanouye.

Bi/Ph 151. Topics in Nervous System Biophysics. 6 units (2-0-4); third term. Prerequisites,
Bi/Ph 50 or Bi 150. A reading and discussion course. Topics will include membrane biophysics,
nearal modeling, theories of higher brain function, and methods for studying whole brain

Bi 152. Behavioral Biology. 6 units (2-0-4); second term. Introduction to ethology and behav­
ioral genetics. Topics include causation, development, evolution, and genetic analysis of animal
behavior, with examples from both invertebrates and vertebrates. Instructors: Konishi and
Benzer.

Bi 156 Neurochemistry. 9 units (3-0-6); third term. Prerequisite: Bi 150 or instructor's per­
mission. A lecture and discussion course covering the chemistry of neurotransmission at syn­
apses, the molecular properties of neurons and glia, and the cellular interactions involved in
the development of the nervous system. Neurochemical aspects of learning and mental illness
will also be considered. Given in alternate years; not offered in 1984–85. Instructor: Patterson.

Bi 157. Comparative Nervous Systems. 9 units (2-3-4); third term. An introduction to the
comparative study of the gross and microscopic structure of nervous systems. The main empha­
sis will be on the vertebrate nervous system; the highly developed central nervous systems
found in arthropods and cephalopods will also be examined. Variation in nervous system struc­
ture with function and with behavioral and ecological specializations and the evolution of the
vertebrate brain will be discussed. Given in alternate years; offered in 1984–85. Instructor: Allman.

Bi 158. Primatology. 9 units (3-1-5); third term. Evolutionary and behavioral biology of
primates. Topics will include fossil primates, comparative anatomy, physiology and ethnology
of primates, and tool invention and symbolic communication in primates. Given in alternate
years; not offered in 1984–85. Instructor: Allman.

Bi 161. Cellular Neurobiology Laboratory. 6 units (0-4-2); second term. Prerequisite: Bi 150
or Bi/Ph 50, or instructor's permission. The principles of cellular neurobiology and membrane
biophysics are illustrated using favorable preparations, such as the frog nerve-muscle synapse
and cultured nerve and muscle tissue. Students conduct all aspects of the experiments, including dissection, fabrication of microelectrodes, intracellular stimulation and recording, and patch recording of single membrane channels. Graded pass/fail. Instructor: Lester.

Bi 180. Methods in Molecular Genetics. 12 units (2-8-2); first term. Prerequisites: Bi 122 and instructor's permission. This course is designed to introduce students to the current research tools of molecular genetics. Students will perform a series of structured experiments to familiarize them with basic genetic approaches including mutant selection, genetic mapping, gene cloning and gene product analysis. The students will then confront an unresolved research problem in biology that they will address by both designing and executing their own experiments. Graded pass/fail. To be offered in 1985–86. Instructors: Emr, Simon.

Bi 185. Collective Computation. 9 units (2-4-3); first term. Prerequisite: Completion of undergraduate requirements for computer science, physics, or applied physics, or equivalent quantitative background. For course description, see Computer Science.

Bi 202. Biochemistry Seminar. 1 unit; all terms. A seminar on selected topics and on recent advances in the field. In charge: Staff.

Bi 204. Genetics Seminar. 2 units; all terms. Reports and discussion on special topics. In charge: Meyerowitz.

Bi 211. Topics in Membrane and Synaptic Physiology. 6 units (3-0-3); first term. Graduate seminar discussing the original literature on the biophysics and biochemistry of processes mediated by the neuronal cell membrane. Particular emphasis on current aspects of synaptic transmission. Given in alternate years; not offered in 1984–85. Instructor: Lester.

Bi 212. Topics in Ethology and Behavioral Genetics. 6 units (2-0-4); second term. Reading and discussions of original papers related to animal behavior and its analysis by ethological and genetic methods. Given in alternate years; not offered in 1984–85. Instructors: Benzer and Konishi.

Bi 217. Central Mechanisms in Perception. 6 units (2-0-4); first term. Readings and discussions of behavioral and electrophysiological studies of the systems for the processing of sensory information in the brain. Given in alternate years; offered in 1984–85. Instructor: Allman.

Bi 218. The Physiological Basis of Behavior. 6 units (2-0-4); third term. Reading and discussions of original papers dealing with the problem of how nerve cells act to generate behavior. Several simple reflex, rhythmic, and learning behaviors are considered. The individual cellular elements and synaptic interactions responsible for generating each behavior are examined in detail. Other topics include the modulation of motor output by sensory input and experience. Given in alternate years; not offered in 1984–85. Instructor: Tanouye.

Bi 219. Developmental Neurobiology. 9 units (2-0-7); third term. Advanced discussion course involving extensive reading of current papers and student presentations. Topics covered will include the proliferation, migration, differentiation and death of neurons, as well as the role of trophic factors, cell surface molecules, and hormones. Particular emphasis will be placed on the generation of specific synaptic connections and the molecular basis underlying it. Given in alternate years; offered in 1984–85. Instructor: Patterson.

Bi 220. Advanced Seminar in the Molecular Biology of Development. 6 units (2-0-4); second term. Discussion of current papers on various pertinent topics including: nucleic acid renaturation and hybridization studies; transcription level regulation of gene function; evolutionary change in developmental processes; molecular aspects of differentiation in certain more intensively studied systems, etc. Given in alternate years; not offered in 1984–85. Instructor: Davidson.
Bi 222. Biochemistry of the Nervous System. 6 units (2-0-4); second term. Prerequisites: Bi Ch 110 and Bi 150 or equivalent, or consent of instructor. A reading and discussion course designed to illustrate recent applications of biochemical techniques to the study of the nervous system. Topics will include the characterization and function of peptide neurotransmitters, structural studies of neurotransmitter receptors, the biochemistry of ion channels, and structural and functional studies of synapses. The course will emphasize reading and evaluation of current research papers. Given in alternate years; not offered in 1984–85. Instructor: Kennedy.

Bi 225. Topics in Cellular and Molecular Genetics. 6 units (2-0-4); second term. Reading and discussion of current papers dealing with the theory and practice of "genetic intervention" in higher eukaryotic cells. Discussed approaches will include DNA and chromosome-mediated transformation of cells in culture, gene amplification, cell fusion, gene injection into eggs, and use of somatic cell genetics techniques for gene cloning. Emphasis will be placed on the use of these approaches to study problems in areas such as cell differentiation, cell cycle control, cell compartmentation, membrane physiology and assembly. Given in alternate years; offered in 1984–85. Instructor: Attardi.

Bi 230. Motile Behavior of Cells and Organisms. 6 units (2-0-4), second term. Prerequisite: consent of instructor. Discussion of literature dealing with behavioral responses of motile cells and unicellular microorganisms, with an emphasis on sensory transduction at the molecular level. Given in alternate years; not offered in 1984–85. Instructor: Berg.

Bi 241. Advanced Topics in Molecular Biology. 6 units (2-0-4); third term. Prerequisite: instructor's permission. Reading and discussion of new areas in molecular biology. Instructor: Dreyer.

Bi 270. Special Topics in Biology. Units to be arranged; first, second, third terms. Students may register with permission of the responsible faculty member.

Bi 280-291. Biological Research. Units to be arranged; first, second, third terms. Students may register for research in the following fields after consultation with those in charge: neurophysiology (280), biochemistry (281), neurochemistry (282), developmental biology (283), genetics (284), immunology (285), molecular biology (286), virology (287), biophysics (288), psychobiology (289), cell biology (290), neurobiology (291).

BUSINESS ECONOMICS AND MANAGEMENT

BEM 100 abc. Business Economics and Management. 9 units (3-0-6); first, second, third terms. Open to graduate students. This course endeavors to bridge the gap between engineering and business. The principal divisions are: 1) managerial accounting and information flows; 2) business finance; 3) quantitative technique and business decisions; 4) economic applications to business; and 5) systems analysis. Instructors: Staff, visiting lecturers.

BEM 102. Topics in Management Science. 9 units (3-0-6). Prerequisite: EciSS 11. This course considers various management and industrial organization topics including queuing, inventory and reliability theory, optimal stopping with applications to job search and R&D. The underlying theory of simple stochastic processes will be developed as needed. Not offered in 1984–85. Instructor: Reinganum.

BEM 123. Methods of Operations Research. 9 units (3-0-6). Prerequisite: Ma 1 abc. This course will deal with techniques of optimization for problems in business and economics. The main emphasis will be on linear and nonlinear programming. Other topics will include dynamic programming, and methods for global optimization, such as branch and bound and implicit enumeration methods. Not offered in 1984–85. Instructor: McKelvey.
BEN 145. Investment Analysis and Portfolio Management. 9 units (3-0-6). This course introduces students to aspects of security analysis and portfolio theory. Problems in the valuation of financial instruments including stocks, bonds, options, warrants, and futures contracts, and the construction of an efficient portfolio from these instruments will be considered. Not offered in 1984–85. Instructors: Staff.

CHEMICAL ENGINEERING

ChE 10. Introduction to Chemical Engineering Systems. 9 units (3-3-3); third term. Basic concepts in transport phenomena and chemical kinetics are discussed with respect to a variety of problems of current interest to society. Instructor: Shair.

ChE 63 abc. Chemical Engineering Thermodynamics. 9 units (3-0-6); first, second, third terms. Basic thermodynamic laws and relations for one-component closed systems and for simple steady-flow systems; the treatment includes imperfect substances and frictional processes. In the third quarter chemical reaction equilibria and phase equilibria with practical applications. Instructor: Gavalas.

ChE 80. Undergraduate Research. Units by arrangement. Research in chemical engineering offered as an elective in any term. If ChE 80 units are to be used to fulfill elective requirements in the chemical engineering option, a thesis approved by the research director must be submitted in duplicate before May 10 of the year of graduation. The thesis must contain a statement of the problem, appropriate background material, a description of the research work, a discussion of the results, conclusions, and an abstract. The thesis need describe only the significant portion of the research. Graded pass/fail.

ChE 81. Special Topics in Chemical Engineering. Units by arrangement. Occasional advanced work involving reading assignments and a report of special topics. Permission of the instructor is required. No more than 12 units in ChE 81 may be used to fulfill elective requirements in the chemical engineering option. Graded pass/fail.

ChE 90. Chemical Engineering Systems. 9 units (3-3-3); third term. (Not open to freshmen.) Same as ChE 10 but with projects selected to suit the needs and interests of upperclass students. Instructor: Shair.

ChE 103 abc. Transport Phenomena. 9 units (3-0-6); first, second, third terms. Prerequisites: AMa 95 or AM 113 ab, or concurrent registration in either. A rigorous development of the basic differential equations of conservation of momentum, energy, and mass in fluid systems. Solution of problems involving fluid flow, heat transfer, and convective diffusion. Instructors: Herbolzheimer (a,c), Stephanopoulos (b).

ChE 104. Separation Processes. 9 units (3-0-6); first term. Prerequisites: ChE 63 abc, ChE 103 abc, or equivalent. Application of the principles of mass transfer rates and phase equilibria to the analysis of staged and continuous separation processes. Topics include: absorption, extraction, binary and multicomponent distillation, adsorption, and ion exchange. Instructor: Shair.

ChE 105. Process Control. 9 units (3-0-6); second term. Prerequisite: AMa 95 abc or AM 113 abc, or concurrent registration in either. Feedback control of linear systems. Frequency response. Sampled-data systems. Introduction to multivariable control. Instructor: Bailey.
ChE 110 ab. Optimal Design of Chemical Systems. 12 units (3-0-9); second, third terms.

ChE 111. Simulation and Design of Chemical Systems. 9 units (3-0-6); third term. Prerequisites: appropriate background in unit operations, reactor design, physical chemistry, and engineering economics (equivalent of ChE 110 ab). Emphasis will be placed upon the simulation and optimization characteristics of chemical systems using FLOWTRAN. Not offered in 1984–85.

ChE 126 ab. Chemical Engineering Laboratory. 9 units (1-6-2); second, third terms. Projects illustrative of problems in transport phenomena, unit operations, chemical kinetics, process control, and reactor design are performed. Instructor: Morari.

ChE/Env 157 abc. Fundamentals of Air Pollution Engineering. 9 units (3-0-6); first, second, third terms. Open to graduate students and seniors with instructor's permission. Principles necessary to understanding the sources, atmospheric behavior, and control of air pollutants. Air quality and emission standards, air pollution sources, generation of pollutants in combustion systems. Fundamentals of particulate air pollutants, aerosol physics and chemistry, gas-to-particle conversion processes, control techniques for particulate pollutants, pollutant effects on visibility. Atmospheric chemistry, atmospheric diffusion, control techniques for gaseous pollutants. Instructors: Cass, Flagan, Seinfeld.

ChE 162. Catalysis and Surface Chemistry. 9 units (3-0-6); third term. Prerequisite: Ch 21 abc or the equivalent. Thermodynamics of two-dimensional systems. Physical adsorption and the BET theory. Chemical adsorption and the Langmuir isotherm. Localized and nonlocalized adsorption. General theories of heterogeneous catalysis by metals, semiconductors and insulators. Instructor: Weinberg.

ChE 163. Fundamentals of Biochemical Engineering. 9 units (3-0-6); second term. Prerequisites: ChE 101 or instructor's permission. A first course in microbial and enzyme processes, natural or artificial, with applications to industrial fermentations, enzyme utilization, and wastewater treatment. Topics: Rudiments of microbiology; isolation and utilization of enzymes; kinetics of enzyme catalyzed reactions; substrate utilization and kinetics of microbial growth; microbial interactions of mixed cultures; transport phenomena in microbial systems; design and analysis of biological reactors; applications in industrial operations and natural systems. Instructors: Bailey, Stephanopoulos.

ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6); first term. Prerequisite: Ch 21 abc or the equivalent. Ensembles and a statistical mechanical formulation of the second and third laws of thermodynamics. Classical statistical mechanics and an introduction to quantum statistics. The ideal monatomic, diatomic and polyatomic gas. Translational, rotational, vibrational and electronic partition functions. Chemical equilibria. Real gases and distribution functions. The ideal crystal lattice. Instructor: Weinberg.

ChE 165. Applied Chemical Thermodynamics. 9 units (3-0-6); second term. Prerequisite: ChE 63 abc or equivalent. Thermodynamic states and the First Law. Entropy and the Second
Chemistry 193

ChE 166 ab. Engineering Properties of Polymeric Materials. 9 units (3-0-6); first, second terms. Prerequisite: AMa 95 or equivalent. Basic engineering properties of polymeric materials for the materials scientist and the chemical, mechanical, aeronautical, electrical, and civil engineer. Instructor: Tschoegl.

ChE 167. Advanced Polymer Science. 9 units (3-0-6); third term. Prerequisite: ChE 166 ab or equivalent. A course in the science of synthetic macromolecules: their characterization and properties. The emphasis is on an understanding of polymer properties in terms of molecular structure. Instructor: Tschoegl.

ChE 168. Polymer Science Laboratory. 9 units (0-7-2); third term. Prerequisite: ChE 166 ab or equivalent. An introduction to some of the basic techniques employed in the synthesis and characterization of synthetic polymers. Instructor: Tschoegl.

ChE 169. Theoretical Thermodynamics. 9 units (3-0-6); third term. Prerequisite: ChE 63 ab or equivalent. A postulatory exposition of the structure of equilibrium and steady-state (irreversible) thermodynamics. Instructor: Tschoegl.

EE/ChE 170 ab. Introduction to Systems and Control. 9 units (3-0-6); second and third terms. Prerequisite: E 13, E 101 or equivalent. For course description, see Electrical Engineering.

EE/ChE 171 ab. Advanced Topics in Systems and Control. 9 units (3-0-6); second and third terms. Prerequisite: EE/ChE 170 or instructor’s permission. For course description, see Electrical Engineering.

Ae/ChE 172 abc. Optimal Control Theory. 9 units (3-0-6); first, second, third terms. For course description, see Aeronautics.

ChE 173 ab. Advanced Transport Phenomena. 9 units (3-0-6); first, second terms. Prerequisite: AM 113 or AmA 95, or concurrent registration in either, or instructor’s permission. Foundations of heat, mass and momentum transfer. Governing differential equations; unidirectional flows; laminar flow of incompressible fluids at high and low Reynolds number; bubbles, drops and other small particles; forced and free convection heat and mass transfer. Selected topics from: transport processes in suspensions, packed beds or porous media; and mixing processes, such as Taylor diffusion. Instructor: Leal.

ChE 174. Special Topics in Transport Phenomena. 9 units (3-0-6); third term. Prerequisite: AM 113 or AmA 95, or concurrent registration in either, or instructor’s permission. Advanced problems in heat, mass and momentum transfer. Introduction to the mechanics of non-Newtonian liquids; selected topics in hydrodynamic stability theory; and transport processes in turbulent flows. Other topics may be discussed, depending upon the needs and interests of the class. Instructor: Leal.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in Chemical Engineering. Main lines of research now in progress are covered in detail in Section 2.

CHEMISTRY

Ch 1 abc. General Chemistry. 6 units (3-0-3); first, second, third terms. Lectures and recitations dealing with the principles of chemistry. First term: stoichiometry; states of matter; concepts of electronic structure, chemical bonding and intermolecular forces; chemical equilibrium and factors influencing a system at equilibrium; the elements of chemical thermodynamics; relations between molecular properties and properties of matter in bulk. Second term: modern theories relating to the electronic structure of atoms and chemical bonding in molecules,
solids, and surfaces. Third term: stereochemistry; rates of reactions; reaction mechanisms and chemical reactivity; both inorganic and organic reactions will be considered. Graded pass/fail. Instructors: Gray, Bercaw, Goddard, Dougherty, and staff.

Ch 2 ab. Advanced Placement in Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: instructor's permission. Ch 2 will cover the structure of molecules with an introduction to the structure of condensed phases. Algebraic methods are used to quantify the symmetry of molecular geometrical, vibrational, and electronic structure. Both quantum mechanical and modern experimental techniques of structural determination will be covered. Graded pass/fail. Instructors: Janda, Chan.

Ch 3 a. Fundamental Techniques of Experimental Chemistry. 6 units (0-6-0); first, second, third terms. Introduces the basic principle and techniques of synthesis and analysis and develops the laboratory skills and precision that are fundamental to experimental chemistry. Enrollment first term will be limited to students who have gained advanced placement into Ch 41, Ch 2, or Ch 21, or by permission of the instructor. Instructors: Chan and staff.

Ch 3 b. Experimental Procedures of Synthetic Chemistry. 8 units (1-6-1); third term. Prerequisites: Ch 1 a, Ch 1 b and Ch 3 a. Provides instruction in fundamental synthesis, separation and characterization procedures used in chemical research. Graded pass/fail. Instructors: Chan and staff.

Ch 4 ab. Synthesis and Analysis of Organic and Inorganic Compounds. 9 units (1-6-2). Prerequisite: Ch 1 abc (or the equivalent) and Ch 3 a. It is strongly recommended that any student taking Ch 4 a or Ch 4 b have completed or be enrolled concurrently in Ch 41. This two-quarter laboratory introduces the student to methods of synthesis, separation, and instrumental analysis used routinely in chemical research laboratories. In Ch 4 a a spectroscopic techniques of characterization are emphasized, whereas chromatographic analysis and other separation/purification techniques are stressed in Ch 4 b. Ch 4 a second term only; Ch 4 b third term only. Instructors: Chan and staff.

Ch 5 ab. Advanced Techniques of Synthesis and Analysis. 9 units (1-6-2); first, second terms. Prerequisite: Ch 4 ab. The emphasis will be on modern synthetic chemistry. The specific experiments may change from year to year. Multistep syntheses of natural products, coordination complexes, and organometallic complexes will be included. Experiments to illustrate the fundamental principles of inorganic and organometallic chemistry will be emphasized. Methodology will include advanced techniques of synthesis and instrumental characterization. Instructors: Collins, Dougherty.

Ch 6 ab. Application of Physical Methods to Chemical Problems. 10 units (0-6-4); second, third terms. Prerequisites: Ch 1 abc, Ch 4 ab, and Ch 21 or equivalent (may be taken concurrently). Introduction to the application of modern physical methods to chemical problems, with emphasis in the area of molecular spectroscopy. Techniques including laser Raman spectroscopy, ultraviolet photoelectron spectroscopy, and ion cyclotron resonance spectroscopy are used to examine the structure, properties, and reaction dynamics of molecules. Instructor: Sparks.

Ch 14. Chemical Equilibrium and Analysis. 6 units (2-0-4); first term. A systematic treatment of ionic equilibria in solution. Topics covered include acid-base equilibria in aqueous and nonaqueous solutions, complex ion formation, chelation, oxidation-reduction reactions, and some aspects of reaction mechanisms. Instructor: Richards.

Ch 15. Chemical Equilibrium and Analysis Laboratory. 10 units (0-6-4); first term. Prerequisites: Ch 1 abc, Ch 3a, Ch 4a, Ch 14 (may be taken concurrently). Laboratory experiments are offered to illustrate modern instrumental techniques that are currently employed in industrial and academic research. Emphasis will center on determinations of chemical composition, measurement of equilibrium constants, and trace-metal analysis. Instructors: Raftery, Schaefer.
Ch 21 abc. The Physical Description of Chemical Systems. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 abc, Ph 2 abc, Ma 2 abc. The main emphasis is on atomic and molecular quantum mechanics, spectroscopy, thermodynamics, statistical mechanics, and chemical kinetics. Instructors: McKoy, Zewail, Marcus, Beauchamp.

Ch 24 ab. Introduction to Biophysical Chemistry. 9 units (3-0-6); second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc, Ch 21 a or Ph 2 abc. Fundamental physical chemistry, with an emphasis on those topics most important in biology. Thermodynamics and its applications to aqueous solutions and living systems, membrane potentials and the thermodynamics of transport, reaction kinetics and mechanisms, transport properties, applications of molecular spectroscopy in biology, and statistical mechanics with applications to biological polymers. Ch 24 b is taught jointly with Bi/Ch 132 b. Instructor: Davidson.

Ch 41 abc. Chemistry of Covalent Compounds. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 1 abc or instructor's permission. This course will cover the synthesis, structure, and mechanisms of reactions of covalent compounds. Emphasis will be on the study of molecules formed from carbon and other first- and second-row elements. Instructors: Grubbs, Dervan.

Ch SO. Chemical Research. Offered to B.S. candidates in chemistry. Prerequisite: consent of research supervisor. Experimental and theoretical research experiment requiring a report containing an appropriate description of the research work. Graded pass/fail.

Ch 81. Independent Reading in Chemistry. Units by arrangement. Prerequisite: instructor's permission. Occasional advanced work involving reading assignments and a report on special topics. No more than 12 units in Ch 81 may be used as electives in the chemistry option. Graded pass/fail.

Ch 90. Oral Presentation. 2 units (1-0-1); second term. Training in the techniques of oral presentation of chemical topics. Practice in the effective organization and delivery of reports before groups. Open only to students with junior standing or higher. Graded pass/fail. Instructors: Janda, Marsh.

Ch 91. Scientific Writing. 3 units (1-0-2); first or third terms. Practical training in the writing of technical reports, reviews, and research papers on chemical topics. Open to undergraduates only. Graded pass/fail. Instructor: Schaefer.

Bi/Ch 110 abc. Biochemistry. 12 units (4-0-8); first, second, third terms. Prerequisite: Ch 41 or instructor's permission. For course description, see Biology.

Ch 112. Inorganic Chemistry. 9 units (3-0-6); first term. Prerequisite: Ch 41 abc or equivalent. Introduction to group theory, ligand field theory, and bonding in coordination complexes and organotransition metal compounds. Systematics of synthesis, bonding, and reactivities of commonly encountered classes of transition metal compounds. Instructor: Bercaw.

Ch 117. Introduction to Electrochemistry. 6 units (2-0-4); second term. A discussion of the structure of the electrode-electrolyte interface, the mechanism by which charge is transferred across it, and of the experimental techniques used to study electrode reactions. The topics covered change from year to year but usually include diffusion currents, polarography, coulometry, irreversible electrode reactions, the electrical double layer, and the kinetics of electrode processes. Given in alternate years. Instructor: Anson.

Ch 118 ab. Experimental Electrochemistry. Units by arrangement; second, third terms. Laboratory practice in the use of selected electrochemical instruments and techniques. The student may pursue a set of expository experiments or elect to carry out a research project in electrochemistry. Instructor: Anson.

Ch 120 abc. Nature of the Chemical Bond. Part a, 9 units (3-0-6) first term; part b, 6 units (2-0-4) second term; part c, 6 units (1-1-4) third term. Prerequisite: Ch 21 a or an equivalent introduction to quantum mechanics. Modern ideas of chemical bonding will be discussed with
the emphasis on qualitative concepts and how they are used to make predictions of geometries, energies, excited states, and rules for chemical reactions. Applications will emphasize molecules involving both main-group and transition metals and will include some discussion of impurity states in solids, and the bonding and reactions at surfaces of solids. Part c is a lab in which the student uses modern computer programs to calculate wavefunctions and properties of molecules. Part b is not a prerequisite for part c. Instructor: Goddard.

Ch 122 ab. Methods for the Determination of the Structure of Molecules. 9 units (3-0-6); first, second terms. Prerequisite: Ch 21 abc or instructor's permission. Modern methods used in the determination of the structure of molecules, including x-ray, electron, and neutron diffraction; mass spectrometry; optical, infrared, Raman, microwave, Mössbauer, nuclear magnetic, and electron spin resonance spectroscopy. The emphasis will be on diffraction methods and nuclear magnetic resonance. Instructors: Marsh, Janda.

Ch 125 abc. The Elements of Quantum Chemistry. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or an equivalent brief introduction to quantum mechanics. A first course in molecular quantum mechanics consisting of a quantitative treatment of quantum mechanics with applications to systems of interest to chemists. The course includes the basic elements of quantum mechanics, the electronic structure of atoms and molecules, the interactions of radiation fields and matter, scattering theory, and reaction rate theory. Instructors: Kuppermann, McKoy.

Ch 127 ab. Nuclear Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: instructor's permission. An introductory course on the properties of nuclei. Topics: radioactive decay; nuclear binding energies; interaction of radiation with matter; ion implantation; radiation damage; nuclear level structure; nuclear moments; nuclear reactions including fission. Topics covered depend on class interest. Given in alternate years; not offered in 1984–85. Instructor: Burnett.

Ch 130. Spectroscopy. 9 units (3-0-6); second term. Discussion of various topics in modern spectroscopy. Group theory with applications to molecular structure and spectroscopy. Instructors: Marcus, Zewail.

Ch 131. The Chemistry of Amino Acids, Peptides, and Proteins. 9 units (3-0-6); third term. Prerequisite: Ch 41 abc. A discussion of the chemical reactions, structures, and functions of amino acids, peptides, and proteins. Given in alternate years; not offered in 1984–85.

Bi/Ch 132 ab. Biophysics of Macromolecules. 9 units (3-0-6); second, third terms. Prerequisite: Ch 21 ab or Ch 24 a or the equivalent. For course description, see Biology.

Ch 135. Chemical Dynamics. 9 units (3-0-6); third term. Prerequisites: Ch 21 abc and Ch 41 abc or equivalent, or with consent of instructor. Detailed considerations of the cross sections, rates, energetics, and mechanisms of chemical reactions. Emphasis is on theoretical models used to interpret gas-phase reactions studied with molecular beam and laser techniques. Instructor: Beauchamp.

Ch 140 ab. Special Topics in Chemistry. 6 units (2-0-4); first, second terms. A seminar course dealing with theoretical and experimental aspects of electron-transfer reactions in solution and at electrodes. Biological electron-transfer processes, mechanisms of inorganic redox reactions, excited-state redox processes, dioxygen reduction, electron tunnelling, and adiabatic electron-transfer theories will be among the topics discussed. Graded pass/fail. Instructors: Anson, Chan, Gray, Hopfield, and Marcus.

Ch 142. Frontiers in Chemical Biology. 4 units (2-0-2); second term. Prerequisite: Bi/Ch 110 abc or instructor's permission. A discussion of enzyme structure and function, and ligand-protein-nucleic acid interactions. Instructors: Parker, Raftery.
Ch 144 ab. Advanced Organic Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: Ch 41 abc or equivalent. Lectures will cover an advanced survey of modern organic chemistry. The first term will emphasize organic reaction mechanisms and will cover topics in carbonium and carbanion chemistry, carbenes, free radicals, and aromatic substitution. Kinetic, thermochimical, and orbital symmetry concepts will be used in mechanistic analysis. The second term will cover organic reaction chemistry and develop the concepts of organic synthesis. Instructors: Ireland, Roberts.

Ch 154. Organometallic Chemistry. 9 units (3-0-6); second term. Prerequisite: Ch 112 or equivalent. A general discussion of the reaction mechanisms, synthetic and catalytic uses of transition metal organometallic compounds. Instructors: Bercaw, Grubbs.

ChE/Ch 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6); first term. Prerequisite: Ch 21 abc or the equivalent. For course description, see Chemical Engineering.

Ch 212. Advanced Inorganic Chemistry. 9 units (2-0-7); third term. Prerequisites: Ch 112 and Ch 21 abc or concurrent registration. A series of topics in modern inorganic chemistry will be presented. For 1984–85, a general treatment of the principles of homogeneous oxidation chemistry, fundamental classes of oxidizing agents and oxidation reactions, mechanisms of oxidation reactions, metal catalyzed oxidation reactions, especially those involving molecular oxygen and its peroxy derivatives, biochemical enzymatic oxidations, structure and reactivity of metal oxo complexes, ozone and singlet oxygen. Instructor: Collins.

Ch 213 abc. Advanced Ligand Field Theory. 12 units (1-0-11); first, second, third terms. Prerequisite: Ch 21 abc or concurrent registration. A tutorial course that involves problem solving in the more advanced aspects of ligand field theory. This course is recommended only for students interested in detailed theoretical work in the inorganic field. Instructors: Gray and staff.

Ch 227 ab. Advanced Topics in Chemical Physics. 9 units (3-0-6); second, third terms. Prerequisite: Ch 125 abc or Ph 125 abc or equivalent. The general quantum mechanical theory of molecular collisions will be presented in detail. Quasi-classical, semi-classical, and other approximations will be covered. Applications to inelastic and reactive molecule-molecule and inelastic electron-molecule collisions will be given. Not offered in 1984–85. Instructor: Kuppermann.

Ch 229 abc. X-Ray Diffraction Methods. 6 units (2-0-4); first, second, third terms. The techniques of structure analysis by X-ray diffraction, protein crystallography, direct phase analysis methods, lattice vibrations, and refinement and assessment of accuracy of structure determination. Given in alternate years; not offered in 1984–85.

Ch 241 a. Topics in Advanced Organic Chemistry. 6 units (2-0-4); first term. Prerequisite: Ch 144 ab. Selected topics of current interest in advanced organic chemistry will be presented in depth, in four- to six-week intervals. Areas covered will include physical organic chemistry, synthetic methodology and design, organometallic and bio-organic chemistry. Not offered in 1984–85.

Ch 242 a. Chemical Synthesis. 4 units (2-0-2); second term. Prerequisite: Ch 41 abc. The concepts of synthetic planning will be developed through the analysis of recorded syntheses. The methodology of the organization of a complex set of reactions so as to accomplish a chosen goal will be examined with the aid of examples of bio-organic, organic, and organometallic interest. Instructor: Ireland.
Ch 244 a. Topics in Chemical Biology. 6 units (3-0-3); first term. A discussion of biological membrane biogenesis, structure, and function. Topics will range from membrane-bound enzymes to receptors for neurotransmitters, hormones, light, proteins or peptides and will be extended to include current work on models of simple behavior. Not offered in 1984–85. Instructor: Raftery.

Ch 247 a. Organic Reaction Mechanisms. 6 units (2-0-4); third term. A mechanistic view of free radical reactions using examples from biological systems will be developed. Topics such as initiation, termination, and propagation of radical reactions in vivo, mechanisms of lipid damage, spin labeling, photosynthesis, oxygen radicals and oxygen toxicity, and radical reactions in proteins and nucleic acids will be discussed. Not offered in 1984–85.

Ch 280. Chemical Research. By arrangement with members of the faculty, properly qualified graduate students are directed in research in chemistry. Hours and units by arrangement.

CIVIL ENGINEERING

CE 10 abc. Structural Analysis and Design. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 97 abc. Study and design of selected structures such as a reinforced concrete building, arch bridge, gravity dam, or engineering facility. Each project considers initial conception, cost-benefit, and optimum design, and concludes with actual design of a structure or portion of a structure. Instructors: Staff.

CE 17. Civil Engineering. 9 units (3-0-6); third term. Prerequisite: senior standing. Selected comprehensive problems of civil engineering systems involving a wide variety of interrelated factors. Instructors: Staff.

CE 105. Introduction to Soil Mechanics. 9 units (2-3-4); first term. Prerequisite: AM 97. A general introduction to the physical and engineering properties of soil, including origin, classification and identification methods, permeability, seepage, consolidation, settlement, slope stability, lateral pressures and bearing capacity of footings. Standard laboratory soil tests will be performed. Instructor: Scott.

CE 115 ab. Soil Mechanics. 9 units (3-0-6); first term, 9 units (2-3-4); second term. Prerequisite: CE 105, or equivalent; may be taken concurrently. Study of the engineering behavior of soil through the examination of its chemical, physical, and mechanical properties. Classification and identification of soils, surface chemistry of clays, interparticle reactions, and soil structure. Linear constitutive relations for soils, including steady state and transient water flow. In the second term, attention is given to nonlinear soil behavior, theories of yielding, plasticity, constitutive models, and problems of plastic stability. Failure modes of footings, walls, and slopes. Instructor: Scott.

CE 124. Special Problems in Structures. 9 units (3-0-6); any term. Selected topics in structural mechanics and advanced strength of materials to meet the needs of first-year graduate students. Instructors: Staff.

CE 130 abc. Civil Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in Civil Engineering are required to attend a graduate seminar, in any division, each week of each term. Graded pass/fail. Instructor: Staff.

CE 150. Foundation Engineering. 9 units (3-0-6); third term. Prerequisite: CE 115 ab. Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, cofferdams, and methods of underpinning. Text: Foundation Analysis, Scott. Instructor: Scott.
CE 180. Experimental Methods in Earthquake Engineering. 9 units (1-5-3); third term. Prerequisite: AM 151 abc or equivalent. Laboratory work involving calibration and performance of basic transducers suitable for the measurement of strong earthquake ground motion, and of structural response to such motion. Study of principal methods of dynamic tests of structures including generation of forces and measurement of structural response. Instructor: Staff.

CE 181. Principles of Earthquake Engineering. 9 units (3-0-6); first term. Characteristics of potentially destructive earthquakes from the engineering point of view. Includes a consideration of: determination of location and size of earthquakes; earthquake magnitude and intensity; frequency of occurrence of earthquakes; engineering implications of geological phenomena, including earthquake mechanisms, faulting, fault slippage, and the effects of local geology on earthquake ground motion. Instructor: Jennings.

CE 182. Structural Dynamics of Earthquake Engineering. 9 units (3-0-6); second term. Prerequisite: AM 151 ab. Response of structures to earthquake ground motion; nature of building code requirements and their relation to actual behavior of structures such as long-span suspension bridges, and fluids in tanks and reservoirs; earthquake design criteria. Instructor: Staff.

CE 200. Advanced Work in Civil Engineering. 6 or more units as arranged; any term. Members of the staff will arrange special courses on advanced topics in civil engineering for properly qualified graduate students. The following numbers may be used to indicate a particular area of study.

CE 201. Advanced Work in Structural Engineering.
CE 300. Civil Engineering Research.

For courses in Environmental Engineering Science and Hydraulics, see separate sections.

COMPUTER SCIENCE

CS/EE 4. Introduction to Digital Electronics. 6 units (2-0-4); second term. An introduction to the significant concepts and techniques of modern digital integrated circuitry. The formulation of logical equations; their realization in hardware; binary arithmetic; its implementation with logical functions. Design and construction of a simple computer. Graded pass/fail. Instructor: Staff.

CS/Ma 6 abc. Introduction to Discrete Mathematics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 1 abc. Set theory, the Peano axiom system and elementary number theory, Graph Theory, paths and trees, generating functions. Algebraic structures, semigroups, permutation groups, automata, lattices and Boolean algebras. Finite fields and coding theory. Linear programming. Mathematical logic, propositional calculus and predicate calculus, models and Godel's completeness and incompleteness theorem. Natural deduction. Instructors: Wilson, Kechris.

CS 10. Introduction to Computing. 9 units (2-3-4); third term. State machines, stored program machines, control structures, modular program design, symbolic control and data manipulation, and high-level programming. Laboratory involves programming on personal computers in PASCAL. Students will be expected to become familiar with PASCAL and structured programming methodology. Instructor: Mead.

1For linguistics, see page 232.
CS/EE 11. Digital Electronics Laboratory. 6 units (0-3-3); third term. Prerequisites: CS/EE 4 and approval of project proposal. 6 units credit allowed toward freshman laboratory requirement. An introductory nonstructured project laboratory designed to provide an opportunity for projects related to the course CS/EE 4. The student is expected to design, build, and test his or her own digital system. Graded pass/fail. Instructor: Bacon.

CS 80 abc. Undergraduate Research in Computer Science. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. This course provides supervised research in computer science by undergraduates. The topic of research must be approved by the supervisor and a formal final report must be presented at the completion of the research. Graded pass/fail. Instructors: Staff.

CS 112. Principles of Microprocessor-Based Information Processing Systems. 9 units (3-3-3); first term. CS 112 presents the principles and concepts of information processing systems with emphasis on the design of microprocessor-based computers. Subjects covered include switching theory, minimization of Boolean functions, arithmetic algorithms, machine models, and assembly language programming. Instructor: Ray.

CS 114. Microprocessor Systems. 12 units (3-6-3); second term. Prerequisite: CS 112 or equivalent. This course presents the issues peculiar to microprocessors and microprocessor systems. Emphasis is on student solutions to real problems using development aids and interactive computing. Instructor: Ray.

CS/Ma 117 abc. Computability Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc or equivalent. Given in alternate years; offered in 1985–86. Instructor: Kechris.

CS/EE 121. Microprocessor Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; third term. Prerequisite: CS 114 or equivalent. A project laboratory to permit the student to design and build a microprocessor system. Instructor: Ray.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 2 c. A basic course in information theory and computational complexity. Emphasis is on fundamental concepts and relations. Topics include: Shannon's Theory in a non-communications context, Boolean functions, combinational and sequential systems, complexity models and measures, information extraction, complexity of analysis and synthesis, data compression and pattern recognition. Instructor: Abu-Mostafa.

CS 136. Functional Programming. 9 units (3-3-3); first term. An introduction to the design and implementation of functional programs. Topics include: side-effect-free recursive functions, lambda calculus, combinators, normal order reduction and lazy evaluation, programming with infinite objects, garbage collection. Aspects of sequential and concurrent implementation. Given in alternate years; offered in 1984–85. Instructor: Martin.

CS 137. Systematic Programming. 9 units (3-0-6); first term. Prerequisites: CS 10 or equivalent, and Ma/CS 6. A course on the design and verification of sequential programs. Topics include: a short review of propositional and predicate calculus, axiomatic semantics, predicate transformers, fixed-point theorems, procedures, recursion, and abstract data types. A series of classical programming examples illustrates the different techniques for defining pre- and post-condition, finding invariant relations, deriving programs, and proving termination. Given in alternate years; offered in 1985–86. Instructor: Martin.

CS/Ma 138 ab. Computer Algorithms. 9 units (3-0-6); second, third terms. Prerequisites: CS 10 or CS 137, and Ma/CS 6. Introduction to the concepts and techniques used in designing and analyzing computer algorithms. Measures of algorithmic complexity. Strategies such as: divide and conquer, dynamic programming, hash functions. Particular applications such as sorting, searching, graph problems, and arithmetic. The principle of NP-completeness. Given in alternate years; offered in 1985–86. Instructor: Staff.
CS 139 ab. Concurrency in Computation. 9 units (3-0-6); second, third terms. Prerequisite: CS 137 or equivalent. A course on design and verification of concurrent algorithms. Topics include: different models of concurrent computations; process synchronization by shared variables and synchronization primitives; distributed processes communicating by message exchange; the concepts of synchronization, indivisible actions, deadlock and fairness; semantics and correctness proofs; implementation issues; and application to VLSI algorithm design. Parallel machine architecture issues include: mapping a parallel algorithm on a network of processors, and classical parallel algorithms and their complexity. Instructor: Martin.

CS 140 abc. Programming Laboratory. 12 units (3-9-0); second, third terms. Prerequisites: CS 137, CS 138 or CS 139 (or to be taken concurrently). The aim of this course is to allow students to gain experience in the design, documentation, implementation, and testing of medium-size programming projects. It is meant as a practical complement to CS 137, CS/Ma 138, and CS 139. Instructors: Staff.

CS 141 abc. Formal Semantics of Programming Languages. 9 units (3-0-6); first, second, third terms. Prerequisite: CS/Ma 6. Formal semantics as a means of associating with each programming language construct a mathematical function or a rule for composing functions. The basic methods for defining these functions and their use in the design and verification of programs. Lambda-calculus, construction of D infinity, semantic domains, continuous functions, and fixed point theorems. Examples of formal semantics for traditional programming languages. Application of these methods to other computing structures and to issues of nondeterminism and concurrency. Instructors: Staff.

CS/SS 142 abc. Computer Modeling and Data Analysis. 9 units (3-3-3); first, second, third terms. The building of conceptual models as an expression of the patterns perceived in the analysis of data. Analysis of data through model fitting and the study of residuals. Mathematical, statistical, and simulation models will be studied. Real-life data bases from a variety of subject areas will be analyzed. The computer will be used extensively. Given in alternate years; offered in 1985–86. Instructor: F. Thompson.

CS 144 abc. Artificial Intelligence. 9 units (3-3-3); first, second, third terms. The lectures and reading will cover current areas of research in artificial intelligence, including knowledge representation, expert systems, natural language understanding, inference and reasoning, and theorem proving. In the first two terms, individual or small group projects will be required; a class project will be a major part of the third term. Given in alternate years; offered in 1984–85. Instructor: F. Thompson.

AMa/CS/Ph 146 ab. Concurrent Algorithms. 9 units (3-3-3); first, second terms. Prerequisites: Basic knowledge of mathematical methods and some programming experience. For course description, see Applied Mathematics.

CS 171 ab. Computer Architecture. 9 units (3-3-3); second and third terms. Prerequisites: CS/EE 4, CS 10 or CS 137. The structure and organization of computer systems. The role of computer hardware, microprograms, and system programs in providing an efficient and reliable environment for the particular application. Issues in designing multi-user, multiprocessor systems with time-shared and distributed hardware. Techniques for supporting high level languages. Techniques for achieving high degrees of concurrency in program execution. Detailed studies of existing or proposed computer systems. Given in alternate years; offered in 1985–86. Instructor: Staff.

CS 180. Masters Thesis Research. Units (total of 45) are determined in accordance with work accomplished. Incoming M.S. students should register for 9 units first term.
CS/EE 181 abc. VLSI Design Laboratory. 12 units (3-6-3); first, second, third terms. Prerequisites: CS/EE 4 and CS 10, or equivalent. A course in digital integrated system design, with project laboratory designing, verifying, and testing high complexity MOS microcircuits. First term lecture and homework topics emphasize disciplined design, and include MOS logic, layout, and timing; computer-aided design and analysis tools; electrical and performance considerations. Each student is required by the end of first term to complete the design, layout, and verification of an integrated circuit project of modest complexity. Projects are fabricated. Advanced topics second and third terms vary year to year. Projects are large-scale designs done by teams, using computer-aided design tools, and testing. Instructor: Seitz.

CS/EE 183 abc. Integrated Digital Communication. 9 units (3-0-6); second, third terms. Prerequisites: At least one term of communications or signal processing. Concepts and systems used in transmitting and switching voice and data digitally in communication networks, with emphasis on common-carrier and computer communication. Subjects include traffic theory, pulse code modulation formats, circuit switching, protocol hierarchy, packet switching, local area networks, computer communications, cellular radio, and analysis and design of large-scale switched digital networks. The emphasis throughout is on the changes in communication concepts being wrought by the digital revolution. Instructor: Posner.

Bi/CS/Ph 185. Collective Computation. 9 units (2-4-3); first term. Prerequisite: Completion of undergraduate requirements for CS, physics or applied physics, or equivalent quantitative background. New physical problems arise with large-scale parallel systems such as the meaning of time order or simultaneity; new logistical/physical problems dominate the design, and new collective phenomena emerge. The course will describe the computation in a context ranging from device physics to biology, and from elementary logic devices to concepts in complexity. It will build toward the modeling, design and fabrication of circuits relevant to extensive parallel and collective computation. The course format will require each student to undertake a design or other project and participate in discussions. Instructors: Mead, Hopfield.

CS/Ph 186 ab. Experimental Projects in Collective Computation. 9 units (0-9-0); second, third terms. Prerequisite: Bi/CS/Ph 185. Projects course dealing with various aspects of collective computation as covered in Bi/CS/Ph 185. A completed project and report are required. Instructors: Mead, Hopfield.

CS/Ph 187 abc. Potentialities and Limitations of Computing Machines. 9 units (3-0-6); first, second, third terms. An overview of the theory and practice of computers. Theory of Turing machines and computability, error correction methods, reversible machines, thermodynamic and quantum theoretical limitations on speed, reliability, and energy requirements. Discussion of present practice in design and operation of silicon technology. Other possibilities using superconductivity, light, etc. Parallel programming, nearest neighbor concurrent processors, cellular automata, brain analogues, etc. Robots, artificial intelligence. Problems of wire profusion in large systems and design of large software systems will all be discussed. Graded pass/fail. Instructor: Feynman.

CS 237 abc. Design and Implementation of Programming Languages. 9 units (3-3-3); first, second, third terms. Prerequisite: CS 137 or CS 140, or permission of instructor. Current practice and research in programming languages. Syntactic and semantic issues with emphasis on the latter. Syntactic topics: finite automata, regular expressions, and lexical analysis; pushdown automata and context free grammars; top down and bottom up parsing techniques; syntax directed translation. Semantic topics: code generation, optimization, binding mechanisms, storage management, and execution environments. Language design topics: abstraction mechanisms, advanced control regimes, very high level languages, functional languages, object oriented languages, logic programming languages. Further topics: interpreter and compiler construction issues, the impact of languages on hardware design. Extensive laboratory work will be required. Given in alternate years; offered in 1984–85. Instructor: Kajiya.
CS 247. Formal Models of Digital Systems. 9 units (3-0-6); first term. Prerequisites: CS/Ma 6 and CS/EE 181. This course combines classical switching theory with more recent theories applicable to VLSI. Topics include: lattice algebras; classical models of relay and gate networks; lower and upper bounds on network complexity; switch-level models of MOS circuits; models of sequential systems; and applications of ternary logic. Instructor: Staff.

CS 257 abc. Simulation. 9 units (3-3-3) first, (3-5-1) second, (3-5-1) third term. Mathematical and computational modeling methods are examined. The course emphasis for the first term is the mathematical foundations of simulation, such as tensor analysis, applied 3-D geometry, and the mathematics of continuum dynamics. The second term is concerned with the numerical methods of simulation, such as the finite element method and Monte Carlo techniques. The final term of the course involves case studies applying these techniques to selected three-dimensional problems in the physical sciences. Term projects for the second and third terms will involve implementing a case study or other computational application of the methods. Some experience with vector and raster graphics would be helpful. Instructor: Barr.

CS 270 abc. Computer Aided Design. 9 units (3-0-6); first, second, third terms. An overall view of computer subsystem design flow in practice, and of required computer design aids: design languages and representations; design data bases and data structures; topological, geometrical and electrical models; algorithmic and analytic techniques for partitioning; design verification, simulation, testing, checking, and layout. Incorporation of programs into computer aided design systems. A principal goal of the course is the specification, design, carrying out, and documentation of portions of an actual design system, with the student working as a member of a design team. Instructor: Ayres.

CS 274 abc. Computer Graphics. 9 units (3-3-3); first, second, third terms. Prerequisites: CS 10 and CS/EE 11 or permission of instructor. The art of making pictures by computer. The software and hardware mechanisms used will be covered in lectures, films, programming exercises, and student projects. Topics covered will include: graphic output, graphic input, three-dimensional graphics, hidden surface algorithms, graphics programming systems, and graphics hardware. Instructor: Blinn.

CS 280. Research in Computer Science. Units in accordance with work accomplished. Approval of student's research adviser and his or her option adviser must be obtained before registering.

CS 282 abc. Reading in Computer Science. 6 units or more by arrangement; first, second, third terms. Permission of the instructor required.

CS 284 abc. Special Topics in Computer Science. 9 units (3-0-6). Permission of the instructor required. Instructors: Staff.

CS 286 abc. Seminar in Computer Science. 9 units (3-0-6). Permission of the instructor required. Instructors: Staff.

ECONOMICS

Ec/SS 11. Social Science Principles and Problems—Introduction to Microeconomics. 9 units (3-0-6); first, second terms. An introduction to the methodology of social sciences, particularly economics, and the applications of that methodology to current social problems. Instructors: Davis, Plott.

Ec 13. Reading in Economics. Units to be determined for the individual by the department. Not available for credit toward humanities-social science requirement. Graded pass/fail.

Ec 15. Introduction to Macroeconomics: Principles and Problems. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 or equivalent. Problems of inflation and depression and the tools of monetary and fiscal policy. Instructor: Staff.
Ec 98 abc. Senior Research and Thesis. Prerequisite: instructor's permission. Senior economics majors wishing to undertake research may elect a variable number of units, not to exceed 12 in any one term, for such work under the direction of some member of the economics faculty.

HSS 99. See page 228 for description.

Ec 101. Selected Topics in Economics. 9 units (3-0-6). Instructors: Staff, visiting lecturers.

Ec 112. History of Economic Analysis. 9 units (3-0-6). Prerequisite: Ec 11. An examination of the development of economic analysis and doctrine, particularly during the 19th century. There will be a specific concentration on the work of Smith, Marx, and the utilitarians. Instructors: Border, Hoffman.

Ec 115. Population and Environment. 9 units (3-0-6); second term. This course will be concerned with: 1) the causes and consequences of rapid population growth; and 2) the problem of reducing the rate of growth through control of fertility. Instructors: Staff.

Ec 116. Contemporary Socioeconomic Problems. 9 units (3-0-6); first term. Prerequisites: Ec/SS 11 and PS/SS 12 or equivalent. An analytical investigation of the economic aspects of certain current social issues. Topics to be discussed include the economics of education, medical care systems, urban affairs, and the welfare system. Instructors: Staff.

Ec 118. Environmental Economics. 9 units (3-0-6); third term. Prerequisite: Ec/SS 11 or equivalent. The methods of price and welfare theory are used to analyze the causes of air, water, and other environmental pollution, to examine their impact on economic welfare, and to evaluate selected policy alternatives for managing our environment. Instructors: Staff.

Ec 119. Financial Aspects of Monetary Theory and Macroeconomics. 9 units (3-0-6); first term. Prerequisite: Ec 15. This course examines the interaction of financial markets with the macro-economy. Topics include: ISLM Model, review and extensions; supply of money; long-term interest rates and the term structure; efficient markets-theory and evidence; determination of the short-term interest rate; asset market theory. Instructor: Dubin.

Ec 120. International Economic Theory. 9 units (3-0-6); third term. Prerequisites: Ec/SS 11 and PS/SS 12 or equivalent. An investigation of the factors affecting the exchange of goods and services and the flow of capital between markets. Theory is stressed in this course. Instructor: Oliver.

Ec 121 ab. Intermediate Microeconomics. 9 units (3-0-6); first, second terms. Prerequisites: Ec/SS 11 and PS/SS 12 or equivalent. The course includes a study of consumer preference, the structure and conduct of markets, factor pricing, measures of economic efficiency, and the interdependence of markets in reaching a general equilibrium. Instructors: Dubin, Gilligan.

Ec 122. Econometrics. 9 units (3-0-6); second term. Prerequisite: Ma 112 a. The application of statistical techniques to the analysis of economic data. Instructors: Dubin, Rivers.

Ec 123. Forecasting Economic Time Series. 9 units (3-0-6); third term. Prerequisite: Ec 122. An examination of various forecasting techniques and their application to business and economics. Instructor: Vuong.

Ec 124 abc. Mathematical Methods of Economics. 9 units (3-0-6). Prerequisites: Ma 108 a and Ec 121 ab (can be taken concurrently). Mathematical tools of modern economic theory and their applications to consumer theory, general equilibrium, and welfare economics will be presented. Emphasis will be on developing rigorous exposition by the students. Instructors: Staff.

Ec 125 ab. The Economics of International Relations. 9 units (3-0-6); first, second terms. No prerequisite. An examination of the economic and political factors that influence relations among nations. Among the topics discussed are foreign exchange markets, international banking
and business, the pattern of international trade and payments, the International Monetary Fund and the World Bank, the European Common Market and the American Foreign Aid Program. The foreign economic policy of the United States is analyzed in some detail. This course emphasizes theory less than does Ec 120. Instructor: Oliver.

Ec 126 ab. Money, Income, and Growth. 9 units (3-0-6); first, second terms. Prerequisites: Ec/SS 11 and PS/SS 12 or equivalent or instructor's permission. This course includes an intensive study of Keynes's General Theory of Employment and post-Keynesian developments in the theory of income, consumption, investment, and growth. Instructors: Staff.

Ec 127. Problems in Economic Theory (Seminar). Units by arrangement; first, second, third terms. Prerequisite: Ec 126 or its equivalent. Consideration of selected topics in economic theory. Instructors: Staff and guest lecturers.

Ec 128. The Elements of Dynamic Economics. 9 units (3-0-6); first term. Prerequisite: Ec SS 11 or equivalent. This course is concerned with explaining: 1) the role of competition as a determinant of the rate of progress; and 2) the relationship between microbehavior and macro-performance. Instructors: Staff.

Ec 129. Economic History of the United States. 9 units (3-0-6); first term. Prerequisite: Ec SS 11 or equivalent. An examination of certain analytical and quantitative tools and their application to American economic development. Instructor: Davis.

Ec 130 ab. Political Foundations of Economic Policy. 9 units (3-0-6); first, second terms. Mathematical theories of individual and social choice are introduced as an approach to the class problems of welfare economics and economic policy. Not offered in 1984-85. Instructor: Plott.

Ec 131. Labor Economics. 9 units (3-0-6). Prerequisite: Ec/SS 11 or equivalent. This course will focus on the modern theory of labor markets. Empirical evidence will be used to supplement theoretical results. Instructor: Wilde.

Ec/PS 134. The Political Economy of Urban Areas. 9 units (3-0-6); second term. Prerequisite: PS/SS 12 or equivalent. This course will focus on development of a theory of urban government using analytic concepts from microeconomics and political science. Instructor: Kiewiet.

Ec 135. Marxist Economics. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 or equivalent. A critical survey of the economic theory of capitalism as developed in the writings of Marx, Engels, and Lenin. Not offered in 1984–85. Instructor: Quirk.

Ec 138. Introduction to Welfare Economics. 9 units (3-0-6). Prerequisite: Ec/SS 11. Economic efficiency of various market arrangements will be discussed as well as modern developments in the theories of decentralization and informational efficiency. Instructors: Border, Vuong.

Ec 139. Microfoundations of Macroeconomics. 9 units (3-0-6); third term. Prerequisite: Ec/ SS 11 or equivalent. The course will focus on aspects of microeconomic theory that are especially relevant to understanding aggregate economic performance. Topics to be covered include models of market disequilibrium with quantity rationing. Instructor: Vuong.

Ec 140. Economics of Energy Policy. 9 units (3-0-6); third term. Prerequisite: Ec 121 ab or equivalent. The course focuses on issues in contemporary resource/energy policies with particular emphasis on federal energy independence policy. After a brief survey in theory of resource economics, major issues are identified and their current solutions are contrasted to other alternatives in terms of feasibility and optimality. Not offered in 1984–85. Instructors: Staff.

Ec 143. Resource Economics. 9 units (3-0-6); first term. Prerequisite: Ec/SS 11. This course covers various topics in the allocation of natural resources. It will focus on problems of extraction, exploitation, exploration, etc. for renewable and nonrenewable resources, e.g., fisheries, fresh water, fossil fuels. Instructor: Quirk.
Ec 150. Independent Study on Population Problems. Units to be arranged. Prerequisite: Ec 115 or equivalent. This course covers a broad range of problems including the technological, economic, demographic, sociological, political, and biological aspects of population growth, movement, and density. Graded pass/fail. Instructors: Scudder, Bonner, Munger.

ELECTRICAL ENGINEERING

CS/EE 4. Introduction to Digital Electronics. 6 units (2-0-4); second term. For course description, see Computer Science.

EE 5. Introduction to Linear Electronics. 6 units (2-0-4); third term. An introduction to the significant concepts of modern linear electronic circuitry. A.C. circuit analysis; networks; their characterization in frequency and time domain. Amplifier gain, frequency response. Power, dynamic range, design of power amplifiers. Design and construction of a typical electronic device such as a tape recorder or hi-fi amplifier. Graded pass/fail. Not offered in 1984–85.

CS/EE 11. Digital Electronics Laboratory. 6 units (0-3-3); third term. Prerequisites: CS/EE 4 and approval of project proposal. 6 units credit allowed toward freshman laboratory requirement. For course description, see Computer Science.

EE 14 abc. Introduction to Electronic Engineering. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. Linear circuit analysis, Kirchoff’s laws, transient and steady-state network solutions, phasor notation, Thevenin and Norton theorems, piece-wise linear analysis, power considerations, introduction to Laplace transform and the pole-zero description of network characteristics. Principles of silicon diodes, FET’s and transistors, temperature effects and device characteristics and limitations, models. Active circuit analysis, distortion, frequency response and multistage amplifiers, oscillators, stability and Nyquist’s Theorem, operational amplifiers. Instructor: Mullin.

EE 32 ab. Introduction to Linear Systems. 9 units (3-0-6); first, second terms. Prerequisites: Ma 1 and Ma 2. An introduction to the analysis and synthesis of analog and digital electronic circuits, signals, and systems. Sampling, modulation, and filtering of signals represented as continuous or discrete functions of time. Input-output relations of linear time-invariant systems. Special emphasis will be placed on transform techniques (Fourier, Laplace, and Z-Transforms). Instructor: McEliece.

EE 40. Fundamentals of Energy Processing Systems. 9 units (3-0-6); first term. Prerequisites: Ma 2 abc, Ph 2 abc, EE 14 abc, EE 90 abc. Introduction to electrical energy processing systems as distinct from information processing systems. Elementary magnetic devices: generators, motors, and transformers. The special problems of electronic power processing. Instructor: Cuk.

EE 51 ab. Engineering Electromagnetics. 9 units (3-0-6); second, third terms. Prerequisites: Ph 2, EE 14; and AMa 95 (may be taken concurrently) or consent of the instructor. Transmission lines and distributed circuits, methods of solution for electro- and magneto-static problems, Maxwell’s equations, plane wave propagation in lossy and dispersive media, guided waves, introduction to microwave circuit elements and techniques. Instructor: Bridges.

EE 78 abc. Senior Thesis, Experimental. 9 units; first, second, third terms. Prerequisite: instructor’s permission. This course is intended to provide supervised experimental research experience, and is open only to senior electrical engineering majors. Requirements will be set by individual faculty members, but will include a written report based upon actual laboratory experience. The selection of topic and the final report must be approved by the Electrical Engineering Undergraduate Committee. Not offered on a pass/fail basis. Instructor: Martel (in charge).
EE 79 abc. Senior Thesis, Theoretical. 9 units; first, second, third terms. Prerequisite: instructor's permission. This course is intended to provide supervised theoretical research experience and is open only to senior electrical engineering majors. Requirements will be set by individual faculty members, but will include a written report based upon the work performed. The selection of topic and the final report must be approved by the Electrical Engineering Undergraduate Committee. Not offered on pass/fail basis. This course cannot be used to satisfy the laboratory requirement in EE. Instructor: Martel (in charge).

EE 90 ab. Laboratory in Electronics. Units by arrangement in multiples of 4 units (0-3-1); second, third terms. An introductory laboratory normally taken in the sophomore and/or junior year. Experiments acquaint the student with the characteristics of linear and passive electronic circuits and devices and the behavior of simple linear and nonlinear active elements. Individual projects may be performed. Text: Electronics: BJT's, FET's, and Microcircuits, Angelo; or Basic Electronics for Scientists, Brophy. Graded pass/fail. Instructor: Martel.

EE 91 abc. Experimental Projects in Electronic Circuits. Units by arrangement; 6 units minimum each term. Prerequisites: EE 14 abc and EE 90 or equivalent. Recommended: EE 114 abc or CS 112, 114, 116 (may be taken concurrently). Open to seniors, others only with consent of instructor. An opportunity to do original projects in electronics and electronic circuits. Selection of significant projects, the engineering approach, demonstration of a finished product through the use of modern electronic techniques. The use of integrated circuit elements, digital and analogue, is encouraged. Printed circuit board facilities are available. Text: Literature references. Instructor: Bacon.

EE/Mu 107 abc. Projects in Music and Science. 9 units (3-0-6); first, second, third terms. Instructor's permission required for all three terms. Students will carry out, singly or in groups, projects of study or research exploring the connections of music with the sciences. Credit in music or EE but not in both. Instructor: Boyk.

EE 112 abc. Digital Signal Processing Principles. 9 units (3-2-4); first, second, third terms. Prerequisite: AMa 95 abc. Discrete time signals and systems, sampling, convolution, z-transforms. Fourier transforms, discrete Fourier transforms, fast Fourier transform techniques, fast convolution, causality, stability, stability tests for linear systems, classical filter approximations, digital filters, design of IIR and FIR digital filters, efficient structures for IIR and FIR digital filters, two-dimensional digital filters, structures requiring very few or no multiplications, binary arithmetic, discrete time random signals, noise generation in binary arithmetic, noise-modeling in binary quantizers, computational noise in digital filters and Fourier transform algorithms, low-noise and no-noise implementations, and selected topics from signal modeling, linear predictive coding, adaptive filtering, Hilbert transformers, and power spectral estimation. The course involves a software lab dealing with signal processing tools. Instructor: Vaidyanathan.

EE 114 abc. Electronic Circuit Design. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 14 abc or equivalent. Applications of solid-state electronic devices in circuits and systems. Emphasis on methods of engineering analysis and design. Recommended for seniors and graduate students. Instructor: Middlebrook.

EE 116. Topics in Modern Electronics. 6 units (2-0-4). Prerequisites: Ma 2 abc and Ph 2 abc. Topics in various fields of electronics by guest lecturers from industry. Specific topics and scope announced prior to registration. A seminar format. Graded pass/fail. Offered as announced. Instructors: Staff.

EE 117 ab. Power Electronics. 9 units (3-1-5) second term; (3-2-4) third term. Prerequisite: EE 14 abc or equivalent. Introduction to repetitively switched power circuits for ac-to-dc, dc-to-ac, and dc-to-dc conversion and/or regulation of voltage or current in high-power applications: power supplies, motor controls, power amplifiers. Components, control techniques, analysis,
and design. Laboratory part of the course includes the design of a switching dc-to-dc converter (part a), closed loop regulator (part b), and verification of the analysis technique and measurement methods through the laboratory assignments (part b). Instructor: Cuk.

CS/EE 121. Microprocessor Laboratory. 9 units (0-9-0) or 12 units (0-12-0) as arranged with the instructor; third term. Prerequisite: CS 114 or equivalent. For course description, see Computer Science.

EE/Ma 126. Information Theory. 9 units (3-0-6); first term. Prerequisite: Ma 2 abc. Shannon's mathematical theory of communication. Entropy and mutual information for discrete and continuous random variables; mathematical models for communication channels; Shannon's noisy-channel coding theorem; calculation of channel capacity. Discussion of the implications of the theory for real communication systems. This course, when followed by EE/Ma 127 ab (for which, however, it is not a prerequisite) should prepare the student for research in information and coding theory. Not offered in 1984–85. Instructor: McEliece.

EE/Ma 127 ab. Error-Correcting Codes. 9 units (3-0-6); first, second terms. Prerequisite: Ma 2 abc. This course, which is a sequel to EE/Ma 126, but which may be taken independently, will cover the most important techniques that can be used to combat errors that occur in the transmission or storage of data. Topics include: algebraic block codes, e.g., Hamming, Golay, BCH, Reed-Solomon, Goppa, Fire; convolutional codes; concatenated codes; and the associated encoding and decoding algorithms. Also included is a self-contained introduction to the theory of finite fields. Instructor: Van Tilborg.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6). For course description, see Computer Science.

EE 140. Electrical Machines Modelling and Control. 9 units (3-0-6); second, third terms. Prerequisite: EE 40 or equivalent. Mathematical models and dynamic analysis of dc machines, polyphase asynchronous machines, and synchronous machines. Frequency control, field oriented control and other modern control methods. Dc and ac drives for the speed control and regulation. Instructor: Sabanovic.

EE 150. Topics in Electrical Engineering. Units and terms to be arranged. The content of this course will vary from year to year. Its treatment will be at a level suitable for advanced undergraduate or beginning graduate students. Topics of current interest will be chosen according to the interests of students and staff. Visiting faculty may present all or portions of this course from time to time. Instructors: Staff.

EE 152. Guided Wave Circuits. 9 units (3-0-6); first term. Prerequisite: EE 51 ab or equivalent. Planar and cylindrical dielectric waveguides; optical fibers and integrated circuits. Network formulation of distributed systems; scattering matrix; discontinuities in waveguides. Selections from periodic propagating structures, coupled mode devices, electronic waveguide. Instructor: Bridges.

EE 153. Antennas. 9 units (3-0-6); first term. Prerequisite: EE 51 ab or equivalent. Introduction to the theory of antennas, coordinating viewpoints from electromagnetic field theory, circuit theory, optics, and thermodynamics. Dipoles and loops; slot antennas; reflector and lens antennas. Reciprocity. Antenna arrays. Effects of dielectric media. Introduction to computer modeling and integrated-circuit antennas. Instructor: Rutledge. Not offered in 1984–85.

EE 155 abc. Electromagnetic Fields. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 106 abc or equivalent. Advanced course in electromagnetic theory and its application to the theory of electromagnetic fields in matter, the theory of electric and magnetic properties of matter, and the theory of electromagnetic wave propagation. Instructor: Papas.
EE 157 ab. Introduction to the Physics of Remote Sensing. 9 units (3-0-6); second, third terms. Prerequisite: Ph 2 abc or equivalent. Recommended: Ph 106, APh 106, or EE 151 (may be taken concurrently). Introduction to the interaction of electromagnetic waves with natural surfaces and atmospheres. Scattering of radio waves by surface and volume scatterers. Thermal emission from natural terrain. Spectral reflection of natural surfaces and atmospheres in the near infrared and visible regions of the spectrum. Review of modern spaceborne sensors and associated technology. Emphasis on sensor design, new techniques, and ongoing developments. Examples of applications in geology, planetology, oceanography, and atmospheric research. Instructor: Elachi.

EE 160. Communication System Fundamentals. 9 units (3-0-6); third term. Prerequisites: Ma 2 abc, EE 14 abc. Laws of radio and guided transmission, noise as a limiting factor, AM and FM signals and signal-to-noise ratio, sampling and digital transmission, errors, information theory, error correction. Emphasis will be on fundamental laws and equations and their use in communication system designs including voice, video, data, and radar. Instructor: Posner.

EE 162. Random Processes in Communication and Control. 9 units (3-0-6); first term. Prerequisite: AMa 95 abc. Introduction to single parameter random processes: stationarity; correlation functions; power spectral density; Gaussian processes. Response of linear systems to random processes. Least mean square error linear filtering and prediction. Instructor: Rauch.

EE 163 ab. Introduction to Communication Theory. 9 units (3-0-6); second, third terms. Prerequisite: EE 162 or equivalent. Mathematical models of communication processes; signals and noise as random processes; sampling and quantization; modulation and spectral occupancy; signal-to-noise ratio and error probability; information theoretic considerations; demodulation and detection in analog and digital communication systems. Instructor: Rauch.

EE 165. Topics in Telecommunication System Engineering. 9 units (3-0-6); third term. Prerequisite: at least one term of communications or signal processing. For students having some familiarity with telecommunication elements and models. Considered are approaches to the design of overall telecommunication systems based on specifications, constraints, and demand. Topics will be chosen from terrestrial, satellite, and deep space communication, radar and radio navigation, and switched voice and data networks ranging in size from the office to the world. Topics covered and examples used depend on instructor’s and students’ interests. Instructors: Staff.

EE/ChE 170 ab. Introduction to Systems and Control. 9 units (3-0-6); second and third terms. Prerequisites: E 13, E 101 or equivalent. Analysis of linear multivariable systems, using state space, frequency domain, stochastic, and optimal techniques. Unified treatment using linear operator theory. Extensions of classical control techniques to multivariable systems, stressing singular value analysis and the Linear Quadratic Gaussian problem. Estimation and Kalman filtering. Sampled-data control theory. Examples from electrical, chemical, mechanical, and aerospace systems. Instructors: Thompson, Morari...

EE/ChE 171 ab. Advanced Topics in Systems and Control. 9 units (3-0-6); second and third terms. Prerequisite: EE/ChE 170 or instructor's permission. Advanced problems in linear and nonlinear control system design with emphasis on practical aspects, including robustness, constraints, computer implementation, effects of the plant design on performance, and comparative evaluation of alternate design techniques. Applications to electrical, chemical, mechanical, and aerospace systems. Current topics from the literature will be discussed depending on student interests. Instructors: Morari, Thompson.

CS/EE 181 abc. VLSI Design Laboratory. 12 units (3-6-3). Prerequisites: CS/EE 4 and CS 10, or equivalent. For course description, see Computer Science.
CS/EE 183 ab. Integrated Digital Communication. 9 units (3-0-6); second, third terms. Prerequisites: at least one term of communications or signal processing. For course description, see Computer Science.

EE 191. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering will be arranged. Primarily for undergraduates. Students should consult with their advisers. Graded pass/fail.

EE 194. Microwave Laboratory. 9 units (1-4-4); third term. Prerequisite: EE 51 ab or equivalent. Selected laboratory experiments and related theory on microwave generation and amplification; measurements of impedance, frequency and power; properties of microwave cavities, waveguides, networks, periodic structures, antennas. Instructors: Staff.

EE 243 abc. Quantum Electronics Seminar. 6 units (3-0-3); first, second, third terms. Advanced treatment of topics in the field of quantum electronics. Each weekly seminar consists of a review and discussion of results in the areas of quantum electronics and optoelectronics. Instructor: Yariv.

EE 255 abc. Problems in Electromagnetic Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 155 abc or equivalent. A course in the advanced mathematical methods of electromagnetic theory and gravitational electrodynamics. Text: Course notes. Not offered in 1984-85.

EE 291. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering. Primarily for graduate students. Students should consult with their advisers.

ENGINEERING (GENERAL)

E 1 ab. Microcomputers in Engineering. 3 units (0-3-0); E 1 a offered first and second terms, E 1 b offered third term. A problem-oriented introduction to the microcomputer, its operating system, and computer programming using BASIC. Problems will be drawn from several engineering disciplines which demonstrate elementary numerical analysis, algorithms, and graphics. In E 1 b other programming languages such as FORTRAN and PASCAL will be introduced in addition to more advanced methods and applications. Students will be expected to complete projects based on the examples provided. Graded pass/fail. Instructors: Staff.

E 5. Laboratory Research Methods in Engineering and Applied Science. 6 units (1-3-2); second term. 6 units credit allowed toward freshman laboratory requirement. An introduction to experimental methods and problems typical of a variety of engineering fields. Staff members representing various areas of interest within engineering and applied science will supervise experiments related to their specialty. The student is given some choice in selecting experiments of particular interest to him or her. Instructors: Staff.

E 10. Technical Seminar Presentations. 2 units (1-0-1); second term (the first 36 persons to register will be accommodated this term. Any additional students registered will be scheduled for the third term). This course in seminar presentations is designed to meet the needs of engineers and engineering managers. The student receives guidance and practice in organizing and preparing the topic for presentation and in speaking with the help of visual aids, including the blackboard, the overhead projector, and the slide projector. Instructors: McDonough, staff.

E 13. System Dynamics. 12 units (3-0-9); first term. Prerequisites: Ma 1 abc, Ph 1 abc, or instructor’s permission. Predicting the behavior of systems of physical members from their mathematical models—mechanical, electrical, fluid, thermal, and others. Natural dynamic characteristics and stability: s-plane analysis and Routh’s method. Dynamic coupling and natural modes. Forced response using Fourier, impulse, and Laplace techniques. Instructors: Staff.
E 101. Introduction to Automatic Control. 9 units (3-0-6); third term. Prerequisite: E 13 or equivalent. Design of linear feedback control systems for error, stability, and dynamic response specifications. Analysis by the root-locus technique of Evans and the frequency-response techniques of Nyquist, Bode, and Nichols. Introduction to the state-space approach. Examples from aeronautics, electronics, and civil engineering. Instructor: Caughey.

E 102 abc. Introduction to Systems Analysis and Control. 9 units (3-0-6); first, second, third terms. Prerequisites: E 13, E 101 or equivalent. Analysis of linear and nonlinear systems, stability and control of dynamical systems. Noise and stochastic processes, filtering and estimation theory, nonlinear system identification theory. Instructor: P. Thompson.

E 150 abc. Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in Applied Mechanics, Electrical Engineering, Materials Science, and Mechanical Engineering are required to attend any graduate seminar in any division each week of each term. Graded pass/fail. Instructors: Staff.

ENGINEERING GRAPHICS

Gr 1. Basic Graphics. 3 units (1-2-0); first term. This course deals with the fundamental aspects of projective geometry and graphical techniques used by the scientist and engineer as an aid in spatial visualization, communication and in creative design. Emphasis is placed on the effective use of freehand sketching, orthographic projection and basic descriptive geometry solutions helpful in computer augmented design or graphics systems. Instructor: Welch.

ENGINEERING SCIENCE

ES 200 abc. Topics in Bioengineering. 9 units (3-0-6); first, second, third terms. This course will spend the first two terms on the foundation of low-Reynolds-number fluid physics, including the motion of a rigid or flexible body with or without electric charges, flows of suspensions, and transfer processes. The third term will be devoted to various applications to rheology, blood flow in living systems, chemical flow problems, motility of micro-organisms, and bioconvection. Instructors: Leal, Wu.

ES 250 abc. Research in Engineering Science. By arrangement with members of the staff, properly qualified graduate students are directed in research in Engineering Science. Hours and units by arrangement.

ENGLISH

En 1 ab. English as a Second Language. 9 units (3-0-6 or 4-0-5); first, second terms. A program in the fundamentals of English composition for non-native speakers of English, required for foreign students in need of supplementary instruction before entering Freshman Humanities courses. Students will be assigned to either En 1 b or the two-quarter sequence of En 1 ab on the basis of a diagnostic examination. Not available for credit toward the humanities-social science requirement. Instructors: Fonseca, Linden-Martin.

En 2. Basic English Composition. 9 units (2-2-5); first term. A course in the fundamentals of English composition for native speakers of English, required for students in need of supplementary instruction before entering Freshman Humanities courses. Students will be assigned to En 2 on the basis of a diagnostic examination. Not available for credit toward the humanities-social science requirement. Instructor: Giuliano.
ENVIRONMENTAL ENGINEERING SCIENCE

Env 1. Engineering Problems of Man's Environment. 9 units (3-0-6); third term. Prerequisite: Ph 1 ab, Ch 1 ab, and Ma 1 ab. Registration limited to freshmen and sophomores or with the permission of the instructor. An introduction to the engineering design of measures to limit man's impact on his environment. Global and local cycles in the hydrosphere, atmosphere, and biosphere; energy and materials balance in environmental problems; source control of pollutants. The process of establishing environmental goals is discussed. Instructor: Cass.

Env 90. Undergraduate Research in Environmental Engineering Science. Units by arrangement; any term. Approval of research supervisor required prior to registration. Independent research on current environmental problems; laboratory or field work is encouraged. A written report is required for each term of registration. Seniors may elect to prepare a thesis with approval of the Environmental Engineering Science faculty at the beginning of the senior year; in this case, registration should be for at least three consecutive terms. Graded pass/fail. Instructors: Staff.

Env 100. Special Topics in Environmental Engineering Science. 6 or more units as arranged. Prerequisite: instructor's permission. Special courses of reading, problems, or research for graduate students working for the M.S. degree or qualified undergraduates. Graded pass/fail. Instructors: Staff.

Env 112 abc. Hydrologic Transport Processes. 9 units (3-1-5), first term; 9 units (3-0-6), second, third terms. Prerequisites: AMa 95 abc or AM 113 abc (may be taken concurrently); ME 19 abc; and some knowledge of elements of hydrology (may be satisfied by special reading assignments). The hydrologic cycle and analysis of hydrologic data; dynamic similitude; turbulent shear flow in rivers and estuaries; stratified flow, turbulent plumes and buoyant jets; hydraulic models. Transport and dispersion of solutes, sediments and heat; evaporation and density stratification in natural waters. Engineering of outfalls. Not offered in 1984-85. Instructor: Brooks.

Env 116. Experimental Methods in Air Pollution. 9 units (1-4-4); third term. Prerequisite: ChE/Env 157 abc. Methods of sampling and measurement of particulate and gaseous pollutants with applications to pollution sources, gas cleaning equipment, and smog formation. Experiments will include measurement of gaseous and particulate pollutant emissions, use of on-line systems for measuring aerosol-size spectra, and aerosol measurements in photochemical smog. Instructors: Flagan and staff.

Env 142 ab. Chemistry of Natural Water Systems. 9 units (3-0-6); first, second terms. Prerequisite: Ch 1 abc, Ch 14, or equivalent. Chemistry of electrolyte solutions, heterogeneous processes, and redox reactions applied to quantitative description of natural waters. Chemical characteristics of lakes, streams, and seawater: comparison of real systems with stoichiometric, equilibrium, and steady-state models; properties of colloids in natural water systems; coagulation-flocculation processes; adsorption phenomena. Instructor: Morgan.

Env 143. Water Chemistry Laboratory. 6-9 units as arranged with instructor; third term. Prerequisite: Env 142 ab. Laboratory experiments and measurements dealing with the major and minor constituents of natural waters. Topics include seawater chemistry, heterogeneous equilibria, rates of precipitation, redox processes, adsorption, and particle coagulation. Measurement techniques include electrometry, spectrophotometry, liquid and chromatography, light scattering, and atomic absorption spectrophotometry. Instructors: Hoffmann, Morgan.
Env 144. **Ecology.** 6 units (2-1-3); second term. Basic principles of ecology and ways in which human activities can influence natural populations. (May be taught in conjunction with parts of Env 145 a.) Instructor: North.

Env 145 ab. **Environmental Biology.** 10 units (2-4-4), second term; 9 units (3-0-6), third term. An exposition of basic biological principles concerning interrelations between organisms, particularly those directly affecting man and his environment. Extensive reading is required, covering a broad scope of biological literature. Instructor: North.

Env 146 ab. **Analysis and Design of Water and Wastewater Systems.** 9 units (3-0-6); second, third terms. Prerequisites: APh/ME 17 abc, ME 19 abc, or equivalents. The application of science and engineering sciences to water supply and treatment for municipal use; treatment and disposal of liquid wastes; unit operations as applied to environmental systems; the designs of works; and economic aspects of projects. Instructor: Hoffmann.

Env 150 abc. **Seminar in Environmental Engineering Science.** 1 unit (1-0-0); each term. Seminar on current developments and research within the field of environmental engineering science, with special consideration to work at the Institute. Graded pass/fail.

ChE/Env 157 abc. **Fundamentals of Air Pollution Engineering.** 9 units (3-0-6); first, second, third terms. Open to graduate students and seniors with instructor's permission. For course description, see Chemical Engineering.

Env 170. **Design of Strategies for Environmental Control.** 9 units (3-0-6); second term. Prerequisite: Instructor's permission. Principles which underlie the design of efficient and effective solutions to large scale regional environmental control problems. Environmental data set analysis, mathematical modeling, model verification, and optimization of emission control strategies. Not offered in 1984–85. Instructor: Cass.

Env 200. **Advanced Topics in Environmental Engineering Science.** Units by arrangement, any term. Course to explore new approaches to environmental problems. The topics covered vary from year to year, depending on the interests of the students and staff.

Env 206. **Special Problems in Biological Engineering Science.** Units by arrangement, any term. Prerequisite: AMA 95 abc. Special topics in the application of engineering principles to biological and medical problems can be explored on mutual agreement between advanced students and one or more of the participating faculty. Instructors: Leal, Wu.

Env 214 abc. **Advanced Environmental Fluid Mechanics.** 9 units (3-0-6); first, second, third terms. Prerequisites: Hy 101 or Ael/APh 101, AMA 101 or AM 125. A study of the transport and dispersing properties of fluid motions in the air, oceans, estuaries, rivers, lakes, and groundwater. Emphasis is given to the processes and scales of motion that are important to engineering problems of pollution control. Not offered in 1984–85. Instructor: List.

Env 242. **Environmental Applications of Chemical Dynamics.** 9 units (3-0-6); first term. Prerequisite: Env 142 or equivalent with instructor's permission. Principles of chemical dynamics applied to the environmental chemistry of rivers, lakes, oceans, atmospheres, and pollution control processes. Fundamental concepts in chemical, biological and enzyme kinetics will be covered with an emphasis on reaction rate theory, experimental techniques. Instructor: Hoffmann.

Env 250. **Advanced Environmental Seminar.** 4 units (2-0-2); each term. Prerequisite: instructor's permission. A seminar course for advanced graduate students and staff to discuss current research and technical literature on environmental problems. As the subject matter changes from term to term, it may be taken any number of times. Instructors: Staff.
Courses

Env. 300. Thesis Research.

Other closely related courses (listed elsewhere) are: ChE 103, Ae/ChE 172, ChE 173, Hy 101, Hy 111, Hy 113, Hy 121, Hy 210, Hy 211, and Hy 213.

Graduate students may also enroll in graduate courses offered by Scripps Institution of Oceanography under an exchange program. Graduate students majoring in environmental engineering science should consult the executive officer for more information.

FRENCH (See Languages)

GEOLOGICAL AND PLANETARY SCIENCES
GEOLOGY, GEOBIOLOGY, GEOCHEMISTRY, GEOPHYSICS, PLANETARY SCIENCE

Ge 1. Introductory Geology. 9 units (3-3-3); first, third terms. This course aims to present a broad and up-to-date view of the earth by focusing upon major geological items currently of high interest, such as paleomagnetism, mid-oceanic rises, sea-floor spreading, plate tectonics, continental drift, evolution of continental plates, the earth's interior, and environmental geology. The emphasis and topics of consideration vary with the individual instructor and with class interests. Classes are limited in size and individually handled by full-time faculty members. All registrants must be prepared to devote six weekend days to field trips. Instructors: Allen, Wyllie.

Ge 4. Introduction to the Solar System. 6 units (3-0-3); third term. An introductory survey course emphasizing current knowledge of the bodies in our solar system. Meteoritic data and astrophysical observations on young stars provide information on the processes and materials of the early solar system. The properties of interplanetary dust, asteroids, and comets are discussed in relation to the known types of meteorites. The post-Apollo view of the Moon is summarized and used as a basis for comparison with other small planets such as Mercury and the Jovian satellites. Venus and Mars are considered in the light of recent planetary missions. Jupiter and Saturn are discussed as examples of outer planets. Instructor: Burnett.

Ge 5. Geobiology. 9 units (3-0-6); second term. Prerequisites: consult instructor. An examination of biologically related processes and environments in the crust throughout the span of earth history. Consideration is given to the environmental influence that the change from a reducing to an oxidizing atmosphere had upon the evolution of life processes and to the subsequent progression of organisms and organic activity throughout the oxidizing era. Special attention is devoted to organic progression and differentiation in time and space in terms of environment. Instructor: Kirschvink.

Ge 40. Special Problems for Undergraduates. Units to be arranged, any term. This course provides a mechanism for undergraduates to undertake honors-type work in geologic sciences. By arrangement with individual members of the staff. Graded pass/fail.

Ge 41 abc. Undergraduate Research and Bachelor's Thesis. Units to be arranged; first, second, third terms. Guidance in seeking research opportunities and in formulating a research plan leading to preparation of a Bachelor's Thesis is available from the Division Undergraduate Research Counselor, Professor Epstein. Graded pass/fail.
The following courses may, at the discretion of the instructor, not be offered if the enrollment is less than five.

Ge 100. Geology Club. 1 unit (1-0-0); first, second, third terms. Presentation of papers on research in geological and planetary sciences by guest speakers. Graded pass/fail. Instructor: Kirschvink.

Ge 101 abc. Introduction to the Earth and Planets. *Prerequisites:* Ma 2, Ph 2. The three terms may be taken independently, and are recommended for upper division electives in the geological and planetary sciences.

101 a. **Introduction to Planetary Science.** 9 units (3-0-6); first term. The planets; their probable composition, physical state, and dynamical behavior. Ground-based observations, spectroscopy, photometry, radio interferometry, radar mapping, observations from spacecraft. Theories of atmospheric structure, surface processes, internal history. Speculations on the origin and evolution of bodies in the solar system. Instructor: Ingersoll.

101 b. **Advanced Physical Geology.** 9 units (3-3-3); second term. Topics include impact and volcanic processes, glacier mechanics, eolian processes, the role of catastrophe in fluvial processes. Quaternary stratigraphy, and the evolution of a major river system. One three-day field trip. Instructor: Saleeby.

101 c. **Geophysics.** 9 units (2-1-6); third term. An introduction to the physics of the earth. Topics covered include the present internal structure of the earth, theories of the origin and evolution of the earth, the earth’s gravity and magnetic field, and fundamentals of wave propagation in earth materials. The contributions that heat flow, gravity, paleomagnetic, and earthquake mechanism data have made to our understanding of geodynamics are discussed. Local one-day field trips. Text: *Physics of the Earth,* Stacey. Instructors: Hager, Ahrens.

Ge 102. Oral Presentation. 2 units (1-0-1); third term. Training in the technique of oral presentation. Practice in the effective organization and delivery of reports before groups. Successful completion of this course is required of all candidates for degrees in the division. Instructor: Ahrens.

Ge 103 abc. Atmospheres and Oceans. 9 units (3-0-6); first, second, third terms. Chemical and physical processes in planetary fluid envelopes. First term: atmospheric chemistry and photochemistry. Second term: weather and climates of the earth and planets. Third term: dynamics of large-scale motions in the atmospheres and oceans. Instructors: Yung (first term), Ingersoll (second and third terms).

Ge 104 ab. Advanced General Geology. 9 units (3-4-2). *Prerequisites:* Ch 1 or 2, Ma 1, Ph 1.

104 a. **Minerals as Physical, Chemical, and Geological Systems.** First term. Atomic structure and physical properties of the solid state, with emphasis on the important minerals. Topics include relations between bonding forces, structure, composition, properties, and conditions of formation of minerals. The occurrence and properties of the major mineral groups that are important at the earth’s surface and in the interior will be studied in the laboratory. Instructor: Rossman.

104 b. **Rocks and Their Geological Settings.** Second term. A study of igneous, metamorphic, and sedimentary rocks with emphasis on their common geologic settings, and the basic chemical and physical processes affecting their origin. Genesis of igneous rocks and silicate crystal-melt-vapor equilibria. Metamorphic processes, rocks, and structures. Introduction to sedimentary rocks from the perspective of igneous and metamorphic source terranes and associations, and compositional controls on metamorphic derivatives. An overview of the relations between petrogenetic processes and global tectonics. Instructor: Saleeby.
Ge 105. The Geologic Record. 9 units (3-3-3); first term. Introduction to historical geology, including basic principles of biostratigraphy, physical stratigraphy, magnetostratigraphy, geochronology, and tectonics. The course is focused on the interpretation and understanding of biological, geochemical, and tectonic processes and events which have influenced earth history, with particular emphasis on the evolution of the biosphere. One or two weekend field trips are designed to familiarize students with fossiliferous strata and paleoenvironments in the southern California region. Instructor: Kirschvink.

Ge 106. Structural Geology. 9 units (3-3-3); second term. Mechanics of rock deformation. Interpretation of the record of deformation of the earth's crust from rock structures on the megascopic (faults, folds), mesoscopic (foliation, lineation), and microscopic (crystal fabric, dislocations) scales. Structural analysis by geometrical and graphical techniques and with use of subsurface data (well logs, seismic sections). Structure of major regional tectonic elements of the earth's crust. Field trips for study of structural features. Instructor: Kamb.

Ge 107. Geologic Field Mapping. 9 units (0-9-0); third term. Prerequisite: Ge 106. Introduction to the rationale and techniques of geologic field mapping. Primary emphasis is on the construction of a geologic map in a terrane of moderately deformed, stratified rocks. Synthesis and interpretation of field data in the laboratory, including the construction of cross-sections and stratigraphic columns. Two- or three-day field trips. Instructor: Taylor.

Ge 108. Applications of Physics to the Earth Sciences. 9 units (3-0-6); third term. Prerequisites: Ph 2 and Ma 2 or equivalent. An intermediate course in the application of the basic principles of classical physics to the earth sciences. Topics covered will be selected from two groups such that independent courses will be offered in alternate years and the course may be taken twice for credit. The topics include the mechanics of rotating bodies, the two-body problem, tidal theory, oscillations and normal modes, diffusion and heat transfer, wave propagation, electro- and magneto-statics, Maxwell's equations, and elements of statistical and fluid mechanics. Instructor: Muhleman.

Ge 110. Sedimentary Geology. 9 units (3-3-3); third term. Prerequisites: Ge 104 ab, Ge 105. Origin and evolution of sedimentary rocks. Emphasis on: 1) Sedimentary materials, processes, and environments; 2) Description and classification of sedimentary rocks; 3) Interpretation of paleoenvironments and stratigraphic history from field and subsurface observations. Instructor: Saleeby.

Ge 111 ab. Invertebrate Paleontology. 9 units (2-5-2); first, second terms. Morphology and geologic history of the common groups of the lower invertebrates, with emphasis on their evolution and adaptive modifications; consideration of the higher invertebrate groups; preparation of fossils and problems of invertebrate paleontology. Not offered in 1984–85.

Ge 113. Heterogeneous Phase Equilibrium in Mineral Systems. 9 units (3-0-6); second term. Principles of phase relationships in mineral-liquid-vapor systems through a range of pressures and temperatures. Unary, binary, ternary, and quaternary systems with examples drawn from systems with components such as silicates, carbonates, salts, H₂O and CO₂. Instructor: Wyllie.

Ge 114. Optical and X-Ray Mineralogy. 12 units (3-6-3); first term. Prerequisite: Ge 104. Methods of optical crystallography. Measurement of optical constants with the polarizing microscope. X-ray determination of lattice parameters. Characterization and identification of minerals by optical and X-ray methods. Systematic application of these methods to the study of important mineral groups. Instructor: Rossman.

Ge 115. Petrology and Petrography. Systematic study of rocks and rock-forming minerals with emphasis both upon the use of the petrographic microscope and megascopic identification; interpretation of mineral assemblages, textures, and structures; problems of genesis.
115 a. Igneous Petrology and Petrography. 12 units (3-6-3) or 6 units (3-0-3) with consent of instructor; second term. Prerequisites: Ge 114, Ch 21 a. The mineralogical and chemical composition, origin, occurrence, and classification of igneous rocks considered mainly in the light of chemical equilibrium and of experimental studies. Detailed consideration of the structures, phase relations, and identification of the major igneous minerals. Instructor: Albee.

115 b. Metamorphic Petrology and Petrography. 12 units (3-6-3) or 6 units (3-0-3) with consent of instructor; third term. Prerequisite: Ge 115 a. The mineralogic and chemical composition, occurrence, and classification of metamorphic rocks; interpretation of mineral assemblages in light of chemical equilibrium and experimental studies. Detailed consideration of structure, phase relations, composition, and determination of the major metamorphic minerals. Instructor: Stolper.

Ge 121 abc. Advanced Field and Structural Geology. 12 units (0-9-3). Prerequisites: Ge 104 b, Ge 123 a. Letter sequence may vary from year to year.

121 a. Field mapping investigations of igneous and metamorphic problems in various tectonic settings in southern California and adjacent regions. Instructor: Silver.

121 b. Field mapping investigations in various areas of predominantly sedimentary rocks in southern California, with emphasis on sedimentary processes and Quaternary geology. Instructor: Sieh.

121 c. Field and supporting laboratory studies in the geometries and mechanisms of several rock deformational regimes. Subjects include metamorphic tectonites, thrust and wrench faults, and melanges. Instructor: Albee.

Ge 122. Geophysical Field Studies. 10 units (3-5-2); first term. Prerequisites: Ma 2 abc, Ge 105, and instructor's permission. Not offered in 1984–85.

Ge 123 ab. Summer Field Geology. 15 units (3 weeks). Prerequisites: Ge 104 ab, Ge 107.

123 a. Intensive field study of an area in western North America with emphasis on stratigraphic and structural interpretation by the construction of geologic maps and cross-sections. The course is designed to complement the field training in southern California afforded by Ge 107 and Ge 121. Sessions are arranged at the beginning or end of the respective summer break. Instructors: Staff.

123 b. Advanced topics in geologic field mapping which may be offered as a direct extension of Ge 123 a, or taken individually from a consenting faculty member. Highly recommended for geology majors. Instructors: Staff.

124 a. 9 units (3-3-3); second term. Prerequisites: Ge 104 abc, Ge 105 ab. The principles of rock magnetism and physical stratigraphy are reviewed: emphasis is on the detailed application of paleomagnetic techniques to determination of the history of the geomagnetic field.

124 b. 6 units (0-0-6); spring recess. Prerequisite: Ge 124 a. An eight-day field trip to the Colorado Plateau to study the physical stratigraphy and magnetic zonation of the rocks in this well-known region.

Ge 126. Introduction to Quaternary Geology. 12 units (3-3-6); first term. An introduction to study of the evolution of the earth's surface during the past million years. Topics include sedimentary, erosional, and tectonic processes involved in the development of landscapes; Pleistocene and Holocene stratigraphy; the use of soils, weathering rates, radiocarbon dating,
palynology, and other tools in deciphering recent geological history. The laboratory will involve the use of aerial photographs and an individual research project. Given in alternate years; offered in 1984–85. Instructor: Sieh.

Ge 131. Origin of the Solar System. 9 units (3-0-6); second term. Prerequisite: Instructor’s permission. A critical assessment of the physical processes responsible for the formation of the Sun and planets, including astrophysical constraints, gravitational instabilities and accretion discs, formation and early evolution of the giant planets and their satellite systems, terrestrial planetary accretion, primary differentiation, outgassing, and thermal evolution of solid bodies. Given in alternate years; offered in 1985–86. Instructor: Stevenson.

Ge 135. Regional Geology of Southern California (Seminar). 6 units (3-0-3); second term. Prerequisites: Ge 104 abc, Ge 105 ab or equivalent. Reading and discussion of selected topics in the geology of southern California and adjacent areas, with emphasis on outlining the important regional research problems. Instructor: Silver.

Ge 136. Regional Field Geology of Southwestern United States. 9 units (1-0-8); third term. Prerequisites: Ge 104 or Ge 105, or instructor’s permission. At least nine days of weekend field trips into areas of southwestern United States displaying highly varied geology are involved. Each student is assigned the major responsibility of being the resident expert on a pertinent subject for each trip. Graded pass/fail. Instructors: Sieh, Allen.

Ge 140 ab. Introduction to Isotope Geochemistry. 6 units (2-0-4); second term. Prerequisite: instructor’s permission. An introduction to the physics and chemistry of isotopes and a broad overview of the principles and conceptual techniques used in stable and radiogenic isotope geochemistry will be illustrated by examples of geologic or planetary processes.

Ge 140 a. The processes responsible for natural variations in the isotopic composition of the lighter elements (H, C, O, N, Si, S), with applications to geochemical problems. Isotopic fractionation mechanisms. Use of oxygen and hydrogen isotopic data to study the origin and history of various types of rocks and to determine the climatic records in cherts, carbonate fossils, ancient woods, and ice cores. Significance of 34S/32S and 13C/12C variations in the sulfur and carbon cycles, with applications to problems in geobiology. Use of stable isotopes in the study of meteorites and lunar materials. Instructor: Epstein.

Ge 140 b. The origin and evolution of radiogenic parent-daughter systems in nature, with application to the determination of the ages of rocks and minerals, and of the earth, meteorites, and the moon, mainly utilizing the U-Th-Pb-He, Rb-Sr, Sm-Nd, K-Ar and 14C systems. This course will also discuss applications to problems of igneous petrology and metamorphism, and to the large-scale differentiation of the planets. Instructor: Wasserburg.

Ge 150. The Nature and Evolution of the Earth. Units to be arranged. Offered by announcement only. Discussions at an advanced level of problems of current interest in the earth sciences. Students may enroll for any or all terms of this course without regard to sequence. Instructors: Staff and visitors.

Ge 151. Planetary Surfaces. 9 units (3-0-6); second term. A review of: 1) the processes responsible for formation and modification of the surfaces of the terrestrial planets, icy satellites, and small bodies, and 2) the surface histories so recorded. Topics include: 1) exogenic surface processes, especially those associated with impact, gravitational degradation, atmospheric modification of surfaces by wind and water, and the direct interaction of surfaces with plasmas, and 2) endogenic modification of surfaces by tectonics and volcanism. Given in alternate years; offered 1984–85. Instructors: Murray, Shoemaker, Stevenson.

Ge 153. Planetary Radio Astronomy. 9 units (3-0-6); second term. Prerequisite: instructor’s permission. The interpretation of radio astronomy observations of the Moon, Mercury, Venus, Mars, and Jupiter in terms of the planets’ surface properties and atmospheric characteristics.
Thermal and non-thermal emission mechanisms in planetary atmospheres and surfaces will be discussed with particular emphasis toward the construction of mathematical planetary models that can be tested by all possible observational techniques including radio interferometry, planetary occultation, and radar astronomy. Given in alternate years; offered in 1985 – 86. Instructor: Muhleman.

Ge 154. Planetary Atmospheres. 9 units (3-0-6); third term. Prerequisites: junior-level courses in math and physics, Env/Ge 103 or stellar atmospheres highly desirable. Current problems in fluid dynamics, radiative transfer, and atmospheric chemistry as suggested by recent ground-based and spacecraft-related data on the planets and their satellites. Given in alternate years; offered in 1985 – 86. Instructors: Yung, Ingersoll.

Ge 160 abc. Seismological Laboratory Seminar. 1 unit (1-0-0); first, second, third terms. Presentation of current research in geophysics by students, staff, and visitors. Graded pass/fail. Instructor: Anderson.

Ge 166. Physics of the Earth's Interior. 9 units (3-0-6); second term. Interpretation of the observed geophysical data describing the earth's interior in terms of the earth's evolution, ongoing geodynamic processes, and composition and thermal state of the mantle and core. Instructor: Anderson.

Ge 167. Planetary Physics. 9 units (3-0-6); first term. Prerequisites: Ph 106 abc, AMa 95 abc or AM 113 abc. Solar system dynamics, with emphasis on slow changes in the orbit and rotation rates of planets and satellites. Topics to be discussed include tidal friction, resonant orbits and rotation rates, gravitational fields of planets and satellites, dynamics of polar wandering, continental drift, and planetary rings. Not offered in 1984 – 85. Instructor: Goldreich.

Ge 170. Tectonics. 9 units (3-0-4); second term. Prerequisites: Ge 104 b, Ge 105, Ge 106. Kinematics of plate tectonics and the structural and petrogenetic phenomena of plate margins; history of the ocean basins; the nature of ocean-continent transitions and the evolution of cratonic crust; the application of neotectonic phenomena to the interpretation of the geologic record. Given in alternate years; offered 1984 - 85. Instructors: Saleeby, Silver.

Ge 176. Physics of Earthquakes. 9 units (3-0-6); first term. Prerequisites: AMa 95 abc or instructor's permission. Study of earth structure and earthquake phenomena by application of physical principles. The emphasis will be placed on understanding complex earthquake phenomena in the light of fundamental physical and mathematical concepts. Topics include structure of the earth in relation to propagation of earthquake waves, static and dynamic models of earthquakes, interpretation of far- and near-field phenomena, significance of earthquakes in plate tectonics, and problems pertaining to earthquake prediction. Instructor: Kanamori.

Ge 177. Quaternary Tectonics and Seismotectonics. 9 units (3-0-6); first term. Prerequisites: Ge 104, 105, and 106 or equivalent. Geologic manifestations of recent crustal deformation. Geomorphology, stratigraphy, and structural geology applied to the study of active faults and folds in a variety of tectonic settings. Relation of seismicity and geodetic measurements to geologic structure and active tectonic processes, including case studies of selected earthquakes; offered in 1985 – 86. Instructors: Allen and Sieh.

Ge 181. Sedimentary Environments and Depositional Facies. 9 units (3-3-3); offered by announcement only. Modern depositional settings, processes of sediment erosion, transport and deposition; stratigraphic principles; interpretation of ancient facies; basin analysis. Instructors: Staff.

Ge 203 ab. Advanced Atmospheres and Ocean. 9 units (3-0-6); second and third terms. Prerequisites: Ge 103 or equivalent. Advanced topics pertaining to the dynamics, thermodynamics and chemistry of atmospheres and oceans. Course content varies from year to year.

Ge 212. Thermodynamics of Geological Systems. 9 units (3-0-6); first term. Prerequisite: Ch 21 abc, Ge 115 abc or equivalent. Chemical thermodynamics, with emphasis on applications to geologic problems. Topics to be covered include heat flow, diffusion, phase transformations, silicate phase equilibria, solid solutions, the effect of H_2O in silicate melts, and equilibrium in a gravitational field. Text: Chemical Thermodynamics, Prigogine and Defay. Given in alternate years; offered in 1984 – 85. Instructor: Taylor.

Ge 213. Advanced Seminar in the Earth and Planetary Sciences. Units and prerequisites dependent upon topics. Offered by announcement only. Seminar on special topics and problems of current interest.

Ge 214. Spectroscopy of Minerals. 9 units (3-0-6); third term. Prerequisite: Ge 114, Ch 21 or instructor’s permission. The origin of color, pleochroism, and luminescence in minerals, infrared absorption spectroscopy of mineral substances. The application of spectroscopic methods to mineralogical problems including site populations and other optical properties. Given in alternate years; offered in 1984 – 85. Instructor: Rossman.

Ge 215 abc. Topics in Advanced Petrology. 12 units each term (3-6-3); first, second, third terms. Prerequisites: Ge 115, Ch 21.

215 a. Chemical Petrology. First term. Lectures, seminars, and laboratory studies of the chemical reactions that occur in rocks. Emphasis will be placed on rock-water interactions, mineral deposition, hydrothermal alteration, and the formation of ore deposits. Given in alternate years; offered in 1985 – 86. Instructor: Taylor.

Ge 223. Summer Field Seminar in Cordilleran Tectonics. 12 units (two weeks field work). Preparatory reading and laboratory session followed by extended field trips in western North America examining and discussing key locations in the tectonic analysis of the North American Cordillera. Students are expected to make independent field observations and to integrate such observations into discussions of the pertinent literature. Instructor: Saleeby.

Ge 225 abc. Planetary Sciences Seminar. 1 unit (1-0-0); first, second, third terms. Required of all planetary science graduate students; others welcome. The first term will cover current research by staff and students. The second and third terms will cover planetary research with spacecraft and current developments in planetary science. Instructors: Staff.

Ge 226. Observational Planetary Astronomy. 9 units (3-0-6); third term. Optical and infrared radiation detectors, spectrometers, polarimeters, and photometers will be discussed in the context of the observational study of the planets. Other topics will include the design of observational programs and the assessment of the reliability of data by critical analysis of observational literature. Given in alternate years; offered in 1985 – 86. Instructor: Westphal.

Ge 229. Glaciology. 9 units (3-0-6); first term. Origin and behavior of the North American ice sheet, physical conditions and structures of existing glaciers, glacier flow, erosional and depositional processes and products. Instructor: Kamb.
Ge 232. Chemistry of the Solar System. 9 units (3-0-6); second term. Prerequisite: Ge 140 b or consent of instructor. An advanced course using both chemical and isotopic data to evaluate the current state of knowledge concerning the composition of major segments of the solar system, viz. solar and meteoritic abundance data to infer the average solar system composition; the chemistry of meteorites as a clue to initial conditions in the solar nebula; the bulk composition of the earth and moon; constraints on the bulk composition of the other planets emphasizing data on atmospheric constituents. Given in alternate years; offered in 1984–85. Instructor: Burnett.

Ge 240. Advanced Isotope Geochemistry. 9 units (3-0-6); third term. Prerequisite: Ge 140 ab or permission of instructor. Lectures and problems on the variations in the isotopic composition of elements in nature, with applications to studies of the origin of the solar system, planetary evolution, igneous and metamorphic petrology, hydrothermal alteration and ore deposits, and the origin and history of the earth’s atmosphere and hydrosphere. Emphasis is placed on the integration of stable and radiogenic isotope studies in current research areas, utilizing problem sets and extensive reading of articles in scientific journals, including discussion of instrumentation and modern techniques of measurement of isotopic and chemical abundances. Given in alternate years; offered in 1985–86. Instructors: Taylor, Wasserburg.

Ge 242. Metal Pathways Through Terrestrial and Marine Eco-Systems. 6 units (2-0-4); third term. Prerequisite: Instructor’s approval. Topics covered include sources of lead and some other trace metals in the atmosphere, their depositions on oceans and land plants, their cycling through eco-systems, modes of their introduction to and removal from the oceans, and anthropogenic perturbations of their natural cycles. Instructor: Patterson.

Ge 244 ab. Paleoecology Seminar. 5 units; second, third terms. Critical review of classic investigations and current research in paleoecology and biogeochemistry. Instructor: Kirschvink.

Ge 247. Tectonics of the North American Cordillera. 9 units (3-0-6); second term. Prerequisite: Instructor’s approval. Major structural features of the North American Cordillera, and the present physical state of the crust and upper mantle; craton-ocean plate interactions; analysis of displaced crustal fragments; reactivation of cratonic crust; regional stratigraphic patterns; tectonic significance of igneous and metamorphic belts; relation of neotectonic patterns to paleotectonic records. Given in alternate years; offered in 1985–86. Instructors: Saleeby, Silver.

Ge 248. Geodynamics. 9 units (3-0-6); third term. The application of continuum mechanics to geologic problems of mass and heat transfer with emphasis on problems of plate tectonics. Basic concepts include stress, infinitesimal and finite strain, brittle failure, elastic, plastic, viscous, power law and visco-elastic deformation. These concepts will be used to examine selected problems such as the mechanics of subduction, the rise of mantle diapirs and generation of oceanic crust, postglacial rebound, postseismic rebound, generation and effects of anisotropy, mantle convection, and the driving mechanism for plate motions. Given in alternate years; offered in 1984–85. Instructor: Hager.

Ge 260. Solid-State Geophysics. 9 units (3-2-4); third term. Prerequisite: familiarity with basic concepts of thermodynamics and mineralogy. See instructor. This course deals with the application of high-pressure physics to geologic problems. Topics to be covered include: concepts of elastic and shock propagation in single and polycrystalline solids and in fluids, and their relation to various thermodynamic processes; phase changes, dynamic yielding, shock metamorphism, and high-pressure electrical properties of minerals and application of shock and ultrasonic equation-of-state data to earth and planetary interiors. Offered by announcement only. Instructors: Ahrens, Stevenson.
Ge 261 abc. Advanced Seismology. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 or equivalent. Essential material in modern seismology; elastic wave propagation, ray theory, normal mode theory, free oscillations, applications to determination of earth structure and earthquake source mechanism, interpretation of seismograms, geophysical time series analysis and synthesis. Instructors: Helmberger, first term; Harkrider, second term; Helmberger, Harkrider, third term.

Ge 265. Geophysical Digital Signal Analysis. 9 units (3-0-6); first term. Prerequisites: Fourier transforms or permission of instructor. This course covers discrete data analysis with particular emphasis on geophysical problems. The following topics will be covered: Z-transforms, discrete Fourier transforms, filtering, convolutional models, deconvolution, autoregressive-moving average models, spectral analysis, missing data, model fitting, and two dimensional and multichannel analysis. Instructor: Clayton.

Ge 266. Analysis of Seismic Reflection Data. 9 units (3-0-6); third term. Prerequisites: partial differential equations and/or permission of instructor. This course will cover the analysis of densely recorded reflection data as it relates to exploration geophysics. The following topics will be covered: review of acoustic wave theory, layered earth models, one-way extrapolations operators, migration methods, velocity estimation, multiple suppression, statics, slant stacks, and inversion methods. Instructor: Clayton.

Ge 277. Quaternary Tectonics Seminar. 6 units (1-3-2); second term. Detailed analysis of one or more active tectonic regions, including discussion of published literature and field examination. Participation in a one-week field excursion during spring break may be required. Instructors: Allen, Sieh.

Ge 282 abc. Geological Sciences Seminar. 1 unit; first, second, third terms. Presentation of papers by invited investigators. In charge: Stolper, Kirschvink.

Ge 297. Advanced Study. Students may register for up to 15 units of advanced study under the direction of a faculty member.

Ge 299. Thesis Research. Original investigation, designed to give training in methods of research, to serve as theses for higher degrees, and to yield contributions to scientific knowledge.

GERMAN (See Languages)

HISTORY

Courses above H 20 are open only to students who have fulfilled the freshman humanities requirements.

H 1 abc. Introduction to Europe. 9 units (3-0-6); first, second, third terms. From the Middle Ages to the present day. Topics and reading will vary from instructor to instructor, but will usually include feudalism, the Renaissance and Reformation, seventeenth-century England, the French Revolution and Napoleon, the Industrial Revolution, nineteenth-century liberalism and nationalism, Marx, overseas expansion, the Russian Revolution, fascism, the two World Wars, and the Cold War. Instructors: Staff.

H 2 abc. Revolution to Roosevelt. 9 units (3-0-6); first, second, third terms. An examination of American history from 1765 through the New Deal. The first term will cover the period 1765 to 1800; the second, from 1830 to 1877; and the third from the end of the nineteenth century to 1953. Instructors: Staff.
History 223

H 3 ab. Traditional Europe: Society, Material Life and Values before 1800. 9 units (3-0-6). Introduction to patterns of life and thought in pre-industrial Europe, stressing the structure of economic, political, and cultural life. The first term covers the period 300AD-1400AD; the second, 1300-1800. Either term may be taken independently. Instructors: Benton, Searle, Hoffman.

H 6 abc. American Life and Thought. 9 units (3-0-6); first, second, third terms. Topics in the development of American culture, explored through an examination of selected social, political, and artistic materials, including essays, novels, and films. Not offered in 1984–85. Instructors: Staff.

H 8 abc. Introduction to Asia. 9 units (3-0-6). “Asia” includes that civilizational expanse from Morocco to Japan. No textbook; instead, a variety of books including narrative histories, biographies, novels, and anthropological studies that illuminate aspects of the life, thought, religion, history, politics, and economic development of the area. Instructors: Dirks, Fay, Lee.

H 40. Reading in History. Units to be determined for the individual by the department. Elective, in any term. Reading in history and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

H 97 ab. Junior Tutorial. 9 units (2-0-7); second, third terms. Prerequisite: instructor’s permission. Designed primarily for students majoring in history. The course will be taught on a tutorial basis with frequent meetings between the instructor and student. The course subject matter will vary according to individual needs. The course normally will be taken in the junior year. Instructors: Staff.

H 98 ab. Senior Tutorial. 9 units (2-0-7); first, second terms. Prerequisite: instructor’s permission. Designed primarily for students majoring in history. The course will be taught on a tutorial basis with frequent meetings between the instructor and student. The course normally will be taken in the senior year. Instructors: Staff.

H 99 abc. Research Tutorial. 9 units (1-0-8). Prerequisite: instructor’s permission. Students will work with the instructor in the preparation of a research paper which will form the basis of an oral examination. Instruction will be conducted on a tutorial basis. Instructors: Staff.

H 103 abc. Medieval and Renaissance Europe.* 9 units (3-0-6). Cultural, political, and economic history: (a) from the end of the Roman Empire to the First Crusade, when classical, Christian and barbaric cultures combined to form a new civilization; (b) from the First Crusade to the age of Dante, exploring relationships between artistic expressions and political, economic, and religious institutions; (c) the fourteenth and fifteenth centuries, treating the Black Death, war, the implications of demographic decline, and the culture of the early Renaissance. Terms are independent and may be taken separately. Instructors: Benton, Hoffman, Searle.

H 104. The Vikings.* 9 units (3-0-6); third term. The seminar will take a multi-disciplinary approach to the history of medieval Norse society in the period of its voyages of exploration, raiding, trading, and settlement from North America to Constantinople. Anthropology, myth, saga-literature, and art will be used, as well as the work of historians. Members will be expected to contribute to weekly discussions and to write a term paper on a special topic to be determined in consultation with the instructor. Instructor: Searle.

H 105. Love in the Western World.* 9 units (2-0-7); first term. A history of love, marriage, and sexual relations, from antiquity to modern times. Reading in the works of such influential

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
authors as Plato, Ovid, Andreas Capellanus, and Castiglione, with special attention to the growth of romantic love. Instructor: Benton.

H 106 abc. Topics in Medieval and Renaissance History.* 9 units (3-0-6); second term. Seminar treatment of special topics, varying from term to term. Topics in the past have included history of autobiography, economic development, love and marriage, political theory, and childhood. For schedule of anticipated topics, see instructors or Registrar. Instructors: Benton, Kelly, Searle.

H 107 ab. Psychohistory.* 9 units (3-0-6). An examination of the influence of psychological factors in the course of history and of historical forces in the shaping of groups and individuals. Students are encouraged to take both courses in sequence, though each is a self-contained unit and may be taken separately. H 107 a will cover the premodern period and H 107 b the modern period. Instructor: Benton.

H 108. Europe and Asia.* 9 units (2-0-7). Books both nonfiction and fiction that illuminate such topics in the interrelation of Europe and Asia as the fall of Constantinople, the voyages of discovery, the Opium War, and the British in India. Not offered in 1984–85. Instructor: Fay.

H 109. Protestant, Catholic, and Jew.* 9 units (2-0-7). Books both nonfiction and fiction that illuminate such topics in the political and social history of religion in Europe as Joan of Arc, Luther, the Spanish Armada, Victorian conformity, and the “final solution.” Instructor: Fay.

H 110. Early Modern Europe.* 9 units (3-0-6); third term. Topics in social and economic history of Europe up to the nineteenth century, with special attention to quantitative analysis. Topics will include the crisis of the later Middle Ages, violence and religious change, and revolution and political stability. Instructor: Hoffman.

H 111. The City-State.* 9 units (3-0-6). The city-state was the characteristic political unit in the Mediterranean from antiquity to the early modern period. The course will consider the general phenomenon, particularly the ecology and inner power-structures of such demographic and political concentrations, and the reasons for the decline as a phenomenon. Each time the course is offered, the center of focus will be a particular city-state, such as Rome, Venice, Florence. Instructor: Searle.

H 112. Contemporary Europe.* 9 units (3-0-6); third term. This course will deal with some of the public issues, social trends, and cultural developments that are of special interest in Europe today. While the setting will be historical, particular emphasis will be placed on what has been going on in the last twenty-five years. Instructor: Elliot.

H 113. Germany. 9 units (3-0-6). Principal historical developments in Germany from the Reformation to the present day. Emphasis on the evolution of social and political institutions and attitudes. Instructor: Ellersieck.

H 114. European Intellectual History.* 9 units (3-0-6); second term. Topics in the history of European thought since the Enlightenment. Emphasis on philosophy and social theory, and their relations to political, economic, and social developments. Instructors: Staff.

H 115. Seminar on National Security in Historical Perspective.* 9 units (2-0-7); first term. Consideration will be given to such matters as the process of policy formation within the government, the relationship of disarmament and arms control to defense policy, and the role of international organizations in the development of an orderly world society. Instructor: Elliot.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
H 116. Russia. 9 units (3-0-6); second term. This course is dedicated to an exploration of the major developments and characteristics of Russian history during the Muscovite and Imperial periods from the sixteenth century to the Revolution of 1917. Instructor: Ellersieck.

H 117. The Soviet Union Since the Revolution. 9 units (3-0-6); third term. This course will explore selected episodes of Soviet political, economic, and social history from the Revolution to the present. Emphasis is upon the continuity of Russian history. Instructor: Ellersieck.

H 118. Britain and Her Empire.* 9 units (2-0-7). Books both nonfiction and fiction that illuminate such topics in British history after 1815 as the army, the aristocracy, the Reform Act of 1832, Marxism, the working class, and overseas expansion and contraction. Not offered in 1984–85. Instructor: Fay.

H 119. The Middle East.* 9 units (2-0-7). Books both nonfiction and fiction that illuminate the history of this area from Muhammad to the present, with particular attention to the relations between Arabs and Jews. Instructor: Fay.

H 121. South Asian Civilization.* 9 units (3-0-6); third term. The development of religious, mythological, and philosophical traditions in South Asia and the implications of this development for contemporary society and polity. Particular attention will be paid to Hindu thought. Not offered in 1984–85. Instructor: Dirks.

H 122. Gandhi.* 9 units (3-0-6). Will explore in great depth the man who, for good or ill, has had perhaps more impact on modern India than any other. Readings will include Gandhi’s Autobiography, biographies and memoirs, detailed studies of Gandhi’s political role in the Indian nationalist movement and of the traditional roots of his charisma, and several conflicting assessments of the significance of Gandhi’s political style and ideology for modern India and the world. Instructor: Dirks.

H 123. Caste, Village, and Peasant in South Asia.* 9 units (3-0-6). Examines these fundamental institutions in India’s history and society. Readings will mostly consist of anthropological studies and historical perspectives on subjects as varied as kinship and hierarchy, village social structure and patterns of settlement, agriculture, religion, and the difference between peasant and tribal society. Instructor: Dirks.

H 124 ab. Family History in Premodern Societies.* 9 units (3-0-6). This course will consider four aspects of family history in China, India, and Europe. The first is demographic, establishing the parameters of birth, marriage, and death. The second is economic, treating the family as a unit of production as well as consumption. The third is social, analyzing the evolving structure of various kin groupings—lineage, clan, household, and family. The fourth is cultural, identifying and interpreting the symbolic forms and meanings of the “family.” The main focus of the course will be on Asia. Instructors: Dirks, Lee.

H 125. History and Anthropology.* 9 units (3-0-6); second term. A study of works by anthropologists who write on historical topics and by historians who borrow from anthropology. Examples will be drawn from Asian and European history and will include topics such as religious ritual, family structure, village life, political organization, and revolution. Instructor: Dirks.

H 130. History of War. 9 units (3-0-6); first term. An examination of instructive episodes in the evolution of warfare. Emphasis upon the role of political, economic and social factors in influencing the choice of organization, armament, tactics and the timing of conflict. Instructor: Ellersieck.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
H 131. History through Film.* 9 units (2-2-5). An approach to historical problems in part through the medium of full-length, fictional motion pictures. Each term will focus on a specific theme. Instructor: Rosenstone.

H 132. Japan.* 9 units (3-0-6); third term. An introduction to Japanese civilization, past and present. Stress will be placed on the interrelation between art, culture, philosophy, politics, and society. Instructor: Rosenstone.

H 133. History of Ancient China, 2000 B.C.–1200 A.D.* 9 units (3-0-6). A systematic analysis of the growth and character of China from its early origins to the eve of the Mongol invasion. The characteristic development and unique features of preimperial and imperial China, including the periods of the first empire, disunion, and the second empire, will be examined in the context of how China developed into an enduring political and social entity. Instructor: Lee.

H 134. History of Late Imperial China, 1200–1800.* 9 units (3-0-6); first term. An exploration of several major problems, including the growth of autocracy, population development, social mobility, and the Ming-Qing dynasty transition in the history of China from the formation of the Mongol empire to the eve of the Opium War. Instructor: Lee.

H 136. China's Frontier History.* 9 units (3-0-6). Examines the historical pattern by which China's frontiers expanded and contracted to their present size. Emphasis will be given to such topics as population history as well as frontier policy and administration. Attention will be given to particular themes, including internal colonialism, ethnicity, and political integration, and comparisons will be made with the frontier history of other states and explanations of frontier expansion. Not offered in 1984–85. Instructor: Lee.

H 137. American Biography.* 9 units (3-0-6). Leading Americans as seen through the best of their biographies, with an examination of the changing methods in the art of biography. Instructor: Ridge.

H 138. The Far West and the Great Plains.* 9 units (3-0-6). The exploration and development of the great regions of western America. Special attention will be paid to the influence of the natural environment, and the exploitation of it by such industries as the fur trade, mining, cattle ranching, farming, and oil. Not offered in 1984–85. Instructor: Ridge.

H 139. The Supreme Court in U.S. History.* 9 units (3-0-6); third term. An examination of the development of the Supreme Court, its doctrines, and its role in U.S. history through analyses of selected cases. Not offered in 1984–85. Instructor: Kousser.

H/SS 150. Problems in the History of English Law and Society.* 9 units (3-0-6); first term. Available for credit toward the 36-unit undergraduate humanities requirement or for option requirements in social science. The course will consider aspects of the development of law and society in pre-industrial England. Taking a particular problem, which may differ from one term to another, it will consider the relationship between actions at common law, legal administration, legislation, social structure, and the economic basis of society. Instructor: Searle.

H 151. The Shaping of Modern America, 1890–1917.* 9 units (3-0-6). An examination of selected social, economic, and political trends of the era, such as immigration, urbanization, and reform. Instructor: Kousser.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
H 152. America in the Era of Roosevelt and Truman.* 9 units (3-0-6); second term. Topics in the history of the Depression, World War II, and the origins of the Cold War. Instructors: Kevles, Rosenstone.

H 153. America since World War II.* 9 units (3-0-6); third term. Topics in the recent social, cultural, and political history of the United States. Instructor: Kevles.

*Will receive advanced humanities credit.

H 156. The History of Modern Science.* 9 units (3-0-6). Selected topics in the development of the physical and biological sciences since the seventeenth century, with emphasis on the evolution of scientific ideas as a problem in intellectual history. Instructor: Kevles.

H 159 a. American Radicalism.* 9 units (3-0-6); second term. An examination of the nature of dissident American social and political movements in the nineteenth and twentieth centuries, with emphasis on their critiques of American life, their role in society, and their contributions. Not offered in 1984–85. Instructor: Rosenstone.

H 159 b. American Radicalism.* 9 units (3-0-6); third term. Prerequisite: H 159 a, or instructor's permission. A seminar on selected topics, concentrating on a deep examination of some aspect of radicalism and the writing of an original research paper. Not offered in 1984–85. Instructor: Rosenstone.

H 161. Selected Topics in History. 9 units (3-0-6). Advanced credit to be determined on a course-by-course basis by the instructor. Instructors: Staff and visiting lecturers.

H 201. Reading and Research for Graduate Students. Units to be determined for the individual by the staff.

HUMANITIES

Introduction to Humanities. These courses are practical courses in the basic disciplines of the humanities, and emphasize reading, thinking, and writing.

Hum 1 ab. Introduction to Interpretation. 9 units (3-0-6); first and second terms, second and third terms. The initial term is a prerequisite for the next. This course introduces the student to methods for interpreting different types of cultural works. Its goal is to develop skills that will allow the student to critically interpret these works. The course will be given in two two-quarter sections. Instructors: Staff.

Hum 101. Historical Explanations. 9 units (3-0-6); first term. The course studies the aims, methods, and objectives of different historical writings from the classical world to the present. It offers a comparative study of certain fundamental forms and concepts: fact, event, explanatory program, form of textualization. Instructor: McGann.

Hum 102. Critical Philosophy. 9 units (3-0-6); second term. The course begins with an examination of ancient methods of dialectic and moves forward to the work of various modern critical thinkers, including Marx, Nietzsche, the Frankfurt School, and several contemporary European philosophers, including Baudrillard. Instructor: McGann.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
Hum 103. An Introduction to Film.* 9 units (3-0-6). A survey of filmmaking and the film industry with an examination of selected films. Instructor: Gaskell.

Hum 104. Plato.* 9 units (3-0-6). The course will read the major dialogues. It will begin by tracing the construction of the Socratic Myth (Protagoras, Euthyphro, Apology, Crito), move to an investigation of the Platonic Eros (Phaedrus, Symposium), and conclude with a study of the Republic and selections from the Laws. Class reports and final paper. Instructor: McGann.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

HUMANITIES AND SOCIAL SCIENCES

HSS 99. Humanities-Social Science Tutorial Program. Upon application and screening by the Tutorial Committee, which is composed of HSS faculty, a limited number of sophomores, juniors, and seniors will be admitted to a tutorial program. Once admitted, a student will work on a one-to-one basis with tutors drawn from the division's faculty, at the rate of 9 units per term, on subjects agreed upon between student, tutor, and the Tutorial Committee. Written work will be required, letter grades given, and a term's work and grade reported (through the Tutorial Committee) in the form shown by the following example:

HSS 99 Tutorial (World War I in fiction) 9 units.
Instructor: Tutorial Committee (D. C. Elliot).

The Tutorial Committee will review each student's work periodically, may require that a student take regular HSS courses along with or prior to a tutorial, and may ask a student to leave the program altogether.

The program is not designed for students in the four HSS options, and units earned in it do not take the place of course or tutorial instruction in those options, unless the options say they may. The program is nevertheless open to applicants from those options.

HYDRAULICS

Hy 100. Hydraulics Problems. Units to be based upon work done, any term. Special problems or courses arranged to meet the needs of first-year graduate students or qualified undergraduate students. Graded pass/fail.

Hy 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: ME 19 abc and Hy 111 or equivalent. General equations of fluid motion; two- and three-dimensional steady and non-steady potential motion; cavity and wake flow; surface waves, linear and non-linear shallow-water waves, flow in stratified fluids, stability; acoustic fields, sound radiation and scattering, acoustic energy transport; one-dimensional steady and non-steady gas-dynamics, expansion fans, shock waves; two- and three-dimensional flow fields; laminar flow, Stokes and Oseen problems, laminar boundary layer; laminar instability, turbulent shear flow; introduction to problems in heterogeneous flow, chemically reacting flow, sediment transport, flow through porous media. Instructor: Marble.

Hy 105. Analysis and Design of Hydraulic Projects. 6 or more units as arranged; any term. The detailed analysis or design of a complex hydraulic structure or water resources project emphasizing interrelationships of various components, with applications of fluid mechanics and/or hydrology. Students generally work on a single problem for the entire term, with frequent consultations with their instructor. Instructors: Staff.
Hy 111. Fluid Mechanics Laboratory. 6–9 units as arranged with instructor; third term. Prerequisite: ME 19 ab. A laboratory course illustrating the basic mechanics of incompressible fluid flow, and complementing the lecture course ME 19 abc. Students will usually select approximately three regular experiments, but with the permission of the instructor they may propose special investigations of brief research projects of their own. Objectives also include giving students experience in making engineering reports. Although the course is primarily for seniors, it is also open to first-year graduate students who have not had an equivalent course. Instructors: Staff.

Hy 113 ab. Coastal Engineering. 9 units (3-0-6); first, second terms. Prerequisites: ME 19 abc and Hy 111 or equivalent; AMa 95 abc. Engineering applications of the theory of small and finite amplitude water waves; diffraction, reflection, refraction; wind-generated waves and wave prediction procedures; tides and their interaction with the coastline; effect of waves on coastal structures such as breakwaters and pile-supported structures; coastal processes. Instructor: Raichlen.

Hy 121. Advanced Hydraulics Laboratory. 6 or more units as arranged; any term. Prerequisite: instructor's permission. A laboratory course primarily for first-year graduate students dealing with flow in open channels, sedimentation, waves, hydraulic structures, hydraulic machinery, or other phases of hydraulics of special interest. Students may perform one comprehensive experiment or several shorter ones, depending on their needs and interests. Instructors: Staff.

Hy 200. Advanced Work in Hydrodynamics or Hydraulic Engineering. Units to be based upon work done; any term. Special course to meet the needs of advanced graduate students.

Hy 201 abc. Turbomachines. 6 units (2-0-4); first, second, third terms. Prerequisite: Hy 101 or instructor's permission. A study of the theory and operation of hydraulic fluid machines, principally pumps, and turbines. Recent two- and three-dimensional inviscid flow design theories will be studied. Special consideration will be given to the effects of cavitation in methods of design and behavior of large systems. Not offered every year. Instructor: Acosta.

Hy 210 ab. Hydrodynamics of Sediment Transportation. 9 units (3-0-6); second, third terms. Prerequisites: AMa 95 abc, Env 112 abc, and Hy 101 abc. A study of the mechanics of the entrainment, transportation, and deposition of solid particles by turbulent fluids. This will include discussion and interpretation of results of laboratory and field studies of alluvial streams, and wind erosion. Not offered every year. Instructor: Brooks.

Hy 211. Advanced Hydraulics Seminar. 4 units (2-0-2); every term. A seminar course for advanced graduate students to discuss and review the recent technical literature in hydraulics and fluid mechanics. Emphasis will be on topics related to civil and environmental engineering that are not already available in courses offered by the Division of Engineering and Applied Science. The subject matter will be variable depending upon the needs and interests of the students. The course may be taken any number of times with the permission of the instructor. Instructors: Staff.
Hy 213. Advanced Coastal Engineering. 9 units (3-0-6); third term. Prerequisites: Hy 101 abc and Hy 113 ab. Selected topics in coastal engineering such as: harbor resonance, mooring and berthing of ships, structural forces due to waves, tsunamis and other impulsive wave systems. Not offered every year. Instructor: Raichlen.

Hy 300. Thesis Research.

INDEPENDENT STUDIES PROGRAM

Students who have chosen to enter the Independent Studies Program (ISP) instead of a formulated undergraduate option may enroll in special ISP courses. These courses are designed to accommodate individual programs of study or special research that fall outside ordinary course offerings. The student and the instructor first prepare a written course contract specifying the work to be accomplished and the time schedule for reports on progress and for work completed. The units of credit and form of grading are decided by mutual agreement between the instructor, the student, and his or her advisory committee. See page 107 for complete details.

JET PROPULSION

JP 121 abc. Jet Propulsion Systems and Trajectories. 9 units (3-0-6); each term. Open to all graduate students and to seniors with permission of the instructor. Modern aspects of rocket, turbine, electrical, and nuclear propulsion systems and the principles of their application to lifting, ballistic, and space flight trajectories. Combustion and burning characteristics of solid and liquid propellants, liquid propellant fuel systems, combustion instability. Subsonic and supersonic compressors and turbines, basic gas turbine propulsion cycle and its variations, inlets and diffusers. Nuclear rockets, nuclear air breathing cycles. Instructors: Marble, Zukoski.

JP 131. Combustion Technology. 9 units (3-0-6); third term. Prerequisites: APh/ME 17 and ME 19. Application of fluid dynamic and chemical principles to the study of combustion processes including the theoretical and experimental treatment of laminar and turbulent flames; the combustion of liquid droplets and solid particles; and technical aspects of gas, oil and coal combustion. Instructor: Zukoski.

JP 170. Jet Propulsion Laboratory. 9 units (0-9-0); third term. Laboratory experiments related to propulsion problems. Instructor: Zukoski.

JP 213. Dynamics of Reacting Gases. 9 units (3-0-6); each term. Prerequisites: Ael/APh 101 abc or Hy 101 abc, or equivalent. Application of gas dynamic and chemical principles to the study of combustion processes including the theoretical and experimental treatment of laminar and turbulent flames; acoustic and detonation waves; the volatilization and combustion of liquid droplets and solid particles; combustion problems of air-breathing engines and of liquid and solid propellant rockets; flame stability; and aspects of gas, oil and coal combustion. Instructor: Marble.

JP 270. Special Topics in Propulsion. 6 units (2-0-4); each term. The topics covered will vary from year to year. Instructors: Staff.

JP 290 abc. Advanced Seminar in Jet Propulsion. 1 unit (1-0-0); each term. Seminar on current research problems in propulsion and related fields. Instructors: Staff.
LANGUAGES

L 39. Reading in French, German, or Russian. Units to be determined for the individual by the department. Reading in scientific or literary French, German, or Russian under the direction of the department. Graded pass/fail. Not available for credit toward humanities-social science requirement.

HSS 99. See page 228 for description.

L 101. Selected Topics in Language. Units to be determined by arrangement with the instructor. Graded pass/fail. Instructors: Staff and visiting lecturers.

L 102 abc. Elementary French. 10 units (3-1-6); first, second, third terms. The course aims at providing a superior reading knowledge plus competence in general conversation. Students who have had French in secondary school or college must consult with the instructor before registering. Instructor: A. Smith.

L 103 abc. Intermediate French. 9 units (3-0-6); first, second, third terms. Prerequisite: L 102 abc or equivalent. Grammar review, conversation practice, introduction to French history, literature, and politics, and exposure to basic scientific and technical reading and communicating. Instructor: Staff.

L 105 abc. French Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 103 abc or equivalent. Courses need not be taken in sequence. Each term treats a body of French literature from the standpoint of a dominant theme. Conducted in French. Not offered in 1984–85. Instructor: A. Smith.

L 130 abc. Elementary German. 10 units (3-1-6); first, second, third terms. The course covers grammar fundamentals and their use in aural comprehension, speaking, reading, and writing. Students who have had German in secondary school or college must consult with the instructor before registering. Instructors: Aebi, Carmely.

L 132 abc. Intermediate German. 9 units (3-0-6); first, second, third terms. Prerequisite: L 130 abc, or equivalent. Reading of short stories and plays, grammar review, and aural and oral drill. Students who have studied German elsewhere must consult with the instructor before registering. Instructor: Aebi.

L 139. Independent Reading in French, German, or Russian Literature. For graduate students who have completed at least one year of literature in the foreign language. Units to be determined for the individual by the department. Graded pass/fail. Instructors: Staff.

L 140 abc. German Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 132 abc or equivalent. The reading and discussion of works by selected nineteenth- and twentieth-century authors. Conducted in German. Not offered in 1984–85. Instructors: Staff.

L 141 abc. Elementary Russian. 10 units (3-1-6); first, second, third terms. The course covers grammar and builds toward the capacity to understand, speak, read, and write Russian. Students who have had Russian in secondary school or college must consult with the instructor before registering. Instructor: Lindholm.

L/Lit 151. Literature and the Natural Sciences in Translation. 9 units (3-0-6); first term. Discussion of eighteenth- and nineteenth-century authors, focusing on their response to the natural sciences of their time. The reading will be largely French (e.g., Diderot, Balzac, Stendhal, Gobineau, Zola), but may include Anglo-American works. (Note: this course will also be given in French under the listing of L 105.) Not offered in 1984–85. Instructor: A Smith.
L/Lit 152 ab. French Literature in Translation: Classical and Modern. 9 units (3-0-6). The first term deals with French “classical” literature of the seventeenth and eighteenth centuries, the second term with the years from 1939 to the present, and with literary responses to “the Absurd.” Readings are in English, but students may read French originals. Instructor: A. Smith.

L 153 abc. Intermediate Russian. 9 units (3-0-6); first, second, third terms. Prerequisite: L 141 abc or equivalent. Grammar review, readings, discussion, and reports on material from Russian science, culture, and history. Not offered in 1984–85. Instructors: Staff.

L/Lit 154. French Literature in Translation: The French Novel. 9 units (3-0-6); second term. Famous novels of the sixteenth to the twentieth century are read against the historical, sociological, and philosophical background. Readings are in English, but students may read the French originals. Not offered in 1984–85. Instructor: A. Smith.

L/Lit 160 ab. German Literature in Translation. 9 units (3-0-6). The first term covers the period from the Middle Ages through the Romantic Age. The second term surveys the literature of the twentieth century, stressing Kafka, Hesse, T. Mann, Frisch, Duerrenmatt, and Grass. Instructor: Carmely.

L/Lit 165 abc. Russian Literature in Translation. 9 units (3-0-6); first, second, third terms. The course traces the development of Russian literature in its socio-historical context from the Classical period to contemporary Soviet texts. Authors will range from Pushkin to Solzhenitsyn. All readings in English. Instructor: Cheron.

L 166 abc. Russian Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 153 or equivalent and by special arrangement with the instructors. Reading and discussion of representative works of selected nineteenth- and twentieth-century Russian authors. Conducted in Russian. Students are advised to take these courses in sequence. Not offered in 1984–85. Instructors: Staff.

*L: Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

LINGUISTICS

Lin 101 a. Introductory Linguistics. 9 units (3-0-6); first term. Language is a system that carries meaning to sound. Phonology is the study of sound; semantics is the study of meaning. Syntax is about the ways we go from phonology to semantics. Phonetics, phonemic theory, morphology, phrase structure grammar, transformational grammar. Extensive reading required. Instructor: B. Thompson.

Lin 101 b. Linguistic Theory. 9 units (2-1-6); second term. Current models of language structure, especially in syntax and semantics. Transformational generative grammar, case grammar, generative semantics, semantic theories. A research project is required. Instructor: B. Thompson.

Lin/SS 103. Psycholinguistics. 9 units (2-1-6); third term. A seminar-type course on language behavior as a reflection of conceptual processes. Language acquisition, aphasia and other language disturbances, linguistic memory and grammar organization, language and the brain, multilingualism. A research project is required. Instructor: B. Thompson.

Lin/SS 105. **Computational Linguistics.** 9 units (2-1-6); first term. Prerequisite: Lin 101 a or Lin 101 b or equivalent. English as a language for communication with computers. Problems in parsing and semantic data base analysis. Review through readings of natural language processing systems, including speech recognition and other AI (artificial intelligence) applications. Research required. Given in alternate years; offered in 1984–85. Instructors: B. Thompson, F. Thompson.

LITERATURE

Courses above Lit 20 are open only to students who have fulfilled the Freshman Humanities requirements.

Lit 1 abc. **Literature Past and Present.** 9 units (3-0-6); first, second, third terms. A critical exploration of literature, primarily English, from the Middle Ages or the Renaissance to the present. Instructors: Staff. *Students may not receive credit for both Lit 1 and Lit 2 a.*

Lit 2 a. **Tragedy.** 9 units (3-0-6); first term. Readings in the theory and practice of tragedy, in an effort to understand the nature of the genre, the sources from which it springs, and the different forms it may take. Not offered in 1984–85. Instructors: Staff.

Lit 2 b. **Comedy.** 9 units (3-0-6); second term. Readings in the theory and practice of comedy (and satire), as above (in Lit 2 a). Not offered in 1984–85. Instructors: Staff.

Lit 4. **Introduction to Poetry.** 9 units (3-0-6); second, third terms. What is poetry? Why does it exist? Why and how should one read it? Working from basic concepts in aesthetics, students will read and discuss a substantial range of poems, from simple to complex. Instructors: Staff.

Lit 5. **Literature of Initiation.** 9 units (3-0-6); second term. A study of the experience of initiation, the passage in an individual's life from innocence into experience, and the consequent emergence of a new identity during a critical period of confrontation, testing, and conversion. The reading will vary a good deal from year to year, but will include selected reading in anthropology and psychology as well as novels, short stories, and plays. Instructor: D. Smith.

Lit 6. **The Hero and Society.** 9 units (3-0-6); third term. This course will study the development of the hero from his role as a model of society's ideals through his emergence into the "anti-hero" of much contemporary literature. The reading matter will vary a good deal, but will be chosen from ancient, medieval, and modern literatures. Instructor: Clark.

Lit 7. **Literature and Myth.** 9 units (3-0-6); third term. A study of significant myths and of ways in which they have influenced the literature of Western civilization—particularly the literature of Britain and America. Instructor: Ende.

Lit 8. **The Self in Literature.** 9 units (3-0-6). In order to investigate the problem of the "self"—in its relation to other people and to the world at large—students will read a variety of literary works ranging from overt autobiographies to complex fictions on the nature of human identity. Not offered in 1984–85. Instructors: Staff.

Lit 9 abc. **Special Topics in Literature.** 9 units (3-0-6). An examination of topics ranging from classical myth to modern poetry. When offered, specific course content to be announced prior to preregistration. Instructors: Staff.

Lit 30. **Reading in English.** Units to be determined for the individual by the department. Collateral reading in literature and related subjects, done in connection with regular courses in
literature or history, or independently of any course, but under the direction of members of the department. Graded pass/fail. Instructors: Staff. Not available for credit toward humanities-social science requirement.

Lit 31. Summer Reading. Units to be determined for the individual by the department. Maximum 9 units. Reading in literature, history, and other fields during summer vacation, books to be selected from a recommended reading list, or in consultation with a member of the staff. Critical essays on reading will be required. Graded pass/fail.

Lit 98. Tutorial for Literature Majors. 9 units (2-0-7). Prerequisite: written permission of instructor and convener. An individual program of directed reading and research designed to enable literature majors to undertake the study of an area not covered by regular courses. Instructors: Staff.

HSS 99. See page 228 for description.

Lit 102 ab. The Classical Heritage.* 9 units (3-0-6); first, second terms. A study of the major texts of ancient Greek and Roman civilization and their backgrounds. The first term will deal—in English translation—with such writers as Homer, Plato, Herodotus, and the writers of Greek lyric poetry, tragedy, and comedy; the second term with such figures as Virgil, Horace, Catullus, Ovid, Juvenal, Plautus, Terence, and Seneca. Not offered in 1984–85. Instructor: Pigman.

Lit 103 ab. The Epic of Return.* 9 units (3-0-6); second, third terms. The Odyssey and its transformations. In the first term, besides the Odyssey, the Aeneid, Augustine's Confessions and Dante's Divine Comedy, will be read. The second term will consider Paradise Lost and Ulysses. The first term will be prerequisite for the second. Instructor: Bush.

Lit 106 ab. English and Continental Medieval Literature.* 9 units (3-0-6); second, third terms. A study of major medieval literary works and their relationship to the philosophical and social context of the time. The first term will concentrate upon English texts, from Beowulf to Malory; the second term will deal with other European literature in translation, especially Dante's Divine Comedy. Instructors: Staff.

Lit 108 abc. Seminar in Creative Writing. 9 units (3-0-6). An introduction to some of the techniques of writing prose and poetry. Students will do their own writing, which periodically will be reviewed by the instructor. Instructors: Staff.

Lit 109 abc. Science Writing for Television. 3 units (1-0-2). Students will write original television scripts, based on materials being prepared for the Caltech television course in physics, "The Mechanical Universe." Both student and professional scripts for this series will be read, edited, and discussed critically with the television staff. Not offered in 1984–85. Instructor: Hutchings.

Lit 114 ab. Shakespeare.* 9 units (3-0-6); first, third terms. A close study of Shakespeare's plays with an emphasis on his language, dramatic structures, characters, and themes. Each term will concentrate on a detailed consideration of one of Shakespeare's major comedies or tragedies, followed by a survey of three or four other plays. The first term is not a prerequisite for the second. Instructor: La Belle.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
Lit 116. Milton.* 9 units (3-0-6). Milton's important short works, his epics, and selections from his prose will be read against the background of the major issues of the seventeenth century. Instructor: Pigman.

Lit 120. Satire and Common Sense in Restoration and Eighteenth-Century Literature.* 9 units (3-0-6). A seminar on the great writers, the prevailing genres, and the critical theories of the Restoration, Augustan, and mid-eighteenth-century periods. Instructor: Clark.

Lit 122 abc. The English Novel.* 9 units (3-0-6); first term. A course designed to trace the development of the English novel from the eighteenth century to the present. The first term will be devoted to a study of the early novelists, through Scott; the second to the great Victorians; and the third to modern British and Irish novelists. Instructor: Sutherland.

Lit 123. Women Novelists.* 9 units (3-0-6); second term. This course studies the fiction of women who write in English. Various authors are treated, and the periods may range from the eighteenth century to the present. Not offered in 1984–85. Instructors: Staff.

Lit 124. English Romanticism.* 9 units (3-0-6); second term. This course studies the development of English romantic literature from Blake to Byron and includes major works of fiction and poetry. Instructor: Klancher.

Lit 125. Romanticism.* 9 units (3-0-6). An examination of the formations and transformations of European romanticism between its advent in the German Sturm und Drang to its late historical development in France in the 1830s. Focus will be on representative works by German, English, French, and Russian romantics. Not offered in 1984–85. Instructor: McGann.

Lit 126. Victorian Poetry and Prose.* 9 units (3-0-6). The major poets and prose writers (exclusive of the novel) will be read against the background of the great issues of the period and in the light of the more important aesthetic movements in England and abroad. Not offered in 1984–85. Instructors: Staff.

Lit 130 abc. The Nineteenth- and Twentieth-Century Novel.* 9 units (3-0-6). A three-term exploration of the late nineteenth- and twentieth-century European, English, and American novel. No term is a prerequisite to the other terms. The course will provide a study of the great seminal figures. Instructor: D. Smith.

Lit 131. Visions and Community in American Literature.* 9 units (3-0-6). An examination of one of the central tensions in the American experience, from its beginnings in the Anne Hutchinson trial to its manifestation in the work of T.S. Eliot. Instructor: Bush.

Lit 132. American Naissance-Renaissance.* 9 units (3-0-6). A survey of major figures of an emerging national literature in the romantic period. Such authors as Irving, Brown, Cooper, Poe, Emerson, Thoreau, Hawthorne, and Melville will be considered. Instructor: D. Smith.

Lit 136. Nineteenth-Century American Poetry.* 9 units (3-0-6). The course will emphasize the works, lives, and backgrounds of Walt Whitman and Emily Dickinson, though it may touch upon other poets as late as 1914. Instructors: Staff.

Lit 138. The Gilded Age.* 9 units (3-0-6); third term. A survey of the major figures from the post-Civil War period to the First World War. The course will include such writers as Twain, James, Howell, Norris, Wharton, Dreiser, and Stephen Crane. Instructor: D. Smith.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

Lit 142 abc. Twentieth-Century American Literature.* 9 units (3-0-6); first, second, third terms. The first two terms will deal with the principal American writers, mostly novelists, whose work appeared between the two world wars. The third term will be a study of the work of post-World War II novelists, dramatists, and poets. Not offered in 1984–85. Instructor: Staff.

Lit 145. James Joyce.* 9 units (3-0-6). Through Dubliners to Ulysses: an introduction to one of the most challenging and rewarding of twentieth-century novels. Instructor: Gaskell.

Lit 146 ab. Twentieth-Century American and British Poetry.* 9 units (3-0-6); second, third terms. A two-term seminar on the major poets and poetic theories from the turn of the century to the present. The first term will concentrate on American poets; the second term, which may be taken independently of the first, will be devoted to British poets. Not offered in 1984–85. Instructor: Bush.

Lit 147. Contemporary American Poetry.* 9 units (3-0-6). An examination of the works of the principal poets and poetic movements that developed in the United States after the Korean War. Various poets and poetic movements will be studied, including the Confessional Poets, the New York school, Beat poetry, Deep Image work, and the Language poets, among others. Instructor: McGann.

Lit 148. The Poetry of Ideas.* 9 units (3-0-6). Certain poets have written works which are meant to be taken seriously for their ideas and their knowledge, whether systematic, positive, or both. This course will study several of these poets. The purpose of the course is to investigate the relation between poetry and philosophy. This year the writers to be studied are Lucretius, Shelley, Pound, and a group of contemporary American poets. Final paper. Instructor: McGann.

Lit 149 ab. Contemporary Latin American Literature.* 9 units (3-0-6); second, third terms. Analysis and discussion of major works of fiction in translation by such writers as García Márquez, Vargas Llosa, Cortázar, Borges, Puig, Amado, Donoso and Fuentes. Attention to social, historical, political, and literary background as well as to specific texts. Texts available in English translation or in original Spanish. Terms can be taken separately. Instructor: Berg.

Lit/Psy 150 ab. Psychoanalysis and Literature.* 9 units (3-0-6); first, second terms. An examination of the ways in which a consideration of both works of literature and contemporary psychoanalytic theory help to illuminate such basic and essential issues as literary interpretation and meaning, the structure of the unconscious, the relation of childhood to adulthood, and the nature of dreams. Authors covered will vary from term to term and may include Coleridge, Dostoevsky, Kafka, Thomas Mann and Wordsworth. Instructors: Breger, Ende. May be taken to satisfy advanced humanities requirement or option elective requirements in economics or social science.

L/Lit 151. Literature and the Natural Sciences in Translation. 9 units (3-0-6); first term. For course description, see Languages. Not offered in 1984–85.

L/Lit 152 ab. French Literature in Translation: Classical and Modern. 9 units (3-0-6). For course description, see Languages.

L/Lit 154. French Literature in Translation: The French Novel. 9 units (3-0-6); second term. For course description, see Languages. Not offered in 1984–85.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
L/Lit 160 ab. German Literature in Translation.* 9 units (3-0-6). For course description, see Languages.

L/Lit 165 abc. Russian Literature in Translation. 9 units (3-0-6); first, second, third terms. For course description, see Languages.

Lit 170 abc. From Mysteries to Absurdism: A Survey of Drama. 9 units (3-0-6). The first term will take the student from the origins of "modern" drama in the Middle Ages to the Classical Age in seventeenth-century France. The second term begins with the "Age of Elegance" in the late seventeenth century and concludes with the "Triumph of the Bourgeoisie" in the nineteenth century. The third term surveys the theatre from Ibsen to the present. Not offered on a pass/fail basis. Instructor: Mandel.

Lit 171. The Divided Self in Literature and Psychology.* 9 units (3-0-6). This course combines reading from English and American psychoanalytic researchers as well as readings in 19th and 20th century literature exploring the differing views of the self in two disciplines. Representative authors would be Winnicott, R. D. Laing, Tennyson, Arnold, Yeats and others. Instructor: Ende.

Lit 172. Literary Creativity.* 9 units (3-0-6); second term. The focus of this course is on the sources and products of the creative process as exemplified by the works of such important writers as Milton, Coleridge, Tennyson, Yeats, and Plath. Both the biographies of the writers and the psychological roots of their creativity will be explored. Not offered in 1984–85. Instructor: Ende.

Lit 180. Special Topics in Literature. 9 units (3-0-6). See Registrar's announcement for details. Advanced credit to be determined on a course-by-course basis by the instructor. Instructors: Staff.

Lit 199. The Literature of Excess.* 9 units (3-0-6); third term. This course traces several modern traditions of crisis and liminal fiction from their initial appearance in Gothic and Romantic forms. Novels of horror and terror, fantasy texts of various sorts, as well as science fiction and surrealist documents will be among those studied. Many of the books will be twentieth-century works, and the course will conclude with an examination of some important contemporary authors such as Gabriel García-Márquez and Stanislaw Lem. Given in alternate years; not offered in 1984–85. Instructor: McGann.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

MATERIALS SCIENCE

APh/MS 4. Introduction to Materials Science. 6 units (2-0-4); third term. For course description, see Applied Physics.

MS 5 abc. Structure and Properties of Solids. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 abc, Ph 2 abc, AM 97 a. The purpose of this course is to acquaint the student with the principles underlying the properties of solid materials. The arrangement of atoms and the electron states in solids are discussed and employed to understand thermal, electric, and magnetic properties. Diffusion and phase transformations are discussed briefly. An understanding of mechanical properties is developed from the concept of dislocations. Texts: The Physics of Engineering Solids, Hutchison and Baird (first and third terms); Solid State Physics, Dekker (second term). Instructor: Wood.

MS 15 abc. Principles of Materials. 9 units (3-0-6); first, second, third terms. The principles involved in the selection, the thermal treatment, and the mechanical treatment of engineering materials. Metallic materials are of major interest, with some consideration given to ceramics
and polymers. The primary emphasis is on the utilization of phase transformations and strengthening mechanisms to obtain desired properties. Instructor: Buffington.

MS 90. Materials Science Laboratory. 9 units (1-6-2); third term. Prerequisite: MS 15 or equivalent or ray be taken concurrently. An introductory laboratory designed to acquaint the student with relationships between structure and properties of crystalline solids. Experiments involve structure determination by X-ray diffraction, mechanical property measurements, and crystal defect observation by chemical etching, X-ray topography, and transmission electron microscopy. Individual projects may be performed, depending upon the student's interests and abilities. Instructor: Vreeland.

MS 100. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading.

MS 105. Mechanical Behavior of Metals. 9 units (3-0-6); second term. Prerequisites: AM 97 abc, MS 5 abc. A study of the mechanical behavior of metals for engineering applications. Elastic behavior of anisotropic materials and polycrystalline aggregates. Yielding, plastic flow, and strengthening mechanisms, the influence of temperature and rate of loading on plastic deformation. Fracture of metals by ductile flow, brittle cracking, fatigue, and creep. Behavior under impact loading. Instructor: Wood.

MS 120. Kinetics of Crystal Imperfections. 9 units (3-0-6); first term. Treatment of crystal imperfections, their interactions, and their influence on some physical and mechanical properties; taught at the level of Friedel, *Dislocations.* Instructor: Vreeland.

MS 121. Solid State Diffusion. 9 units (3-0-6); second term. Fundamentals of diffusion in the solid state; taught at the level of Manning, *Diffusion Kinetics for Atoms in Crystals,* and Shewmon, *Diffusion in Solids.* Instructors: Staff.

APh/MS 126 abc. The Electronic Structure of Metals and Alloys. 9 units (3-0-6); first, second, third terms. Prerequisite: an introductory course in quantum mechanics. For course description, see Applied Physics.

MS 130. Metallography and Pyrometry. 9 units (0-6-3); first term. Prerequisite: MS 15 or equivalent. Metallurgical studies of materials of current technological interest utilizing optical metallography and photomicrography, temperature measurements, and cooling curves to study phase transformations. Instructor: Wood.

MS 131. Crystal Defects. 9 units (1-6-2); second term. Prerequisite: MS 120. Techniques used in the study of crystal defects and their influence on physical and mechanical properties; relationship between crystal structure and properties studied in experiments that utilize optical microscopy, electron microscopy, and X-ray topography. Instructor: Vreeland.

MS 132. X-Ray Metallography Laboratory. 9 units (0-6-3); third term. Prerequisite: MS 5 a. Experiments on X-ray emission spectra and absorption edges. Determination of crystal structures by the Von Laue and Debye-Scherrer methods. Use of the X-ray spectrometer. Study of preferred orientation in cold worked metals. Application of X-ray diffraction methods to the study of the phase diagrams. Instructors: Staff.

MS 200. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of advanced graduate students.

MS 205 ab. Dislocation Mechanics. 9 units (3-0-6); second, third terms. Prerequisite: MS 120. The theory of crystal dislocations in isotropic and anisotropic crystals. Applications of dislocation theory to physical and mechanical properties of crystals taught at the level of Hirth and Lothe, *Theory of Dislocations.* Instructors: Vreeland, Wood.

MS 300. Thesis Research.
MATHEMATICS

Ma 1 abc. Freshman Mathematics. 9 units (4-0-5); first, second, third terms. Prerequisites: high school algebra and trigonometry. Calculus, ordinary differential equations, and infinite series. Linear algebra, vectors, and analytic geometry. Instructor: Fuller.

Ma 2 abc. Sophomore Mathematics. 9 units (4-0-5); first, second, third terms. A continuation of the topics introduced in Ma 1 and an introduction to partial differential equations, probability and numerical analysis. Instructors: Froese, Lorden, Smith.

Ma 4 ab. Computer Graphic Techniques in Mathematics. 6 units (1-3-2); second and third terms. The course provides an experimental approach to mathematical analysis using the computer and graphic display terminals. The computer will be used as an investigative tool in the formulation of mathematical principles. Observations and conjectures will be discussed and analyzed mathematically. Problems for study will be assigned initially, but increasing independence in the choice and execution will be given to students. No computer programming knowledge is required. Not offered in 1984-85.

Ma 5 abc. Introduction to Abstract Algebra. 9 units (4-0-5); first, second, third terms. Groups, rings, fields, and vector spaces are presented as axiomatic systems. The structure of these systems is studied, making use of the techniques of automorphisms, homomorphisms, linear transformations, subsystems, direct products, and representation theory. Many examples are treated in detail. Instructors: Dean, Aschbacher.

CS/Ma 6 abc. Introduction to Discrete Mathematics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 1 abc. For course description, see Computer Science. Instructors: Wilson, Becker.

Ma 92 abc. Senior Thesis. 9 units (0-0-9); first, second, third terms. Prerequisite: approval of adviser. Open only to seniors who are qualified to pursue independent reading and research. The work must begin in the first or second term and be supervised by a member of the staff. Students will submit a thesis at the end of the year. Graded pass/fail.

Ma 98. Reading. 3 units or more by arrangement. Occasionally a reading course under the supervision of an instructor will be offered. Topics, hours, and units by arrangement. Only qualified students will be admitted after consultation with the instructor in charge of the course. Graded pass/fail.

Ma 103 ab. Algebraic Geometry. 9 units (3-0-6); first, second terms. Prerequisite: Ma 5 abc. Introduction to algebraic curves, intersection theory, Bézout's theorem, Riemann-Roch theorem, geometry of special curves. Not offered in 1984-85.

Ma 104 a. Projective Geometry. 9 units (3-0-6); third term. Prerequisite: Ma 5 abc. Foundations of projective geometry and finite projective planes. Not offered in 1984-85.

Ma 108 abc. Advanced Calculus. 12 units (4-0-8); first, second, third terms. The basic course in analysis. Topics include metric spaces, Lebesgue integration, Fourier series and integrals, introduction to complex analysis. The emphasis is on fundamental concepts that equip the student for further reading and study. Instructors: Conn, Wolff.
Ma 109. Operational Calculus. 9 units (3-0-6); first term. Prerequisite: Ma 108, AMa 95 or equivalent. Introduction to operational calculus and to delta functions. Laplace transforms. Applications to ordinary and partial differential equations. Instructors: Laugwitz, Luxemburg.

Ma 112 abc. Statistics. 9 units (3-0-6); first, second, third terms. The first term is an introductory course in the basic techniques of probability theory, hypothesis testing, and regression analysis. The second and third terms include analysis of variance, estimation, nonparametric inference, sequential analysis, decision theory, and exploratory data analysis. Instructor: Lorden.

Ma 116 abc. Mathematical Logic and Axiomatic Set Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc or equivalent. First order logic and model theory; computability theory, undecidability, and Gödel's incompleteness theorems; set theory, the axiom of choice, and the continuum hypothesis. Given in alternate years; offered in 1984–85. Instructor: Woodin.

CS/Ma 117 abc. Computability Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc or equivalent. Given in alternate years; not offered in 1984–85.

Ma 118 abc. Functions of a Complex Variable. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 or equivalent. Review of the basic concepts and methods of analytic function theory. Topics selected from: entire and meromorphic functions, conformal mapping, Riemann surfaces, special functions and differential equations, uniform algebras. Instructor: Noell.

Ma 120 abc. Abstract Algebra. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. Abstract development of the basic structure theorems of groups, commutative and non-commutative rings, lattices, and fields. Instructor: Wales.

Ma 121 abc. Combinatorial Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. Elementary and advanced theory of permutations and combinations. Theory of partitions. Theorems on choice including Ramsey's theorem and the Hall-Konig theorem. Existence and construction of block designs with reference to statistical design of experiments, linear programming, and finite geometries. Instructor: Ryser.

Ma 122 abc. Introduction to Group Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc. A study of the basic properties of finite groups. Not offered in 1984–85.

Ma 123 abc. Matrix Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc. Fundamental concepts, matrix equivalences, canonical forms, nonnegative real matrices, integral matrices, combinatorial matrix theory. Not offered in 1984–85.

EE/Ma 126. Information Theory. 9 units (3-0-6); first term. Prerequisite: Ma 2 abc. For course description, see Electrical Engineering.

EE/Ma 127 ab. Error-Correcting Codes. 9 units (3-0-6); first, second terms. Prerequisite: Ma 2 abc. For course description, see Electrical Engineering.

Ma 128 abc. Lie Algebras. 9 units (3-0-6); second term. Prerequisite: Ma 5. The classification of simple Lie Algebras over the complex numbers in terms of their Dynkin Diagrams. Not offered in 1984–85.

CS/EE/Ma 129 abc. Information and Complexity. 9 units (3-0-6). For course description, see Computer Science.

Ma 137 a. Real Variable Theory. 9 units (3-0-6); first term. Prerequisite: Ma 108 or equivalent. The Lebesgue theory of measure, integration and differentiation, Lp spaces of measurable functions. The Riesz representation theorems. Functions of bounded variation, absolute continuity. The Radon-Nikodym theorem. Instructor: Saerens.
Mathematics 241

CS/Ma 138 ab. Computer Algorithms. 9 units (3-0-6); second, third terms. Prerequisites: CS 10 or CS 137, and CS/Ma 6. For course description, see Computer Science. Not offered in 1984–85.

Ma 142 abc. Introduction to Partial Differential Equations. 9 units (3-0-6). Prerequisite: Ma 108 or equivalent.

Second term: The theory of partial differential equations; the classical examples; Laplace's equation, the heat equation, the wave equation. Linear and nonlinear first order theory. Characteristic manifolds and the Cauchy-Kovalevsky theorem. Hyperbolic equations in one and in several dimensions. Parabolic equations. Elliptic regularity.

Ma 144 ab. Probability. 9 units (3-0-6); first, second terms. Basic theory, including characteristic functions and limit theorems, random walk, Markov chains, Poisson process, Brownian motion. Not offered in 1984–85.

Ma 145 ab. Introduction to Unitary Group Representations. 9 units (3-0-6); first, second terms. Prerequisites: Ma 1 abc. It would be useful, but not required, to have Ma 5, and for the second term, Ma 137. A two-term course on representations of groups by unitary operators on Hilbert space. The first term will mainly discuss finite groups including the general theory, Frobenius semidirect product theory, and the representations of the symmetric group from the Frobenius character point of view and also from the Young tableaux point of view. The second term will mainly discuss compact groups including the Peter-Weyl theorem, and the representations of the classical compact (Lie) groups. If time allows, representations of LCA groups and the Poincaré group will be discussed. In each term, some lectures will be devoted to applications to quantum physics. Graduate students graded pass/fail. Not offered in 1984–85.

Ma 147 abc. Introduction to Dynamical Systems and Ergodic Theory. 9 units (3-0-6). Prerequisite: Ma 137 a or equivalent (may be taken concurrently). This course provides a general introduction to the concepts and techniques used in the theory of dynamical systems and ergodic theory.

First Term: Qualitative dynamics: Periodic orbits, bifurcations, index theory, rotation numbers, recurrence and strange attractors.

Third Term: Hyperbolic systems and smooth ergodic theory: Structural theory, topological entropy, connections with statistical mechanics, Lyapunov exponents, the Pesin entropy formulas and non-uniform hyperbolicity. Instructor: Katok.

Ma 150 abc. Combinatorial Topology. 9 units (3-0-6); first, second, third terms. Introduction to combinatorial topology. The course covers homology and cohomology theory with applications to fixed point theorems and homotopy theory. Selected topics from the theory of fiber bundles. Not offered in 1984–85.
Ma 152 abc. Geometry of Surfaces. 9 units (3-0-6). Prerequisite: Ma 108 or equivalent. Surfaces are studied from the viewpoints of algebraic topology, differential geometry, complex variable theory and analysis. Not offered in 1984–85.

Ma 160 abc. Number Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 abc or equivalent. Topics selected from: elementary number theory, zeta functions, distribution of primes, modular functions, asymptotic theory of partitions, geometry of numbers, ideal theory in algebraic number fields, units, valuations, discriminants, differences, and local theory. Instructor: Apostol.

Ma 165 a. Diophantine Analysis. 9 units (3-0-6); third term. Prerequisite: Ma 5. An introduction to transcendental number theory: transcendence of e and \(\pi \), Lindemann’s theorem, irrationality of \(\zeta (3) \), Gelfond-Schneider theorem. Not offered in 1984–85.

Ma 190 abc. Elementary Seminar. 9 units; first, second, third terms. This seminar is restricted to first-year graduate students and is combined with independent reading. The topics will vary from year to year. Graded pass/fail. Instructor: De Prima.

Ma 191 a. Introduction to Stochastic Differential Equations. 9 units (3-0-6). Instructor: Oksendal.

Ma 191 b. Asymptotic Series. 9 units (3-0-6). Instructor: Luxemburg.

Ma 216 abc. Advanced Mathematical Logic. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 116 or equivalent. Topics to be chosen from model theory and its applications to algebra, infinitary logic and admissible sets, ordinary and generalized recursion theory, consistency and independence results in set theory, large cardinals, descriptive set theory. Content varies from year to year so that students may take the course in successive years. Not offered in 1984–85.

Ma 218 ab. Advanced Complex Analysis. 9 units (3-0-6); first, second terms. Prerequisite: Ma 118 abc or equivalent. Topics will be selected from: linear spaces of analytic functions, conformal mapping, algebraic functions, Riemann surfaces, linear and nonlinear potential theory, extremal length, functions of several complex variables, approximation in the complex plane and singular integrals. Not offered in 1984–85.

Ma 221 abc. Advanced Combinatorial Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 121 or instructor’s permission. The course will include material on combinatorial designs, graphs, and codes with emphasis on the algebraic aspects of the theory and topics of current research interest. Special topics to be covered include strongly regular graphs, partial geometries, association schemes, theory and constructions of t-designs, combinatorial configurations arising from finite projective geometries, coding theory, geometric lattices (matroids), and possibly convexity and combinatorial optimization. Not offered in 1984–85.

Ma 222 ab. Advanced Group Theory. 9 units (3-0-6); second, third terms. Prerequisite: Ma 120 or Ma 122 or instructor’s permission. Discussion of topics related to current areas of interest in group theory. Not offered in 1984–85.

Ma 223 abc. Matrix Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 120 or equivalent. Algebraic, arithmetic and analytic aspects of matrix theory. Not offered in 1984–85.

Ma 224 abc. Lattice Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 120 or instructor’s permission. Systematic development of the theory of Boolean algebras, distributive, modular, and semi-modular lattices. Includes the study of lattice congruences, decomposition theory, and the structure of free lattices. Not offered in 1984–85.
Ma 243 ab. Advanced Functional Analysis. 9 units (3-0-6); second, third terms. Prerequisite: Ma 143 or equivalent. Discussion of the theory of normed linear spaces; the closed graph theorem; the Riesz-Schauder theory; topics in Hilbert space; Banach algebras. Not offered in 1984–85.

Ma 290. Reading. Occasionally advanced work is given by a reading course under the direction of an instructor. Hours and units by arrangement.

The following research courses and seminars, intended for advanced graduate students, are offered according to demand. They cover selected topics of current interest. The courses offered, and the topics covered, will be announced at the beginning of each term.

Ma 305 abc. Seminar in Numerical Analysis. 6 units. Three terms.
Ma 316 abc. Seminar in Mathematical Logic. 9 units. Three terms. Instructor: Kechris.
Ma 320 abc. Special Topics in Algebra. 9 units. Three terms. Instructor: Aschbacher.
Ma 324 abc. Seminar in Matrix Theory. Units to be arranged. Three terms.
Ma 325 abc. Seminar in Algebra. 6 units. Three terms. Instructor: Wales.
Ma 340 abc. Special Topics in Analysis. 9 units. Three terms. Instructor: Luxemburg.
Ma 345 abc. Seminar in Analysis. 6 units. Three terms.
Ma 350 abc. Special Topics in Geometry. 9 units. Three terms. Instructor: Fuller.
Ma 355 abc. Seminar in Geometry. 6 units. Three terms.
Ma 360 abc. Special Topics in Number Theory. 9 units. Three terms. Instructor: Apostol.
Ma 390. Research. Units by arrangement.
Ma 392. Research Conference. Three terms.

See also the list of courses in Applied Mathematics.

MECHANICAL ENGINEERING

ME 1 ab. Introduction to Design. 9 units (1-6-2); second, third terms. Prerequisites: Gr 1 or instructor's permission. The student is introduced to the field of design in its broadest sense through a coordinated series of short design projects, seminars by practicing designers, and related field trips. Useful graphical and analytical techniques are developed as effective tools for rapid engineering approximations in preliminary layout and design. Elements of mechanisms and computer-aided design are treated along with other basic aspects of design such as selection of materials and standard components, manufacturing methods, functional, economic, and aesthetic considerations. At least one of the projects will involve some actual machine shop experience in the construction of a simple prototype or working model. Instructor: Welch.

ME 5 abc. Design. 9 units (1-6-2); first, second, third terms. Prerequisites: ME 1 ab, MS 15 abc, or instructor's permission. The aim of this course is to develop creative ability and engineering judgment through actual project development work involving preliminary design, prototype modeling, and engineering analysis. Broadening the student's individual background experience is emphasized through the use of engineering case studies and personal working relationships with professional engineers and designers from industry whenever possible. Instructor: Welch.
APh/ME 17 abc. Thermodynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. For course description, see Applied Physics.

ME 19 abc. Fluid Mechanics and Gasdynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 2 abc, Ph 1 abc. Basic equations of fluid mechanics, theorems of energy, linear and angular momentum, potential flow, elements of airfoil theory. Flow of real fluids, similarity parameters, flow in closed ducts. Boundary layer theory in laminar and turbulent flow. Introduction to compressible flow. Flow and wave phenomena in open channels. The third term may also include topics related to energy production and conversion; subjects such as the theory of fluid machinery and heat transfer may be introduced. Instructors: Acosta, Brennen, Sabersky.

ME 22 abc. Introduction to Thermal Engineering. 9 units (3-0-6); first, second, third terms. Prerequisites: APh 17 abc, ME 19 abc (may be taken concurrently). This course is intended to introduce the student to the principles of thermal energy transfer and thermal power conversion. Heat transfer by conduction, convection, and radiation will be reviewed. Analyses of open and closed cycles with and without phase change will be covered emphasizing applications to power generation, heat pumps, refrigeration, etc. The basic principles of fluid dynamic machines will be covered in order to introduce concepts of size and speed limitations. The course will conclude with some basic studies of thermal, solar, and nuclear power generation. Instructors: Acosta, Brennen.

ME 100. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses on problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading.

ME 101 abc. Advanced Design. 9 units (1-6-2); first, second, third terms. Prerequisite: ME 5 abc or equivalent. Rational yet imaginative design approaches to machines and systems are developed at a more advanced level with the objective of a completed working model or prototype to be constructed for final testing. Suitable projects may be selected on a basis of individual student's interests or needs from a variety of fields: numerical control, electrohydraulic systems, teleoperators, control systems and related hardware, computer graphics, etc. Instructor: Welch.

ME 102 abc. Principles of Energy Conversion and Distribution. 9 units (3-0-6); first, second, third terms. Prerequisites: APh/ME 17 abc and ME 19 abc or equivalent. Analysis of stationary power plants and characteristics of components, i.e., turbines, combustion chambers or nuclear heat sources, heat exchangers, condensers, cooling towers, and electric generators; problems of transportation of fossil fuels, anti-pollution measures, standby power sources, storage and distribution of electric power; automotive power; direct conversion and alternative power sources. Instructors: Staff.

ME 118 abc. Advanced Thermodynamics and Energy Transfer. 9 units (3-0-6); first, second, third terms. Prerequisites: APh/ME 17 abc, ME 19 abc, or equivalent. Review of basic equations of fluid flow, energy, and mass transfer. Heat conduction in solids, heat transfer for laminar and turbulent flows in forced and free convection. Introduction to mass transfer and radiation as well as selected topics such as boiling heat transfer, two-phase flow, evaporation and condensation. Instructors: Acosta, Sabersky.

ME 126. Fluid Mechanics and Heat Transfer Laboratory. 9 units (0-6-3); third term. Prerequisites: APh/ME 17 abc, ME 19 ab, or equivalent. Students with other background shall obtain instructor's permission prior to registration. Introduction to some of the basic measurement techniques and phenomena in the fields of heat transfer and fluid mechanics. The student may select several short projects from a rather wide list of possible experiments. Specific areas from which experiments may be selected include free and forced convection, boiling heat transfer, combustion, solid-state energy conversion, free surface flow, turbomachines, and fluidic controls. Instructors: Staff.
ME 200. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses on problems to meet the needs of advanced graduate students.

ME 202 ab. Engineering Two-Phase Flows. 9 units (3-0-6); first and second terms. Prerequisites: AMa 95 abc, Hy 101 abc, or equivalents. Selected topics in engineering two-phase flows with emphasis on practical problems in modern hydro-systems. Fundamental fluid mechanics and heat, mass, and energy transport in multiphase flows. Liquid/vapor/gas (LVG) flows, nucleation, bubble dynamics, cavitating and boiling flows, models of LVG flows; instabilities, dynamics and wave propagation; fluid/structure interactions. The course will include discussion of two-phase flow problems in conventional, nuclear, and geothermal power plants, marine hydrofoils, and other hydraulic systems. Instructor: Brennen.

ME 300. Thesis Research.

Many advanced courses in the field of Mechanical Engineering may be found listed in other engineering options such as: Applied Mechanics, Applied Physics, Hydraulics, Jet Propulsion, and Materials Science.

MUSIC

Mu 20. Music and Dances of India. 9 units (3-0-6); second term. Survey course of music and dances of India with live performances, films, and tapes. Also instruction in playing the sitar. Instructor: Rao.

Mu 22. Medieval and Renaissance Western Music History.* 9 units (3-0-6); first term, alternate years. Traces the development of Western music from the Ancient Greeks through medieval monasteries and cathedrals to the chapels, courts, and countryside of the high Renaissance. Includes listening and discussion of style of representative music. Instructor: Britton.

Mu 23. Western Music History of the Baroque Era. 9 units (3-0-6); second term, alternate years. Survey of the musical forms and composers active between 1600 and 1750; spans the development of opera, cantata, oratorio, keyboard, chamber and orchestral music through the mature masterworks of Bach and Handel. Instructor: Britton.

Mu 24. Western Music History of the Age of Enlightenment. 9 units (3-0-6); third term, alternate years. Music of the so-called "pre-Classic" and "Classic" periods (circa 1750–1825), with emphasis on C.P.E. Bach, Haydn, Mozart, and the early works of Beethoven. Instructor: Britton.

Mu 25. Western Music History of the Romantic Age. 9 units (3-0-6); second term, alternate years. Begins by examining the concepts of Romanticism found in other ages and continues by examining a wealth of music from late Beethoven to the "post" Romantics, Mahler and R. Strauss. Instructor: Britton.

Mu 26. The New Music: Western Music History of the 20th Century. 9 units (3-0-6); third term, alternate years. The diversity of musical styles found in the 20th century is explored. Impressionistic, tonal, atonal, aleatoric, electronic and other avant-garde compositions will be examined along with their philosophical-sociological implications. Instructor: Britton.

Mu 27. Fundamentals of Music Theory and Elementary Ear Training. 9 units (3-0-6); first term. No Prerequisite. Basic vocabulary and concepts of music theory (rhythm and pitch notation, intervals, scales, function of key signatures, etc.); development of aural perception via elementary rhythmic and melodic dictation, and sight-singing exercises. Instructor: Britton.

Mu 28. Harmony I. 9 units (3-0-6); second term. Prerequisite: Mu 27 or entrance exam. Study of tonal harmony and intermediate music theory; techniques of chord progression, modulation, and melody writing according to common practice; ear training continued. Instructor: Britton.
Mu 29. Harmony II. 9 units (3-0-6); third term. Prerequisite: Mu 28 or entrance exam. More advanced concepts of music theory, including chromatic harmony, and 20th-century procedures relating to selected popular music styles; ear training continued. Instructor: Britton.

Mu 30. Special Topics in Western Music History. 9 units (3-0-6); first term, alternate years; however, term offered may vary due to possibility of coordination with significant off-campus events. A consideration of selected composers and/or subjects, e.g., the symphonic form, in greater depth than normally possible in the general survey courses. When offered, specific course content to be announced prior to preregistration. Instructor: Britton.

Mu 101. Selected Topics in Music. Units to be determined by arrangement with the instructor. Instructors: Staff and visiting lecturers.

EE/Mu 107 abc. Projects in Music and Science. 9 units (3-0-6); first, second, third terms. Instructor's permission required for all three terms. For course description, see Electrical Engineering.

PERFORMANCE AND ACTIVITIES

Courses under this heading cover the instructional content of a range of extracurricular activities and work in the fine arts and elsewhere. These courses will appear on the student's transcript, and will be graded pass/fail only. The units count toward the total unit requirement for graduation, but they do not count toward the 108-unit requirement in humanities and social sciences.

PA 15 abc. Journalism. 3 units (1-0-2); first, second, third terms. A study of the elementary principles of newspaper writing and editing, with special attention to student publications at the Institute. Instructor: Hutchings.

PA 20 abc. Debate. 3 units (1-0-2); first, second, third terms. Study and discussion of the annual intercollegiate debate topic. Instructors: Staff.

PA 21. Forensic Methods. 3 units (1-0-2); first term. Methods of argumentation in forensic activities, such as debate, extemporaneous speaking, and oratory. May not be repeated for credit. Instructors: Staff.

PA 30 abc. Choral Music. 2 units (2-0-0); first, second, third terms. Instruction in choral ensembles, such as men's and women's glee clubs. Instructors: Staff.

PA 31 abc. Chamber Music. 2 units (2-0-0); first, second, third terms. Instruction in performing chamber music. Instructors: Staff.

PA 32 abc. Orchestral Music. 2 units (2-0-0); first, second, third terms. Instruction related to participation in a symphony orchestra. Instructors: Staff.

PA 33 abc. Instrumental Music. 2 units (2-0-0); first, second, third terms. Instruction related to the performance of instrumental music either as solo instrument or in group performance. Currently offered in three sections: 1) Wind Ensemble, 2) Jazz Band, and 3) Guitar class. Instructors: Staff.

PA 34. Rhythmic Complexes. 9 units (3-0-6); third term. Exploring simple to complex rhythms in various music using the Tala system of India. Also instruction in playing the sitar. Instructor: Rao.

PA 35. Music for Piano Ensemble: History, Analysis, Performance. 9 units (3-0-6); first, second terms. A historical survey of original piano music for two players at one or two pianos from Bach to the present day (arrangements for eight hands will also be included). Attention
will be focused on the stylistic trends of various periods and composers through written work and participation. Pianists with varying degrees of performing ability will be admitted to the class at the discretion of the instructor. Instructor: Schonbach.

PA 40 abc. Theater Arts. 3 units (2-0-1); first, second, third terms. Instruction related to the production of dramatic presentations, including plays, musicals, dramatic readings, etc. Instructors: Staff.

PA 50 abc. Health Advocates. 3 units (1-1-1); first, second, third terms. A course designed to involve students with health care and education, develop familiarity with common college health problems and provide peer health services on and off campus. First term consists of CPR and Standard First Aid certification and basic anatomy and physiology. Second and third terms will continue with lectures and discussions based upon current student and community health problems, symptoms and treatment. In addition, each student will be expected to devote one hour per week to a supervised clinical internship at the Health Center. Instructors: Ketabgian and staff.

PHILOSOPHY

Courses above PI 20 are open only to students who have fulfilled the freshman humanities requirements.

Pl 1. Introduction to Philosophy. 9 units (3-0-6); second term. Topics and reading will vary from instructor to instructor, but will usually include discussion of problems of truth, meaning, and validity, with some treatment of common forms of fallacious argument. Some introductory formal logic and/or discussion of issues of induction and probability may be included. Instructors: Staff.

Pl 2 abc. Introduction to Moral Philosophy. 9 units (3-0-6); first, second, third terms. Basic problems in moral philosophy including such questions as: Are assertions about right and wrong true or false, or are they (for example) expressions of personal attitudes? Are there general criteria on the basis of which we can judge actions or characters to be good or bad? Do we have to believe in free will in order to hold people morally accountable for what they do? Instructor: Donagan.

Pl 3 ab. Introduction to Political Philosophy. 9 units (3-0-6); first, second terms. Basic problems in political philosophy, including such questions as: Under what conditions can people cooperate in the absence of a State? What kinds of activity should States undertake? Does the obligation to obey the law depend on the form of government? The first term will be organized around the ideas of Thomas Hobbes; the second around those of Jean-Jacques Rousseau. Either term may be taken independently. Instructor: Staff.

Pl 4. Greek Philosophy. 9 units (3-0-6); third term. The development of philosophy in Greece from the Pre-Socratic philosophers to Aristotle. Particular attention will be paid to the ideas of Socrates (not only as he appears in the Socratic dialogues of Plato), Plato and Aristotle. Instructor: Donagan.

Pl 30. Reading in Philosophy. Units to be determined by the instructor. Elective in any term. Reading in philosophy, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. This reading will normally issue in the production of one or more short papers. Graded pass/fail. Not available for credit towards humanities-social science requirement.
PI 85. Philosophy and Current Issues.* 9 units (2-0-7). Topics and reading will vary from instructor to instructor, but will include discussion of some of the following issues: medical experimentation and the allocation of medical resources, abortion and euthanasia, censorship, the use of criminal sanctions against drug-taking, gambling or prostitution, mandatory seat-belt use, tax policy, funding for the arts and sciences, and reverse discrimination. If the course is oversubscribed, preference will be given to students who have successfully completed PI 2 or PI 3. Instructors: Staff.

HSS 99. See page 228 for description.

PI 102. Selected Topics in Philosophy. 9 units (3-0-6). Instructors: Staff and visiting lecturers.

PI 104. Educational Issues and Problems.* 9 units (3-0-6); first term. A course in educational theories, issues, and problems. Special emphasis on basic changes necessary to facilitate growth and restructuring of the public schools. Topics to include: innovative curricula, integration and the minority group student, new directions in teacher certification, student-teacher relations, political and financial control of the public schools, school administration and student rights, and the learning process. Selected requirements for credit include: required reading, a documented paper, a journal, and several visitations to local educational institutions. Selected guest speakers prominent in the fields of education and psychology. Instructor: Browne.

PI 121. World Views.* 9 units (2-0-7); second term. A study of world views and of the ways in which they are reflected in the literature, art, philosophy, and science of different cultures. Several contrasting views will be selected for detailed study. Instructor: Jones.

PI 122. Philosophy of Science.* 9 units (3-0-6); first term. An introduction to some fundamental philosophical problems concerning the nature of science. Topics will include the character of scientific explanation, criteria for the confirmation and falsification of scientific theories, the relationship between theory and observation, the objectivity of science, and issues having to do with the ways in which scientific knowledge changes over time. Instructor: Woodward.

PI 181. Democracy.* 9 units (3-0-6); second term. Alternative concepts of democracy and alternative justifications of a democratic political system will be explored. Particular attention will be paid to the role of participation and representation in democratic theory, and relevant empirical materials will be presented. Instructors: Barry, Cain.

PI 182. Ethics and International Relations.* 9 units (3-0-6). The course begins by asking whether moral criteria can have application in international affairs. The substantive foci will be (1) war and disarmament, (2) economic distribution, and (3) migration. Not offered in 1984–85. Instructors: Barry, Cain.

PI 183. The Moral, Social, and Political Philosophy of John Stuart Mill.* 9 units (2-0-7); third term. Students will read the Autobiography, Utilitarianism, On Liberty, The Subjection of Women, and part of the Political Economy. The course will also follow some of the controversies to which these works have given rise in the period of a century or so since their original publication. Not offered in 1984–85. Instructors: Barry, Cain.

PI 190. Political Philosophy and Public Policy.* 9 units (2-0-7); third term. A critical examination of methods used in the systematic analysis of public policy alternatives, such as cost-benefit and risk-benefit analysis. Not offered in 1984–85. Instructors: Staff.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.
Ph 1 abc. Classical Mechanics and Electromagnetism. 9 units (4-0-5); first, second, third terms. The first year of a two-year course in introductory classical and modern physics. Topics covered include Newtonian mechanics, electricity and magnetism, and special relativity. Emphasis is placed on both physical insight and the ability to solve problems. Graded pass/fail. Lecturers: Fine, Gomez, Tombrello. Section Leaders: McKeown, Wood, Libbrecht, Sarachman, and others.

Ph 2 abc. Waves, Quantum Mechanics, and Statistical Physics. 9 units (4-0-5); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, or their equivalents. The second year of a two-year introductory course in classical and modern physics. Topics to be covered include electromagnetic waves, optics, introductory quantum mechanics, thermodynamics, and statistical mechanics. Lecturers: Frautschi, LoSecco, Goodstein.

Ph 3. Physics Laboratory. 6 units; first, second, third terms. The six units cover one three-hour laboratory session per week, an individual conference with the instructor, prelab preparation, and analysis of experimental results outside the laboratory period. This introductory course emphasizes quantitative measurements, the treatment of measurement errors, and graphical analysis. A variety of experimental techniques will be employed. The experiments include studies of d.c. meters, the oscilloscope, the Maxwell top, electrical and mechanical resonant systems, and radioactivity. The content of each term of Ph 3 is identical and only one term may be taken for credit. Graded pass/fail. Instructor: Gomez.

Ph 4. Physics Laboratory. 6 units; third term only. Prerequisite: Ph 3 or equivalent. As in Ph 3, the six units cover one laboratory period per week, plus other activities outside the lab. The student may choose from a variety of experiments encompassing both classical and atomic physics. Some examples are the transient response of a resonant circuit, the Millikan oil drop experiment, electron diffraction, viscosity, diffraction of electromagnetic waves, and sound waves in a cavity. Graded pass/fail. Instructor: Gomez.

Ph 5. Physics Laboratory. 9 units; first term. Prerequisites: Ph 1 abc, Ph 2 a, or Ph 12 a (or taken concurrently) and Ph 3 or equivalent. This is a continuation of Ph 3 laboratory. Measurements of physical quantities, their analysis and assignment of errors are stressed. Most of the experiments are concerned with topics in the theoretical courses Ph 2 a or Ph 12 a, but experiments in electrostatics and direct currents are also included. Instructor: Gomez.

Ph 6. Physics Laboratory. 9 units; second term. Prerequisites: Ph 1 abc, Ph 2 b or Ph 12 b (or taken concurrently) and Ph 3 or equivalent. This laboratory course involves experiments in electromagnetic phenomena such as electromagnetic induction, properties of magnetic materials and high-frequency circuits. The mobility of ions in gases is studied and a precise measurement of the value of e/m of the electron is made. Instructor: Gomez.

Ph 7. Physics Laboratory. 9 units; third term. Prerequisite: Ph 5 or Ph 6 or their equivalent. In this laboratory course, experiments are performed in atomic and nuclear physics. These include studies of the Balmer series of hydrogen and deuterium, the decay of radioactive nuclei, absorption of X-rays and gamma rays, ratios of abundances of isotopes and the Stern-Gerlach experiment. Instructor: Gomez.

Ph 10 abc. Frontiers in Physics. 6 units (2-0-4); first, second, third terms. Open for credit to freshmen and sophomores. Every week there will be a seminar by a member of the physics department or an outside visitor to discuss his or her research at an introductory level; the other class meetings will be used to explore in greater detail background material related to seminar topics and to answer questions that arise. The course will also serve to help students find faculty sponsors for individual research projects. Graded pass/fail. Instructor: Drever.
Ph 12 abc. Quantum and Statistical Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, or their equivalent. A one-year course primarily for students intending further work in the Physics option. Topics in quantum mechanics will include: interpretation of the wave-function, one-dimensional problems, and central potentials. Statistical mechanics topics will include thermodynamics, introductory kinetic theory, and quantum statistics. This course may be taken to fulfill the Institute Ph 2 requirement. Lecturer: Politzer.

Ph 20, 21, 22. Freshman/Sophomore Computational Physics Laboratory. A series of courses on the application of computers to simulate or solve simple physical systems. The course is designed to give experience in solving physics problems on the computer. This should help both one's physics understanding and programming ability. Instructors: Fox, Peck.

20. 3 units (0-3-0); first, second terms. Computer applications to problems in classical mechanics. Numerical solution of differential equations of motion. Graphical display of the motion of one or more particles under the influence of forces such as gravity. A student is expected to complete at least one supervised project based on examples. No previous computer experience is necessary. Sections will be offered for students who either have no programming experience or wish to learn a new language.

21. 3 units (0-3-0); second, third terms. Prerequisite: Ph 20 or extensive experience with computers. Computer applications to problems in electricity and magnetism. Mapping of electric and magnetic fields, and computing motions of charged particles under their influence. Simulating the behavior of d.c. and a.c. circuits. Laplace and Fourier transforms. Monte Carlo techniques. Simulation of the behavior of coupled oscillating systems. Supervised projects based on examples.

22. 3 units (0-3-0); third term. Prerequisite: Ph 20 or 21. Student project in computer applications to physics. A problem may be attacked or a simulation may be developed. One supervised but unstructured project.

Bi/Ph 50. Introduction to Biophysics of the Nervous System. 9 units (3-0-6); second term. Prerequisites: Ph 2 b or Ph 12 b, and an introductory biology course in high school or at Caltech. For course description, see Biology.

Ph 76 ab. Advanced Computational Physics Laboratory. 6 units (0-5-1); second, third terms. Prerequisites: Ph 98, Ph 106, AMa 95 (all may be taken concurrently). A two-term course in the use of computers to model classical and quantum mechanical systems, with emphasis on numerical techniques and on building intuition for the behavior of these simulations. Students are guided through a series of projects carried out on small computers. Instructor: Koonin.

Ph 77 ab. Advanced Physics Laboratory. 9 units; first, second, third terms. Prerequisites: Ph 5 or Ph 6, and Ph 7. A two-term laboratory course open to junior and senior physics majors. The purpose of the course is to familiarize the student with laboratory equipment and procedures that are used in the research laboratory. The experiments are designed to illustrate fundamental physical phenomena in atomic, low temperature, nuclear, and particle physics, such as NMR, critical fields in superconductors, positron annihilation, and muon lifetime. Instructor: Barish.

Ph 78 abc. Senior Thesis Experimental. 9 units; first, second, third terms. Prerequisite: Instructor's permission. This course is intended to provide supervised experimental research experience, and is open only to senior physics majors. Requirements will be set by individual faculty members, but will include a term paper based upon actual laboratory experience. The selection of topics and the final report must be approved by the Physics Undergraduate Committee. Not offered on pass/fail basis. Instructors: Physics Staff. See note under Ph 79 below.

Ph 79 abc. Senior Thesis Theoretical. 9 units; first, second, third terms. Prerequisite: Instructor's permission. This course is intended to provide supervised theoretical research experience and is open only to senior physics majors. Requirements will be set by individual faculty
members, but will include a term paper based on the work performed. The selection of topics and the final report must be approved by the Physics Undergraduate Committee. Not offered on pass/fail basis. Instructors: Physics Staff.

Note: Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with the chairperson of the Physics Undergraduate Committee (D. Politzer in 1984–85), or any other member of the committee. It should be noted that a grade will not be assigned in Ph 78 or Ph 79 until the completion of the thesis, which is normally expected to take three terms. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ph 98 abc. Quantum Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 12 abc, or, with permission of the instructor, Ph 2 abc, Ma 2 abc, or their equivalents. A one-year course in quantum mechanics and its applications, for students who have completed Ph 12. The course will include scattering theory, approximation methods, symmetries, spin-$\frac{1}{2}$ systems, and selected topics in atomic, solid-state, nuclear, and particle physics. Instructor: Whitcomb.

Ph 101 abc. Critical Transitions. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 2 or Ph 12. How simple, microscopic laws produce phenomena with many relevant scales. Familiar critical transitions (liquid-gas and magnetization) occur as temperature varies, while in quantum systems they can occur as a function of field strength. Tools of statistical mechanics and the renormalization group will be developed to address these and a variety of analogous problems in solid state, low temperature, and high energy physics. Other applications include percolation, polymerization, liquid crystals, and chaotic non-linear systems. Not offered in 1984–85.

Ph 103 abc. Topics in Contemporary Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Permission of the instructor. A series of introductory one-term courses on topics of contemporary physics. Students may register for any particular term or terms; they are independent. In 1984-85, the first term will be an introduction to the atomic nucleus and its elementary constituents. The second term will be devoted to condensed matter astrophysics, and the third term to low-temperature physics with emphasis on super-conductivity and quantum fluids. Instructors: Koonin, Stevenson, Mercereau..

Ph 106 abc. Topics in Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc or Ph 12 abc, Ma 2 abc. An intermediate course in the application of the basic principles of classical physics to a wide variety of subjects. It is intended that roughly half of the year will be devoted to mechanics, and half to electromagnetism. Topics to be covered include the Lagrangian and Hamiltonian formulations of mechanics, small oscillations and normal modes, boundary value problems, multipole expansions and various applications of electromagnetic theory. Instructors: three independent sections: 1) Whaling, 2) Wise, 3) Phillips, Moffet.

Ph 118 abc. Electronic Circuits and Their Application to Physical Research. 9 units (3-0-6); first, second, third terms. A course on the fundamentals of analog and digital electronics with emphasis on proven techniques of instrumentation for scientific research. The course will treat both the physical principles and properties of electronic components and circuits and the logical design of digital systems. Common electronic instruments, computer interfaces, and typical digital control logic in scientific research will be used as illustrative examples. Not offered in 1984–85.

Ph 125 abc. Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 2 abc. Recommended: either AMa 95 abc or Ma 108 abc. Not available to students who have completed Ph 98 abc. A fundamental course in quantum mechanics aimed at understanding the mathematical structure of the theory and its application to physical phenomena at the atomic
and nuclear levels. The subject matter will include the various formulations of quantum mechanics, properties of operators, one-dimensional and central potentials, angular momentum and spin, scattering theory, perturbation theory, identical particles, and introductory relativistic quantum theory. Instructors: two independent sections: 1) Boehm, 2) Newman.

Ph 127 abc. Statistical Physics. 9 units (3-0-6); first, second, third terms. **Prerequisites:** Ph 98 abc or Ph 125 abc, Ph 106 abc. The course will present a thorough introduction to problems in physics that are fundamentally statistical. Topics to be covered will include fundamental laws and concepts of thermodynamics, kinetic theory and transport phenomena, statistical mechanics and the connection between macroscopic and atomic laws. Instructors: Housley, Tombrello.

Ph 129 abc. Mathematical Methods of Physics. 9 units (3-0-6); first, second, third terms. **Prerequisite:** Ph 106 abc or the equivalent. Recommended: either AMa 95 abc or Ma J08 abc. Aimed at developing familiarity with the mathematical tools useful in physics, the course discusses practical methods of summing series, integrating, and solving differential equations, including numerical methods. The special functions (Bessel, Elliptic, Gamma, etc.) arising in physics are discussed, as well as partial differential equations, orthogonal functions, integral equations and transforms, tensors, linear spaces and operators, group theory, and probability and statistics. Instructor: Porter.

Bi/Ph 131. Topics in Biophysics. 6 units (2-0-4); first term. **Prerequisite:** Consent of instructor. For course description, see Biology.

Ph 135 abc. Applications of Quantum Mechanics. 9 units (3-0-6); first, second, third terms. **Prerequisite:** Ph 125 abc or equivalent. Applications of quantum mechanics to topics in contemporary physics. Subject matter will include atomic, molecular, nuclear, and elementary particle physics; solid state physics; quantum electronics; lasers; superconductivity and superfluidity. Instructor: Barnes.

Ph 136 abc. Applications of Classical Physics. 9 units (3-0-6); first, second, third terms. **Prerequisite:** Ph 106 abc or equivalent. Applications of classical physics to topics of interest in contemporary “macroscopic” physics. Subject matter typically will include continuum physics and classical field theory; elasticity and hydrodynamics; plasma physics; magnetohydrodynamics; thermodynamics and statistical mechanics; gravitation theory including general relativity and cosmology; modern optics. The course content will vary from year to year, depending on the instructor. An attempt will be made to organize the material so that the terms may be taken independently. Instructors: Thorne, Goldreich, Blandford.

AMa/CS/Ph 146 ab. Concurrent Algorithms. 9 units (3-3-3); first, second terms. **Prerequisite:** Basic knowledge of mathematical methods and some programming experience. For course description, see Applied Mathematics. Not offered in 1984–85.

Bi/Ph 151. Topics in Nervous System Biophysics. 6 units (2-0-4); third term. **Prerequisites:** Bi/Ph 50 or Bi 150. For course description, see Biology.

Ph 171. Reading and Independent Study. Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Units in accordance with work accomplished. Approval of the instructor and of the student's departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 172. Experimental Research in Physics. Units in accordance with the work accomplished. Approval of the student’s research supervisor and of his or her departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 173. Theoretical Research in Physics. Units in accordance with the work accomplished. Approval of the student’s research supervisor and of his or her departmental adviser or registration representative must be obtained before registering. Graded pass/fail.
Bi/CS/Ph 185. Collective Computation. 9 units (2-4-3); first term. Prerequisite: Completion of undergraduate requirements for computer science, physics, or applied physics, or equivalent quantitative background. For course description, see Computer Science.

CS/Ph 186 ab. Experimental Projects in Collective Computation. 9 units (0-9-0); second, third terms. For course description, see Computer Science.

CS/Ph 187 abc. Potentialities and Limitations of Computing Machines. 9 units (3-0-6); first, second, third terms. For course description, see Computer Science.

Ph 203 abc. Nuclear Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 98 or Ph 125 or equivalent. The first two terms will survey experimental and theoretical methods for the study of nuclear structure and reactions. Topics will include: nuclear systematics, independent-particle and collective models, radioactive decay modes, radiative transitions, and simple nuclear reaction theories. The third term will be devoted to selected applications in nuclear astrophysics. Instructor: Kavanagh.

Ph 205 abc. Relativistic Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125 or Ph 98. The course will cover relativistic quantum mechanics with an introduction to field theory. Topics covered include the Dirac equation, scattering theory, Feynman diagrams, quantum electrodynamics, second quantization, non-abelian gauge theories, Higgs symmetry-breaking, the Weinberg-Salam model, and renormalization. Instructor: Zachariasen.

Ph 208 bc. Accelerator Physics. 9 units (3-0-6); second, third terms. Prerequisites: Ph 106 and Ph 129 or equivalent. A general introduction to particle dynamics in accelerators and associated issues in engineering physics. Not offered in 1984–85.

Ph 209 abc. Classical Electromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106. Electromagnetic fields in vacuum and in matter; boundary-value problems and Green's functions; retarded potentials; wave propagation; wave guides and cavities; radiation, dispersion and absorption; and special relativity. Instructor: Cowan.

Ph 213 ab. Nuclear Astrophysics. 9 units (3-0-6); first, second terms. A lecture course in the applications of nuclear physics to astronomy, geochronology, cosmochronology and other fields. Topics included are: basic nuclear properties, nuclear reactions under astrophysical circumstances, energy generation and element synthesis, massive condensed objects, and nuclear evidence on the origin of the solar system and on the chronology of the Galaxy. Graded pass/fail. Not offered in 1984–85.

Ph 222 abc. Many-Body Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 125 or Ph 98. A course covering the concepts and formal tools needed to study many-particle systems. Subject matter will include applications to specific physical systems of interest in condensed matter and nuclear physics. Among these are the electron gas, superconductors, liquid helium, nuclear matter, and finite nuclei. Instructor: Cross.

Ph 224 abc. Space Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 98, Ph 106 or equivalent. A course covering the experimental and theoretical aspects of X-ray, cosmic ray, and gamma ray astrophysics, with emphasis on topics of current research interest. Offered only first and second terms in 1984–85. Instructor: Prince.

Ph 228 ab. Topics in Mathematical Physics. 9 units (3-0-6); first, second terms. Prerequisite: Instructor's permission. The content of this course will change from year to year. In 1984–85, an exhaustive four-term study of the theory of Schrödinger operators will be concluded. The material covered will include scattering theory, spectral analysis of two- and N-body systems, the study of resonances, and, if time allows, an introduction to the study of periodic, almost periodic, and random potentials. Instructor: Simon.
Ph 229. Advanced Mathematical Methods of Physics. 9 units (3-0-6); first term. Prerequisite: Instructor's permission. The content of this course will change from year to year. In 1984–85: topological methods in physics with applications. This course will emphasize methods of homology. Topics included are homology groups and cohomology groups, including methods of calculation, de Rham cohomology, vector bundles, Chern classes. Applications to the quantized Hall effect will be discussed, and if time allows, additional applications to gauge fields. Instructor: Simon.

Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205 abc or equivalent. A course in advanced methods in quantum field theory, with applications to elementary particle physics, including the renormalization group, quark confinement, chiral symmetry, anomalies, lattice gauge theories, and other topics of current interest. Instructor: Preskill.

Ph 231 abc. High Energy Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 98 or Ph 125 or equivalent. An introduction to elementary particle physics, stressing experimental phenomenology, theoretical interpretations of this phenomenology, and experimental techniques. Topics covered will include classification of elementary particles using invariance principles, evidence for fundamental constituents, and examination of the experimental basis for currently interesting ideas, such as quantum chromodynamics, the “standard model” of weak and electromagnetic interactions, and supersymmetric and unified theories. Instructor: Hitlin.

Ph 234 abc. Topics in Theoretical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: a mastery of general relativity at the level of track one of Misner, Thorne, Wheeler “Gravitation”, and a mastery of the theory of random processes (noise), elasticity, and optics at the level of Ph 136. In 1984–85, this course will cover the mathematical theory of the generation of gravitational waves and astrophysical sources of gravitational waves. The design of gravitational wave detectors and their principal noise sources will also be discussed. The course will include extensive readings from the primary literature. Only offered second term in 1984–85. Instructor: Thorne.

Ph 236 abc. Relativity. 9 units (3-0-6); first, second, third terms. Prerequisite: a mastery of special relativity at the level of Goldstein, Classical Mechanics, or of Leighton, Principles of Modern Physics. A systematic exposition of Einstein’s general theory of relativity, with particular emphasis on applications to astrophysical and cosmological problems. Topics covered include a review of special relativity; accelerated observers in special relativity; modern differential geometry; the foundations of general relativity and of other geometric theories of gravity; past and future experimental tests of general relativity; relativistic stars; gravitational collapse; black holes; gravitational radiation; cosmology; singularities and singularity theorems. Instructor: Caves.

Ph 237 abc. Theoretical Nuclear Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 98 or equivalent. Microscopic models for finite nuclei. Topics include: second quantization, Slater determinants, nuclear shell model, Hartree-Fock model, pairing, collective vibrations and rotations. Not offered in 1984–85.

Ph 240 abc. Current Theoretical Problems in Particle Physics. 6 units (2-0-4); first, second, third terms. Prerequisite: Ph 230 abc or equivalent. Problems connected with attempts to unify quantum chromodynamics and quantum flavor dynamics, with or without gravitation, to find substructure for quarks and leptons, and to explain symmetry violation. Discussion and argument are encouraged. Graded pass/fail. Only offered second and third terms in 1984–85. Instructor: Gell-Mann.
Ph 241. Research Conference in Physics. No credit; first, second, third terms. Meets once a week for a report and discussion of the work appearing in the literature and that in progress at Caltech and elsewhere. Advanced students in physics and members of the physics staff take part.

Ph 242 abc. Physics Seminar. 3 units (2-0-1); first, second, third terms. A seminar on current topics in physics emphasizing current research at Caltech. There will be one two-hour meeting per week. Speakers will be chosen from both faculty and students. Offered in first and second terms in 1984–85. Instructor: Neugebauer.

Ph 300. Research in Physics. Units in accordance with work accomplished. Ph 300 is elected in place of Ph 172 or Ph 173 when the student has progressed to the point where his or her research leads directly toward the thesis for the degree of Doctor of Philosophy. Approval of the student's research supervisor and of his or her department adviser or registration representative must be obtained before registering. Graded pass/fail.

POLITICAL SCIENCE

HSS 99. See page 228 for description.

PS/SS 12. Social Science Principles and Problems—Nonmarket Decisions. 9 units (3-0-6); second, third terms. Prerequisite Ec/SS 11 or equivalent. This course concentrates on nonmarket decisions. It focuses on committee and legislative decisionmaking as well as providing an introduction to recent work in the theory of voting and the political process. Instructors: Bates, Cain, Kiewiet.

PS 101. Selected Topics in Political Science. Units to be determined by arrangement with the instructor. Instructors: Staff.

PS 102. Black Africa 800 A.D. to the Present. 9 units (2-0-7); second term. Topics relating to the origins of Americans of African descent, including African empires such as Ghana and Songhai, the Slave Trade, and the emergence of independent nations. Not offered in 1984-85. Instructor: Bates.

PS 109. The Presidency. 9 units (3-0-6); first term. This course is an introduction to the major topics in the study of the presidency. These include presidential elections, executive branch relations, the role of the president in shaping foreign and domestic policy and the substantial institutional constraints on the exercise of presidential power. Instructor: Krehbiel.

PS 112. Behavioral Basis of Politics. 9 units (3-0-6). Studies the development of political attitudes and public opinion. Topics include the role of the mass media, peer groups, and social institutions in the formation and stabilization of political opinions. Not offered in 1984–85. Instructors: Bates, Kiewiet.

PS 113. Social Inequality and Politics. 9 units (3-0-6). Studies the role of social classes in politics. Includes classical Marxist literature, plus more recent empirical research on the relationship of social class to political behavior. Not offered in 1984–85. Instructor: Bates.

PS/SS 116. War, Diplomacy, and International Politics. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. This course examines the various theories of the sources and resolution of international conflicts. The second half will be devoted to applying these theories to case studies of conflicts such as the First and Second World Wars, the Vietnam War, the Cold War, and the Arab-Israeli crisis. Not offered in 1984–85. Instructor: Cain.
PS 118. Democratic Theory. 9 units (3-0-6); second term. This course will raise several types of questions and answer none. Is it possible to have a democracy; how ought citizens to act in a democracy; how do democratic governments and citizens of democratic politics actually behave; and is a democratic government necessarily just? Instructor: Cain.

PS/SS 119. The Politics of the Industrial State. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. The emphasis of this course will be on the institutions of and the behavior within industrialized democracies of the western world. Not offered in 1984–85. Instructors: Cain, Kiewiet.

PS 121. Congressional Policy Formation and Legislative Process. 9 units (3-0-6); second term. An analysis of decisionmaking in legislative bodies with major emphasis on the American Congress. It also includes an investigation into the impact of Congressional structure and practices on the policies adopted by the federal government. Instructor: Krehbiel.

PS/SS 122. Noncooperative Games in Social Science. 9 units (3-0-6); first term. Prerequisite: PS/SS 12 or equivalent. An examination of the axiomatic structure and the behavioral interpretations of game theory models in social science. Will cover axiomatic utility theory and general noncooperative games. Instructor: McKelvey.

PS/SS 123. Cooperative Games in Social Science. 9 units (3-0-6). Prerequisite: PS/SS 122. Various cooperative solutions to games will be discussed with particular application to voting, bargaining, and market games. Emphasis will be on solution concepts and existence theorems. Not offered in 1984–85. Instructors: Staff.

PS 125. Peasant Politics. 9 units (3-0-6); second term. The course will study the political role of the peasantry. Particular attention will be paid to rural political organization and the effect of market relationships. Instructors: Bates, Hoffman.

PS 132. Formal Theories in Political Science. 9 units (3-0-6); third term. Prerequisite: PS/SS 12 or equivalent. An examination of the axiomatic structure and the behavioral interpretations of game theoretic and social choice models and models of political processes based on them. Instructor: Kramer.

PS 133. Comparative Politics. 9 units (3-0-6); second term. Selected topics in the study of the politics of non-American political systems. Areas of study would include: the politics of non-democratic states, including the Communist nations; the politics of developing societies; the politics of the Western European democracies. Particular emphasis will be placed on the effect of distinctive institutions on the performance of government and the content of public policy. Instructors: Bates, Cain.

Ec/PS 134. The Political Economy of Urban Areas. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For course description, see Economics.

PS 135. Political Geography of Developing Countries. 9 units (2-0-7); first term. A study of the swift transition from colonialism or an undeveloped state to the present that includes the growth of one-party states; the role of the military; tribal, religious, and class pressures; the internal and external role of boundaries; and new foreign policies. Instructor: Munger.

PS/SS 137. Organizational Theory. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. An examination of decisionmaking in the context of hierarchical organizations. Applications will be made to various political, governmental, and private organizations. Not offered in 1984–85. Instructors: Staff.

PS 141 ab. African Studies. 9 units (2-0-7); second, third terms. Political and social change in sub-Saharan Africa. Instructor: Munger.

PS 151. Justice and Obligation. 9 units (3-0-6); third term. An analysis of the concepts of justice and obligation primarily within a social contract framework but with some comparative study of utilitarian, Kantian, and other ethical schemes. Other normative concepts such as that of “the public interest,” “rights,” and “duty” will be examined as well. Not offered in 1984–85. Instructor: Cain.

PSYCHOLOGY

Psy 11. Introduction to Psychology. 9 units (3-0-6); first term. A relatively free exploration of the variety of topics that comprise psychology. Topics may include, but are not limited to: historical background, development of personality and intellect, biological-evolutionary factors, issues in motivation, learning, social and abnormal psychology. Not offered in 1984–85. Instructor: Breger.

Psy 12. Introduction to Abnormal Psychology. 9 units (3-0-6); third term. An introduction to the development of mental and emotional disturbances. Basic theory will be reviewed in relation to selected case material and relevant research. Instructor: Breger.

Psy 25. Reading and Research in Psychology. Units to be determined by the instructor. Reading and research in psychology and related subjects. A written report will be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

Psy 100 ab. Psychological Development. 9 units (3-0-6); first, second terms. A study of the psychological development of the individual within a context of biological, cultural, and social evolution. Instructor: Breger.

Psy 101. Selected Topics in Psychology. Units to be determined by arrangement with the instructor; third term. Instructor: Breger.

Psy 125. Reading and Research in Psychology. Same as Psy 25, but for graduate credit. Not available for credit toward humanities-social science requirement.

Lit/Psy 150 ab. Psychoanalysis and Literature.* 9 units (3-0-6); first, second terms. For course description, see Literature.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit toward the 36-unit H&SS requirement. See page 83.

RUSSIAN (See Languages)
SOCIAL SCIENCE

Ec/SS 11. Social Science Principles and Problems—Introduction to Microeconomics. 9 units (3-0-6); first, second terms. For course description, see Economics.

PS/SS 12. Social Science Principles and Problems—Nonmarket Decisions. 9 units (3-0-6); second, third terms. Prerequisite: Ec/SS 11 or equivalent. For course description, see Political Science.

SS 33. Introduction to the Law. 9 units (3-0-6). An introduction to Anglo-American law from both the legal and the social scientific point of view. The particular subject chosen can vary from year to year. Course is available for introductory social science credit. Instructors: Schwartz, Strnad.

SS 98. Reading in Social Science. Units to be determined for the individual by the department. Elective, in any term. Reading in social science and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

SS 101. Selected Topics in Social Science. 9 units (3-0-6). Not available for social science credit unless specifically cleared by social science faculty. Instructors: Staff, visiting lecturers.

Lin/SS 103. Psycholinguistics. 9 units (2-1-6); third term. For course description, see Linguistics.

Lin/SS 104. Sociolinguistics. 9 units (2-1-6). For course description, see Linguistics.

Lin/SS 105. Computational Linguistics. 9 units (2-1-6); first term. Prerequisite: Lin 101 a or Lin 101 b or equivalent. For course description, see Linguistics.

PS/SS 116. War, Diplomacy, and International Politics. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For course description, see Political Science.

SS 117. Problems of Urban Society. 9 units (3-0-6); third term. A description of some of the significant urban problems of contemporary America and an investigation of alternative policies. Not offered in 1984–85. Instructor: Oliver.

PS/SS 119. The Politics of the Industrial State. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For course description, see Political Science.

PS/SS 122. Noncooperative Games in Social Science. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For course description, see Political Science.

PS/SS 123. Cooperative Games in Social Science. 9 units (3-0-6). Prerequisite: PS/SS 122. For course description, see Political Science.

SS 130 abc. Law, Legal Processes, and the Control of Technological and Economic Risk. 9 units (3-0-6). This course will attempt to provide familiarity with and insight into the distinctive ways that lawyers think about and deal with problems as well as to provide instruction in the substantive area. Not offered in 1984–85. Instructors: Staff.

SS 132. Government Regulation of Business. 9 units (3-0-6). Prerequisite: Ec/SS 11, or introductory economics. This course examines the economic, institutional, and legal implications of government regulation and includes comparisons with alternative mechanisms for organizing markets. Not offered in 1984–85. Instructors: Staff.

SS 133. Topics in Anglo-American Law. 9 units (3-0-6); second, third terms. An introduction to the American legal system through the study of a particular subarea of law, which may vary
from term to term or year to year. Instructor: Schwartz. May be taken more than once if the
topic is different. If taken for two terms, only one term can count toward the introductory
requirement.

PS/SS 136. Bureaucratic Politics. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For
course description, see Political Science.

PS/SS 137. Organizational Theory. 9 units (3-0-6). Prerequisite: PS/SS 12 or equivalent. For
course description, see Political Science.

SS 140 ab. Laboratory Experiments in the Social Sciences. 9 units (3-0-6); first, second
terms. An examination of recent work in laboratory testing in the social sciences with particular
reference to work done in social psychology, economics, and political science. Instructor: Plott.

CS/SS 142 abc. Computer Modeling and Data Analysis. 9 units (3-0-6); first, second, third
terms. For course description, see Computer Science.

H/SS 150. Problems in the History of English Law and Society.* 9 units (3-0-6); first term.
For course description, see History.

The graduate courses listed below are not necessarily taught each year. They will be offered as
need dictates.

SS 200. Selected Topics in Social Science. Units to be determined by arrangement with
instructors. Instructors: Staff and visiting lecturers.

SS 201. Game Theory. 9 units (3-0-6); first term. An introduction to utility theory, decision
theory, and the theory of games. Both noncooperative and cooperative theories are dealt with,
concentrating on applications to problems in the social sciences. Instructor: McKelvey.

SS 202. Congress and the Executive. 9 units (3-0-6); second term. The course focuses on the
analysis of executive and congressional decision making. Emphasis on the theory of committees

SS 203. American Electoral Processes. 9 units (3-0-6); third term. An in-depth analysis of
American electoral processes with emphasis on the application of new theory and quantitative
techniques. Instructors: Kramer, Rivers.

SS 204. Analytical Political Theory. 9 units (3-0-6); first term. A survey of theoretical topics
in social choice, voting, and electoral competition. Instructor: Kramer.

SS 205. Microeconomic Theory I. 9 units (3-0-6); first term. Prerequisite: Ec 121 a or
equivalent. This course is an introduction to economic theory and its applications. It covers
problems in modelling and specification as well as maximization. Instructors: Davis, Noll,
Plott, Quirk.

SS 206. Microeconomic Theory II. 9 units (3-0-6); second term. Prerequisite: SS 205. The
course covers classical consumption theory, the theory of production, markets, externalities,
and the question of public goods. Instructors: Quirk, Plott, Border.

SS 207. Microeconomic Theory III. 9 units (3-0-6); third term. Prerequisite: SS 206. The
course covers modern economic theory including decision theory, game theory, the role of
uncertainty, and investment theory. Instructor: Wilde.

SS 208. Microeconomic Theory IV. 9 units (3-0-6); third term. Prerequisites: SS 206 and 207
(latter can be taken concurrently). The course focuses on economic dynamics with particular
reference to information theory. Instructors: Border, Plott.

*Advanced courses with credit toward the 36-unit Humanities requirement. Other advanced courses receive credit
toward the 36-unit H&SS requirement. See page 83.
SS 210 abc. Foundations of Political Economy. 9 units (3-0-6). Prerequisites: PS/SS 204 and SS 206. Mathematical theories of individual and social choice applied to problems of welfare economics and political decisionmaking as well as construction of political economic processes consistent with stipulated ethical postulates, political platform formulation, the theory of political coalitions and decisionmaking in political organizations. Instructors: Plott, McKelvey, Kramer.

SS 211 abc. Advanced Economic Theory. 9 units (3-0-6). Advanced work in a specialized area of economic theory, with topics varying from year to year according to the interests of students. Instructor: Reinganum. Can be repeated for credit.

SS 212 abc. Application of Microeconomic Theory. 9 units (3-0-6). This course will be a working seminar in which the tools of microeconomic theory are applied in a systematic fashion to the explanation of events and the evaluation of policy. Instructors: Gilligan, Plott, Quirk. Can be repeated for credit.

SS 213. Competition and Antitrust Policy. 9 units (3-0-6); first term. Prerequisite: Ec 128. This course is concerned with the differences in antitrust policies that would result from taking static as opposed to dynamic points of view. Instructors: Staff.

SS 214. The Economics of Regulation. 9 units (3-0-6); first term. An analysis of government controls on prices, profits, entry, and product quality in the private sector, with special emphasis on the energy sector. Instructors: Staff.

SS 216. Interdisciplinary Studies in Law and Social Policy. 9 units (3-0-6). A policy problem or problems involving the legal system will be studied using concepts from at least one social science discipline. Each offering will be taught by a law professor, alone or in conjunction with a member of the social science faculty. The topic will differ from term to term so the course may be taken more than once. Selected undergraduates may enroll in this course with the permission of the instructor. Instructor: Schwartz.

SS 222 abc. Econometrics. 9 units (3-0-6); first, second, third terms. Regression analysis. Introduction to the use of multivariate and nonlinear methods in the social sciences. Students will be required to complete a major empirical project. Instructors: Dubin, Rivers, Vuong.

SS 223 abc. Advanced Topics in Econometric Theory. 9 units (3-0-6). Prerequisite: SS 222 ab; may be repeated for credit. This course in quantitative methods is designed for second- and third-year social science graduate students. Subject matter to include theory of identification and estimation of simultaneous equations system. Instructors: Dubin, Rivers, Vuong.

SS 225. Advanced Topics in Quantitative Methods for Policy Analysis. 9 units (3-0-6). Prerequisite: SS 222 ab; may be repeated for credit. This course is designed for second- and third-year social science graduate students. Students will analyze recent empirical studies that relate to current policy questions using modern econometric techniques. Instructors: Cain, Grether, Kousser, Rivers.

SS 228. Selected Topics in European Medieval History. 9 units (3-0-6). The bibliography, sources, and methods of analysis appropriate for research on a variety of topics in medieval history, such as peasant life and production, organization of government, law and land tenure, demography, church-state relations, and history of mentalities. Instructors: Benton, Searle.
SS 229 abc. Theoretical and Quantitative Dimensions of Historical Development. 9 units (3-0-6); first, second, third terms. May be repeated for credit. This course provides an introduction to modern quantitative history. The tools of economic and political theory are applied to problems of economic, social, and political development in a historical context. Instructors: Davis, Hoffman, Kousser.

SS 231 abc. American Politics. 9 units (3-0-6). A three-term course in American politics and political behavior. While drawing from contemporary materials, the course will emphasize the historical background of American political institutions. Instructor: Kiewiet.

SS 232 abc. Historical and Comparative Perspectives in Political Analysis. 9 units (3-0-6). Prerequisite: PS/SS 204. The course is designed to provide the student of American politics with a knowledge and understanding of developments in both the American past and in other parts of the world. Instructors: Bates, Cain, Kousser.

SS 233 abc. Public Policymaking. 9 units (3-0-6). Prerequisite: PS/SS 204. An examination of the policymaking processes in national, state, and local governments and how various institutions affect policy choices. Instructors: Staff.

SS 234. Research Seminar in Modern Political Science. 9 units (3-0-6); may be repeated for credit. Instructors: Staff.

SS 235. Bureaucracy and Organization Theory. 9 units (3-0-6); third term. An examination of the political economy of organizations. Special attention is given to formal theories capable of explaining such phenomena as the problems of rigidity and control loss, and the patterns of information flow within organizations. Not offered in 1984–85. Instructors: Staff.

SS 238. Optimal Control Theory in Economics. 9 units (3-0-6); first term. Prerequisite: Ec 121 a or equivalent. The subject material of this course is the optimal control of dynamic economic systems with applications to resource extraction, limit pricing, research and development, and capital accumulation. Instructor: Reinganum.

SS 240. Techniques of Policy Research. 9 units (3-0-6); third term. Prerequisites: SS 205, SS 206. The application of social science theory and methods to the formulation and evaluation of public policy. Instructors: Staff.

SS 241 ab. Workshop in Policy Research. 9 units (3-0-6); first, second terms. Prerequisite: SS 240. A working seminar in which the students and participating faculty apply the techniques examined in SS 240 to a policy problem of mutual interest. Instructors: Staff.

SS 250. Research Seminar in Economic Theory. 9 units (3-0-6); may be repeated for credit. Prerequisite: SS 208. A working seminar in which students and participating faculty examine current advanced topics in economic theory. Instructors: Staff.

SS 260. Experimental Methods of Political Economy. 9 units (3-0-6). The course will survey laboratory experimental research related to the broad field of political economy. Special topics include studies of the behavior of markets, organizations, committee processes and election processes. Special emphasis will be on experimental methods and techniques. Students will design and conduct experiments. Instructor: Plott.

SS 300. Research in Social Science. 9 units (3-0-6). Instructors: Staff.
TRUSTEES, ADMINISTRATION, FACULTY

OFFICERS

R. Stanton Avery, Chairman
Marvin L. Goldberger, President
John G Braun, Vice Chairman
Sidney R. Petersen, Vice Chairman
Ruben F. Mettler, Vice Chairman

Rochus E. Vogt
Provost and Vice President

Lew Allen Jr.
Vice President and
Director, Jet Propulsion Laboratory

Dwain N. Fullerton
Vice President for Institute Relations

James J. Morgan
Vice President for Student Affairs

David W. Morrisroe
Vice President for Business and Finance
and Treasurer

BOARD OF TRUSTEES

John F. Akers (1984)
Armonk, New York

Robert Anderson (1975)*
Pittsburgh, Pennsylvania

Robert O. Anderson (1967)
Roswell, New Mexico

Victor K. Atkins (1978)
San Francisco

R. Stanton Avery (1971)
Pasadena

Stephen D. Bechtel, Jr. (1967)
Piedmont

Benjamin F. Biaggini (1970)
San Francisco

Donald L. Bower (1980)
Hillsborough

John G Braun (1959)
Pasadena

Donald L. Bren (1983)
Newport Beach

Walter Burke (1975)
Greenwich, Connecticut

Richard P. Cooley (1973)
Seattle, Washington

Gilbert W. Fitzhugh (1973)
Rancho Santa Fe

Camilla C. Frost (1977)
Pasadena

Charles C. Gates (1980)
Jarvis, Colorado

James W. Glanville (1970)
Darien, Connecticut

Marvin L. Goldberger (1978)
Pasadena

William R. Gould (1978)
Long Beach

Fred L. Hartley (1967)
Palos Verdes Estates

Philip M. Hawley (1975)
Los Angeles
William A. Hewitt (1967)
Kingston, Jamaica

Shirley M. Hufstedler (1975)
Pasadena

Earle M. Jorgensen (1957)
Los Angeles

Edgar F. Kaiser, Jr. (1978)
Vancouver, British Columbia

Howard B. Keck (1983)
Los Angeles

William F. Kieschnick (1982)
Beverly Hills

Augustus B. Kinzel (1963)
La Jolla

Ralph Landau (1982)
Northport, New York

Frederick G. Larkin, Jr. (1969)
Pasadena

Dean A. McGee (1970)
Oklahoma City, Oklahoma

Robert S. McNamara (1969)
Washington, D.C.

Chauncey J. Medberry III (1976)
Los Angeles

Ruben F. Mettler (1969)
Los Angeles

Gordon E. Moore (1983)
Santa Clara

Sidney R. Petersen (1980)
Toluca Lake

Rudolph A. Peterson (1967)
Piedmont

Simon Ramo (1964)
Beverly Hills

New York, New York

James E. Robison (1970)
Armonk, New York

Mary L. Scranton (1974)
Dalton, Pennsylvania

Dennis Stanfill (1976)
San Marino

Charles H. Townes (1979)
Berkeley

Richard R. Von Hagen (1955)
Los Angeles

Lew R. Wasserman (1971)
Beverly Hills

Harry H. Wetzel, Jr. (1979)
Palos Verdes Estates

William E. Zisch (1963)
La Jolla

Year of initial election.

Life Trustees

Chairman Emeritus

Arnold O. Beckman (1953, 1974)
Corona del Mar

President Emeritus

Lee A. DuBridge (1947, 1969)
Pasadena

Honorary Life Trustee

Mrs. Norman Chandler (1974)
Los Angeles

Life Trustees

George W. Beadle (1969, 1975)
Pomona

Houston, Texas

Louis E. Nohl (1966, 1973)
Los Angeles

Howard G. Vesper (1954, 1974)
Oakland

Thomas J. Watson, Jr. (1961, 1984)
Armonk, New York

Year of Life Trustee or Emeritus election is shown following year of initial election.
Trustee Elected Committees, 1984-85

Note: The Secretary of the Board of Trustees is secretary of all committees.
ADMINISTRATIVE OFFICERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marvin L. Goldberger</td>
<td>President</td>
</tr>
<tr>
<td>David W. Morrisroe</td>
<td>Vice President for Business and Finance and Treasurer</td>
</tr>
<tr>
<td>Dwain N. Fullerton</td>
<td>Vice President for Institute Relations</td>
</tr>
<tr>
<td>James J. Morgan</td>
<td>Vice President for Student Affairs</td>
</tr>
<tr>
<td>Charles D. Babcock, Jr.</td>
<td>Vice Provost</td>
</tr>
<tr>
<td>Rochus E. Vogt</td>
<td>Provost and Vice President</td>
</tr>
</tbody>
</table>

Chairmen of Divisions

<table>
<thead>
<tr>
<th>Division</th>
<th>Chairmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>Leroy E. Hood</td>
</tr>
<tr>
<td>Chemistry and Chemical Engineering</td>
<td>Fred C. Anson</td>
</tr>
<tr>
<td>Engineering and Applied Science</td>
<td>Roy W. Gould</td>
</tr>
<tr>
<td>Geological and Planetary Sciences</td>
<td>Peter J. Wylie</td>
</tr>
<tr>
<td>The Humanities and Social Sciences</td>
<td>David M. Grether</td>
</tr>
<tr>
<td>Physics, Mathematics and Astronomy</td>
<td>Edward C. Stone</td>
</tr>
</tbody>
</table>

Student Affairs

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice President for Student Affairs</td>
<td>James J. Morgan</td>
</tr>
<tr>
<td>Assistant Dean of Students</td>
<td>Chris Wood</td>
</tr>
<tr>
<td>Registrar</td>
<td>Lyman G. Bonner</td>
</tr>
<tr>
<td>Acting Dean of Graduate Studies</td>
<td>James J. Morgan</td>
</tr>
<tr>
<td>Master of Student Houses</td>
<td>Christopher E. Brennen</td>
</tr>
<tr>
<td>Director of Admissions and Associate Dean of Graduate Studies</td>
<td>Stirling L. Huntley</td>
</tr>
<tr>
<td>Assistant Director of Admissions</td>
<td>Gwenna Ruff Jahelka</td>
</tr>
<tr>
<td>Director of Financial Aid</td>
<td>Ruth W. Gilmore</td>
</tr>
<tr>
<td>Assistant Director of Financial Aid</td>
<td>Ann Draper</td>
</tr>
<tr>
<td>Director of Counseling Services</td>
<td>L. Bruce Kahl, M.D.</td>
</tr>
<tr>
<td>Director of Health Services</td>
<td>Gregory Ketabgian, M.D.</td>
</tr>
<tr>
<td>Director of Career Development</td>
<td>Sally J. Asmundson</td>
</tr>
<tr>
<td>Director of Secondary School Relations and Special Student Programs</td>
<td>Lee F. Browne</td>
</tr>
<tr>
<td>Assistant to the Vice President for Student Affairs</td>
<td>Stanley J. Borodinsky</td>
</tr>
</tbody>
</table>
Administrative Committees, 1984-85

ADMINISTRATIVE COMMITTEE ON AFFIRMATIVE ACTION (reports to the President)

ADMINISTRATIVE COMMITTEE ON BIOSAFETY (reports to the President) J. H. Strauss, Chairman; E. F. Blum, M. L. Brundige, E. H. Davidson, N. Davidson, W. M. Francis*, Ellis Jones, E. Rothenberg

BOOKSTORE ADVISORY COMMITTEE (reports to the President) R. A. Rosenstone, Chairman; L. G. Bonner, F. E. C. Culick

COMPUTING ADVISORY COMMITTEE (reports to the Provost) F. E. C. Culick, Chairman; A. P. Ingersoll, A. Kuppermann, H. A. Lester, R. D. McKelvey, T. A. Prince, C. L. Seitz

ADMINISTRATIVE COMMITTEE ON INSTITUTE ART (reports to the President) N. W. Tschoegl, Chairman; J. A. Belloli IV, N. R. Corngold, J. L. Greenstein, R. F. Randall, J. D. Roberts, A. Roshko, E. Sanchez, S. A. Walker, M. M. Ward

ADMINISTRATIVE COMMITTEE ON INSURANCE AND ANNUITIES (reports to the Vice President for Business and Finance) W. Whaling, Chairman; J. P. Click, L. Davis, Jr., F. H. Felberg, J. Goodstein, D. M. Grether, P. C. Jennings, W. P. Strong*

ADMINISTRATIVE COMMITTEE ON JPL (reports to the Provost) committee being formed

ADMINISTRATIVE COMMITTEE ON PROTECTION OF HUMAN SUBJECTS (reports to the President) D. A. O'Handley, Chairman; E. S. Beckenbach, C. J. Brokaw (alternate member), J. A. Carr, D. H. Fender, D. R. Fowler, W. M. Francis*, B. Ho, L. E. Hood*, J. Hoyt, L. Jennings, J. A. Rooney, B. H. Rosker (alternate member), B. J. Wold, D. Zeh

ADMINISTRATIVE COMMITTEE ON RADIATION SAFETY (reports to the President) D. S. Burnett, Chairman; E. B. Emery, B. H. Evans, W. M. Francis*, W. L. Johnson, R. W. Kavanagh, W. R. Milne*, S. O. Samson

*Ex officio

ADMINISTRATIVE COMMITTEE ON RESEARCH INVOLVING WARM-BLOODED ANIMALS (reports to the President) J. M. Allman, Chairman; W. M. Blackmore, C. Hamilton, L. E. Hood*, M. Konishi, J. H. Richards, D. C. Van Essen

ADMINISTRATIVE COMMITTEE ON SPONSORED RESEARCH (reports to the President) R. F. Christy, Chairman; S. I. Chan, E. W. Cowan, D. O. Muhleman, R. Sabersky, W. Whaling

NOTE: A charter for each of the administrative committees is on file in the Office of the Executive Assistant to the President.

FACULTY OFFICERS AND COMMITTEES 1984-85

Officers
Chairman: Donald S. Cohen
Vice Chairman: Charles D. Babcock
Secretary: David C. Elliot

Faculty Board

Term expires
June 30, 1985
M. Aschbacher
H. C. Berg
M. Konishi
A. Roshko
E. M. Searle
F. H. Shair

Term expires
June 30, 1986
R. D. Blandford
B. E. Cain
M. R. Hoffmann
J. J. Hopfield
R. A. Marcus
K. E. Sieh

Term expires
June 30, 1987
J. F. Benton
G. R. Cass
M. B. Kennedy
R. J. McEliece
H. D. Politzer
G. R. Rossman

Steering Committee

*Ex officio
Academic Freedom and Tenure Committee
Ch., D. L. Goodstein; Vice Ch., F. E. C. Culick

Term Expires June 30, 1985
F. E. C. Culick
S. Epstein
P. W. Fay

Term Expires June 30, 1986
D. L. Goodstein
A. Kuppermann

Membership and Bylaws

Nominating Committee

Standing Committees

CONVOCATIONS—J. K. Clark, A. L. Albee, C. E. Brennen, J. La Belle, R. W. Oliver

INDEPENDENT STUDIES—D. H. Fender

*Ex officio

*Ex officio

STAFF OF INSTRUCTION AND RESEARCH

Division of Biology

Leroy E. Hood, Chairman
Charles J. Brokaw, Associate Chairman
James H. Strauss, Executive Officer
David C. Van Essen, Executive Officer

Professors Emeriti

James F. Bonner, Ph.D.
Biology
Sterling Emerson, Ph.D.
Genetics
Norman H. Horowitz, Ph.D.
Biology
George E. MacGinitie, M.A.
Biology
Herschel K. Mitchell, Ph.D.
Biology
Ray D. Owen, Ph.D., Sc.D.
Biology
Roger W. Sperry, Ph.D., Sc.D., Nobel Laureate
Hixon Professor of Psychobiology
Anthonie Van Harreveld, Ph.D., M.D.
Physiology

Professors

John Abelson, Ph.D.
Biology
John M. Allman, Ph.D.
Biology
Giuseppe Attardi, M.D.
Biology
Seymour Benzer, Ph.D., D.Sc.
James G. Boswell Professor of Neuroscience
Howard C. Berg, Ph.D.
Biology
Charles J. Brokaw, Ph.D.¹
Biology
Eric H. Davidson, Ph.D.
Norman Chandler Professor of Cell Biology
William J. Dreyer, Ph.D.
Biology
Derek H. Fender, Ph.D.
Biology and Applied Science
LeRoy E. Hood, M.D., Ph.D.
Ethel Wilson Bowles and Robert Bowles Professor of Biology
John J. Hopfield, Ph.D.
Roscoe G. Dickinson Professor of Chemistry and Biology

¹Option Representative
Masakazu Konishi, Ph.D.
Bing Professor of Behavioral Biology
Henry A. Lester, Ph.D.
Biology
Edward B. Lewis, Ph.D.
Thomas Hunt Morgan Professor of Biology
Paul H. Patterson, Ph.D.
Biology

Jean-Paul Revel, Ph.D.¹ ²
Albert Billings Ruddock Professor of Biology
Melvin I. Simon, Ph.D.
Biology
James H. Strauss, Ph.D.
Biology
David C. Van Essen, Ph.D.
Biology

Associate Professors
Mary B. Kennedy, Ph.D.
Biology
Elias Lazarides, Ph.D.
Biology

Assistant Professors
James M. Bower, Ph.D.
Biology
Scott D. Ernr, Ph.D.
Biology
Elliot M. Meyerowitz, Ph.D.
Biology

Ellen Rothenberg, Ph.D.
Biology
Mark A. Tanouye, Ph.D.
Biology
Barbara Wold, Ph.D.
Biology

Senior Research Associates
Roy J. Britten, Ph.D.³
Distinguished Carnegie Senior Research Associate in Biology
Barbara Hough Evans, Ph.D.
Biology
Charles R. Hamilton, Ph.D.
Biology

Stephen B. H. Kent, Ph.D.
Biology
Marianne E. Olds, Ph.D.
Biology

Senior Research Fellows
Yassemi Capetanaki, Ph.D.
Biology
Anne Chomyn, Ph.D.
Biology
Konstantinos Flytzanis, Dr.rer.nat.
Biology
William J. Nelson, Ph.D.
Biology
Jeanne M. Nerbonne, Ph.D.
Biology

Andrew J. Newman, Ph.D.
Biology
John W. Roberts, Ph.D.
Biology
Ellen G. Strauss, Ph.D.
Biology
S. Barbara Yancey, Ph.D.
Biology

¹Undergraduate Student Adviser
²Premedical Adviser
³Joint appointment with Carnegie Institution of Washington
Research Fellows

Ruedi Aebersold, Ph.D.¹
Bernhard Arden, Ph.D.
Dennis G. Ballinger, Ph.D.²
Utpal Banerjee, Ph.D.³
Richard K. Barth, Ph.D.
Steven M. Block, Ph.D.⁴
V. Craig Bond, Ph.D.
Michael F. Bruist, Ph.D.
Barry I. Caplan, Ph.D.
Susan E. Celniker, Ph.D.
Michael W. Clark, Ph.D.
John V. Cox, Ph.D.
M. Craig Doersen, Ph.D.
Susan F. Eberlein, Ph.D.
Daniel D. Felleman, Ph.D.
Henry Fong, Ph.D.
Robert R. Franks, Ph.D.
Karl J. Fryxell, Ph.D.
Keikoh Fukada, Ph.D.
Janet M. Garrett, Ph.D.
Joan M. Goverman, Ph.D.
Phillip R. Green, Ph.D.
Alison M. Gurney, Ph.D.
Sibylle C. Hechtel, Ph.D.
Polly J. Henninger, Ph.D.
Jane Houldsworth, Ph.D.
Stephen W. Hunt, Ph.D.
James B. Hurley, Ph.D.
Linda E. Iverson, Ph.D.
Peter F. Johnson, Ph.D.
Reid C. Johnson, Ph.D.
Robert J. Kaiser Jr., Ph.D.
Karen S. Katula, Ph.D.
Christine Kinnon, Ph.D.
Joan A. Kobori, Ph.D.
Mitchell Kronenberg, Ph.D.
Ren-Jang Lin, Ph.D.
James P. Lugo, Ph.D.
Daniel Margoliash, Ph.D.
Paolo Mariottni, Ph.D.
Eve Lynne McGuinness, Ph.D.
Randall T. Moon, Ph.D.
Norihiro Muto, Ph.D.
Bruce J. Nicholson, Ph.D.
Kenji Oosawa, D.Sc.
Irene Pech, Ph.D.
Eric M. Phizicky, Ph.D.
Randall N. Pittman, Ph.D.
K. Vijay Raghavan, Ph.D.
Helen Rayburn, Ph.D.
John J. Robinson, Ph.D.
Samuel J. Rose III, Ph.D.
Lloyd M. Smith, Ph.D.
Matthias Staufenbiel, Ph.D.
Iwona T. Stroynowski, Ph.D.
Lisa J. Stubbs, Ph.D.
Winthrop E. Sullivan III, Ph.D.
Naoki Takahashi, Ph.D.
Terry Takashi Takahashi, Ph.D.
Paul Tempst, Ph.D.
Tadmiri S. Venkatesh, Ph.D.
Michael M. White, Ph.D.
Catherine M. Woods, Ph.D.
Jiyoung Kim Yang, Ph.D.
Stephen L. Zipursky, Ph.D.
Martha C. Zuniga, Ph.D.

¹ Swiss National Foundation Fellow
² Myron A. Bantrell Fellow
³ Del Webb Fellow
⁴ Pfeiffer Fund Fellow
⁵ U.S. Public Health Service Fellow
⁶ American Cancer Society Fellow
⁷ Alberta Heritage Foundation for Medical Research Fellow
⁸ Muscular Dystrophy Association of America Fellow
⁹ Anna Fuller Fund Fellow
¹⁰ U.S. Public Health Service Postdoctoral Trainee
¹¹ Helen Hay Whitney Foundation Fellow
¹² Dysautonomia Foundation, Inc. Fellow
¹³ Gossen Fellow
¹⁴ Leukemia Society of America Fellow
¹⁵ Natural Sciences and Engineering Research Council Fellow, Canada
¹⁶ Damon Runyon-Walter Winchell Cancer Fund Fellow
¹⁷ Procter & Gamble Fellow
¹⁸ Life Sciences Research Foundation Fellow
¹⁹ Arthritis Foundation Fellow
²⁰ Systems Development Foundation Fellow
²¹ International Union Against Cancer Fellow
²² Dreyfus Fund Fellow
²³ Cancer Research Institute, Inc. Fellow
²⁴ In residence 1983-84
Visiting Associates

Lillian E. Bertani, Ph.D.
Biology
Edward N. Brody M.D., Ph.D.
Biology
Rolf Dermietzel, M.D.
Biology
Caleb E. Finch, Ph.D.
Biology
Michael W. Hunkapiller, Ph.D.
Biology
Joan L. Klotz, Ph.D.
Biology
Leslie S. Leutwiler, Ph.D.
Biology
Honghua Li,
Biology
Minnie McMillan, Ph.D.
Biology
Carol A. Miller, M.D.
Biology
Howard C. Passmore, Ph.D.
Biology
Edward F. Pate, Ph.D.
Biology
Lajos Piko, D.V.M.
Biology
Vilayanur S. Ramachandran, Ph.D.
Biology
Austen F. Riggs, Ph.D.
Biology
Marvin J. Rosenberg, Ph.D.
Biology
Daniel S. Straus, Ph.D.
Biology
Evelyn Teng, Ph.D.
Biology
Eran Zaidel, Ph.D.
Biology

Members of the Professional Staff

Suzanna J. Horvath, Ph.D.
Scientist
Francis M. Miezin, M.S.E.E.
Research Engineer

Carol Readhead, Ph.D.
Scientist
David B. Teplow, Ph.D.
Research Biologist

1In residence 1983-84

Division of Chemistry and Chemical Engineering

Fred C. Anson, Chairman
John H. Seinfeld, Executive Officer for Chemical Engineering

Professors Emeriti

Chemistry

Ernest H. Swift, Ph.D., LL.D.
Analytical Chemistry

Senior Research Associates Emeriti

Edward W. Hughes, Ph.D.
Chemistry
Joseph B. Koepfli, D. Phil.
Chemistry

Oliver R. Wulf, Ph.D.
Physical Chemistry
Professors
Fred C. Anson, Ph.D.
Chemistry
James E. Bailey, Ph.D.
Chemical Engineering
John D. Baldeschwieler, Ph.D.
Chemistry
Jesse L. Beauchamp, Ph.D.
Chemistry
John E. Bercaw, Ph.D.
Chemistry
Sunney I. Chan, Ph.D.
Chemical Physics and Biophysical Chemistry
Norman Davidson, Ph.D.
Norman Chandler Professor of Chemical Biology
Peter B. Dervan, Ph.D.
Chemistry
George R. Gavalas, Ph.D.
Chemical Engineering
William A. Goddard III, Ph.D.
Chemistry and Applied Physics
Harry B. Gray, Ph.D., D.Sc.
Arnold O. Beckman Professor of Chemistry
Robert H. Grubbs, Ph.D.
Chemistry
John J. Hopfield, Ph.D.
Roscoe G. Dickinson Professor of Chemistry and Biology
Robert E. Ireland, Ph.D.
Organic Chemistry
Aron Kuppermann, Ph.D.
Chemical Physics
L. Gary Leal, Ph.D.
Chemical Engineering
Rudolph A. Marcus, Ph.D.
Arthur Amos Noyes Professor of Chemistry
Vincent McKoy, Ph.D.
Theoretical Chemistry
Manfred Morari
Chemical Engineering
Michael A. Raftery, Ph.D., Sc.D.
Chemical Biology
John H. Richards, Ph.D.
Organic Chemistry
John D. Roberts, Ph.D., Dr rer. nat., Sc.D.
Institute Professor of Chemistry
John H. Seinfeld, Ph.D.
Louis E. Nohl Professor and Professor of Chemical Engineering
Fredrick H. Shair, Ph.D.
Chemical Engineering
Nicholas W. Tschoegl, Ph.D.
Chemical Engineering
W. Henry Weinberg, Ph.D.
Chevron Professor of Chemical Engineering Related to Energy and Professor of Chemical Engineering and Chemical Physics
Ahmed H. Zewail, Ph.D.
Chemical Physics
Gregory N. Stephanopoulos, Ph.D.
Chemical Engineering

Associate Professors
Judith L. Campbell, Ph.D.
Chemistry

Assistant Professors
Terrence J. Collins, Ph.D.
Chemistry
Dennis A. Dougherty, Ph.D.
Chemistry
Eric Herbolzheimer, Ph.D.
Chemical Engineering
Kenneth C. Janda, Ph.D.
Chemistry
Carl S. Parker, Ph.D.
Chemical Biology
Randal K. Sparks, Ph.D.
Chemical Physics

Senior Research Associates
Terry Cole, Ph.D.
Chemistry and Chemical Engineering
Richard E. Marsh, Ph.D.
Chemistry
Sten O. Samson, Fil. Dr.
Chemistry
William P. Schaefer, Ph.D.
Chemistry
Walter A. Schroeder, Ph.D.
Chemistry
Research Fellows

Michael Albin, Ph.D.
Paul B. Beeken, Ph.D.
Martin E. Budd, Ph.D.
Robert J. Crutchley, Ph.D.
David L. Davies, Ph.D.
Shamasundar N. Dixit, Ph.D.
Fuad E. Doany, Ph.D.
Andrew P. Dowsett, Ph.D.
Geoffrey B. Dreyer, Ph.D.
Kevin W. Fields, Ph.D.
Lawrence K. Fong, Ph.D.
Nevis L. Fregien, Ph.D.
Leonard I. Garfinkel, Ph.D.
Steven M. George, Ph.D.
Thomas L. Gibson, Ph.D.
Vernon C. Gibson, Ph.D.
Alan L. Goldin, M.D., Ph.D.
Marvin M. Goodgame, Ph.D.
Thomas F. Guarr, Ph.D.
Folim Halaka, Ph.D.
Eric S. Hood, Ph.D.
Yaw-Shong Ambrose Jong, Ph.D.
Gotam K. Jarori, Ph.D.
Joseph L. Knee, Ph.D.
Robert Little, Ph.D.
Hsue-Yang Liu, Ph.D.
Hermann Lubbert, Ph.D.
Peter B. Mackenzie, Ph.D.
David E. Malerba, Ph.D.
Peter Maienfisch, Ph.D.
Ronnie C. McHatton, Ph.D.
Lianna M. Munson, Ph.D.
Bruce J. Nicholson, Ph.D.
Daniel M. Obrecht, Ph.D.
Bernhard O. Palsson, Ph.D.
Mary E. Price, Ph.D.
Thomas G. Richmond, Ph.D.
Ka-Yiu San, Ph.D.
Stewart Scherer, Ph.D.
Rudolf A. Schohe, Ph.D.
Albert E. Stieglman, Ph.D.
Katsuhiro Sumi, Ph.D.
Shirley M. Taylor, Ph.D.
Fritz Thommen-Meyer, Ph.D.
John M. Tomich, Ph.D.
Hsien-Hsin Tung, Ph.D.
Bing-Jiun Uang, Ph.D.
Wayne D. Webley, Ph.D.
Paul E. West, Ph.D.
Ronald M. Wexler, Ph.D.
Paul M. Whitmore, Ph.D.

Associate
Lyman G. Bonner, Ph.D.
Chemistry

Sherman Fairchild Distinguished Scholars

Jack D. Dunitz, Ph.D.
Chemistry

Visiting Professors

Michael J. Bazin, Ph.D.
Chemical Engineering

Nicholas J. Turro, Ph.D.
Chemistry

Ned A. Porter, Ph.D.
Chemistry

1 Bantrell Research Fellow
2 National Science and Engineering Research Council Postdoctoral Fellow (Canada)
3 NATO Postdoctoral Fellow
4 Helen Hay Whitney Foundation Postdoctoral Fellow
5 Damon Runyon-Walter Winchell Cancer Fund Postdoctoral Fellow
6 Muscular Dystrophy Association Postdoctoral Fellow
7 National Institutes of Health National Research Service Award Postdoctoral Fellow
8 Fulbright Foundation Postdoctoral Fellow
9 Deutsche Forschungsgemeinschaft Postdoctoral Fellow
10 Swiss National Research Foundation Fellow
11 Deutscher Akademischer Austauschdienst Postdoctoral Fellow
Visiting Associates

Jill P. Adler, Ph.D.
Chemistry
Charles H. Anderson, Ph.D.
Chemistry
Vasil K. Babamov, Ph.D.¹
Chemistry
L. Elizabeth Bertani, Ph.D.
Chemistry and Biology
Richard J. Bing, M.D.
Chemistry
Robert R. Birge, Ph.D.
Chemistry
William G. Bradley, Ph.D., M.D.
Chemistry
Luiz M. Brescansin, Ph.D.
Chemistry
Roger Chang, D.Sc.
Chemistry
Michael J. Clarke, Ph.D.²
Chemistry
Bianca Conti-Tronconi, M.D.
Chemistry
A. Arnobio da Gama, Ph.D.
Chemistry
Phoebe K. Dea, Ph.D.
Chemistry
Frank DeHaan, Ph.D.²
Chemistry
Riccardo Destro, Ph.D.²
Chemistry
Susan M. J. Dunn, Ph.D.
Chemistry
Lucia R. Garcia-Inguez, Ph.D.
Chemistry
Fred Gelbard, Ph.D.¹
Chemical Engineering
M. Michael Glovsky, M.D.¹
Chemistry
Ian Gregor, Ph.D.
Chemistry
Daniel Grosjean, Ph.D.¹
Chemical Engineering
Earl C. Harrison, M.D.³
Chemical Engineering
Frank Herbst, Ph.D.
Chemistry
Barbara A. Holshouser, Ph.D.
Chemistry
Keiko Kanamori, Ph.D.¹
Chemistry
Fritz S. Klein, Ph.D.
Chemistry
Pramod Lad, Ph.D.¹
Chemistry
Ting-Fong Lai, Ph.D.
Chemistry
Seong Hee Lee, Ph.D.¹
Chemical Engineering
Joseph Merola, Ph.D.²
Chemistry
Shoji Nagata, Ph.D.¹
Chemistry
Dwight Prater, Ph.D.
Chemical Engineering
James A. Reiss, Ph.D.²
Chemistry
Paul G. Schmidt, Ph.D.
Chemistry
C. Hunter Sheldon, M.D.
Chemistry
Man-Qi Tan, (Ph.D. Equiv.)
Chemistry
Theodore B. Smith, Ph.D.
Chemical Engineering
Masayuki Uchida, M.S.
Chemical Engineering

Member of the Professional Staff

Jane G. Raymond, Ph.D.
Chemistry

¹ Part-time
² In residence 1983-84
Division of Engineering and Applied Science

Roy W. Gould, Chairman
Wilfred D. Iwan, Executive Officer for Civil Engineering and Applied Mechanics
Herbert B. Keller, Executive Officer for Applied Mathematics
Hans W. Liepmann, Director of the Graduate Aeronautical Laboratories and Executive Officer for Aeronautics
E. John List, Executive Officer for Environmental Engineering Science
Hardy C. Martel, Executive Officer for Electrical Engineering

Professors Emeriti
Francis H. Clauser, Ph.D.
Clark Blanchard Millikan Professor of Engineering
Frederick J. Converse, B.S.
Soil Mechanics
Pol E. Duwez, D.Sc.
Applied Physics and Materials Science
George W. Housner, Ph.D.
Carl F Braun Professor of Engineering
Donald E. Hudson, Ph.D.
Mechanical Engineering and Applied Mechanics
Paco A. Lagerstrom, Ph.D.
Applied Mathematics
Robert V. Langmuir, Ph.D.
Electrical Engineering
Frederick C. Lindvall, Ph.D., D.Sc., D. Eng.
Engineering
James O. McCaldin, Ph.D.
Applied Physics and Electrical Engineering
Gilbert D. McCann, Ph.D.
Applied Science
Electrical Engineering
John R. Pierce, Ph.D., D.Sc., D.Eng., E.D., LL.D.
Engineering
Milton S. Plesset, Ph.D.
Engineering Science
W. Duncan Rannie, Ph.D.
Robert H. Goddard Professor of Jet Propulsion and Professor of Mechanical Engineering
Homer J. Stewart, Ph.D.
Aeronautics
Vito A. Vanoni, Ph.D.
Hydraulics
J. Harold Wayland, Ph.D., D.Sc.
Engineering Science
Charles H. Wilts, Ph.D.
Electrical Engineering and Applied Physics

Professors
Allan J. Acosta, Ph.D.
Mechanical Engineering
Charles D. Babcock, Jr., Ph.D.
Aeronautics and Applied Mechanics
Christopher E. Brennen, Ph.D.
Mechanical Engineering
William B. Bridges, Ph.D.
Carl F Braun Professor of Engineering
Norman H. Brooks, Ph.D.
James Irvine Professor of Environmental and Civil Engineering
Francis S. Buffington, Sc.D.
Materials Science
Thomas K. Caughey, Ph.D.
Applied Mechanics
Donald S. Cohen, Ph.D.
Applied Mathematics
Donald E. Coles, Ph.D.
Aeronautics
Noel R. Corngold, Ph.D.
Applied Physics
Fred E. C. Culick, Ph.D.
Applied Physics and Jet Propulsion
Derek H. Fender, Ph.D.
Biology and Applied Science
Joel N. Franklin, Ph.D.
Applied Mathematics
Roy W. Gould, Ph.D.
Simon Ramo Professor of Engineering
Wilfred D. Iwan, Ph.D.
Applied Mechanics
Paul C. Jennings, Ph.D.
Civil Engineering and Applied Mechanics
Herbert B. Keller, Ph.D.
Applied Mathematics

1 On leave of absence 1984-85
2 On leave of absence second and third terms 1984-85
Wolfgang G. Knauss, Ph.D.
Aeronautics and Applied Mechanics

James K. Knowles, Ph.D.
Applied Mechanics

Heinz-Otto Kreiss, Dr. Tech., Docent
Applied Mathematics

Toshi Kubota, Ph.D.
Aeronautics

Lester Lees, M.S.
Environmental Engineering and Aeronautics

Hans W. Liepmann, Ph.D.
Theodore von Karman Professor of Aeronautics

E. John List, Ph.D.
Environmental Engineering Science

Frank E. Marble, Ph.D.
Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion

Hardy C. Martel, Ph.D.
Electrical Engineering

Robert J. McEIliece, Ph.D.
Electrical Engineering

Thomas C. McGill, Ph.D.
Applied Physics

Carver A. Mead, Ph.D.
Gordon and Betty Moore Professor of Computer Science

R. David Middlebrook, Ph.D.
Electrical Engineering

Julius Miklowitz, Ph.D.
Applied Mechanics

James J. Morgan, Ph.D.
Environmental Engineering Science

Marc-Aurele Nicolet, Ph.D.
Electrical Engineering

Wheeler J. North, Ph.D.
Environmental Science

Charles H. Papas, Ph.D.
Electrical Engineering

Fredric Raichlen, Sc.D.
Civil Engineering

Anatol Roshko, Ph.D.
Aeronautics

Rolf H. Sabersky, Ph.D.
Mechanical Engineering

Philip G. Saffman, Ph.D.
Applied Mathematics

Ronald F. Scott, Sc.D.
Civil Engineering

Eli Sternberg, Ph.D., D.Sc.
Mechanics

Bradford Sturtevant, Ph.D.
Aeronautics

Frederick B. Thompson, Ph.D.
Applied Philosophy and Computer Science

Thad Veel, Jr., Ph.D.
Materials Science

Gerald B. Whitham, Ph.D.
Charles Lee Powell Professor of Applied Mathematics

David S. Wood, Ph.D.
Materials Science

Theodore Y. Wu, Ph.D.
Engineering Science

Amnon Yariv, Ph.D.
Thomas G. Myers Professor of Electrical Engineering and Professor of Applied Physics

Edward E. Zukoski, Ph.D.
Jet Propulsion and Mechanical Engineering

Associate Professors

Paul M. Bellan, Ph.D.
Applied Physics

Slobodan M. Cuk, Ph.D.
Electrical Engineering

Paul E. Dimotakis, Ph.D.
Aeronautics and Applied Physics

Richard C. Flagan, Ph.D.
Environmental Engineering Science and Mechanical Engineering

Bengt Fornberg, Ph.D.
Applied Mathematics

Michael R. Hoffmann, Ph.D.
Environmental Engineering Science

William L. Johnson, Ph.D.
Materials Science

Alain J. Martin, Ing.
Computer Science

David B. Rutledge, Ph.D.
Electrical Engineering

Charles L. Seitz, Ph.D.
Computer Science

David F. Welch, I.D.
Engineering Design

1 On leave of absence first term 1984–85
Assistant Professors

Erik K. Antonsson, Ph.D.
Mechanical Engineering

Yaser S. Abu-Mostafa, Ph.D.
Electrical Engineering and Computer Science

Alan H. Barr, Ph.D.
Computer Science

James L. Beck, Ph.D.
Civil Engineering

Randal E. Bryant, Ph.D.¹
Computer Science

Glen R. Cass, Ph.D.
Environmental Engineering

John F. Hall, Ph.D.
Civil Engineering

James T. Kajiya, Ph.D.
Computer Science

Demetri Psaltis, Ph.D.
Electrical Engineering

Ares J. Rosakis, Ph.D.
Aeronautics and Applied Mechanics

Peter M. Thompson, Ph.D.
Electrical Engineering

P. P. Vaidyanathan, Ph.D.
Electrical Engineering

Instructor

Jens Lorenz, Dr. Nat. Sci., Habil.²
Applied Mathematics

Lecturers

Ronald F. Ayres, Ph.D.
Computer Science

Stanley H. Bacon
Electrical Engineering

James F. Blinn, Ph.D.
Computer Science

James Boyk, M.F.A.
Music

James B. Breckinridge, Ph.D.
Applied Physics

Mack W. Dowdy, Ph.D.
Jet Propulsion

Charles Elachi, Ph.D.
Electrical Engineering

Thomas R. McDonough, Ph.D.
Engineering

Frank J. Mullin, Ph.D.
Electrical Engineering

Charles B. Ray, M.S.
Computer Science

Carl F. Ruoff, M.S.
Mechanical Engineering

Kenneth S. Smith, Ph.D.
Applied Mechanics

Richard F. Whitbeck, Ph.D.
Aeronautics

Senior Research Associates

Robert C. Y. Koh, Ph.D.
Environmental Engineering Science

Paulett C. Liewer, Ph.D.
Applied Physics

Shlomo Margalit, D.Sc.
Applied Physics

Senior Research Fellows

Steven L. Manley, Ph.D.
Environmental Engineering Science

Bruce M. Paine, Ph.D.
Applied Physics

George T. Yates, Ph.D.
Engineering Science

¹ On leave of absence 1984-85
² von Kármán Instructor
Research Fellows

Elias A. Awad, Ph.D.
Mechanical Engineering

David V. Baxter, Ph.D.
Applied Physics

David L. Brown, Ph.D.
Applied Mathematics

Eric J. Cotts, Ph.D.
Applied Physics

Jean-Francois Haas, Ph.D.
Aeronautics

Aboud H. Hanadi, Ph.D.
Applied Physics

Miguel A. Herran, Ph.D.
Aeronautics

Manoochehr M. Koochesfahani, Ph.D.
Aeronautics

Christian Mailhiot, Ph.D.
Applied Physics

Richard C. Miake-Lye, Ph.D.
Aeronautics

Eung Gi Paek, Ph.D.
Electrical Engineering

Zeev Rav-Noy, Ph.D.
Applied Physics

Joseph Salzman, Ph.D.
Applied Physics

Geza Schrauf, Ph.D.
Applied Mathematics

Jeffrey A. Simmen, Ph.D.
Applied Mathematics

Gabriel Sirat, Ph.D.
Electrical Engineering

Noel F. Smyth, Ph.D.
Applied Mathematics

Saleh A. Tanveer, Ph.D.
Applied Mathematics

John R. Torczynski, Ph.D.
Applied Physics

Karl M. Unruh, Ph.D.
Applied Physics

Marc J. P. Van Rossum, M.D., Ph.D., Habil.
Applied Physics

Vigor Yang, Ph.D.
Jet Propulsion

Amikam Zur, Ph.D.
Applied Physics

Sherman Fairchild Distinguished Scholar

Carl de Boor, Ph.D.
Applied Mathematics

Visiting Professors

Cornelius O. Horgan, Ph.D.
Applied Mechanics

Gearold R. Johnson, Ph.D.
Mechanical Engineering

Edward C. Posner, Ph.D.
Electrical Engineering

Lawrence L. Rauch, Ph.D.
Electrical Engineering

Martin Rem, Ph.D.
Computer Science

Visiting Associate Professors

Asif Sabanovic, D.Sc.
Electrical Engineering

Henricus C. A. van Tilborg, Ph.D.
Electrical Engineering and Computer Science

Visiting Assistant Professor

Jan L. A. van de Snepscheut, Ph.D.
Computer Science

1 In residence 1983-84
2 Bantrell Research Fellow
3 Also part-time Lecturer in Applied Physics second and third terms 1983-84
4 IBM Research Fellow
Visiting Associates

Rohan Abeyaratne, Ph.D.
Applied Mechanics

Niklaus C. Affolter, Ph.D.
Electrical Engineering

Pierre Alais, Doctorat d’Etat
Aeronautics

Yasuhiro Arakawa, Ph.D.
Applied Physics

James P. Ary, Ph.D.
Biomedical Engineering

Meir Bartur, Ph.D.
Electrical Engineering

John B. Berrill, Ph.D.
Civil Engineering

James E. Broadwell, Ph.D.
Aeronautics

Christopher J. Catherasoo, Ph.D.
Aeronautics

Yao-Song Chen, Ph.D.
Engineering Science

Che-Min Cheng, Ph.D.
Applied Mechanics

Bruno Crosignani, Lib.Doc.
Electrical Engineering

Gabriel T. Csanady, Ph.D.
Environmental Engineering Science

David R. Eim
Computer Science

Nader Engheta, Ph.D.
Electrical Engineering

Alexander H. Frey, Jr., Ph.D.
Computer Science

Ilan Golecki, Ph.D.
Applied Physics

Patrick S. Hagan, Ph.D.
Applied Mathematics

John D. Hestenes, Ph.D.
Biological and Applied Science

Andrew T. Hunter, Ph.D.
Applied Physics

S. Hossein Izadpanah, Ph.D.
Applied Physics

Peter A. E. M. Janssen, Ph.D.
Applied Mathematics

Hannu P. Kattelus, Lis.Tech.
Applied Physics

Joseph Katz, Ph.D.
Mechanical Engineering

Susan W. Kieffer, Ph.D.
Fluid Mechanics

Vit Klemes, Ph.D.
Environmental Engineering

Yigal Kronzon, Ph.D.
Jet Propulsion

Kam-Yin Lau, Ph.D.
Applied Physics

Silvanus S. Lau, Ph.D.
Applied Physics

Ya-Yun Liu, Eng.
Electrical Engineering

Richard F. Lyon, M.S.E.E.
Computer Science

Xiao-liang Ma, Ph.D.
Electrical Engineering

Daniel I. Meiron, Ph.D.
Applied Mathematics

James R. Mueller, Ph.D.
Applied Mathematics

Minoru Nagai, D.Eng.
Engineering Science

Haruo Naitoh, Ph.D.
Electrical Engineering

Mitsuo Nogoshi, D.Sc.
Civil Engineering

Simon Ramo, Ph.D.
Engineering

Ricardo B. Schwarz, Ph.D.
Materials Science

Rindge Shima, B.S.
Applied Physics

Jawahar L. Tandon, Ph.D.
Applied Physics

Armand R. Tanguay, Jr., Ph.D.
Electrical Engineering

T. N. C. Venkatesan, Ph.D.
Applied Physics

Howard Winet, Ph.D.
Engineering Science

Maobin Yi, M.S.
Applied Physics

Paul Kit-Lai Yu, Ph.D.
Applied Physics

Xin-an Zhao, Ph.D.
Applied Physics

Members of the Professional Staff

Desmond R. Armstrong, B.S.
Engineer

Jonathan D. Melvin, Ph.D
Senior Scientist

1 In residence 1983-84
2 Also part-time Visiting Associate in Geology
3 Also Visiting Associate in Geophysics
Division of Geological and Planetary Sciences

Peter J. Wyllie, *Chairman*
Donald S. Burnett, *Academic Officer*
Don L. Anderson, *Director, Seismological Laboratory*

Professors Emeriti
- C. Hewitt Dix, Ph.D.
 Geophysics
- Heinz A. Lowenstam, Ph.D.
 Paleoecology
- Charles F. Richter, Ph.D.
 Seismology
- Robert P. Sharp, Ph.D.
 The Robert P. Sharp Professor of Geology, Emeritus

Professors
- Thomas J. Ahrens, Ph.D.
 Geophysics
- Arden L. Albee, Ph.D.
 Geology
- Clarence R. Allen, Ph.D.
 Geology and Geophysics
- Don L. Anderson, Ph.D.
 Geophysics
- Donald S. Burnett, Ph.D.
 Geophysics
- Samuel Epstein, Ph.D., D.Sc.
 William E. Leonhard Professor of Geology
- Peter Goldreich, Ph.D.
 Lee A. DuBridge Professor of Astrophysics and Planetary Physics
- David G. Harkrider, Ph.D.
 Geophysics
- Donald V. Heimberger, Ph.D.
 Geophysics
- Andrew P. Ingersoll, Ph.D.
 Planetary Science
- Barclay Kamb, Ph.D.
 Geology and Geophysics
- Hiroo Kanamori, Ph.D.
 Geophysics
- Duane O. Muhleman, Ph.D.
 Planetary Science
- Bruce C. Murray, Ph.D.
 Planetary Science
- George R. Rossman, Ph.D.
 Mineralogy
- Edward M. Stolper, Ph.D.
 Geology
- Eugene M. Shoemaker, Ph.D., D.Sc.
 Geology and Planetary Science
- Leon T. Silver, Ph.D.
 W. M. Keck Foundation Professor for Resource Geology
- Hugh P. Taylor, Jr., Ph.D.
 The Robert P. Sharp Professor of Geology
- Gerald J. Wasserburg, Ph.D.
 John D. MacArthur Professor of Geology and Geophysics
- James A. Westphal, B.S.
 Planetary Science
- Peter J. Wyllie, Ph.D., D.Sc.
 Geology
- Joseph L. Kirschvink, Ph.D.
 Geobiology

Associate Professors
- Jason B. Salecby, Ph.D.
 Geology
- Kerry E. Sieh, Ph.D.
 Geology
- David J. Stevenson, Ph.D.
 Planetary Science
- Yuk L. Yung, Ph.D.
 Planetary Science

Assistant Professors
- Robert W. Clayton, Ph.D.
 Exploration Geophysics
- Bradford H. Hager, Ph.D.
 Geophysics
- Joseph L. Kirschvink, Ph.D.
 Geobiology
Senior Research Associates
Ian D. Hutcheon, Ph.D.
Geochemistry
Dimitri A. Papanastassiou, Ph.D.
Geochemistry

Senior Research Fellow
John T. Armstrong, Ph.D.
Geochemistry

Research Fellows
Jay D. Bass, Ph.D.
Geophysics
Teresa S. Bowers, Ph.D.
Geochemistry
Robert P. Comer, Ph.D.
Geophysics
David Crisp, Ph.D.
Planetary Science
Diane Doser, Ph.D.
Geophysics
Keith A. Echelmeyer, Ph.D.
Geology
Adrian P. Jones, Ph.D.
Experimental Petrology
Peter Kastenmayer, Ph.D.
Geochemistry
R. V. Krishnamurthy, Ph.D.
Geochemistry
James A. Leo, Ph.D.
Planetary Science

Sherman Fairchild Distinguished Scholars
Adam M. Dzwonowski, Dr. Tech. Sci.
Geophysics
Peter Molnar, Ph.D.
Geology

Visiting Associate Professor
Richard W. Zurek, Ph.D.
Atmospheric Sciences

Visiting Associates
Mark Allen, Ph.D.
Planetary Science
Arthur Boettcher, Ph.D.
Geology
Claude Boutron, Ph.D.
Geochemistry
George Brimhall, Ph.D.
Resource Geology
Donald E. Brownlee II, Ph.D.
Geochemistry

Sally Newman, Ph.D.
Geochemistry
Francois M. Robert, Ph.D.
Geochemistry
Debra S. Stakes, Ph.D.
Geochemistry
Toshiro Tanimoto, Ph.D.
Geophysics
James A. Tyburczy, Ph.D.
Geophysics
Marianne C. Walck, Ph.D.
Geophysics
Steven G. Wesnousky, Ph.D.
Geophysics
Jongmann Yang, Ph.D.
Geochemistry
Leila Zeira, Ph.D.
Geochemistry

Michael J. O'Hara, Ph.D.
Geology

Russell A. Flegal, Jr., Ph.D.
Geochemistry
Richard M. Goldstein, Ph.D.
Planetary Science
Thomas H. Heaton, Ph.D.
Geophysics
Carl E. Johnson, Ph.D.
Geophysics
Torrence V. Johnson, Ph.D.
Planetary Science

Geological and Planetary Sciences 283
Lucile M. Jones, Ph.D.
Geophysics
Juha A. Karhu, M.S.
Geochemistry
Susan W. Kieffer, Ph.D.
Geology and Fluid Mechanics
Kyu Kim, D.Sc.
Geochemistry
Sven Maaløe, Ph.D.
Experimental Petrology
Mordeckai Margaritz, Ph.D.
Geochemistry
Brian Mason, Ph.D.
Geochemistry
Susuma Nohda, Ph.D.
Geochemistry
Richard O'Connell, Ph.D.
Geophysics
John D. O'Keefe, Ph.D.
Planetary Science
Ichthiaque S. Rasool, Ph.D.
Planetary Science
Kevin J. R. Rosman, Ph.D.
Geochemistry
John B. Rundle, Ph.D.
Geophysics
Laurence Soberblom, Ph.D.
Planetary Science
William D. Stuart, Ph.D.
Geophysics
John Trauger, Ph.D.
Planetary Science
Terry H. Webb, Ph.D.
Geophysics
Robert J. Wetmiller, M.Sc.
Geophysics
Dorothy S. Woolum, Ph.D.
Geochemistry

Members of the Professional Staff

Glenn L. Berge, Ph.D.
Planetary Science
James H. Chen, Ph.D.
Geochemistry
Arthur A. Chodos, M.S.
Geology
G. Ed Danielson, M.S.
Planetary Science
Gladys Engen, B.S.
Geophysics
Katherine Hutton, Ph.D.
Geophysics
Wayne F. Miller, B.S.
Geophysics
Dorothy Settle, M.S.
Geophysics

Division of the Humanities and Social Sciences

David M. Grether, Chairman
Lance E. Davis, Executive Officer for the Social Sciences
Robert A. Rosenstone, Executive Officer for the Humanities

Professors Emeriti

Paul Bowerman, A.M.
Modern Languages
Horace N. Gilbert, M.B.A., D.B.A.
Business Economics
Burton H. Klein, Ph.D.
Economics
Paul Bowerman, A.M.
Modern Languages
Rodman W. Paul, Ph.D.
Edward S. Harkness Professor of History
Horace N. Gilbert, M.B.A., D.B.A.
Hallett D. Smith, Ph.D., L.H.D.
Business Economics
Alan R. Sweezy, Ph.D.
English
Burton H. Klein, Ph.D.
Economics

Associate Professor Emeritus

Robert D. Wayne, M.A.
German

Lecturer Emeritus

Charles Newton, Ph.B.
English
Professors

Brian M. Barry, D.Phil.
Edie and Lew Wasserman Professor of Philosophy

Robert H. Bates, Ph.D.
Political Science

John F. Benton, Ph.D.
History

Louis Breger, Ph.D.
Psychoanalytic Studies

J. Kent Clark, Ph.D.
Literature

Lance E. Davis, Ph.D.
Mary Stillman Harkness Professor of Social Science

Alan Donagan, B. Phil.
Philosophy

David C. Elliot, Ph.D.
History

Peter W. Fay, Ph.D.
History

Philip Gaskell, Litt. D.
Literature

David M. Grether, Ph.D.
Economics

William T. Jones, Ph.D.
Philosophy

Daniel J. Kevles, Ph.D.
History

J. Morgan Kousser, Ph.D.
History and Social Science

Gerald H. Kramer, Ph.D.
Political Science

Oscar Mandel, Ph.D.
Literature

George P. Mayhew, Ph.D.
English

Jerome J. McGann, Ph.D.
Doris and Henry Dreyfuss Professor of the Humanities

Richard D. McKelvey, Ph.D.
Political Science

Edwin S. Munger, Ph.D.
Geography

Roger G. Noll, Ph.D.
Institute Professor of Social Sciences

Robert W. Oliver, Ph.D.
Economics

Charles R. Plott, Ph.D.
Economics

James P. Quirk, Ph.D.
Economics

Martin Ridge, Ph.D.
History

Robert A. Rosenstone, Ph.D.
History

Alan Schwartz, LL.B.
Law and Social Science

Thayer Scudder, Ph.D.
Anthropology

Eleanor M. Searle, D.M.S.
History

David R. Smith, Ph.D.
Literature

John A. Sutherland, Ph.D.
Literature

Frederick B. Thompson, Ph.D.
Applied Philosophy and Computer Science

Louis L. Wilde, Ph.D.
Economics

Associate Professors

Kim C. Border, Ph.D.
Economics

Ronald Bush, Ph.D.
Literature

Bruce E. Cain, Ph.D.
Political Science

Heinz E. Erellsieck, Ph.D.
History

Stuart A. Ende, Ph.D.
Literature

Philip T. Hoffman, Ph.D.
History and Social Science

D. Roderick Kiewiet, Ph.D.
Political Science

Jenijoy La Belle, Ph.D.
Literature

George W. Pigman III, Ph.D.
Literature

Jennifer F. Reinganum, Ph.D.
Economics

Annette J. Smith, Ph.D.
French

1 Part-time
2 Leave of absence 1984-85
Assistant Professors
Nicholas B. Dirks, Ph.D.
History
Jeffrey A. Dubin, Ph.D.
Economics
Thomas W. Gilligan, Ph.D.
Economics
Keith Krehbiel, Ph.D.
Political Science
James Lee, Ph.D.
History
Douglas Rivers, Jr., Ph.D.
Political Science
James F. Strnad II, Ph.D.¹
Law and Economics
Quang H. Vuong, Ph.D.
Economics
M. Martha Ward, Ph.D.
Art History

Mellon Postdoctoral Instructors
Jon A. Gjerde, Ph.D.
History
Catherine L. Kelly, Ph.D.
History
Jon P. Klancher, Ph.D.
Literature
Hilton L. Root, Ph.D.
History
Steven Walt, Ph.D.
Philosophy
James F. Woodward, Ph.D.
Philosophy

Instructors
Andreas Aebi, Ph.D.
German
Nanette C. Le Coat, M.A.
French

Lecturers
Joseph A. Belloli IV, M.A.
Art History
Mary G. Berg, Ph.D.
Literature
James Boyk, M.F.A.
Music
David J. Britton, D.M.A.
Music
Lee F. Browne, M.S.
Education
Donald Caldwell, D.M.A.
Choral Music
Klara Carmely, Ph.D.
German
Cheryl F. Giuliano, Ph.D.²
Basic English Composition
Stirling L. Huntley, Ph.D.
Drama
Edward Hutchings Jr., B.A.
Journalism
Michael Linden-Martin, B.A.³
English as a Second Language
Valentina A. Lindholm, M.A.
Russian
David W. Morrisroe, M.B.A.
Business Economics
Harihar Rao
Music
Elma Schonbach, B.M.
Music
Robert R. Wark, Ph.D.
Art

¹ Part-time
² First term only
³ First and second terms only
Senior Research Associates
Talbot Page, Ph.D.
Economics
Bozena Henisz-Dostert Thompson, Ph.D.
Linguistics

Research Fellow
Lode Li, Ph.D.
Economics

Faculty Associates
Judith R. Goodstein, Ph.D.
History
William A. Ringler, Jr., Ph.D.
Literature

Sherman Fairchild Distinguished Scholars
Marilyn Butler, D.Phil.¹
Literature
Paul Hyams, D.Phil.
History
Leonid Hurwicz, LL.M.
Economics
Roger Schofield, Ph.D.
Historical Demography

Visiting Professors
John Elster, Ph.D.²
Philosophy
Norman Schofield, Ph.D.
Political Science

Visiting Associate Professors
Arthur Kuflik, Ph.D.
Philosophy
Joel Sobel, Ph.D.³
Economics

Visiting Assistant Professor
Kenneth L. Sokoloff, Ph.D.
Economics

Visiting Associate
Steven G. Brush, D.Phil.²
History

¹ Second and third terms only
² First term only
³ First and second terms only
Division of Physics, Mathematics and Astronomy

Edward C. Stone, Chairman
Charles W. Peck, Executive Officer for Physics
W. A. J. Luxemburg, Executive Officer for Mathematics
Marshall H. Cohen, Executive Officer for Astronomy
Gerry Neugebauer, Director, Palomar Observatory
Anthony C. S. Readhead, Director, Owens Valley Radio Observatory
Harold Zirin, Director, Big Bear Solar Observatory

Board of Trustees Professor Emeritus
Carl D. Anderson, Ph.D., Sc.D., LL.D., Nobel Laureate
Physics

Professors Emeriti
Robert F. Bacher, Ph.D., Sc.D., LL.D.
Physics
H. F. Bohnenblust, Ph.D.
Mathematics
Leverett Davis, Jr., Ph.D.
Theoretical Physics
Robert P. Dilworth, Ph.D.
Mathematics
William A. Fowler, Ph.D., D.Sc., D.h.c., Nobel Laureate
Institute Professor of Physics
Jesse L. Greenstein, Ph.D.

Professors
Tom M. Apostol, Ph.D.
Mathematics
Michael Aschbacher, Ph.D.
Mathematics
Barry C. Barish, Ph.D.
Physics
Charles A. Barnes, Ph.D.
Physics
Roger D. Blandford, Ph.D.
Theoretical Astrophysics
Felix H. Boehm, Ph.D.
Physics
Robert F. Christy, Ph.D.
Institute Professor of Theoretical Physics
Donald S. Cohen, Ph.D.
Applied Mathematics
Marshall H. Cohen, Ph.D.
Radio Astronomy
Eugene W. Cowan, Ph.D.
Physics

Michael C. Cross, Ph.D.
Theoretical Physics
Richard A. Dean, Ph.D.
Mathematics
Charles R. De Prima, Ph.D.
Mathematics
Ronald W. P. Drever, Ph.D.
Physics
Richard P. Feynman, Ph.D., Nobel Laureate
Richard Chace Tolman Professor of Theoretical Physics
Geoffrey Fox, Ph.D.
Theoretical Physics
Steven C. Frautschi, Ph.D.
Theoretical Physics
F. Brock Fuller, Ph.D.
Mathematics
Murray Gell-Mann, Ph.D., Sc.D., D.Sc.,
Nobel Laureate
Robert Andrews Millikan Professor of
Theoretical Physics
Marvin L. Goldberger, Ph.D., D.H.L.
Theoretical Physics
Peter Goldreich, Ph.D.
Lee A. DuBridge Professor of Astrophysics
and Planetary Physics
Ricardo Gomez, Ph.D.
Physics
David L. Goodstein, Ph.D.
Physics and Applied Physics
Anatoly Katok, Ph.D.
Mathematics
Ralph W. Kavanagh, Ph.D.
Physics
Alexander S. Kechris, Ph.D.
Mathematics
Herbert B. Keller, Ph.D.
Applied Mathematics
Steven E. Koonin, Ph.D.
Theoretical Physics
Heinz-Otto Kreiss, Dr. Tech., Docent
Applied Mathematics
Robert B. Leighton, Ph.D.
William L. Valentine Professor of Physics
Gary Lorden, Ph.D.
Mathematics
W. A. J. Luxemburg, Ph.D.
Mathematics
James E. Mercereau, Ph.D., D.Sc.
Physics and Applied Physics
Alan T. Moffet, Ph.D.
Radio Astronomy
Gerry Neugebauer, Ph.D.
Physics
J. Beverley Oke, Ph.D.
Astronomy
Charles W. Peck, Ph.D.
Physics
Thomas G. Phillips, D.Phil.
Physics
Jerome Pine, Ph.D.
Physics
H. David Politzer, Ph.D.
Theoretical Physics
Anthony C. S. Readhead, Ph.D.
Radio Astronomy
Herbert J. Ryser, Ph.D.
Mathematics
Wallace L. W. Sargent, Ph.D.
Ira S. Bowen Professor of Astronomy
Maarten Schmidt, Ph.D., Sc.D.
Institute Professor of Astronomy
Nicholas Z. Scoville, Ph.D.
Astronomy
Barry Simon, Ph.D.
Mathematics and Theoretical Physics
Edward C. Stone, Jr., Ph.D.
Physics
Kip S. Thorne, Ph.D., D.h.c.
William R. Kenan, Jr. Professor and
Professor of Theoretical Physics
Thomas A. Tombrello, Jr., Ph.D.
Physics
Rochus E. Vogt, Ph.D.
R. Stanton Avery Distinguished Service
Professor
David B. Wales, Ph.D.
Mathematics
Ward Whaling, Ph.D.
Physics
Gerald B. Whitham, Ph.D.
Charles Lee Powell Professor of Applied
Mathematics
Richard M. Wilson, Ph.D.
Mathematics
W. Hugh Woodin, Ph.D.
Mathematics
Fredrik Zachariasen, Ph.D.
Theoretical Physics
Harold Zirin, Ph.D.
Astrophysics
Associate Professors
Judith G. Cohen, Ph.D.
Astronomy
David Hitlin, Ph.D.
Physics
Jeremy Mould, Ph.D.
Astronomy
Harvey Newman, Sc.D.
Physics
John Preskill, Ph.D.
Theoretical Physics
Mark Wise, Ph.D.
Theoretical Physics
Assistant Professors

Michael T. Anderson, Ph.D.
Mathematics
Jack F. Conn, Ph.D.
Mathematics
Bradley W. Filippone, Ph.D.
Physics
Kenneth G. Libbrecht, Ph.D.
Astrophysics
Kwok-Yung Lo, Ph.D.
Radio Astronomy
John M. LoSasso, Ph.D.
Physics

Robert D. McKeown, Ph.D.
Physics
Frank C. Porter, Ph.D.
Physics
Thomas A. Prince, Ph.D.
Physics
Brent Smith, Ph.D.
Mathematics
Stanley Whitcomb, Ph.D.
Physics
Thomas H. Wolff, Ph.D.
Mathematics

Lecturers

Dana Z. Anderson, Ph.D.
Physics
Thomas D. Gottschalk, Ph.D.
Physics
Peter A. Perry, Ph.D.
Mathematical Physics
Peter N. Ratoff, Ph.D.
Physics

Laif Swanson, Ph.D.
Mathematics
Barry T. Thomas, Ph.D.
Physics
Nicholas P. Warner, Ph.D.
Physics
Michael M. White, Ph.D.
Physics

Instructors

Howard S. Becker, Ph.D.
Mathematics
Vincent R. Figerou, Ph.D.
Mathematics
Richard Froese, Ph.D.
Mathematics

Alan V. Noell, Ph.D.
Mathematics
Rita Saerens, Ph.D.
Mathematics

Senior Research Associates

Peter Haff, Ph.D.
Physics
Richard A. Mewaldt, Ph.D.
Physics
John H. Schwarz, Ph.D.
Theoretical Physics

B. Thomas Soifer, Ph.D.
Physics
Ryszard Stroynowski, Doctorat
Physics
Petr Vogel, Ph.D.
Physics

Senior Research Fellows

Carlton Caves, Ph.D.
Theoretical Physics
Jonathan Elias, Ph.D.
Physics
Wojtek Furmanski, Ph.D.
Physics
Thomas D. Gottschalk, Ph.D.
Theoretical Physics

Murat Günaydin, Ph.D.
Theoretical Physics
Jocelyn B. Keene, Ph.D.
Radio Astronomy
Colin Masson, Ph.D.
Radio Astronomy
Richard P. Mount, Ph.D.
Physics
Rafe H. Schindler, Ph.D.
Physics

1 Part-time
2 Harry Bateman Research Instructor
Research Fellows

Roger Ball, Ph.D.
Astronomy

Rodrigo Balmuelos, Ph.D.¹
Mathematics

Peter D. Barthel, Ph.D.
Radio Astronomy

Timothy Beers, Ph.D.¹
Astronomy

Gregory D. Bothun, Ph.D.¹
Astronomy

Frederico Carminati, Laurea
Physics

Leonardo Castellani, Ph.D.
Theoretical Physics

Kai H. Chang, Ph.D.
Physics

Stephen C. Christon, Ph.D.
Physics

Mark J. Claussen, Ph.D.
Radio Astronomy

Bruce Cortez, Ph.D.²
Physics

Alexei Filippenko, Ph.D.
Astronomy

Mathew D. Foreman, Ph.D.¹
Mathematics

Francesco Fucito, Ph.D.³
Theoretical Physics

Dale E. Gary, Ph.D.
Astrophysics

James L. Gimlett, Ph.D.
Physics

Jeremy Goodman, Ph.D.¹
Astrophysics

Benjamin Grinstein, Ph.D.⁴
Theoretical Physics

Jules P. Halpern, Ph.D.
Astronomy

Phil Hanlon, Ph.D.¹
Mathematics

John F. Hawley, Ph.D.¹
Theoretical Astrophysics

Mark Hereld, Ph.D.
Physics

Craig J. Hogan, Ph.D.¹
Theoretical Astrophysics

Christopher Impey, Ph.D.³
Astronomy

Muhammed Z. Iqbal, Ph.D.
Physics

Dayton L. Jones, Ph.D.
Radio Astronomy

Jeffrey Koller, Ph.D.
Theoretical Physics

Charles Lawrence, Ph.D.
Radio Astronomy

Neil Marcus, Ph.D.
Theoretical Physics

Marcus Mendenhall, Ph.D.
Physics

Graeme Walter Milton, Ph.D.³
Theoretical Physics

Leon W. Mitchell, Ph.D.
Physics

Benoit E. Morel, Ph.D.
Theoretical Physics

Lee G. Mundy, Ph.D.
Astronomy

Ramesh Narayan, Ph.D.
Theoretical Astrophysics

Mark E. Nelson, Ph.D.
Physics

James M. Nemec, Ph.D.
Astronomy

Steve Otto, Ph.D.¹
Theoretical Physics

Trivan Pal, Ph.D.
Physics

Apoorva Patel, Ph.D.
Theoretical Physics

Peter A. Perry, Ph.D.¹
Mathematical Physics

Vladimir Privman, D. Sc.¹
Theoretical Physics

Robert Alan Proctor, Ph.D.¹
Mathematics

Peter Quinn, Ph.D.
Theoretical Physics

Peter N. Ratoff, Ph.D.
Physics

Helen Rayburn, Ph.D.
Biology and Physics

Werner Ruckstuhl, Ph.D.
Physics

Makoto Sakuda, Ph.D.
Physics

Bala Sathiapalan, Ph.D.
Theoretical Physics

¹ Myron A. Bantrell Fellow
² Robert A. Millikan Fellow
³ Weingart Foundation Fellow
⁴ Richard C. Tolman Fellow
Donald Schneider, Ph.D.
Astronomy
James M. Schombert, Ph.D.
Astronomy
Edward Shaya, Ph.D.¹
Astronomy
Abraham Soffer, Ph.D.²
Mathematics and Theoretical Physics
Sorin Solomon, Ph.D.¹
Theoretical Physics
Eric Surada, Ph.D.
Physics
James Thomas, Ph.D.³
Physics
John Tonry, Ph.D.¹
Astronomy
Thierry Troudet, Ph.D.⁴
Theoretical Physics
David R. Tytler, Ph.D.⁵
Astronomy
Eric Umland, Ph.D.¹
Physics
Onno van Roosmalen, Ph.D.
Physics
David Charles Vella, Ph.D.¹
Mathematics
Gregory Verchota, Ph.D.¹
Mathematics
Gianfranco Vidali, Ph.D.
Physics
Stephen R. Walton, Ph.D.
Astrophysics
Nicholas P. Warner, Ph.D.⁵
Theoretical Physics
Dan Watson, Ph.D.
Physics
Lonny Western, Ph.D.¹
Astrophysics
Michael Wilkinson, Ph.D.⁵
Theoretical Physics
Roy D. Williams, Ph.D.
Physics
Joan M. Wrobel, Ph.D.
Astronomy
Dominic M. Zarro, Ph.D.
Astronomy
J. Anton Zensus, Ph.D.
Radio Astronomy
Ren-yuan Zhu, Ph.D.
Physics
Martin Rudolf Zirnbauer, Ph.D.⁵
Theoretical Physics
Wojciech Zurek, Ph.D.
Theoretical Astrophysics
Barton Zwiebach, Ph.D.
Theoretical Physics

Faculty Associate
I.-Juliana Sackmann, Ph.D.
Physics

Sherman Fairchild Distinguished Scholars
Hans A. Bethe, Ph.D., D.Sc., Nobel Laureate
Physics
Bernard F. Burke, Ph.D.
Astrophysics
Peter J. Cameron, D.Phil.
Mathematics
Volker Enss, Ph.D.
Mathematical Physics
Michael E. Fisher, Ph.D.
Physics, Mathematics, Chemistry and Applied Physics

Visiting Professors
Robert M. Housley, Ph.D.
Physics
Detlef Laugwitz, Dr.rer.nat.
Mathematics
Francesco Scaramuzzi, Lib.Doc.
Physics
Valentine L. Telegdi, Ph.D.
Physics

¹ Myron A. Bantrell Fellow
² Chaim Weizmann Research Fellow
³ Robert A. Millikan Fellow
⁴ Richard C. Tolman Fellow
⁵ Weingart Foundation Fellow
Visiting Associate Professors

Bernt Oskendal, Ph.D.

Mathematics

Theodore N. Sarachman, Ph.D.

Physics

Visiting Associates

Lars Baath, Ph.D.

Radio Astronomy

James W. Bergquist, Ph.D.

Mathematics

John Calaprice, Ph.D.¹

Physics

Dequan Chen

Mathematics

Bjorn E. J. Dahlberg, Ph.D.

Mathematics

Thibaut Damour, Doctorat d'Etat

Theoretical Physics

Francois Delyon, Ph.D.

Mathematics

Hugh Carlyle Evans, Ph.D.

Physics

Peter Frankl, D.Sc.

Mathematics

Peter George Oliver Freund, Ph.D.

Theoretical Physics

Shmuel Friedland, D.Sc.

Mathematics

Jean-Yves Girard, Ph.D.

Mathematics

Michael B. Green, Ph.D.

Mathematics

Alexandre Grossmann, Ph.D.

Theoretical Physics

James E. Gunn, Ph.D.

Astronomy

Gerhard C. Hegerfeldt, Dr.rer.nat.

Mathematical Physics

Hisahi Hirabayshi, Ph.D.

Radio Astronomy

Maria Hoffmann-Ostenhof, Ph.D.

Mathematics

Thomas Hoffmann-Ostenhof, Ph.D.

Mathematics

Jean Humblet, D.Sc.

Physics

Rosemary Kennett, Ph.D.¹

Physics

Werner Kirsch, Ph.D.

Mathematics

Hitoshi Kitada, Ph.D.

Mathematics

Karlheinz Langanke, Dr.rer.nat.

Physics

Paul L. Lee, Ph.D.

Physics

Kenneth G. Libbrecht, Ph.D.

Solar Astronomy

Rogerio Livi, Ph.D.

Solar Astronomy

Barry F. Madore, Ph.D.

Physics

Richard Moore, Ph.D.

Astronomy

Eric J. M. Mourre, Thèse de Doctorat

Mathematics

Richard P. Olenick, Ph.D.

Physics

Dingyi Pei, Ph.D.

Mathematics

Mary Beth Ruskai, Ph.D.

Mathematics

Helmut Schaefer, Ph.D.

Mathematics

Ryoichi Seki, Ph.D.¹

Physics

Mark Shapiro, Ph.D.¹

Physics

Cheng-ru Shi

Physics

Israel M. Sigal, Ph.D.

Mathematics

Jia-yong Tang, Ph.D.

Physics

Jing-jin Wang, Ph.D.

Physics

Peter West, Ph.D.

Theoretical Physics

Michael C. Wiescher, Ph.D.

Physics

Frank Wilczek, Ph.D.

Theoretical Physics

Benjamin M. Zuckerman, Ph.D.

Radio Astronomy

George Zweig, Ph.D.

Theoretical Physics

¹ Part-time
Members of the Professional Staff

William E. Althouse, B.S.
 Physics
Robert J. Brucato, Ph.D.
 Astronomy
Alan C. Cummings, Ph.D.
 Physics
Jean Delayen, Ph.D.
 Physics
G. John Dick, Ph.D.
 Physics
Martin S. Ewing, Ph.D.
 Radio Astronomy
Thomas L. Garrard, Ph.D.
 Physics
Gordon Hurford, Ph.D.
 Astronomy
Charles T. Kowal, B.A.
 Astronomy
Robert G. Marcley, B.S.
 Physics
Sara Martin, B.S.
 Astronomy
Keith Matthews, M.S.
 Physics
Jonathan D. Melvin, Ph.D.
 Physics
Timothy Pearson, Ph.D.
 Radio Astronomy
Richard B. Read, Ph.D.
 Radio Astronomy
Howard Rumsey, Jr., Ph.D.
 Educational Computing
Annica Sargent, Ph.D.
 Radio Astronomy
Stephen M. Schindler, Ph.D.
 Physics
George A. Seielstad, Ph.D.
 Radio Astronomy
Theodore V. Seling, Ph.D.
 Radio Astronomy
Donald Skelton, M.S.
 Physics
Robert Spero, Ph.D.
 Physics
Stephen C. Unwin, Ph.D.
 Radio Astronomy
David P. Woody, Ph.D.
 Radio Astronomy

Sherman Fairchild Distinguished Scholars

Hans Albrecht Bethe, Ph.D., D.Sc.,
 Nobel Laureate
 Emeritus Professor of Physics,
 Cornell University
Bernard F. Burke, Ph.D.
 William A.M. Burden Professor of
 Astrophysics and Chairman, Astrophysics
 Division, Massachusetts Institute of
 Technology
Marilyn Butler, D.Phil.
 Fellow and Tutor, St. Hugh's College;
 Lecturer in English Literature, University
 of Oxford
Peter Jephson Cameron, D.Phil.
 Fellow and Tutor, Merton College,
 University of Oxford
Carl-Wilhelm Reinhold de Boor, Ph.D.
 Professor of Mathematics and Computer
 Science, University of Wisconsin
Jack David Dunitz, Ph.D.
 Professor of Chemical Crystallography,
 Federal Institute of Technology, Zurich
Volker Enss, Ph.D.
 Professor, Department of Mathematics,
 Free University of Berlin
Michael E. Fisher, Ph.D.
 Horace White Professor of Chemistry,
 Physics and Mathematics, Cornell
 University
Leonid Hurwicz, LL.M.
 Regents' Professor of Economics,
 University of Minnesota
Paul R. Hyams, D.Phil.
 Official Fellow and Tutor, Pembroke
 College; Lecturer in Modern History,
 University of Oxford
Michael J. O'Hara, Ph.D.
 Professor and Chairman, Department of
 Geology, University College of Wales
Roger Schofield, Ph.D.
 Fellow, Clare College, University of
 Cambridge; Co-Director, Cambridge Group
 for the History of Population and Social
 Structure, Social Science Research Council
Nicholas J. Turro, Ph.D.
 William P. Schweitzer Professor of
 Chemistry, Columbia University
Athletics and Physical Education

Warren G. Emery, M.S., Director of Athletics and Physical Education

Full-Time Staff
Dan Bridges, M.A.
Clint Dodd, B.S.
E. Leroy Neal, M.A.
Lin Parker, M.A.

Part-Time Staff
David E. Beck, B.A.
Dean G. Bond, B.A.
Donald R. Cameron, B.Sc.
Harold G. Cassriel, B.S.
George Clovis
Michael Jackson, M.S.
Elizabeth Oberstein, M.A.
Tsutomu Ohshima, B.A.
Mike Poizner, M.A.
Gene Renfroe, B.A.

Computing Support Services

Charles B. Ray, Director
Kiku Matsumoto, Deputy Director

Member of the Professional Staff
Albert Fuwu Chang, Ph.D.
Senior Computing Analyst

Staff Members
James V. Bys
Joseph H. Dailey
James P. Elliott
Edith P. Huang
Gregory C. Jordan
Robert S. Logan
Dallas W. Oller
Anton C. Ruyter
Environmental Quality Laboratory

Norman H. Brooks, Director

Staff Council

Norman H. Brooks
Glen R. Cass
Jeffrey A. Dubin
Richard C. Flanagan
Michael R. Hoffmann
Leroy E. Hood
Robert C. Y. Koh
Lester Lees
E. John List

James J. Morgan
Roger G. Noll
R. Talbot Page
Charles R. Plott
James P. Quirk
John H. Seinfeld
Fredrick H. Shair
Leon T. Silver
Louis L. Wilde

Research Staff

Norman H. Brooks, Ph.D., Director

Scott D. Boyce, Ph.D.
Senior Research Scientist
Glen R. Cass, Ph.D.
Assistant Professor of Environmental Engineering
Jeffrey A. Dubin, Ph.D.
Assistant Professor of Economics
Richard C. Flanagan, Ph.D.
Associate Professor of Environmental Engineering Science
Michael R. Hoffmann, Ph.D.
Associate Professor of Environmental Engineering Science
Robert C. Y. Koh, Ph.D.
Senior Research Associate in Environmental Engineering Science
Lode Li, Ph.D.
Research Fellow in Economics
E. John List, Ph.D.
Professor of and Executive Officer for Environmental Engineering Science

Kenneth McCue, Ph.D.
Scientist
James J. Morgan, Ph.D.
Professor of Environmental Engineering Science; Vice President for Student Affairs
Roger G. Noll, Ph.D.
Institute Professor of Social Sciences
R. Talbot Page, Ph.D.
Senior Research Associate in Economics
James P. Quirk, Ph.D.
Professor of Economics
Armistead G. Russell, M.S.
Senior Research Engineer
John H. Seinfeld, Ph.D.
Louis E. Nohl Professor and Executive Officer for Chemical Engineering
Fredrick H. Shair, Ph.D.
Professor of Chemical Engineering
Louis L. Wilde, Ph.D.
Professor of Economics

1 On leave 1984–85
2 Executive Committee
Health Center

Gregory Ketabgian, M.D.
Director of Health Services
Marlene Coleman, M.D.
Attending Physician
Judson James, M.D.
Attending Physician
Haig Manjikian, M.D.
Attending Physician

L. Bruce Kahl, M.D.
Director of Counseling Services
Jacqueline Miles, Ph.D.
Institute Psychologist
Jeanette Butler, M.S.W.
Institute Counselor
Barbara Ellenborn, M.S.W.
Institute Counselor

Industrial Relations Center

Gaylord E. Nichols, Jr., B.A.
Acting Director, Industrial Relations Center

Jet Propulsion Laboratory

Administered by Caltech for the National Aeronautics and Space Administration
Lew Allen Jr., Director
Robert J. Parks, Deputy Director

Executive Council

Arden L. Albee
Chief Scientist
Joseph P. Click
Assistant Laboratory Director, Administrative Divisions
Frank J. Colella
Manager, Public Affairs Office
Fred H. Felberg
Associate Director, Institutional
Donald R. Fowler
Caltech General Counsel
Clarence R. Gates
Assistant Laboratory Director, Technical Divisions
Walker E. Giberson
Assistant Laboratory Director, Flight Projects
Jack N. James
Assistant Laboratory Director, Defense Programs
Peter T. Lyman
Assistant Laboratory Director, Telecommunications and Data Acquisition
Richard A. Montgomery
Director, Arroyo Center
Donald G. Rea
Assistant Laboratory Director, Technology and Space Program Development
Geoffrey Robillard
Assistant Laboratory Director, Civil Programs
Harris M. Schurmeier
Associate Director, Utilitarian Programs
Walter K. Victor
Assistant Laboratory Director, Engineering and Review
Institute Libraries

Glenn L. Brudvig, M.A., M.A. (L.S.)
 Director of Information Resources
Sandra Card, M.L.S.
 Systems Development Officer
Janet Casebier, M.L.S.
 Head, Humanities and Social Sciences Libraries
Roderick J. Casper, M.S.L.S.
 Head, Reader Services, MPS

Judith R. Goodstein, Ph.D.
 Institute Archivist, Faculty Associate
Donald McNamee, M.S.L.S.
 Head, Catalog Department
Dana L. Roth, M.S., M.L.S.
 Head, Science and Engineering Libraries, MPS

Representatives for the Departmental Libraries

Clarence R. Allen, Ph.D.
Tom M. Apostol, Ph.D.
Charles A. Barnes, Ph.D.
John F. Benton, Ph.D.
Charles J. Brokaw, Ph.D.
Randal Bryant, Ph.D.
Donald E. Coles, Ph.D.
Richard C. Flagan, Ph.D.
Joel N. Franklin, Ph.D.
Gaylord E. Nichols, Jr., B.A.
J. Beverley Oke, Ph.D.
David Rutledge, Ph.D.
Rolf H. Sabersky, Ph.D.
Walter A. Schroeder, Ph.D.
Nicholas W. Tschoegl, Ph.D.

Musical Activities

Donald Caldwell
 Director of Choral Music
Monica Roegler
 Assistant Director of Choral Music
Delores Bing
 Chamber Music Program
William Bing
 Instrumental Music Director and Chamber Music Program

James Boyk
 Interpretive Music Class
Darryl Denning
 Classical and Flamenco Guitar Class
Allen Gross
 Symphony Orchestra Director
Marvin Leonard Goldberger, Ph.D., D.H.L., President; Professor of Theoretical Physics
B.S., Carnegie Institute of Technology, 1943; Ph.D., University of Chicago, 1948. Caltech, 1978–.

John Norman Abelson, Ph.D., Professor of Biology
B.S., Washington State University, 1960; Ph.D., Johns Hopkins University, 1965. Caltech, 1982–.

Yaser S. Abu-Mostafa, Ph.D., Assistant Professor of Electrical Engineering and Computer Science
B.Sc., Cairo University, 1979; M.S.E.E., George Institute of Technology, 1981; Ph.D., Caltech, 1983. Garrett Research Fellow in Electrical Engineering, Caltech, 1983; Assistant Professor, 1983–.

Allan James Acosta, Ph.D., Professor of Mechanical Engineering
B.S., Caltech, 1945; M.S., 1949; Ph.D., 1952. Assistant Professor, 1954–58; Associate Professor, 1958–66; Professor, 1966–.

Jill P. Adler, Ph.D., Visiting Associate in Chemistry
B.A., Douglass College, 1968; Ph.D., Cornell Medical School, 1974. Professor, Biological Sciences Department, California State Polytechnic Institute (Pomona), 1982–. Caltech, 1983–84.

Ruedi Hans Aebersold, Ph.D., Research Fellow in Biology

Andreas Aebi, Ph.D., Instructor in German
M.A., University of Southern California, 1970; Ph.D., 1974. Lecturer in French, Caltech, 1978; Lecturer in German, 1978–83; Instructor, 1983–.

Niklaus C. Affolter, Ph.D., Visiting Associate in Electrical Engineering

Jim Agler, Ph.D., Research Fellow in Mathematics

Thomas J. Ahrens, Ph.D., Professor of Geophysics
B.S., Massachusetts Institute of Technology, 1957; M.S., Caltech, 1958; Ph.D., Rensselaer Polytechnic Institute, 1962. Associate Professor, Caltech, 1967–76; Professor, 1976–.

Arden Leroy Albee, Ph.D., Professor of Geology; Chief Scientist, Jet Propulsion Laboratory

Michael Albin, Ph.D., Research Fellow in Chemistry

Clarence Roderic Allen, Ph.D., Professor of Geology and Geophysics
B.A., Reed College, 1949; M.S., Caltech, 1951; Ph.D., 1954. Assistant Professor, 1955–59; Associate Professor, 1959–64; Professor, 1964–; Interim Director of Seismological Laboratory, 1965–67; Acting Chairman, Division of Geology, 1967–68.

Lew Allen Jr., Ph.D., Vice President; Director of Jet Propulsion Laboratory
B.S., United States Military Academy, 1946; M.S., University of Illinois, 1952; Ph.D., 1954. Caltech, 1982–; Jet Propulsion Laboratory, 1982–.

Mark Allen, Ph.D., Visiting Associate in Planetary Science

John Morgan Allman, Ph.D., Associate Professor of Biology
B.A., University of Virginia, 1965; A.M., University of Chicago, 1968; Ph.D., 1971. Assistant Professor, Caltech, 1974–77; Associate Professor, 1977–.

Carl David Anderson, Ph.D., Sc.D., LL.D., Nobel Laureate, Board of Trustees Professor of Physics, Emeritus
B.S., Caltech, 1927; Ph.D., 1930. Research Fellow, 1930–33; Assistant Professor, 1933–37; Associate Professor, 1937–39; Professor, 1939–76; Board of Trustees Professor Emeritus, 1976–; Chairman, Division of Physics, Mathematics and Astronomy, 1962–70.

Charles Hammond Anderson, Ph.D., Visiting Associate in Chemistry
B.S., Caltech, 1957; Ph.D., Harvard University, 1962. Member of Technical Staff, RCA, 1963–. Visiting Associate, Caltech, 1984–.
Dana Zachary Anderson, Ph.D., Research Fellow and Lecturer (PT) in Physics
B.S.E.E., Cornell University, 1975; Ph.D., University of Arizona, 1981. Research Fellow, Caltech, 1981-83; Research Fellow and Lecturer (PT), 1983-.

Don Lynn Anderson, Ph.D., Professor of Geophysics; Director, Seismological Laboratory
B.S., Rensselaer Polytechnic Institute, 1955; M.S., Caltech, 1958; Ph.D., 1962. Research Fellow, 1962-63; Assistant Professor, 1963-64; Associate Professor, 1964-68; Professor, 1968-; Director, 1967-.

Michael T. Anderson, Ph.D., Assistant Professor of Mathematics
B.A., University of California (Santa Barbara), 1975; M.A., University of California, 1977; Ph.D., 1981. Caltech, 1984-.

Fred Colvig Anson, Ph.D., Professor of Chemistry; Chairman of the Division of Chemistry and Chemical Engineering
B.S., Caltech, 1954; Ph.D., Harvard University, 1957. Instructor, Caltech, 1957-58; Assistant Professor, 1958-62; Associate Professor, 1962-68; Professor, 1968-; Executive Officer for Chemistry, 1973-77; Division Chairman, 1984-.

Erik Karl Antonsson, Ph.D., Assistant Professor of Mechanical Engineering
B.S., Cornell University, 1976; M.S., Massachusetts Institute of Technology, 1978; Ph.D., 1982. Caltech, 1984-.

Tom M. Apostol, Ph.D., Professor of Mathematics
B.S., University of Washington, 1944; M.S., 1946; Ph.D., University of California, 1948. Assistant Professor, Caltech, 1950-56; Associate Professor, 1956-62; Professor, 1962-.

James H. Applegate, Ph.D., Bantrell Research Fellow in Theoretical Physics
B.S., Michigan State University, 1976; M.S., State University of New York (Stony Brook), 1978; Ph.D., 1980. Caltech, 1981-.

Yasuhiro Arakawa, Ph.D., Visiting Associate in Applied Physics
B.S., University of Tokyo, 1975; M.S., 1977; Ph.D. 1980. Associate Professor, Institute of Industrial Science, University of Tokyo, 1980-. Caltech, 1983-84.

Bernhard Arden, Ph.D., Research Fellow in Biology

John T. Armstrong, Ph.D., Senior Research Fellow in Geochemistry
B.S., Loyola University of Los Angeles, 1970; Ph.D., Arizona State University, 1978. Caltech, 1983-.

Richard J. Arneson, Ph.D., Visiting Associate Professor of Philosophy

James Patrick Ary, Ph.D., Visiting Associate in Biomedical Engineering (PT)
B.S., St. Mary's College of California, 1969; Ph.D., Ohio State University, 1976. Research Fellow in Biology, Caltech, 1976-79; Senior Research Fellow in Biomedical Engineering, 1979-83; Visiting Associate, 1983-.

Michael Aschbacher, Ph.D., Professor of Mathematics
B.S., Caltech 1966; Ph.D., University of Wisconsin, 1969. Bateman Research Instructor, Caltech, 1970-72; Assistant Professor, 1972-74; Associate Professor, 1974-76; Professor, 1976-.

William T. Ashurst, Ph.D., Visiting Associate in Aeronautics
B.S., California State Polytechnic College (San Luis Obispo), 1964; M.S., Stanford University, 1974; Ph.D., University of California (Davis), 1974. Technical Staff Member, Sandia National Laboratories (Livermore), 1965-. Caltech, 1983-84.

Giuseppe Attardi, M.D., Professor of Biology
M.D., University of Padua, 1947. Research Fellow, Caltech, 1959-60; Assistant Professor, 1963; Associate Professor, 1963-67; Professor, 1967-.

Elias A. Awad, Ph.D., Research Fellow in Mechanical Engineering

Ronald Frederick Ayres, Ph.D., Lecturer in Computer Science (PT)

Lars Baath, Ph.D., Visiting Associate in Radio Astronomy

Vasil K. Babamov, Ph.D., Visiting Associate in Chemistry (PT)
B.S., University of Skopje, 1965; Ph.D., University of Illinois (Urbana-Champaign), 1977. Professor Investigator, Graduate Center, Tijuana Technological Institute, 1981-. Research Fellow, Caltech, 1978-81; Visiting Associate, 1981-82; Visiting Associate (PT), 1982-.
Charles Dwight Babcock, Jr., Ph.D.,
Professor of Aeronautics and Applied Mechanics; Vice Provost
B.S., Purdue University, 1957; M.S., Caltech, 1958; Ph.D., 1962. Research Fellow in Aeronautics, 1962-63; Assistant Professor, 1963-68; Associate Professor, 1968-74; Professor, 1974-82; Professor of Aeronautics and Applied Mechanics, 1982-; Vice Provost, 1984-.

Robert Fox Bacher, Ph.D., Sc.D., LL.D.,
Professor of Physics, Emeritus
B.S., University of Michigan, 1926; Ph.D., 1930; Sc.D., 1948. Professor of Physics, Caltech, 1949-76; Professor Emeritus, 1976-; Chairman, Division of Physics, Mathematics and Astronomy; Director, Norman Bridge Laboratory of Physics, 1949-62, Provost, 1962-70; Vice President and Provost, 1969-70.

Stanley H. Bacon, Lecturer in Electrical Engineering
Caltech, 1977-81 (PT); 1981-.

James E. Bailey, Ph.D., Professor of Chemical Engineering
B.A., Rice University, 1966; Ph.D., 1969. Caltech, 1980-.

William Douglas Baines, Ph.D., Visiting Associate in Aeronautics and Environmental Engineering
B.S., University of Alberta, 1947; M.A., University of Iowa, 1948; Ph.D., 1950. Associate Professor of Mechanical Engineering, University of Toronto, 1966-; Caltech, 1984.

John Dickson Baldeschwieler, Ph.D.,
Professor of Chemistry
B.Chem.E., Cornell University, 1956; Ph.D., University of California, 1959. Professor, Caltech, 1973-; Chairman, Division of Chemistry and Chemical Engineering, 1973-78.

Roger Ball, Ph.D., Research Fellow in Astronomy

Dennis G. Ballinger, Ph.D., Bantrell Research Fellow in Biology

Utpal Banerjee, Ph.D., Del E. Webb Research Fellow in Biology
B.Sc., St. Stephen's College, Delhi University, 1977; M.Sc., Indian Institute of Technology (Kanpur), 1979; Ph.D., Caltech, 1983. Del E Webb Research Fellow, 1983-84.

Vyta Bankaitis, Ph.D., Research Fellow in Biology

Rodrigo Banuelos, Ph.D., Bantrell Research Fellow in Mathematics
Ph.D., University of California (Los Angeles), 1984. Caltech, 1984-.

Barry Clark Barish, Ph.D., Professor of Physics
B.A., University of California, 1957; Ph.D., 1962. Research Fellow, Caltech, 1963-66; Assistant Professor, 1966-69; Associate Professor, 1969-72; Professor, 1972-.

Charles Andrew Barnes, Ph.D., Professor of Physics
B.A., McMaster University, 1943; M.A., University of Toronto, 1944; Ph.D., University of Cambridge, 1950. Research Fellow, Caltech, 1953-54; Senior Research Fellow, 1954-55; 1956-58; Associate Professor, 1958-62; Professor, 1962-.

Alan Howard Barr, Ph.D., Assistant Professor of Computer Science
B.S., Rensselaer Polytechnic Institute, 1973; M.S., 1976; Ph.D., 1983. Research Fellow, Caltech, 1984; Assistant Professor, 1984-.

Brian M. Barry, D.Phil., Edie and Lew Wasserman Professor of Philosophy

Richard K. Barth, Ph.D., Research Fellow in Biology
B.S., St. Bonaventure University, 1976; Ph.D., State University of New York (Buffalo), 1982. Caltech, 1982-.

Pieter Dirk Barthel, Ph.D., Research Fellow in Radio Astronomy

Meir Bartur, Ph.D., Visiting Associate in Electrical Engineering (PT)

Jay David Bass, Ph.D., Research Fellow in Geophysics
B.S., City University of New York (Brooklyn), 1974; M.S., Lehigh University, 1977; Ph.D., State University of New York (Stony Brook), 1981. Caltech, 1981-.

Robert Hinrichs Bates, Ph.D., Professor of Political Science
B.A., Haverford College, 1964; Ph.D., Massachusetts Institute of Technology, 1969. Assistant Professor, Caltech, 1969-75; Associate Professor, 1975-79; Professor, 1979-.
David Verge Baxter, Ph.D., Research Fellow in Applied Physics

Michael John Bazin, Ph.D., Visiting Professor of Chemical Engineering
M.S., University of Minnesota, 1965; Ph.D., 1968. Senior Lecturer in Microbiology, Queen Elizabeth College (University of London), 1979-; Caltech, 1984-85.

Jesse Lee Beuchamp, Ph.D., Professor of Chemistry

James Beck, Ph.D., Assistant Professor of Civil Engineering
B.Sc., University of Auckland, 1969; M.Sc., 1970; Ph.D., Caltech, 1978. Assistant Professor, 1981-.

Howard Starr Becker, Ph.D., Instructor in Mathematics

Paul Brooke Becken, Ph.D., Bantrell Research Fellow in Chemistry

Timothy Beer, Ph.D., Bantrell Research Fellow in Astronomy
B.S., Purdue University, 1979; A.M., Harvard University, 1980; Ph.D., 1983. Caltech, 1983-.

Paul Murray Bellan, Ph.D., Associate Professor of Applied Physics
B.Sc., University of Manitoba, 1970; M.A., Princeton University, 1972; Ph.D., 1975. Assistant Professor, Caltech, 1977-83; Associate Professor, 1983--.

Joseph Anthony Belloli IV, M.A., Lecturer in Art History

John Frederick Benton, Ph.D., Professor of History
B.A., Haverford College, 1953; M.A., Princeton University, 1955; Ph.D., 1959. Assistant Professor, Caltech, 1965-66; Associate Professor, 1966-70; Professor, 1970-; Executive Officer for the Humanities, 1981-83.

Seymour Benzer, Ph.D., D.Sc., James G. Boswell Professor of Neuroscience
B.A., Brooklyn College, 1942; M.S., Purdue University, 1943; Ph.D., 1947. Research Fellow, Caltech, 1949-50; Visiting Associate, 1965-67; Professor, 1967-75; Boswell Professor, 1975-.

John Edward Bercaw, Ph.D., Professor of Chemistry
B.S., North Carolina State University, 1967; Ph.D. University of Michigan, 1971. Arthur Amos Noyes Research Fellow, Caltech, 1972-74; Assistant Professor, 1974-77; Associate Professor, 1977-79; Professor, 1979-.

Howard C. Berg, Ph.D., Professor of Biology
B.S., Caltech, 1956; M.A., Harvard University, 1960; Ph.D., 1964. Professor, Caltech, 1979-.

Mary Guyer Berg, Ph.D., Lecturer in Literature (PT)

James William Bergquist, Ph.D., Visiting Associate in Mathematics

John Beauchamp Berrill, Ph.D., Visiting Associate in Civil Engineering

Lillian Elizabeth Bertani, Ph.D., Visiting Associate in Chemistry and Biology
B.S., University of Michigan, 1953; Ph.D., Caltech, 1957. Docent, Karolinska Institute (Stockholm), 1975-. Visiting Associate in Biology, Caltech, 1981-82; Visiting Associate in Chemistry and Biology, 1982-.

Hans Albrecht Bethe, Ph.D., D.Sc., Nobel Laureate, Sherman Fairchild Distinguished Scholar
Ph.D., University of Munich, 1928. Emeritus Professor of Physics, Cornell University, 1975-. Visiting Professor, Caltech, 1951; 1952; 1953; 1964; Fairchild Scholar, 1982; 1985.

Richard John Bing, M.D., Visiting Associate in Chemistry (PT)
M.D., University of Munich, 1934; M.D., University of Bern, 1935. Professor of Medicine, University of California, 1936-43. Visiting Associate, 1965-66; Associate Professor, 1967-75; Professor, 1975-; Executive Officer for the Humanities, 1981-83.
Robert Richards Birge, Ph.D., *Visiting Associate in Chemistry*
B.S., Yale University, 1968; Ph.D., Wesleyan University, 1972. Associate Professor, University of California (Riverside), 1975-. Caltech, 1982-.

Gena Bisnovatyi-Kogan, Ph.D., D.Sc., *Visiting Associate in Astrophysics*
Ph.D., Polytechnic Institute (USSR); D.Sc. Senior Research Scientist, Space Research Institute of the Academy of Science (USSR), 1969-. Caltech, 1985.

Roger D. Blandford, Ph.D., *Professor of Theoretical Astrophysics*
B.A., Magdalen College, University of Cambridge, 1970; Ph.D., 1974. Assistant Professor, Caltech, 1976-79; Professor, 1979-.

William Virgil Bleisch, Ph.D., *Research Fellow in Biology*

James Frederick Blinn, Ph.D., *Lecturer in Computer Science (PT)*

Steven Michael Block, Ph.D., *Research Fellow in Biology*

Felix Hans Boehm, Ph.D., *Professor of Physics*
Dipl. Phys., Federal Institute of Technology (Zurich), 1948; Ph.D., 1951. Research Fellow, Caltech, 1953-55; Senior Research Fellow, 1955-58; Assistant Professor, 1958-59; Associate Professor, 1959-61; Professor, 1961-.

Arthur L. Boettcher, Ph.D., *Visiting Associate in Geology*

Henri Frederic Bohnenblust, Ph.D., *Professor of Mathematics, Emeritus*
A.B., Federal Institute of Technology (Zurich), 1928; Ph.D., Princeton University, 1931. Professor, Caltech, 1946-74; Professor Emeritus, 1974-. Dean of Graduate Studies, 1956-70; Executive Officer for Mathematics, 1964-66.

John Hamilton Bolstad, Ph.D., *Research Fellow in Applied Mathematics*
B.A., College of St. Thomas, 1968; M.S., Stanford University, 1969; Ph.D., 1982. Caltech, 1982-.

Vincent Craig Bond, Ph.D., *Research Fellow in Biology*
B.S., Pennsylvania State University, 1974; M.S., 1979; Ph.D., 1982. Caltech, 1982-.

James F. Bonner, Ph.D., *Professor of Biology, Emeritus*
B.A., University of Utah, 1931; Ph.D., Caltech, 1934. Research Assistant, 1935-36; Instructor, 1936-38; Assistant Professor, 1938-42; Associate Professor, 1942-46; Professor, 1946-81; Professor Emeritus, 1981-.

Lyman Gaylord Bonner, Ph.D., *Associate in Chemistry; Registrar*
B.A., University of Utah, 1932; Ph.D., Caltech, 1935. Director of Foundation Relations, 1965-67; Associate, 1966-; Assistant to the President, 1967-69; Director of Student Relations, 1969-80; Registrar, 1977-; Administrator for Student Affairs, 1980-84.

Kim C. Border, Ph.D., *Associate Professor of Economics*
B.S., Caltech, 1974; Ph.D., University of Minnesota, 1979. Assistant Professor, Caltech, 1979-83; Associate Professor, 1983-.

Gregory D. Bothun, Ph.D., *Bantrell Research Fellow in Astronomy*
B.S., University of Washington, 1976; Ph.D., 1981. Caltech, 1983-.

Paul Bowerman, A.M., *Professor of Modern Languages, Emeritus*
A.B., Dartmouth College, 1920; A.M., University of Michigan, 1936. Instructor, Caltech, 1942-45; Assistant Professor, 1945-47; Associate Professor, 1947-69; Professor Emeritus, 1969-.

Teresa Suter Bowers, Ph.D., *Research Fellow in Geochemistry*
B.S., Purdue University, 1977; Ph.D., University of California, 1982. Caltech, 1982-.

James Boyk, M.F.A., *Lecturer in Music and Artist in Residence*

William Guerin Bradley, Ph.D., M.D., *Visiting Associate in Chemistry (PT)*
B.S., Caltech, 1970; M.A., Princeton University, 1972; Ph.D., 1974; M.D., University of California (San Francisco), 1977. Assistant Clinical Professor of Radiology, 1981-. Visiting Associate, Caltech, 1983-84.

Curtis R. Brandt, Ph.D., *Research Fellow in Biology*
James B. Breckinridge, Ph.D., Lecturer in Applied Physics (PT)

Louis Breger, Ph.D., Professor of Psychoanalytic Studies
B.A., University of California (Los Angeles), 1957; M.A., Ohio State University, 1959; Ph.D., 1961. Visiting Associate Professor of Psychology, Caltech, 1970-71; Associate Professor, 1971-80; Associate Professor of Psychology and the Humanities, 1980-83; Professor of Psychoanalytic Studies, 1983-.

Christopher E. Brennen, Ph.D., Professor of Mechanical Engineering; Master of Student Houses
B.A., University of Oxford, 1963; M.A., Ph.D., 1966. Research Fellow, Caltech, 1969-72; Senior Research Fellow, 1972-75; Research Associate, 1975-76; Associate Professor, 1976-82; Professor, 1982-; Master of Student Houses, 1983-.

Luiz Marco Brescansin, Ph.D., Visiting Associate in Chemistry
M.S., Instituto de Fisica de Unicamp (Peru), 1972; Ph.D., 1978. Associate Professor, Universidade Federal de Campinas, 1979-. Caltech, 1983-84.

William Bruce Bridges, Ph.D., Carl F Braun Professor of Engineering

George Brimhall, Ph.D., Visiting Associate in Resource Geology

Roy John Britten, Ph.D., Distinguished Carnegie Senior Research Associate in Biology
B.S., University of Virginia, 1940; Ph.D., Princeton University, 1951. Visiting Associate, Caltech, 1971-73; Senior Research Associate, 1973-81; Distinguished Carnegie Senior Research Associate, 1981-.

David James Britton, D.M.A., Lecturer in Music

James Eugene Broadwell, Ph.D., Senior Research Associate in Aeronautics
B.S., Georgia Institute of Technology, 1942; M.S., Caltech, 1944; Ph.D., University of Michigan, 1952. Senior Research Fellow, Caltech, 1967-72; Research Associate, 1972-81; Senior Research Associate, 1981-.

Edward Norman Brody, Ph.D., M.D., Visiting Associate in Biology

Charles Jacob Brokaw, Ph.D., Professor of Biology; Associate Chairman, Division of Biology
B.S., Caltech, 1955; Ph.D., University of Cambridge, 1958. Visiting Assistant Professor, Caltech, 1960; Assistant Professor, 1961-63; Associate Professor, 1963-68; Professor, 1968-; Executive Officer for Biology, 1976-80; Associate Chairman, 1980-.

Norman Herrick Brooks, Ph.D., James Irvine Professor of Environmental and Civil Engineering; Director of Environmental Quality Laboratory
A.B., Harvard College, 1949; M.S., Harvard University, 1950; Ph.D., Caltech, 1954. Instructor in Civil Engineering, 1953-54; Assistant Professor, 1954-58; Associate Professor, 1958-62; Professor, 1962-70; Professor of Environmental Science and Civil Engineering, 1970-76; Irvine Professor of Environmental Engineering Science, 1976-77; Irvine Professor of Environmental and Civil Engineering, 1977-; Academic Officer for Environmental Engineering Science, 1972-74; Director, 1974-.

David Leslie Brown, Ph.D., Research Fellow in Applied Mathematics

Ian Browne, Ph.D., Visiting Associate in Astronomy

Lee F. Browne, M.S., Lecturer in Education (PT); Director of Secondary School Relations and Special Student Programs
B.S., West Virginia State College, 1944; M.S., New York University, 1950. Director of Secondary School Relations, Caltech, 1969-77; Director of Secondary School Relations and Special Student Programs, 1977-; Lecturer, 1971-.

Donald Eugene Brownlee II, Ph.D., Visiting Associate in Geochemistry
B.S., University of California, 1965; Ph.D., University of Washington, 1971. Professor, 1980-; Caltech, 1977-.
Glenn L. Brudvig, M.A., Director of Information Resources

Michael Frederik Buchwald, Ph.D., Research Fellow in Biology

Stephen G. Brush, D.Phil., Visiting Associate in History

Randal E. Bryant, Ph.D., Assistant Professor of Computer Science

Stephen L. Buchwald, Ph.D., Bantrell Research Fellow in Chemistry

Martin E. Budd, Ph.D., Research Fellow in Chemistry

Andrew Buffington, Ph.D., Senior Research Associate in Physics

Francis Stephan Buffington, Sc.D., Professor of Materials Science
S.B., Massachusetts Institute of Technology, 1938; Sc.D., 1951. Assistant Professor of Mechanical Engineering, Caltech, 1951-56; Associate Professor, 1956-63; Associate Professor of Materials Science, 1963-83; Professor, 1983-; Associate Dean of Graduate Studies, 1975-80; 1982-84.

Bernard F. Burke, Ph.D., Sherman Fairchild Distinguished Scholar

Donald Stacy Burnett, Ph.D., Professor of Nuclear Geochemistry; Academic Officer, Division of Geological and Planetary Sciences
B.S., University of Chicago, 1959; Ph.D., University of California, 1963. Research Fellow in Physics, Caltech, 1963-65; Assistant Professor of Nuclear Geochemistry, 1965-68; Associate Professor, 1968-75; Professor, 1975-; Academic Officer, 1979-.

Ronald L. Bush, Ph.D., Associate Professor of Literature

Marilyn Butler, D.Phil., Sherman Fairchild Distinguished Scholar

Stanley Alexander Butman, Ph.D., Lecturer in Electrical Engineering (PT)

Bruce Edward Cain, Ph.D., Associate Professor of Political Science
B.A., Bowdoin College, 1970; B.Phil., University of Oxford, 1972; Ph.D., Harvard Graduate School of Arts and Sciences, 1976. Assistant Professor, Caltech, 1976-83; Associate Professor, 1983-.

John R. Calaprice, Ph.D., Visiting Associate in Physics (PT)

Donald Graham Caldwell, D.M.A., Lecturer in Choral Music (PT)

Frank Joseph Calzone, Ph.D., Research Fellow in Biology

Peter Jephson Cameron, D.Phil., Sherman Fairchild Distinguished Scholar

Judith L. Campbell, Ph.D., Associate Professor of Chemistry
B.A., Wellesley College, 1965; Ph.D., Harvard University, 1974. Assistant Professor, Caltech, 1977-83; Associate Professor, 1983-.

Palmiro Cantatore, Ph.D., Visiting Associate in Biology
Ph.D., University of Bari, 1971. Assistant Professor of Biology, 1971-. Research Fellow, Caltech, 1976-78; Visiting Associate, 1984.
Yassemi Capetanaki, Ph.D., Senior Research Fellow in Biology
B.S., University of Athens, 1975; M.S., City University of New York, 1978; Ph.D., University of Heidelberg, 1980. Research Fellow, Caltech, 1980-84; Senior Research Fellow, 1984-

Barry Ian Caplan, Ph.D., Research Fellow in Biology

Klara Carmely, Ph.D., Instructor in German
B.A., San Fernando Valley State College, 1969; M.A., University of Southern California, 1971; Ph.D., 1976. Lecturer, Caltech, 1973-81; Instructor, 1981-

Federico Giovanni Carminati, Laurea, Research Fellow in Physics

Glen R. Cass, Ph.D., Assistant Professor of Environmental Engineering
B.A., University of Southern California, 1969; M.S., Stanford University, 1970; Ph.D., Caltech, 1977. Senior Research Fellow and Instructor, 1977-79; Assistant Professor, 1979-

Leonardo Castellani, Laurea, Research Fellow in Theoretical Physics

Cathy L. Castiglia, Ph.D., Research Fellow in Biology

Christopher Jeyaparan Catherasoo, Ph.D., Research Fellow in Aeronautics (PT)
B.A., University of Cambridge, 1971; M.A., 1975; M.S., Caltech, 1978; Ph.D., 1982. Research Fellow, 1982-

Thomas Kirk Caughhey, Ph.D., Professor of Applied Mechanics
B.Sc., Glasgow University, 1948; M.M.E., Cornell University, 1952; Ph.D., Caltech, 1954. Instructor, 1953-54; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-

Carlton M. Caves, Ph.D., Senior Research Fellow in Theoretical Physics (LOA)
B.A., Rice University, 1972; Ph.D., Caltech, 1977. Research Fellow, 1977-81; Senior Research Fellow, 1982-

Elizabeth Susan Celniker, Ph.D., Research Fellow in Biology
B.A., Pitzer College, 1975; Ph.D., University of North Carolina, 1983. Caltech, 1983-

Lee D. Chabala, Ph.D., Research Fellow in Biology
B.A., California State University (San Jose), 1967; M.S., University of Rochester Medical Center, 1978; Ph.D., 1981. Del E. Webb Research Fellow, Caltech, 1981-83; Research Fellow, 1983-

Sunney Ignatius Chan, Ph.D., Professor of Chemical Physics and Biophysical Chemistry
B.S., University of California, 1957; Ph.D., 1960. Assistant Professor of Chemical Physics, Caltech, 1963-64; Associate Professor, 1964-68; Professor, 1968-76; Professor of Chemical Physics and Biophysical Chemistry, 1976--; Acting Executive Officer for Chemistry, 1977-78; Executive Officer, 1978-80; Master of Student Houses, 1980-83.

Kai H. Chang, Ph.D., Research Fellow in Physics

Mei-Chu Chang, Ph.D., Bateman Instructor in Mathematics
B.S., National Taiwan University, 1975; Ph.D., University of California, 1982. Caltech, 1982-

Roger Chang, D.Sc., Visiting Associate in Chemistry (PT)
B.Sc., Chekiang University (Hangchow), 1937; M.Eng., McGill University, 1942; Ph.D., Carnegie-Mellon University, 1945. MTS and Group Leader, Rockwell International Science Center, 1956-; Caltech, 1981-

Sandra Perreira Chang, Ph.D., Research Fellow in Biology
B.S., University of Hawaii, 1973; M.S.; Ph.D., Oregon Health Sciences University, 1983. Caltech, 1983-

Dequan Chen, M.S., Visiting Associate in Mathematics
M.S., Chinese University of Science and Technology, 1965. Associate Professor, Institute of Applied Mathematics, Academia Sinica (Beijing), 1979-. Caltech, 1983-84.

Yao-Song Chen, Visiting Associate in Engineering Science
Associate Professor, Department of Mechanics, Peking University, 1979. Caltech, 1983-84.

Ying-tang Chen, Visiting Associate in Physics
Lecturer, Tsing-hua University, 1957-. Caltech, 1983-84.

Benito Miguel Chen-Charpentier, Ph.D., Visiting Associate in Applied Mathematics
Ph.D., Caltech, 1979. Research Professor, National University of Mexico, 1979-. Visiting Associate, Caltech, 1983-84.
Che-min Cheng, Ph.D., Visiting Associate in Applied Mechanics

Soo-Chen Cheng, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, 1977; Ph.D., Duke University, 1983. Caltech, 1984-85.

George Cheroutre, Ph.D., Research Fellow in Biology

Liew-Chuang Chiu, Ph.D., Research Fellow in Applied Physics

Anne Chomyn, Ph.D., Senior Research Fellow in Biology
B.S., Drexel University, 1972; Ph.D., Caltech, 1978. Research Fellow, 1978-82; Senior Research Fellow, 1982-

Stephen P. Christon, Ph.D., Research Fellow in Physics

Robert Frederick Christy, Ph.D., Institute Professor of Theoretical Physics
B.A., University of British Columbia, 1935; Ph.D., University of California, 1941. Associate Professor of Physics, Caltech, 1946-50; Professor of Theoretical Physics, 1950-83; Institute Professor, 1983-85; Executive Officer for Physics, 1968-70; Vice President and Provost, 1970-80; Acting President, 1977-78.

J. Kent Clark, Ph.D., Professor of Literature
A.B., Brigham Young University, 1939; Ph.D., Stanford University, 1950. Instructor in English, Caltech, 1947-50; Assistant Professor, 1950-54; Associate Professor, 1954-60; Professor, 1960-80; Professor of Literature, 1980-

Michael Wayne Clark, Ph.D., Research Fellow in Biology

Michael J. Clarke, Ph.D., Visiting Associate in Chemistry

Ian Clark-Lewis, Ph.D., Research Fellow in Biology

Francis Hettlinger Clauser, Ph.D., Clark Blanchard Millikan Professor of Engineering, Emeritus

Mark J. Clausen, Ph.D., Research Fellow in Radio Astronomy
B.S., Missouri Southern State College, 1974; M.S., New Mexico State University, 1976; Ph.D., University of Iowa, 1981. Caltech, 1981-

Robert Webster Clayton, Ph.D., Assistant Professor of Exploration Geophysics
B.A.Sc., University of Toronto, 1973; M.Sc., University of British Columbia, 1976; Ph.D., Stanford University, 1981. Caltech, 1981-

Amrane Cohen, M.B.A., Lecturer in Business Economics (PT)

Donald S. Cohen, Ph.D., Professor of Applied Mathematics
Sc.B., Brown University, 1956; M.S., Cornell University, 1959; Ph.D., Courant Institute, New York University, 1962. Assistant Professor of Mathematics, Caltech, 1965-67; Associate Professor of Applied Mathematics, 1967-71; Professor, 1971-

Judith G. Cohen, Ph.D., Associate Professor of Astronomy
B.A., Radcliffe College, 1967; M.S., 1969; Ph.D., 1971; B.S., University of Arizona, 1978. Associate Professor, Caltech, 1979-

Marshall Harris Cohen, Ph.D., Professor of Radio Astronomy; Executive Officer for Astronomy
B.E.E., Ohio State University, 1948; M.S., 1949; Ph.D., 1952. Visiting Associate Professor, Caltech, 1965; Professor, 1968-; Executive Officer, 1981-

Terry Cole, Ph.D., Senior Research Associate in Chemistry and Chemical Engineering
B.S., University of Minnesota, 1954; Ph.D., Caltech, 1958. Senior Member of Technical Staff, Jet Propulsion Laboratory, 1980-; Sherman Fairchild Distinguished Scholar, Caltech, 1976-77; Research Associate in Chemistry, 1979-80; Research Associate in Chemistry and Chemical Engineering, 1980-81; Senior Research Associate, 1981-.
Donald Earl Coles, Ph.D., Professor of Aeronautics
B.S., University of Minnesota, 1947; M.S., Caltech, 1948; Ph.D., 1953. Research Fellow, 1953-55; Senior Research Fellow, 1955-56; Assistant Professor, 1956-59; Associate Professor, 1959-64; Professor, 1964-.

Terrence J. Collins, Ph.D., Assistant Professor of Chemistry

Robert Pfahler Comer, Ph.D., Bantrell Research Fellow in Geophysics

Jack Frederick Conn, Ph.D., Assistant Professor of Mathematics

Bianca M. Conti-Tronconi, M.D., Visiting Associate in Chemistry
M.D., University of Milan, 1974. Assistant Professor, Department of Pharmacology, University of Milan School of Medicine, 1977-. Caltech, 1980-.

Frederick James Converse, B.S., Professor of Soil Mechanics, Emeritus
B.S., University of Rochester, 1914. Instructor, Caltech, 1921-33; Assistant Professor, 1933-39; Associate Professor, 1939-47; Professor, 1947-62; Professor Emeritus, 1962-.

W. Bradford Cornell, Ph.D., Visiting Associate Professor of Business Economics and Management
B.S., Stanford University, 1970; M.S., 1974; Ph.D., 1975. Associate Professor, University of California (Los Angeles), 1979-. Caltech, 1984.

Noel Robert Corngold, Ph.D., Professor of Applied Physics
A.B., Columbia College, 1949; A.M., Harvard University, 1950; Ph.D., 1954. Professor of Applied Science, Caltech, 1966-74; Professor of Applied Physics, 1974-.

Bruce Cortez, Ph.D., Robert A. Millikan Fellow in Physics
B.S., Caltech, 1978; Ph.D., Harvard University, 1983. Millikan Fellow, Caltech, 1983-.

Eric John Cotts, Ph.D., Research Fellow in Applied Physics

Eugene Woodville Cowan, Ph.D., Professor of Physics
B.S., University of Missouri, 1941; S.M., Massachusetts Institute of Technology, 1943; Ph.D., Caltech, 1948. Research Fellow, 1948-50; Assistant Professor, 1950-54; Associate Professor, 1954-61; Professor, 1961-.

John Vincent Cox, Ph.D., Research Fellow in Biology

David Crisp, Ph.D., Research Fellow in Planetary Science

Mark Cronin-Golomb, Ph.D., Research Fellow in Applied Physics
B.Sc., University of Sydney, 1979; Ph.D., Caltech, 1983. Research Fellow, 1983-84.

Bruno Crosignani, Lib.Doc., Visiting Associate in Electrical Engineering

Michael C. Cross, Ph.D., Professor of Theoretical Physics

Robert J. Crutchley, Ph.D., Research Fellow in Chemistry
B.Sc., University of Toronto, 1977; Ph.D., York University, 1982. Caltech, 1982-.

Gabriel Tibor Csanady, Ph.D., Visiting Associate in Environmental Engineering Science

Slobodan M. Cuk, Ph.D., Associate Professor of Electrical Engineering
Dipl.Ing., Belgrade University, 1970; M.S.E.E., University of Santa Clara, 1974; Ph.D., Caltech, 1977. Lecturer (PT), 1977; Research Fellow, 1977; Assistant Professor, 1977-83; Associate Professor, 1983-.

Fred E. C. Culick, Ph.D., Professor of Applied Physics and Jet Propulsion
S.B., S.M., Massachusetts Institute of Technology, 1957; Ph.D., 1961. Research Fellow in Jet Propulsion, Caltech, 1961-63; Assistant Professor, 1963-66; Associate Professor, 1966-71; Professor, 1971-78; Professor of Applied Physics and Jet Propulsion, 1978-.

Michael Edward Cusick, Ph.D., Research Fellow in Biology
Officers and Faculty 309

Edward L. Cussler, Ph.D., *Chevron Visiting Professor of Chemical Engineering*

Alfredo Arnobio da Gama, Ph.D., *Visiting Associate in Chemistry*
B.S., Federal University of Pernambuco, 1971; M.S., 1974; Ph.D., 1981. Adjunct Professor, 1981-; Caltech, 1983-.

Bjorn E. J. Dahlberg, Ph.D., *Visiting Associate in Mathematics*

Nathan DaSilva, Ph.D., *Bantrell Research Fellow in Biology*
B.Sc., Leningrad University, 1974; Ph.D., Sackler School of Medicine, Tel-Aviv University, 1983. Caltech, 1984-85.

Eric Harris Davidson, Ph.D., *Norman Chandler Professor of Cell Biology*
B.A., University of Pennsylvania, 1958; Ph.D., Rockefeller University, 1963. Visiting Assistant Professor of Biology, Caltech, 1970; Associate Professor, 1971-74; Professor, 1974-81; Chandler Professor of Cell Biology, 1982-.

Norman Ralph Davidson, Ph.D., *Norman Chandler Professor of Chemical Biology*
B.S., University of Chicago, 1937; B.Sc., University of Oxford, 1938; Ph.D., University of Chicago, 1941. Instructor in Chemistry, Caltech, 1946-49; Assistant Professor, 1949-52; Associate Professor, 1952-57; Professor, 1957-81; Chandler Professor of Chemical Biology, 1982-; Executive Officer for Chemistry, 1967-73.

David L. Davies, Ph.D., *Research Fellow in Chemistry*

Lance Edwin Davis, Ph.D., *Mary Stillman Harkness Professor of Social Science; Executive Officer for the Social Sciences*
B.A., University of Washington, 1950; Ph.D., Johns Hopkins University, 1956. Professor of Economics, Caltech, 1968-80; Harkness Professor of Social Science, 1980-; Executive Officer, 1982-.

Leverett Davis, Jr., Ph.D., *Professor of Theoretical Physics, Emeritus*
B.S., Oregon State College, 1936; M.S., Caltech, 1938; Ph.D., 1941. Instructor, 1941-46; Assistant Professor, 1946-50; Associate Professor, 1950-56; Professor, 1956-81; Professor Emeritus, 1981-.

Phoebe Kin-Kin Dea, Ph.D., *Visiting Associate in Chemistry*
B.S., University of California (Los Angeles), 1967; Ph.D., Caltech, 1971. Associate Professor, California State University (Los Angeles), 1979-; Visiting Associate, Caltech, 1982-.

Richard Albert Dean, Ph.D., *Professor of Mathematics*
B.S., Caltech, 1945; A.B., Denison University, 1947; M.S., Ohio State University, 1948; Ph.D., 1953. Harry Bateman Research Fellow, Caltech, 1954-55; Assistant Professor, 1955-59; Associate Professor, 1959-66; Professor, 1966-.

Carl-Wilhelm Reinhold de Boor, Ph.D., *Sherman Fairchild Distinguished Scholar*

Franklin Peter DeHaan, Ph.D., *Visiting Associate in Chemistry (PT)*

Francois Delyon, Ph.D., *Visiting Associate in Mathematics*

David S. Dennison, Ph.D., *Visiting Associate in Biology*

Charles Raymond De Prima, Ph.D., *Professor of Mathematics*
B.A., New York University, 1940; Ph.D., 1943. Assistant Professor of Applied Mechanics, Caltech, 1946-51; Associate Professor, 1951-56; Professor, 1956-64; Professor of Mathematics, 1964-.

Rolf Dermietzel, M.D., *Visiting Associate in Biology*

Peter B. Dervan, Ph.D., *Professor of Chemistry*
B.S., Boston College, 1967; Ph.D., Yale University, 1972. Assistant Professor, Caltech, 1973-79; Associate Professor, 1979-82; Professor, 1982-.

Riccardo Destro, Laurea, *Visiting Associate in Chemistry*
Edgar Ackerman De Yoe, Ph.D., Del E. Webb Research Fellow in Biology
B.S., Lehigh University, 1972; M.S., 1976; Ph.D., University of Rochester, 1983. Caltech, 1983-

Robert Palmer Dilworth, Ph.D., Professor of Mathematics, Emeritus
B.S., Caltech, 1936; Ph.D., 1939. Assistant Professor, 1943-45; Associate Professor, 1945-51; Professor, 1951-82; Professor Emeritus, 1982-

Paul Emmanuel Dimotakis, Ph.D., Associate Professor of Aeronautics and Applied Physics
B.S., Caltech, 1968; M.S., 1969; Ph.D., 1973. Research Fellow, 1973-74; Research Fellow and Lecturer, 1974-75; Assistant Professor, 1975-81; Associate Professor, 1981-

Nicholas Bernard Dirks, Ph.D., Assistant Professor of History
B.A., Wesleyan University, 1972; M.A., University of Chicago, 1974; Ph.D., 1978. Instructor in Asian History, Caltech, 1978-80; Assistant Professor of History, 1980-

Charles Hewitt Dix, Ph.D., Professor of Geophysics, Emeritus
B.S., Caltech, 1927; A.M., Rice Institute, 1928; Ph.D., 1931. Associate Professor, Caltech, 1948-54; Professor, 1954-73; Professor Emeritus, 1973-

Shamasundar N. Dixit, Ph.D., Research Fellow in Chemistry

Fuad Elias Doany, Ph.D., Research Fellow in Chemistry

Clinton Dean Dodd, B.A., Coach
B.A., Humboldt State University, 1978. Caltech, 1980-

Alan Donagan, M.A., Professor of Philosophy
B.A., University of Melbourne, 1946; M.A., 1951; B.Phil., University of Oxford, 1953. Visiting Professor, Caltech, 1983-84; Professor, 1984-

Karl Doppel, Ph.D., Visiting Associate in Mathematics
Ph.D., University of Vienna, 1970. Professor of Mathematics, Freie Universität (Berlin), 1977-. Caltech, 1983-84

Diane Irene Doser, Ph.D., Bantrell Research Fellow in Geophysics
B.S., Michigan Technological University, 1978; Ph.D., University of Utah, 1984. Caltech, 1984

Dennis A. Dougherty, Ph.D., Assistant Professor of Chemistry
B.S., M.S., Bucknell University, 1974; Ph.D., Princeton University, 1978. Caltech, 1979-

Mack W. Dowdy, Ph.D., Lecturer in Jet Propulsion (PT)
B.M.E., Georgia Institute of Technology, 1960; M.S., Ohio State University, 1961; Ph.D., Georgia Institute of Technology, 1969. Technical Group Supervisor, Jet Propulsion Laboratory, 1982-. Caltech, 1983-

Andrew Philip Dowsett, Ph.D., Research Fellow in Chemistry
B.S., Caltech, 1974; Ph.D., Stanford University, 1979. Research Fellow, Caltech, 1982-

Ronald William Prest Drever, Ph.D., Professor of Physics
B.Sc., Glasgow University, 1953; Ph.D., 1958. Visiting Associate, Caltech, 1977; Professor, 1979-

Geoffrey B. Dreyer, Ph.D., Research Fellow in Chemistry
B.S., University of California, 1979; Ph.D., Harvard University, 1983. Caltech, 1983-84

William Jakob Dreyer, Ph.D., Professor of Biology
B.A., Reed College, 1952; Ph.D., University of Washington, 1956. Caltech, 1963-

Jeffrey A. Dubin, Ph.D., Assistant Professor of Economics
A.B., University of California, 1978; Ph.D., Massachusetts Institute of Technology, 1981. Caltech, 1982-

Lee Alvin DuBridge, Ph.D., Sc.D., LL.D., President, Emeritus
A.B., Cornell College (Iowa), 1922; A.M., University of Wisconsin, 1924; Ph.D., 1926. President, Caltech, 1946-69; President Emeritus, 1969-

Gregory Michael Duncan, Ph.D., Visiting Associate in Economics

Jack David Dunitz, Ph.D., Sherman Fairchild Distinguished Scholar
Susan Margaret Jean Dunn, Ph.D., Visiting Associate in Chemistry
B.Sc., University of Strathclyde, 1975; Ph.D., National Institute for Medical Research (Mill Hill), 1978. Research Faculty, Imperial College of Science and Technology, 1982-. Research Fellow, Caltech, 1978-82; Visiting Associate, 1982-1983.

Pol Edgard Duwez, D.Sc., Professor of Applied Physics and Materials Science, Emeritus
Metallurgical Engineer, School of Mines (Mons, Belgium), 1932; D.Sc., University of Brussels, 1933. Research Engineer, Caltech, 1942-47; Associate Professor, 1947-52; Professor, 1952-1978; Professor Emeritus, 1978-.

Susan Jane Eberlein, Ph.D., Research Fellow in Biology

Keith Alan Echelmeyer, Ph.D., Research Fellow in Geology
B.A., University of Colorado, 1976; Ph.D., Caltech, 1983. Research Fellow, 1983-.

Erdinc Edgu, Ph.D., Visiting Associate in Engineering Science

Charles Elachi, Ph.D., Lecturer in Electrical Engineering (PT)

Jonathan H. Elias, Ph.D., Senior Research Fellow in Physics

Heinz E. Ellersieck, Ph.D., Associate Professor of History
A.B., University of California (Los Angeles), 1942; M.A., 1948; Ph.D., 1955. Instructor, Caltech, 1950-55; Assistant Professor, 1955-60; Associate Professor, 1960-.

David Clephan Elliot, Ph.D., Professor of History
M.A., St. Andrew’s University, 1939; A.M., Harvard University, 1948; Ph.D., 1951; M.A., University of Oxford, 1956. Assistant Professor, Caltech, 1950-53; Associate Professor, 1953-60; Professor, 1960-; Executive Officer for the Humanities and Social Sciences, 1967-71.

Jon Elster, D. Lett., Visiting Professor of Philosophy

Sterling Emerson, Ph.D., Professor of Genetics, Emeritus
B.Sc., Cornell University, 1922; M.A., University of Michigan, 1924; Ph.D., 1928. Assistant Professor, Caltech, 1928-37; Associate Professor, 1937-46; Professor, 1946-71; Professor Emeritus, 1971-.

Warren G. Emery, M.S., Director of Physical Education and Athletics
B.S., University of Nebraska, 1948; M.S., University of California (Los Angeles), 1959. Coach, Caltech, 1955; Assistant Director of Physical Education and Athletics, 1963-64; Director, 1964-.

Scott Emr, Ph.D., Assistant Professor of Biology
B.S., University of Rhode Island, 1976; Ph.D., Harvard University, 1981. Caltech, 1983-.

Stuart Alan Ende, Ph.D., Associate Professor of Literature
A.B., Cornell University, 1965; M.A., New York University, 1966; Ph.D., Cornell University, 1970. Assistant Professor of English, Caltech, 1970-74; Associate Professor, 1974-80; Associate Professor of Literature, 1980-.

Nader Engheta, Ph.D., Visiting Associate in Electrical Engineering (PT)
B.S., University of Tehran, 1978; M.S., Caltech, 1979; Ph.D., 1982. Research Fellow, 1982-83; Visiting Associate, 1983-.

Volker Enss, Ph.D., Habil., Sherman Fairchild Distinguished Scholar

Samuel Epstein, Ph.D., LL.D., The William E. Leonhard Professor of Geology and Professor of Geochemistry
B.Sc., University of Manitoba, 1941; M.Sc., 1942; Ph.D., McGill University, 1944. Research Fellow in Geochemistry, Caltech, 1952-53; Senior Research Fellow, 1953-54; Associate Professor, 1954-59; Professor, 1959-84. The William E. Leonhard Professor of Geology, 1984-.

Clayton Eshleman, M.A.T., Lecturer in Creative Writing

Barbara R. Evans, Ph.D., Senior Research Associate in Biology
B.A., Swarthmore College, 1945; M.A., Cornell University, 1948; Ph.D., State University of New York (Stony Brook), 1968. Research Fellow, Caltech, 1971-72; Senior Research Fellow, 1972-80; Research Associate, 1980-81; Senior Research Associate, 1981-.
Hugh Carlyle Evans, Ph.D., Visiting Associate in Physics
B.Sc., Queen's University (Ontario), 1955; M.Sc., 1957; Ph.D., University of Glasgow, 1961. Professor, Queen's University, 1973-. Caltech, 1984-85.

Nabil H. Farhat, Ph.D., Visiting Professor of Electrical Engineering

Peter Ward Fay, Ph.D., Professor of History
A.B., Harvard College, 1947; B.A., University of Oxford, 1949; Ph.D., Harvard University, 1954. Assistant Professor, Caltech, 1955-60; Associate Professor, 1960-70; Professor, 1970-.

Daniel Jay FeIlleman, Ph.D., Research Fellow in Biology
B.A., University of Rochester, 1977; Ph.D., Vanderbilt University, 1982. Caltech, 1982-.

Derek Henry Fender, Ph.D., Professor of Biology and Applied Science
B.Sc., Reading University (England), 1939; M.Sc., 1946; Ph.D., 1956. Senior Research Fellow in Engineering, Caltech, 1961-62; Associate Professor of Biology and Electrical Engineering, 1962-66; Professor of Biology and Applied Science, 1966-.

M. Harindra J. S. Fernando, Ph.D., Research Fellow in Environmental Engineering Science

Richard Phillips Feynman, Ph.D., Nobel Laureate, Richard Chace Tolman Professor of Theoretical Physics
B.S., Massachusetts Institute of Technology, 1939; Ph.D., Princeton University, 1942. Visiting Professor, Caltech, 1950; Professor, 1950-59; Tolman Professor, 1959-.

Kevin W. Fields, Ph.D., Research Fellow in Chemistry
B.S., University of Missouri (Kansas City), 1978; Ph.D., University of Notre Dame, 1982. Caltech, 1982-.

Vincent R. Figerou, Ph.D., Bateman Research Instructor in Mathematics

Alexei Vladimir Filippenko, Ph.D., Research Fellow in Astronomy

Bradley W. Filippone, Ph.D., Assistant Professor of Physics
B.S., Pennsylvania State University, 1977; M.S., University of Chicago, 1979; Ph.D., 1982. Research Fellow, Caltech, 1983-84; Assistant Professor, 1984-.

Caleb E. Finch, Ph.D., Visiting Associate in Biology
B.S., Yale University, 1961; Ph.D., Rockefeller University, 1969. Professor of Gerontology and Biological Sciences, University of Southern California; Adjunct Professor of Physiology & Biophysics; Adjunct Professor of Neurology, 1978-. Caltech, 1983-.

Michael E. Fisher, Ph.D., Sherman Fairchild Distinguished Scholar

Richard Charles Flagan, Ph.D., Associate Professor of Environmental Engineering Science and Mechanical Engineering
B.S.E., University of Michigan, 1969; S.M., Massachusetts Institute of Technology, 1971; Ph.D., 1973. Assistant Professor of Environmental Engineering Science, Caltech, 1975-81; Associate Professor, 1981-84; Associate Professor of Environmental Engineering Science and Mechanical Engineering, 1984-.

A. Russell Flegal, Ph.D., Visiting Associate in Geochemistry (PT)
B.A., University of California (Santa Barbara), 1968; M.A., California State University (Hayward), 1976; Ph.D., Oregon State University, 1979. Adjunct Professor, Moss Landing Marine Laboratories, 1978-. Caltech, 1983-84.

Konstantinos Plietzschar, Dr. rer. nat., Senior Research Fellow in Biology
Dipl., University of Athens, 1975; Dr. rer. nat., University of Heidelberg, 1979. Research Fellow, Caltech, 1980-82; Senior Research Fellow, 1982-.

Henry Kwock-wo Fong, Ph.D., Research Fellow in Biology
B.S., University of Hawaii (Manoa), 1976; Ph.D., University of California, (San Diego), 1983. Caltech, 1983-.

Lawrence K. Fong, Ph.D., Research Fellow in Chemistry

Mary Louise Fonseca, M.A., Lecturer in English as a Second Language (PT)
Bengt Fornberg, Ph.D., Associate Professor of Applied Mathematics
B.S., Upsala University, 1969; Ph.D., 1972. Bateman Research Instructor, Caltech, 1974-75; Assistant Professor, 1975-80; Associate Professor, 1980-.

William Alfred Fowler, Ph.D., D.Sc., D.h.c., Nobel Laureate, Institute Professor of Physics, Emeritus
B.Eng.Phys., Ohio State University, 1933; Ph.D., Caltech, 1936. Research Fellow, 1936-39; Assistant Professor, 1939-42; Associate Professor, 1942-46; Professor, 1946-70; Institute Professor, 1970-82; Institute Professor Emeritus, 1982-.

Geoffrey Charles Fox, Ph.D., Dean for Educational Computing and Professor of Theoretical Physics
B.A., University of Cambridge, 1964; Ph.D., 1967. Robert Andrews Milikan Research Fellow, Caltech, 1970-71; Assistant Professor, 1971-74; Associate Professor, 1974-79; Professor, 1979-; Dean, 1983-; Executive Officer for Theoretical Physics, 1981-83.

Peter Frankl, Ph.D., D.Sc., Visiting Associate in Mathematics

Joel N. Franklin, Ph.D., Professor of Applied Mathematics
B.S., Stanford University, 1950; Ph.D., 1953. Associate Professor of Applied Mechanics, Caltech, 1957-65; Professor of Applied Science, 1965-69; Professor of Applied Mathematics, 1969-.

Roberta Rachel Franks, Ph.D., Research Fellow in Biology

Steven Clark Frautschi, Ph.D., Professor of Theoretical Physics
A.B., Harvard College, 1954; Ph.D., Stanford University, 1958. Assistant Professor, Caltech, 1962-64; Associate Professor, 1964-66; Professor, 1966-.

Nevis Lee Fregien, Ph.D., Research Fellow in Chemistry
B.S., University of California (Davis), 1974; Ph.D., University of Hawaii (Honolulu), 1981. Caltech, 1981-.

Peter George Oliver Freund, Ph.D., Visiting Associate in Theoretical Physics

Alexander H. Frey, Jr., Ph.D., Visiting Associate in Computer Science
B.A., Haverford College, 1955; Ph.D., University of Washington, 1960. Senior Engineer, IBM (Manassas), 1965-. Caltech, 1982-83; 1983-.

Shmuel Friedland, D.Sc., Visiting Associate in Mathematics

Richard Gerd Froese, Ph.D., Bateman Research Instructor in Mathematics
B.Sc., University of Manitoba, 1979; Ph.D., University of Virginia, 1983. Caltech, 1983-.

Karl Joseph Fryxell, Ph.D., Research Fellow in Biology
B.A., B.S., University of Texas (Austin), 1975; Ph.D., Caltech, 1983. Research Fellow, 1983-.

Francesco Fucito, Ph.D., Weingart Fellow in Theoretical Physics
Ph.D., University of Rome, 1980. Caltech, 1982-.

Keiko Fukada, M.D., Ph.D., Research Fellow in Biology
M.D., School of Medicine, Keio University (Tokyo), 1972; Ph.D., University of California (San Diego), 1979. Caltech, 1983-.

Francis Brock Fuller, Ph.D., Professor of Mathematics
A.B., Princeton University, 1949; M.A., 1950; Ph.D., 1952. Research Fellow, Caltech, 1952-55; Assistant Professor, 1955-59; Associate Professor, 1959-66; Professor, 1966-.

Dwain Nash Fullerton, M.A., Vice President for Institute Relations

Wojtek Furmanski, Ph.D., Senior Research Fellow in Physics
B.S., University of Cracow, 1973; Ph.D., Jagellonian University, 1977. Caltech, 1983-.

Lucia R. Garcia-Iniguez, Ph.D., Visiting Associate in Chemistry

Leonard Isaac Garfinkel, Ph.D., Research Fellow in Chemistry
B.A., Johns Hopkins University, 1976; M.S., Albert Einstein College of Medicine, 1978; Ph.D., 1982. Caltech, 1982-.

Janetta M. Garrett, Ph.D., Gosney Research Fellow in Biology
B.Sc., North East Surrey College of Technology, 1977; M.Sc., Trent University, 1979; Ph.D., Texas A & M University, 1983. Caltech, 1983-.
Dale E. Gary, Ph.D., Research Fellow in Astrophysics

Philip Gaskell, Ph.D., Litt.D., Professor of Literature (PT)

George Rousetos Gavalas, Ph.D., Professor of Chemical Engineering
B.S., Technical University of Athens, 1958; M.S., University of Minnesota, 1962; Ph.D., 1964. Assistant Professor, Caltech, 1964-67; Associate Professor, 1967-75; Professor, 1975-.

Fred M. Gelbard, Ph.D., Visiting Associate in Chemical Engineering

Murray Gell-Mann, M.B.A., D.B.A., Professor of Business Economics, Emeritus
A.B., University of Washington, 1923; M.B.A., University of Oxford, 1924. Assistant Professor, Caltech, 1924-26; Associate Professor, 1926-27; Professor, 1927-47; Emeritus, 1947-

James Lawrence Gimlett, Ph.D., Research Fellow in Physics

Jean-Yves Girard, Ph.D., Visiting Associate in Mathematics

Cheryl Fallon Giuliano, Ph.D., Lecturer in Basic English Composition (PT)

Jon Alan Gjerde, Ph.D., Mellon Postdoctoral Instructor in History
B.A., University of Northern Iowa, 1975; M.S., University of Minnesota, 1978; Ph.D., 1982. Caltech, 1983-

M. Michael Glowko, M.D., Visiting Associate in Chemistry (PT)
B.S., Tufts University, 1957; M.D., Tufts Medical School, 1962. Chief, Department of Allergy and Clinical Immunology, Kaiser Permanente Medical Group, 1974-1978; Associate Clinical Professor of Medicine, University of California (Los Angeles), 1976-1977. Caltech, 1983-

William Andrew Goddard III, Ph.D., Professor of Chemistry and Applied Physics
B.S., University of California (Los Angeles), 1960; Ph.D., Caltech, 1965. Noyes Research Fellow in Chemistry, 1964-66; Noyes Research Instructor, 1966-67; Assistant Professor of Theoretical Chemistry, 1967-71; Associate Professor, 1971-74; Professor, 1974-78; Professor of Chemistry and Applied Physics, 1978-

Marvin Leonard Goldberger, Ph.D., D.H.L., President; Professor of Theoretical Physics (See page 299)

Alan L. Goldin, M.D., Ph.D., Research Fellow in Chemistry

Peter Martin Goldreich, Ph.D., Lee A. DuBridge Professor of Astrophysics and Planetary Physics
B.S., Cornell University, 1960; Ph.D., 1963. Associate Professor of Planetary Science and Astronomy, Caltech, 1966-69; Professor, 1969-81; DuBridge Professor of Astrophysics and Planetary Physics, 1981-

Ilan Golecki, Ph.D., Visiting Associate in Applied Physics
B.Sc., Technion University (Haifa), 1970; M.Sc., 1974; Ph.D., Neuchatel University (Switzerland), 1978. Research Scientist, Rockwell International, 1979-. Research Fellow, Caltech, 1978-79; Visiting Associate, 1979-.
Ricardo Gomez, Ph.D., Professor of Physics
S.B., Massachusetts Institute of Technology, 1953; Ph.D., 1956. Research Fellow, Caltech, 1956-59; Senior Research Fellow, 1959-71; Associate Professor, 1971-77; Professor, 1977-.

Marvin Mark Goodgame, Ph.D., Research Fellow in Chemistry
B.S., Louisiana Technical University, 1975; Ph.D., Caltech, 1983. Research Fellow, 1983-84.

Robert E. Goodin, D.Phil, Visiting Associate Professor of Philosophy

Jeremy Goodman, Ph.D., Bantrell Research Fellow in Astrophysics
A.B., Harvard University, 1978; Ph.D., 1983. Caltech, 1983-.

John W. Goodrich, Ph.D., Visiting Associate in Applied Mathematics

David Louis Goodstein, Ph.D., Professor of Physics and Applied Physics
B.S., Brooklyn College, 1960; Ph.D., University of Washington, 1965. Research Fellow in Physics, Caltech, 1966-67; Assistant Professor, 1967-71; Associate Professor, 1971-75; Associate Professor of Physics and Applied Physics, 1975-76; Professor, 1976-.

Judith R. Goodstein, Ph.D., Faculty Associate in History

Thomas Dunn Gottschalk, Ph.D., Senior Research Fellow in Theoretical Physics and Lecturer in Physics (PT)

Roy Walter Gould, Ph.D., Simon Ramo Professor of Engineering; Chairman of the Division of Engineering and Applied Science
B.S., Caltech, 1949; M.S., Stanford University, 1950; Ph.D., Caltech, 1956. Assistant Professor of Electrical Engineering, 1955-58; Associate Professor, 1958-60; Associate Professor of Electrical Engineering and Physics, 1960-62; Professor, 1962-74; Professor of Applied Physics, 1974-80; Ramo Professor of Engineering, 1980-; Executive Officer for Applied Physics, 1973-79; Chairman, 1979-.

Joan M. Governan, Ph.D., Research Fellow in Biology
B.A., Brandeis University, 1975; Ph.D., University of California (Los Angeles), 1981. Caltech, 1983-.

Harry Barkus Gray, Ph.D., D.Sc., Arnold O. Beckman Professor of Chemistry;
B.S., Western Kentucky College, 1957; Ph.D., Northwestern University, 1960. Visiting Professor of Inorganic Chemistry, Caltech, 1965; Professor of Chemistry, 1966-81; William R. Kenan, Jr. Professor, 1976-81; Beckman Professor, 1981-; Chairman of the Division of Chemistry and Chemical Engineering, 1978-84.

Michael B. Green, Ph.D., Visiting Associate in Theoretical Physics

Phillip Richard Green, Ph.D., Research Fellow in Biology

Jesse Leonard Greenstein, Ph.D., Lee A. DuBridge Professor of Astrophysics, Emeritus

Ian Gregor, Ph.D., Visiting Associate in Chemistry

David M. Grether, Ph.D., Professor of Economics; Chairman of the Division of the Humanities and Social Sciences
B.S., University of California, 1960; Ph.D., Stanford University, 1969. Associate Professor, Caltech, 1970-75; Professor, 1975-; Executive Officer for Social Sciences, 1978-82; Chairman, 1982-.

Benjamin Grinstein, Ph.D., Tolman Research Fellow in Theoretical Physics
Ph.D., Harvard University, 1984. Caltech, 1984-.

Daniel M. Grosjean, Ph.D., Visiting Associate in Chemical Engineering (PT)
M.A., University of Paris, 1964; Ph.D., 1971. Program Manager, Statewide Air Pollution Research Center, University of California (Riverside), 1978-; Research Fellow in Environmental Science, Caltech, 1973-75; Visiting Associate in Chemical Engineering, 1979-80; Visiting Associate (PT), 1980-.
Alexandre Grossman, M.A., Visiting Associate in Mathematics

Robert H. Grubbs, Ph.D., Professor of Chemistry

Thomas Frederick Guarr, Ph.D., Research Fellow in Chemistry

Murat Gunaydin, Ph.D., Senior Research Fellow in Theoretical Physics

James Edward Gunn, Ph.D., Visiting Associate in Astronomy
B.A., Rice University, 1961; M.S., Caltech, 1965; Ph.D., 1966. Professor, Princeton University, 1980-. Professor, Caltech, 1970-80; Visiting Associate, 1980-82; 1983-.

Alison M. Gurney, Ph.D., Del E. Webb Research Fellow in Biology

Regina Waltraud Haars, Dr.rer.nat., Visiting Associate in Biology

Jean-Francois Luc Haas, Ph.D., Research Fellow in Aeronautics
Eng., National School of Aeronautical Engineering (Strasbourg), 1972; M.S., Caltech, 1978; Ph.D., 1983. Research Fellow, 1983-.

Peter K. Haff, Ph.D., Senior Research Associate in Physics
A.B., Harvard College, 1966; Ph.D., University of Virginia, 1970. Visiting Associate, Caltech, 1970-80; Research Associate, 1980-81; Senior Research Associate, 1981-.

Bradford H. Hager, Ph.D., Assistant Professor of Geophysics

Thomas Michael Hagstrom, Ph.D., Research Fellow in Applied Mathematics

Folim Ghaly Halaka, Ph.D., Research Fellow in Chemistry
B.S., Alexandria University (Egypt), 1972; M.S., 1976; Ph.D., Michigan State University, 1981. Caltech, 1981-.

John Franklin Hall, Ph.D., Assistant Professor of Civil Engineering
B.S., West Virginia University, 1972; M.S., University of Illinois, 1973; Ph.D., University of California, 1980. Research Fellow, Caltech, 1980-83; Lecturer (PT), 1981-83; Assistant Professor, 1983-.

Marshall Hall, Jr., Ph.D., IBM Professor of Mathematics, Emeritus

Jules Paul Halpern, Ph.D., Research Fellow in Astronomy

Aboud H. Hamdi, Ph.D., Research Fellow in Applied Physics
B.S., Mosul University, 1971; M.S., Salford University, 1976; Ph.D., North Texas University, 1983. IBM Research Fellow, Caltech, 1983-84; Research Fellow, 1984-85.

Charles Robert Hamilton, Ph.D., Senior Research Associate in Biology
B.S., University of the South, 1957; Ph.D., Caltech, 1964. Research Fellow, 1964-66; Senior Research Fellow, 1971-74; Research Associate, 1974-81; Senior Research Associate, 1981-.

Philip James Hanlon, Ph.D., Bantrell Research Fellow in Mathematics
A.B., Dartmouth College, 1977; Ph.D., Caltech, 1981. Bantrell Research Fellow, 1983-.

Christoph Stefan Harder, Ph.D., Research Fellow in Applied Physics

David Garrison Harkrider, Ph.D., Professor of Geophysics
B.A., Rice University, 1953; M.A., 1957; Ph.D., Caltech, 1963. Associate Professor, 1970-79; Professor, 1979-; Associate Director, Seismological Laboratory, 1977-.

Earl C. Harrison, M.D., Visiting Associate in Chemical Engineering (PT)
B.A., Iowa State University, 1957; M.D., State University of Iowa Medical School, 1961. Research Affiliate, Jet Propulsion Laboratory, 1972-; Associate Professor of Medicine, Los Angeles County-University of Southern California Medical Center, and Director of the Cardiac Clinics, 1971-. Caltech, 1976-.
John F. Hawley, Ph.D., Bantrell Research Fellow in Theoretical Astrophysics

Thomas Harrison Heaton, Ph.D., Visiting Associate in Geophysics

Sibylle Christine Hechtel, Ph.D., Research Fellow in Biology
B.A., University of California, 1971; Ph.D., University of California (Irvine), 1979. Caltech, 1982.-

Gary M. Heiligman, Ph.D., Research Fellow in Radio Astronomy
B.S., Massachusetts Institute of Technology, 1978; Ph.D., Princeton University, 1982. Caltech, 1982.-

Donald Vincent Helberger, Ph.D., Professor of Geophysics
B.S., University of Minnesota, 1961; University of California (San Diego), 1965; Ph.D., 1967. Assistant Professor, Caltech, 1970-74; Associate Professor, 1974-79; Professor, 1979.-

Polly Johnson Henninger, Ph.D., Research Fellow in Biology

Eric Herbolzheimer, Ph.D., Assistant Professor of Chemical Engineering
B.S.E., Princeton University, 1975; M.S., Stanford University, 1976; Ph.D., 1979. Caltech, 1980.-

Frank H. Herbst, Ph.D., D.Sc., Visiting Associate in Chemistry

Mark Hereld, Ph.D., Research Fellow in Physics

Miguel Angel Hernan, Ph.D., Research Fellow in Aeronautics
Eng., Polytechnic University (Madrid), 1977; Ph.D., 1981. Visiting Associate, Caltech, 1981-84; Research Fellow, 1984.-

John Didrik Hestenes, Ph.D., Visiting Associate in Biology and Applied Science

Hisashi Hirabayashi, Ph.D., Visiting Professor of Radio Astronomy

David George Hittin, Ph.D., Associate Professor of Physics

Philip Thomas Hoffman, Ph.D., Associate Professor of History and Social Science
A.B., Harvard College, 1969; M.A., University of California, 1971; Ph.D., Yale University, 1979. Lecturer in History, Caltech, 1980-81; Instructor, 1981-82; Assistant Professor, 1982; Associate Professor of History and Social Science, 1984.-

Michael R. Hoffmann, Ph.D., Associate Professor of Environmental Engineering Science

Craig James Hogan, Ph.D., Bantrell Research Fellow in Theoretical Astrophysics

Barbara Ann Holshouser, Ph.D., Visiting Associate in Chemistry
B.S. Purdue University, 1974; M.S., University of Michigan (Ann Arbor), 1975; Ph.D., Loma Linda University, 1984. Physicist, Nuclear Medicine Department, Loma Linda University, 1976-. Caltech, 1984-85.

Satoru Honda, Ph.D., Research Fellow in Geophysics

Eric Scott Hood, Ph.D., Bantrell Research Fellow in Chemistry
Leroy E. Hood, M.D., Ph.D., Ethel Wilson Bowles and Robert Bowles Professor of Biology; Chairman of the Division of Biology
B.S., Caltech, 1960; M.D., Johns Hopkins University, 1964; Ph.D., Caltech, 1968. Assistant Professor of Biology, 1970-73; Associate Professor, 1973-75; Professor, 1975-77; Bowles Professor, 1977-; Chairman, 1980-.

John J. Hopfield, Ph.D., Roscoe G. Dickinson Professor of Chemistry and Biology
A.B., Swarthmore College, 1954; Ph.D., Cornell University, 1958. Caltech, 1980-.

Cornelius O. Horgan, Ph.D., Visiting Professor of Applied Mechanics
B.Sc., National University of Ireland, 1964; M.Sc., 1965; Ph.D., Caltech, 1970. Professor, Department of Metallurgy, Mechanics, and Materials Science, Michigan State University, 1980-. Visiting Professor, Caltech, 1984-85.

Norman Harold Horowitz, Ph.D., Professor of Biology, Emeritus
B.S., University of Pittsburgh, 1936; Ph.D., Caltech, 1939. Research Fellow, 1940-42; Senior Research Fellow, 1946-47; Associate Professor, 1947-53; Professor, 1953-82; Professor Emeritus, 1982-. Executive Officer for Biology, 1971-76; Acting Chairman, Division of Biology, 1973; Chairman, 1977-80.

Jane Houldsworth, Ph.D., Research Fellow in Biology

Robert M. Housley, Ph.D., Visiting Professor of Physics

George William Housner, Ph.D., Carl F Braun Professor of Engineering, Emeritus
B.S., University of Michigan, 1933; M.S., Caltech, 1934; Ph.D., 1941. Assistant Professor, 1945-49; Associate Professor, 1949-53; Professor, 1953-74; Braun Professor, 1974-81; Braun Professor Emeritus, 1981-.

Donald Ellis Hudson, Ph.D., Professor of Mechanical Engineering and Applied Mechanics, Emeritus
B.S., Caltech, 1938; M.S., 1939; Ph.D., 1942. Instructor of Machine Design, 1942-43; Assistant Professor of Mechanical Engineering, 1943-49; Associate Professor, 1949-55; Professor, 1955-63; Professor of Mechanical Engineering and Applied Mechanics, 1963-81; Professor Emeritus, 1981-.

Edward Wesley Hughes, Ph.D., Senior Research Associate in Chemistry, Emeritus
B.Chem., Cornell University, 1924; Ph.D., 1935. Research Fellow, Caltech, 1938-43; Senior Research Fellow, 1945-46; Research Associate, 1946-74; Senior Research Associate, Emeritus, 1974-.

Raja Ramesh Huilgol, Ph.D., Visiting Associate in Applied Mathematics

Jean Eduard Humblet, D.Sc., Visiting Associate in Physics

Michael W. Hunkapiller, Ph.D., Visiting Associate in Biology
B.S., University of Maryland, 1975; Ph.D., University of Pittsburgh, 1983. Caltech, 1983-.

Andrew Thompson Hunter, Ph.D., Visiting Associate in Applied Physics (PT)
B.Sc., Colorado School of Mines, 1976; Ph.D., Caltech, 1981. Member of the Technical Staff, Hughes Research Laboratories, 1981-. Visiting Associate, Caltech, 1981-.

Stirling L. Huntley, Ph.D., Lecturer in Drama (PT); Associate Dean of Graduate Studies; Director of Admissions
B.A., University of California (Los Angeles), 1945; M.S., 1949; Ph.D., Stanford University, 1956. Associate Dean of Graduate Studies, Caltech, 1971-; Lecturer, 1973-; Director of Admissions and Financial Aid, 1973-76; Director of Admissions, 1976-.

James Bryant Hurley, Ph.D., Research Fellow in Biology
B.S., State University of New York (Syracuse), 1975; Ph.D., University of Illinois, 1979. Caltech, 1983-.

Leonid Hurwicz, LL.M., Sherman Fairchild Distinguished Scholar

Ian D. Hutchison, Ph.D., Senior Research Associate in Geochemistry
B.A., Occidental College, 1969; Ph.D., University of California, 1975. Caltech, 1983-.
Edward Hutchings Jr., B.A., Lecturer in Journalism

Paul R Hyams, D.Phil., Sherman Fairchild Distinguished Scholar

Nicholas P. Ikin, Ph.D., Research Fellow in Geochemistry

Andrei Illarionov, Ph.D., Visiting Associate in Astrophysics

Christopher D. Irmspey, Ph.D., Weingart Fellow in Astronomy

Andrew Perry Ingersoll, Ph.D., Professor of Planetary Science
B.A., Amherst College, 1960; A.M., Harvard University, 1961; Ph.D., 1966. Assistant Professor, Caltech, 1966-71; Associate Professor, 1971-76; Professor, 1976-80.

Muhammed Z. Iqbal, Ph.D., Research Fellow in Physics

Robert Ellsworth Ireland, Ph.D., Professor of Organic Chemistry

Akira Ishihara, Ph.D., Research Fellow in Biology
B.S., Kyoto University, 1974; M.E., Osaka University, 1976; Ph.D., 1981. Caltech, 1981-84.

Linda Eileen Iverson, Ph.D., Research Fellow in Biology

Seid Hossein Izadpanah, Ph.D., Visiting Associate in Applied Physics (PT)

Sudhir Kumar Jain, Ph.D., Research Fellow in Civil Engineering
B.E., University of Roorkee (India), 1979; M.S., Caltech, 1980; Ph.D., 1983. Research Fellow, 1983.

Manuel Jakubith, Ph.D., Visiting Associate in Geophysics

Kenneth Carl Janda, Ph.D., Assistant Professor of Chemistry

Gotam Kumar Jarori, Ph.D., Research Fellow in Chemistry

Paul Christian Jennings, Ph.D., Professor of Civil Engineering and Applied Mechanics
B.S., Colorado State University, 1958; M.S., Caltech, 1960; Ph.D., 1963. Research Fellow in Civil Engineering, 1965; Assistant Professor of Applied Mechanics, 1966-68; Associate Professor, 1968-72; Professor, 1972-77; Professor of Civil Engineering and Applied Mechanics, 1977-80; Executive Officer for Civil Engineering and Applied Mechanics, 1975-80.

Carl Edward Johnson, Ph.D., Visiting Associate in Geophysics

Gerald R. Johnson, Ph.D., Visiting Professor of Mechanical Engineering

Peter Frederick Johnson, Ph.D., Research Fellow in Biology
Reid Colt Johnson, Ph.D., Research Fellow in Biology

Torrence Vaino Johnson, Ph.D., Visiting Associate in Planetary Science (PT)
B.S., Washington University, 1966; Ph.D., Caltech, 1970. Group Supervisor, Optical Astronomy Group, Jet Propulsion Laboratory, 1974--; Project Scientist (Galileo), 1977--; Senior Research Scientist, 1980--; Visiting Associate Professor, Caltech, 1998 1-83; Visiting Associate, 1983-.

William Lewis Johnson, Ph.D., Associate Professor of Materials Science
B.A., Hamilton College, 1970; Ph.D., Caltech, 1975. Assistant Professor, 1976-80; Associate Professor, 1978-.

Adrian P. Jones, Ph.D., Research Fellow in Experimental Petrology

Dayton L. Jones, Ph.D., Research Fellow in Radio Astronomy
B.A., Carleton College, 1974; M.S., University of California (Santa Barbara), 1976; M.S., Cornell University, 1979; Ph.D., 1981. Caltech, 1981-.

Louis Winchester Jones, A.B., Dean of Admissions, Emeritus
A.B., Princeton University, 1922. Instructor in English, Caltech, 1925-37; Assistant Professor, 1937-43; Associate Professor, 1943-68; Dean of Admissions; Director of Undergraduate Scholarships, 1937-68; Registrar, 1942-52; Dean Emeritus, 1968-.

Lucile Merrill Jones, Ph.D., Visiting Associate in Geophysics

William Thomas Jones, Ph.D., Professor of Philosophy (PT)
A.B., Swarthmore College, 1931; B.Litt., University of Oxford, 1933; A.M., Princeton University, 1936; Ph.D., 1937. Visiting Professor, Caltech, 1970-72; Andrew W. Mellon Professor, 1972-73; Professor, 1973-.

Yaw-Shong Ambrose Jong, Ph.D., Research Fellow in Chemistry
B.S., Chung-Hsing University, 1972; M.S., Mississippi State University, 1977; Ph.D., Indiana University School of Medicine, 1981. Caltech, 1983-84.

Robert James Kaiser, Jr., Ph.D., Research Fellow in Biology

James Thomas Kajiya, Ph.D., Assistant Professor of Computer Science

Walter Barclay Kamb, Ph.D., Professor of Geology and Geophysics
B.S., Caltech, 1952; Ph.D., 1956. Assistant Professor of Geology, 1956-60; Associate Professor, 1960-62; Professor, 1962-63; Professor of Geology and Geophysics, 1963--; Chairman, Division of Geological and Planetary Sciences, 1972-83.

Hiroo Kanamori, Ph.D., Professor of Geophysics
B.S., University of Tokyo, 1959; M.S., 1961; Ph.D., 1964. Research Fellow, Caltech, 1965-66; Professor, 1972-.

Keiko Kanamori, Ph.D., Visiting Associate in Chemistry (PT)
B.A., University of Tokyo, 1962; B.S., California State University (Los Angeles), 1976; Ph.D., Caltech, 1981. Research Chemist, University of California (Los Angeles), 1982--; Research Fellow, Caltech, 1980-82; Visiting Associate, 1982-.

Juha A. Karhu, M.S., Visiting Associate in Geochemistry

Takuji Kasamatsu, M.D., Visiting Associate in Biology
B.S., University of Osaka, 1959; M.D., 1963. Senior Research Fellow, Caltech, 1975-81; Senior Research Associate, 1982-84; Visiting Associate, 1984.

Peter Kastenmayer, Ph.D., Research Fellow in Geochemistry

Anatoly Katok, Ph.D., Professor of Mathematics
M.A., Moscow State University, 1965; Ph.D., 1968. Caltech, 1984-.

Hannu Pekka Kattelus, Lic.Tech., Visiting Associate in Applied Physics

Karen Suzanne Katula, Ph.D., Research Fellow in Biology
B.S., Miami University, 1973; Ph.D., Northwestern University, 1978. Caltech, 1982-.
Joseph Katz, Ph.D., Visiting Associate in Mechanical Engineering (PT)
B.S., Tel Aviv University, 1977; M.S., Caltech 1978; Ph.D., 1981. Assistant Professor of Civil Engineering, Purdue University, 1983-. Research Fellow, Caltech, 1982-83; Visiting Associate, 1983-.

Ralph William Kavanagh, Ph.D., Professor of Physics
B.A., Reed College, 1950; M.A., University of Oregon, 1952; Ph.D., Caltech, 1956. Research Fellow, 1956-58; Senior Research Fellow, 1958-60; Assistant Professor, 1960-65; Associate Professor, 1965-70; Professor, 1970-.

Alexander S. Kechris, Ph.D., Professor of Mathematics
M.S., National Technological University (Athens), 1969; Ph.D., University of California (Los Angeles), 1972. Assistant Professor, Caltech, 1974-76; Associate Professor, 1976-81; Professor, 1981-.

Herbert Bishop Keller, Ph.D., Professor of Applied Mathematics; Executive Officer for Applied Mathematics
B.E.E., Georgia Institute of Technology, 1945; M.A., New York University, 1948; Ph.D., 1954. Visiting Professor of Applied Mathematics, Caltech, 1965-66; Professor, 1967-; Executive Officer, 1980-.

Catherine Louise Kelly, Ph.D., Mellon Postdoctoral Instructor in History
B.A., University of Kent (Canterbury), 1974; M.A., University of California (Los Angeles), 1978; Ph.D., 1984. Caltech, 1984-.

Mary B. Kennedy, Ph.D., Associate Professor of Biology
B.S., St. Mary's College, 1969; Ph.D., Johns Hopkins University, 1975. Assistant Professor, Caltech, 1981-84; Associate Professor, 1984-.

Rosemary Gillian Kennett, Ph.D., Visiting Associate in Physics (PT)
B.Sc., University of Nottingham, 1972; M.S., Caltech, 1977; Ph.D., 1980. Assistant Professor, California State University (Northridge), 1981-. Research Fellow, Caltech, 1979-80; Visiting Associate, 1982-.

Stephen Brian Henry Kent, Ph.D., Senior Research Associate in Biology
B.Sc., Victoria University (New Zealand), 1968; M.Sc., Massey University (New Zealand), 1970; Ph.D., University of California, 1975. Caltech, 1983-.

Gregory Ketabgian, M.D., Director of Health Services
B.A., University of California (Los Angeles), 1959; M.D., University of Southern California Medical School, 1963. Caltech, 1973-.

Daniel Jerome Kevles, Ph.D., Professor of History
A.B., Princeton University, 1960; Ph.D., 1964. Assistant Professor, Caltech, 1964-68; Associate Professor, 1968-78; Professor, 1978-; Executive Officer for the Humanities, 1978-81.

Susan Werner Kieffer, Ph.D., Visiting Associate in Geology and Fluid Mechanics (PT)

D. Roderick Kiewiet, Ph.D., Associate Professor of Political Science
B.A., University of Iowa, 1974; Ph.D., Yale University, 1979. Assistant Professor, Caltech, 1979-82; Associate Professor, 1982-.

Kyu Han Kim, D.Sc., Visiting Associate in Geochemistry
B.S., University of Yonsei, 1970; M.Sc., 1974; D.Sc., University of Nagoya, 1981. Assistant Professor, Ewha Womans University, 1982-. Caltech, 1984-85.

Christine Kinnon, Ph.D., Research Fellow in Biology

Werner Matthias Kirsch, Ph.D., Visiting Associate in Mathematics

Joseph Lynn Kirschvink, Ph.D., Assistant Professor of Geobiology
B.S., M.S., Caltech, 1975; M.A., Princeton University, 1978; Ph.D., 1979. Assistant Professor, Caltech, 1981-.

Hitoshi Kitada, Ph.D., Visiting Associate in Mathematics
B.A., University of Tokyo, 1973; M.S., Osaka City University, 1975; Ph.D., University of Tokyo, 1979. Associate Professor of Mathematics, 1982-. Caltech, 1984.

Jon P. Klancher, Ph.D., Mellon Postdoctoral Instructor in Literature

Burton H. Klein, Ph.D., Professor of Economics, Emeritus
A.B., Harvard College, 1940; Ph.D., Harvard University, 1948. Professor, Caltech, 1967-83; Professor Emeritus, 1983-.
Fritz S. Klein, Ph.D., Visiting Associate in Chemistry
M.Sc., Hebrew University, 1942; Ph.D., 1947. Professor, Isotope Department, Weizmann Institute, 1973- Caltech, 1984-.

Vit Klemes, Ph.D., Visiting Associate in Environmental Engineering

Joan L. Klotz, Ph.D., Visiting Associate in Biology
B.A., California State University (Northridge), 1967; M.S., 1970; Ph.D., University of California (Los Angeles), 1973. Associate Research Scientist, Division of Cytogenetics and Cytology, City of Hope, 1976- Caltech, 1983-.

Wolfgang Gustav Knauss, Ph.D., Professor of Aeronautics and Applied Mechanics
B.S., Caltech, 1958; M.S., 1959; Ph.D., 1963. Research Fellow in Aeronautics, 1963-65; Assistant Professor, 1965-69; Associate Professor, 1969-78; Professor, 1978-82; Professor of Aeronautics and Applied Mechanics, 1982-.

Joseph L. Knee, Ph.D., Research Fellow in Chemistry

James Kenyon Knowles, Ph.D., Professor of Applied Mechanics
B.S., Massachusetts Institute of Technology, 1952; Ph.D., 1957. Assistant Professor of Engineering and Applied Science, Caltech, 1958-61; Associate Professor, 1961-65; Professor of Applied Mechanics, 1965-; Academic Officer for Applied Mechanics, 1971-75.

Joan A. Kobori, Ph.D., Research Fellow in Biology
A.B., University of California, 1975; Ph.D., Stanford University, 1981. Caltech, 1982-.

Joseph Blake Koepfli, D.Phil., Senior Research Associate in Chemistry, Emeritus
A.B., Stanford University, 1924; M.A., 1925; D.Phil., University of Oxford, 1928. Research Associate, Caltech, 1932-72; Research Associate Emeritus, 1972-74; Senior Research Associate Emeritus, 1974-.

Robert C. Y. Koh, Ph.D., Senior Research Associate in Environmental Engineering Science
B.S., Caltech, 1960; M.S., 1961; Ph.D., 1964. Research Fellow, 1964-65; Research Associate, 1972-81; Senior Research Associate, 1981-.

Masakazu Konishi, Ph.D., Bing Professor of Behavioral Biology
B.S., Hokkaido University, 1956; M.S., 1958; Ph.D., University of California, 1963. Professor of Biology, Caltech, 1975-80; Bing Professor, 1980-; Executive Officer for Biology, 1977-80.

Manoochehr Mohseni Koochesfahani, Ph.D., Research Fellow in Aeronautics

Steven E. Koonin, Ph.D., Professor of Theoretical Physics
B.S., Caltech, 1972; Ph.D., Massachusetts Institute of Technology, 1975. Assistant Professor of Theoretical Physics, Caltech, 1975-78; Associate Professor of Physics, 1978-81; Professor of Theoretical Physics, 1981-.

J. Morgan Kousser, Ph.D., Professor of History and Social Science
A.B., Princeton University, 1965; M.Phil., Yale University, 1968; Ph.D., 1971. Instructor in History, Caltech, 1969-71; Assistant Professor, 1971-74; Associate Professor, 1974-79; Professor, 1979-80; Professor of History and Social Science, 1980-.

Gerald H. Kramer, Ph.D., Professor of Political Science (LOA)
B.S., Massachusetts Institute of Technology, 1959; Ph.D., 1965. Sherman Fairchild Distinguished Scholar, Caltech, 1980-81; Professor, 1981-.

Keith Krebbiel, Ph.D., Assistant Professor of Political Science

Heinz-Otto Kreiss, Dr.Tech., Docent, Professor of Applied Mathematics

R. V. Krishnamurthy, Ph.D., Research Fellow in Geochemistry

Mitchell Edwin Kronenberg, Ph.D., Research Fellow in Biology

Yigal Kronson, Ph.D., Visiting Associate in Jet Propulsion
Mauri Krouse, Ph.D., Research Fellow in Biology

Toshi Kubota, Ph.D., Professor of Aeronautics
B.E., University of Tokyo, 1947; M.S., Caltech, 1952; Ph.D., 1957. Research Fellow, 1957-59; Associate Professor, 1959-63; Associate Professor, 1963-71; Professor, 1971-.

Arthur Kuflik, Ph.D., Visiting Associate Professor of Philosophy
A.B., Harvard University, 1967; Ph.D., Princeton University, 1973. Assistant Professor, University of Vermont, 1979-. Caltech, 1984-85.

Aron Kuppermann, Ph.D., Professor of Chemical Physics
M.Sc., University of Sao Paulo, 1948; Ph.D., University of Notre Dame, 1956. Caltech, 1963-.

Jenijoy La Belle, Ph.D., Associate Professor of Literature
B.A., University of Washington, 1965; Ph.D., University of California (San Diego), 1969. Assistant Professor of English, Caltech, 1969-76; Associate Professor, 1977-80; Associate Professor of Literature, 1980-.

Pramod M. Lad, Ph.D., Visiting Associate in Chemistry (PT)

Paco Axel Lagerstrom, Ph.D., Professor of Applied Mathematics, Emeritus
Fil.kand., University of Stockholm, 1935; Fil.lic., 1939; Ph.D., Princeton University, 1942. Research Associate in Aeronautics, Caltech, 1946-47; Assistant Professor, 1947-49; Associate Professor, 1949-52; Professor, 1952-66; Professor of Applied Mathematics, 1967-81; Professor Emeritus, 1981-.

Ting-Fong Lai, Ph.D., Visiting Associate in Chemistry

Karlheinz Langanke, Dr.rer.nat., Visiting Associate in Physics
Dipl., University of Munster, 1974; Dr.rer.nat., 1980. Assistant Professor, 1980-. Caltech, 1984-85.

Robert Vose Langmuir, Ph.D., Professor of Electrical Engineering, Emeritus
A.B., Harvard College, 1935; Ph.D., Caltech, 1943. Senior Research Fellow, 1948-50; Assistant Professor, 1950-52; Associate Professor, 1952-57; Professor, 1957-80; Professor Emeritus, 1980-.

Kam-Yin Lau, Ph.D., Visiting Associate in Applied Physics (PT)

Silvanus S. Lau, Ph.D., Visiting Associate in Applied Physics (PT)
B.S., University of California, 1964; M.S., 1966; Ph.D., 1969. Professor, University of California (San Diego), 1980-84. Bechtel Instructor in Materials Science, Caltech, 1972-74; Senior Research Fellow in Applied Physics and Lecturer (PT) in Materials Science, 1974-80; Visiting Associate in Applied Physics, 1980-.

Detlef Laugwitz, Dr.rer.nat., Visiting Professor of Mathematics

Scott Laurence, M.A., Coach

Charles Lawrence, Ph.D., Research Fellow in Radio Astronomy

Elias Lazarides, Ph.D., Associate Professor of Biology
B.A., Wesleyan University, 1971; Ph.D., Harvard University, 1975. Assistant Professor, Caltech, 1977-81; Associate Professor, 1981-.

Leslie Gary Leal, Ph.D., Professor of Chemical Engineering
B.S., University of Washington, 1965; Ph.D., Stanford University, 1969. Assistant Professor, Caltech, 1970-75; Associate Professor, 1975-78; Professor, 1978-.

Nanette Le Coat, Ph.D., Instructor in French

John Ledyard, Ph.D., Visiting Professor of Economics
A.B., Wabash College, 1963; M.S., Purdue University, 1965; Ph.D., 1967. Professor, Northwestern University, 1975-. Sherman Fairchild Distinguished Scholar, Caltech, 1977-78; Visiting Professor, 1983-84.
James Z. Lee, M.A., Assistant Professor of History
B.A., Yale University, 1974; M.A., University of Chicago, 1975. Instructor, Caltech, 1981-83; Assistant Professor, 1983-.
Ouk S. Lee, Ph.D., Research Fellow in Aeronautics
Paul L. Lee, Ph.D., Visiting Associate in Physics
Seong Hee Lee, Ph.D., Visiting Associate in Chemical Engineering (PT)
B.S., Seoul National University, 1970; M.S., 1972; Ph.D., Caltech, 1980. Research Engineer, Chevron Oil Field Research Company, 1980-. Research Fellow, Caltech, 1980; Visiting Associate, 1982-.
Lester Lees, M.S., Professor of Environmental Engineering and Aeronautics
S.B., Massachusetts Institute of Technology, 1940; M.S., 1941. Associate Professor of Aeronautics, Caltech, 1953-55; Professor, 1955-70; Professor of Environmental Engineering and Aeronautics, 1970-; Director, Environmental Quality Laboratory, 1971-74.
Robert Benjamin Leighton, Ph.D., William L. Valentine Professor of Physics
B.S., Caltech, 1941; M.S., 1944; Ph.D., 1947. Research Fellow, 1947-49; Assistant Professor, 1949-53; Associate Professor, 1953-59; Professor, 1959-84; William L. Valentine Professor, 1984--; Chairman, Division of Physics, Mathematics and Astronomy, 1970-75; Staff Member, Owens Valley Radio Observatory, 1976-.
James Allen Leo, Ph.D., Research Fellow in Planetary Science
Anthony Leonard, Ph.D., Visiting Professor of Aeronautics
Henry Allen Lester, Ph.D., Professor of Biology
A.B., Harvard College, 1966; Ph.D., Rockefeller University, 1971. Assistant Professor, Caltech, 1973-76; Associate Professor, 1976-83; Professor, 1983-.
Leslie Sise Leutwiler, Ph.D., Visiting Associate in Biology
B.A., University of Colorado, 1975; Ph.D., University of California (Los Angeles), 1978. Research Fellow, University of California (Los Angeles), 1983-. Research Fellow, Caltech, 1978-83; Visiting Associate, 1983-.
Edward B. Lewis, Ph.D., Thomas Hunt Morgan Professor of Biology
B.A., University of Minnesota, 1939; Ph.D., Caltech, 1942. Instructor, 1946-48; Assistant Professor, 1948-49; Associate Professor, 1949-56; Professor, 1956-66; Morgan Professor, 1966-.
Honghua Li, Visiting Associate in Biology
Lode Li, Ph.D., Research Fellow in Economics
Kenneth George Libbrecht, Ph.D., Assistant Professor of Astrophysics
B.S., Caltech, 1980; Ph.D., Princeton University, 1984. Visiting Associate, Caltech, 1984; Assistant Professor, 1984-.
Hans Wolfgang Liepmann, Ph.D., Theodore von Kármán Professor of Aeronautics; Director of the Graduate Aeronautical Laboratories; Executive Officer for Aeronautics
Ph.D., University of Zurich, 1938. Assistant Professor of Aeronautics, Caltech, 1939-46; Associate Professor, 1946-49; Professor, 1949-74; Professor of Aeronautics and Applied Physics, 1974-76; Charles Lee Powell Professor of Fluid Mechanics and Thermodynamics, 1976-83; von Kármán Professor of Aeronautics, 1984--; Director, 1972--; Executive Officer, 1976-.
Paulett C. Liewer, Ph.D., Senior Research Associate in Applied Physics
B.A., Cornell University, 1967; Ph.D., University of Maryland, 1972. Research Associate, Caltech, 1980-81, Senior Research Associate, 1981-.
Ren-Jang Lin, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, 1978; Ph.D., Pennsylvania State University, 1983. Caltech, 1983-.
Michael Gerard Linden-Martin, B.A., Lecturer in English as a Second Language (PT)
Valentina A. Lindholm, M.A., Lecturer in Russian
M.A., Moscow State University, 1971. Caltech, 1974-.
Frederick Charles Lindval, Ph.D., D.Sc., D.Eng., Professor of Engineering, Emeritus
B.S., University of Illinois, 1924; Ph.D., Caltech, 1928. Instructor in Electrical Engineering, 1930-31; Assistant Professor, 1931-37; Associate Professor of Electrical and Mechanical Engineering, 1937-41; Professor, 1942-70; Professor Emeritus, 1970--; Chairman, Division of Engineering and Applied Science, 1945-69.

Ericson John List, Ph.D., Professor of Environmental Engineering Science; Executive Officer for Environmental Engineering Science
B.E., University of Auckland, 1961; M.E., 1962; Ph.D., Caltech, 1965. Research Fellow, 1965-66; Assistant Professor, 1969-72; Associate Professor, 1972-78; Professor, 1978--; Executive Officer, 1980-.

Robert Little, Ph.D., Research Fellow in Chemistry

Hsue-Yang Liu, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1977; Ph.D., Michigan State University, 1982. Caltech, 1982-.

Hsui-Lin Liu, Ph.D., Research Fellow in Computer Science
B.S., National Central University (Taiwan), 1973; M.S., 1975; Ph.D., Caltech, 1983. Research Fellow, 1983-.

Rogerio P. Livi, Ph.D., Visiting Associate in Physics

Kwok-Yung Lo, Ph.D., Assistant Professor of Radio Astronomy
S.B., Massachusetts Institute of Technology, 1969; Ph.D., 1974. Senior Research Fellow, Caltech, 1978-80; Assistant Professor, 1980-.

Gary A. Lorden, Ph.D., Professor of Mathematics
B.S., Caltech, 1962; Ph.D., Cornell University, 1966. Assistant Professor, Caltech, 1968-71; Associate Professor, 1971-77; Professor, 1977-.

Jens Lorenz, Dr.reer.nat., Habil., von Kármán Instructor in Applied Mathematics
Dipl., University of Munster, 1973; Dr.reer.nat., 1975; Habil., University of Konstanz, 1980. Caltech, 1983-.

John M. LoSecco, Ph.D., Assistant Professor of Physics

Heinz Adolph Lowenstein, Ph.D., Professor of Paleocology, Emeritus
Ph.D., University of Chicago, 1939. Professor, Caltech, 1952-83; Professor Emeritus, 1983-.

Hermann Lubbert, Ph.D., Research Fellow in Chemistry

James P. Lugo, Ph.D., Research Fellow in Biology
B.S., Brooklyn College, 1976; Ph.D., Massachusetts Institute of Technology, 1982. Caltech, 1982-.

Wilhelmus A. J. Luxemburg, Ph.D., Professor of Mathematics; Executive Officer for Mathematics
B.A., University of Leiden, 1950; M.A., 1953; Ph.D., Delft Institute of Technology, 1955. Assistant Professor, Caltech, 1958-60; Associate Professor, 1960-62; Professor, 1962--; Executive Officer, 1970-.

Richard F. Lyon, M.S.E.E., Visiting Associate in Computer Science (PT)

Xiao-Liang Ma, Visiting Associate in Electrical Engineering
Engineer, Tianjin Electro-Drive Research Institute, 1978-. Caltech, 1983-84.

Sven Bastrup Maaloe, D.Sc., Visiting Associate in Experimental Petrology

George Eber MacGinitie, M.A., Professor of Biology, Emeritus
A.B., Fresno State College, 1925; M.A., Stanford University, 1928. Professor, Caltech, 1932-57; Professor Emeritus, 1957-.

Luiz Eugenio Machado, Ph.D., Visiting Associate in Chemistry
B.Sc., Federal University of Goias (Brazil), 1969; M.S., University of Brasilia, 1971; Ph.D., University of Sao Paulo, 1981. Associate Professor, 1977-. Caltech, 1982-.

Peter B. MacKenzie, Ph.D., Research Fellow in Chemistry
B.Sc., McGill University, 1977; Ph.D., University of Toronto, 1983. Caltech, 1983-.

Barry F. Madore, Ph.D., Visiting Associate in Physics
Lucio Maestrello, Ph.D., Visiting Associate in Aeronautics

Moredeckai Margaritz, Ph.D., Visiting Associate in Geochemistry

Peter Maienfisch, Ph.D., Research Fellow in Chemistry

Christian Mailhoit, Ph.D., Research Fellow in Applied Physics

David E. Malerba, Ph.D., Research Fellow in Chemistry

Matthew Arnold Malkan, Ph.D., Research Fellow in Astronomy

Oscar Mandel, Ph.D., Professor of Literature
B.A., New York University, 1947; M.A., Columbia University, 1948; Ph.D., Ohio State University, 1951. Visiting Associate Professor of English, Caltech, 1961-62; Associate Professor, 1962-68; Professor, 1968-80; Professor of Literature, 1980-81.

Steven Leonard Manley, Ph.D., Senior Research Fellow in Environmental Engineering Science

Paul Mann, Ph.D., Mellon Postdoctoral Instructor in Literature

Frank Earl Marble, Ph.D., Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion
B.S., Case Institute of Technology, 1940; M.S., 1942; Ph.D., Caltech, 1947. Instructor in Aeronautics, 1948-49; Assistant Professor of Jet Propulsion and Mechanical Engineering, 1949-53; Associate Professor, 1953-57; Professor, 1957-80; Hayman Professor of Mechanical Engineering and Professor of Jet Propulsion, 1980-1985.

Neil Marcus, Ph.D., Research Fellow in Theoretical Physics

Rudolph A. Marcus, Ph.D., Arthur Amos Noyes Professor of Chemistry

Ruth Margalit, Ph.D., Research Fellow in Chemistry

Shlomo Margalit, D.Sc., Senior Research Associate in Applied Physics

Daniel Margoliash, Ph.D., Del E. Webb Research Fellow in Biology

Paulo Mariottini, Ph.D., Research Fellow in Biology

Richard Edward Marsh, Ph.D., Senior Research Associate in Chemistry

Hardy Cross Martel, Ph.D., Professor of Electrical Engineering; Executive Officer for Electrical Engineering
B.S., Caltech, 1949; M.S., Massachusetts Institute of Technology, 1950; Ph.D., Caltech, 1956. Instructor, 1953-55; Assistant Professor, 1955-58; Associate Professor, 1958-82; Professor, 1982-1984; Executive Assistant to the President, 1969-83; Secretary of the Board of Trustees, 1973-83; Executive Officer, 1981-.
Alain Jean Martin, Ing., Associate Professor of Computer Science
B.S., University of Marseille, 1965; Ing., Polytechnic Institute (Grenoble), 1969. Visiting Assistant Professor, Caltech, 1981-83; Visiting Associate Professor, 1983; Associate Professor, 1983-.

Olivier C. Martin, Ph.D., Research Fellow in Physics

Brian Mason, Ph.D., Visiting Associate in Geochemistry
M.Sc., University of New Zealand, 1938; Ph.D., University of Stockholm, 1943. Curator, Department of Mineral Sciences, Smithsonian Institution, 1965-; Caltech, 1984-85.

Colin Robert Masson, Ph.D., Senior Research Fellow in Radio Astronomy

George P. Mayhew, Ph.D., Professor of English (LOA)
A.B., Harvard College, 1941; M.A., Harvard University, 1947; Ph.D., 1953. Assistant Professor, Caltech, 1954-60; Associate Professor, 1960-68; Professor, 1968-.

James Oeland McCaldin, Ph.D., Professor of Applied Physics and Electrical Engineering, Emeritus
B.A., University of Texas, 1944; Ph.D., Caltech, 1954. Associate Professor of Applied Science, 1968-73; Professor of Applied Science and Electrical Engineering, 1973-76; Professor of Applied Physics and Electrical Engineering, 1976-83; Professor Emeritus, 1983-.

Gilbert Donald McCann, Ph.D., Professor of Applied Science, Emeritus

Thomas Redmond McDonough, Ph.D., Lecturer in Engineering (PT)

Robert J. McEliece, Ph.D., Professor of Electrical Engineering
B.S., Caltech, 1964; Ph.D., 1967. Professor, 1982-.

Jerome John McGann, Ph.D., Doris and Henry Dreyfuss Professor of the Humanities
M.A., Syracuse University, 1962; Ph.D., Yale University, 1966. Caltech, 1981-.

Thomas C. McGill, Ph.D., Professor of Applied Physics
B.S., Lamar State College of Technology, 1964; M.S., Caltech, 1965; Ph.D., 1969. Assistant Professor, 1971-74; Associate Professor, 1974-77; Professor, 1977-.

Evelyn McGuinness, Ph.D., Research Fellow in Biology (PT)
A.B., Shimer University, 1968; M.S., Rutgers University, 1974; Ph.D., Vanderbilt University, 1979. Visiting Associate, Caltech, 1979-81; Research Fellow, 1981; Research Fellow (PT), 1981-.

Ronnie Charles McHatton, Ph.D., Research Fellow in Chemistry
B.S., Humboldt State University, 1978; Ph.D., Iowa State University, 1982. Caltech, 1982-.

Richard D. McKelvey, Ph.D., Professor of Political Science

Robert Daniel McKeeon, Ph.D., Assistant Professor of Physics
B.S., State University of New York (Stony Brook), 1974; Ph.D., Princeton University, 1979. Caltech, 1980-.

Basil Vincent McKoy, Ph.D., Professor of Theoretical Chemistry
B.S., Nova Scotia Technical College, 1960; Ph.D., Yale University, 1964. Noyes Research Instructor in Chemistry, Caltech, 1964-66; Assistant Professor of Theoretical Chemistry, 1967-69; Associate Professor, 1969-75; Professor, 1975-.

Minnie McMillan, Ph.D., Visiting Associate in Biology
B.A., Somerville College, University of Oxford, 1964; B.Sc., 1965; Ph.D., 1967. Assistant Professor, USC Medical Center, 1982-. Research Fellow in Chemistry, Caltech, 1969-73; Senior Research Fellow in Biology, 1975-81; Visiting Associate, 1982-.

Carver Andress Mead, Ph.D., Gordon and Betty Moore Professor of Computer Science
B.S., Caltech, 1956; M.S., 1957; Ph.D., 1960. Instructor in Electrical Engineering, 1958-59; Assistant Professor, 1959-62; Associate Professor, 1962-67; Professor, 1967-77; Professor of Computer Science and Electrical Engineering, 1977-80; Moore Professor of Computer Science, 1980-.

Daniel Israel Meiron, Ph.D., Visiting Associate in Applied Mathematics
Marcus Holden Mendenhall, Ph.D., Research Fellow in Physics

James Edgar Mercereau, Ph.D., D.Sc., Professor of Physics and Applied Physics
B.A., Pomona College, 1953; M.S., University of Illinois, 1954; Ph.D., Caltech, 1959. Assistant Professor of Physics, 1959-62; Visiting Associate, 1964-65; Research Associate, 1965-69; Professor, 1969-74; Professor of Physics and Applied Physics, 1974-.

Joseph S. Merola, Ph.D., Visiting Associate in Chemistry

Richard Alvin Mewaldt, Ph.D., Senior Research Associate in Physics
B.A., Lawrence University, 1965; M.A., Washington University, 1967; Ph.D., 1971. Research Fellow, Caltech, 1971-75; Senior Research Fellow, 1975-81; Senior Research Associate, 1981-.

Elliott M. Meyerowitz, Ph.D., Assistant Professor of Biology
A.B., Columbia University, 1973; M.Phil., Yale University, 1975; Ph.D., 1977. Caltech, 1979-.

Richard Charles Mika-Lye, Ph.D., Research Fellow in Aeronautics

Robert David Middlebrook, Ph.D., Professor of Electrical Engineering
B.A., University of Cambridge, 1952; M.S., Stanford University, 1953; Ph.D., 1955. Assistant Professor, Caltech, 1955-58; Associate Professor, 1958-65; Professor, 1965-.

Julius Miklowitz, Ph.D., Professor of Applied Mechanics
B.S., University of Michigan, 1943; Ph.D., 1949. Associate Professor, Caltech, 1956-62; Professor, 1962-.

Carol Ann Miller, M.D., Visiting Associate in Biology
A.B., Mount Holyoke College, 1961; M.D., Jefferson Medical College, 1965. Associate Professor of Pathology, University of Southern California School of Medicine, 1977-; Chief, Cajal Laboratory of Neuropathology, University of Southern California Medical Center, 1982-. Caltech, 1982-83.

Graeme Walter Milton, Ph.D., Weingart Research Fellow in Theoretical Physics

Herschel Kenworthy Mitchell, Ph.D., Professor of Biology, Emeritus
B.S., Pomona College, 1936; M.S., Oregon State College, 1938; Ph.D., University of Texas, 1941. Senior Research Fellow, Caltech, 1946-49; Associate Professor, 1949-53; Professor, 1953-84; Professor Emeritus, 1984-.

Leon W. Mitchell, Ph.D., Research Fellow in Physics

Alan Theodore Moffet, Ph.D., Professor of Radio Astronomy
B.A., Wesleyan University, 1957; Ph.D., Caltech, 1961. Research Fellow, 1962-66; Assistant Professor, 1966-68; Associate Professor, 1968-71; Professor, 1971-; Staff Member, Owens Valley Radio Observatory, 1965-; Director, 1975-80.

Peter Molnar, Ph.D., Sherman Fairchild Distinguished Scholar

Randall Todd Moon, Ph.D., Research Fellow in Biology
B.A., New College (Florida), 1977; Ph.D., University of Washington, 1982. Caltech, 1982-.

Richard Lee Moore, Ph.D., Visiting Associate in Astronomy
B.S., University of Michigan, 1975; Ph.D., University of Arizona, 1981. Research Fellow in Radio Astronomy, Caltech, 1981-83; Visiting Associate in Astronomy, 1983-.

Manfred Morari, Ph.D., Professor of Chemical Engineering
Dipl., Swiss Federal Institute of Technology, 1974; Ph.D., University of Minnesota, 1977. Caltech, 1983-.

Benoit F. Morel, Ph.D., Research Fellow in Theoretical Physics

James John Morgan, Ph.D., Professor of Environmental Engineering Science; Vice President for Student Affairs; Acting Dean of Graduate Studies
B.C.E., Manhattan College, 1954; M.S.E., University of Michigan, 1956; M.A., Harvard University, 1962; Ph.D., 1964. Associate Professor, Caltech, 1965-69; Professor, 1969-; Academic Officer for Environmental Engineering Science, 1971-72; Dean of Students, 1972-75; Executive Officer for Environmental Engineering Science, 1974-80; Vice President, 1980-; Acting Dean, 1981-.
David W. Morrisroe, M.B.A., Lecturer in Business Economics (PT); Vice President for Business and Finance and Treasurer
B.A., Manhattan College, 1954; M.A., Columbia University, 1956; M.B.A., Harvard School of Business Administration, 1964. Lecturer, Caltech, 1971; Director of Financial Services, 1969-74; Vice President for Financial Affairs and Treasurer, 1974-78; Vice President for Business and Finance and Treasurer, 1978-.

Jeremy Richard Mould, Ph.D., Associate Professor of Astronomy
B.Sc., University of Melbourne, 1972; Ph.D., Australian National University, 1975. Research Fellow, Caltech, 1978-79; Associate Professor, 1982-.

Richard P. Mount, Ph.D., Senior Research Fellow in Physics

Eric J. M. Mourre, Ph.D., Visiting Associate in Mathematics

Duane Owen Muhleman, Ph.D., Professor of Planetary Science
B.S., University of Toledo, 1953; Ph.D., Harvard University, 1963. Associate Professor, Caltech, 1967-71; Professor, 1971-; Staff Member, Owens Valley Radio Observatory, 1967-.

Frank Joseph Mullin, Ph.D., Lecturer in Electrical Engineering (PT)
B.E.E., Villanova University, 1953; S.M.E.E., Massachusetts Institute of Technology, 1955; Ph.D., University of California, 1958. Assistant Professor, Caltech, 1958-62; Lecturer, 1980-81; 1981-82; 1982-83; 1983-.

Lee J. Mundy, Ph.D., Research Fellow in Astronomy

Edwin Stanton Munger, Ph.D., Professor of Geography
M.S., University of Chicago, 1948; Ph.D., 1951. Visiting Lecturer, American Universities Field Staff, Caltech, 1954; 1957; 1960; Professor, 1961-.

Andrew James Munley, Ph.D., Visiting Associate in Physics

Lianna Mame Munson, Ph.D., Research Fellow in Chemistry

Bruce Churchill Murray, Ph.D., Professor of Planetary Science

Norihiro Muto, Ph.D., Research Fellow in Biology
B.Sc., Kyoto University, 1975; Ph.D., Nagoya University, 1980. Caltech, 1982-.

Minoru Nagai, D.Eng., Visiting Associate in Mechanical Engineering

Shoji Nagata, Ph.D., Visiting Associate in Chemistry
M.D., School of Medicine, Kyushu University, 1970; Ph.D., 1979. Assistant Professor, 1976-; Caltech, 1984.

Ramesh Narayan, Ph.D., Research Fellow in Theoretical Astrophysics

Edwin Leroy Neal, M.A., Coach

Henry Victor Neher, Ph.D., Sc.D., Professor of Physics, Emeritus
A.B., Pomona College, 1926; Ph.D., Caltech, 1931. Research Fellow, 1931-33; Instructor, 1933-37; Assistant Professor, 1937-40; Associate Professor, 1940-44; Professor, 1944-70; Professor Emeritus, 1970-.

Mark Everett Nelson, Ph.D., Research Fellow in Experimental High Energy Physics
B.S., Wichita State University, 1976; Ph.D., University of California, 1983. Caltech, 1983-84.

William James Nelson, Ph.D., Senior Research Fellow in Biology
B.Sc., University of Manchester, 1975; Ph.D., Institute of Cancer Research, Royal Cancer Hospital (England), 1978. Research Fellow, Caltech, 1982; Senior Research Fellow, 1982-.

James M. Nemec, Ph.D., Research Fellow in Astronomy
Jeanne Marie Nerbonne, Ph.D., Senior Research Fellow in Biology
B.S., Framingham State College, 1974; Ph.D., Georgetown University, 1978. Research Fellow, Caltech, 1978-82; Senior Research Fellow, 1982-

Gerry Neugebauer, Ph.D., Professor of Physics; Director of Palomar Observatory (LOA)
A.B., Cornell University, 1954; Ph.D., Caltech, 1960. Assistant Professor, 1962-65; Associate Professor, 1965-70; Professor, 1970-; Acting Director, Palomar Observatory, 1980-81; Director, 1981-

Andrew James Newman, Ph.D., Senior Research Fellow in Biology

Harvey B. Newman, Sc.D., Associate Professor of Physics
B.S., Massachusetts Institute of Technology, 1968; Sc.D., 1973. Caltech, 1982-

Sally Newman, Ph.D., Research Fellow in Geochemistry

Charles Newton, Ph.B., Lecturer in English, Emeritus
Ph.B., University of Chicago, 1933. Assistant to the President, Caltech, 1948-66; Director of Development, 1961-66; Lecturer, 1955; 1960-62; 1966-75; Lecturer Emeritus, 1975-

Bruce John Nicholson, Ph.D., Senior Research Fellow in Chemistry

Marc-Aurele Nicolet, Ph.D., Professor of Electrical Engineering
Ph.D., University of Basel, 1958. Assistant Professor, Caltech, 1959-65; Associate Professor, 1965-73; Professor, 1973-

Franz Rudolf Niederer, Ph.D., Visiting Associate in Geochemistry

Alan V. Noell, Ph.D., Bateman Research Instructor in Mathematics
B.A., Texas A & M University, 1979; M.A., Princeton University, 1981; Ph.D., 1983. Caltech, 1983-

Susumu Nohda, Ph.D., Visiting Associate in Geochemistry

Roger Gordon Noll, Ph.D., Institute Professor of Social Sciences
B.S., Caltech, 1962; A.M., Harvard University, 1965; Ph.D., 1967. Instructor in Economics, Caltech, 1965-67; Assistant Professor, 1967-69; Associate Professor, 1969-71; Professor, 1973-82; Institute Professor of Social Sciences, 1982-; Chairman, Division of the Humanities and Social Sciences, 1978-82.

Wheeler James North, Ph.D., Professor of Environmental Science
B.S., Caltech, 1944; M.S., 1950; Ph.D., University of California, 1953. Visiting Assistant Professor of Biology, Caltech, 1962; Associate Professor of Environmental Health Engineering, 1963-68; Professor of Environmental Science, 1968-

Vance J. Novak, Ph.D., Research Fellow in Chemistry

Daniel Obrecht, Ph.D., Research Fellow in Chemistry

Richard John O’Connell, Ph.D., Visiting Associate in Geophysics

Michael J. O’Hara, Ph.D., Sherman Fairchild Distinguished Scholar
Ph.D., University of Cambridge, 1960. Professor and Chairman, Department of Geology, University College of Wales, 1977-. Caltech, 1984-85.

John Beverley Oke, Ph.D., Professor of Astronomy
B.A., University of Toronto, 1949; M.A., 1950; Ph.D., Princeton University, 1953. Assistant Professor, Caltech, 1958-61; Associate Professor, 1961-64; Professor, 1964-

John D. O’Keefe, Ph.D., Visiting Associate in Planetary Science (PT)
B.S., California State University (Long Beach), 1962; M.S., University of Southern California, 1965; M.S., University of California (Los Angeles), 1971; Ph.D., 1977. Senior Scientist, Optical Sciences Department, TRW Systems Group, 1976-. Caltech, 1977-.
Bernt Øksendal, Ph.D., Visiting Associate Professor of Mathematics
B.S., University of Oslo, 1970; Ph.D., University of California (Los Angeles), 1971. Associate Professor, University of Oslo, 1983-. Caltech, 1984.

Marianne E. Olds, Ph.D., Senior Research Associate in Biology
B.A., Smith College, 1947; M.A., Radcliffe College, 1950; Ph.D., 1951. Senior Research Fellow, Caltech, 1969-72; Research Associate, 1972-81; Senior Research Associate, 1981-.

Richard Peter Olenick, Ph.D., Visiting Associate in Physics
B.S., Illinois Institute of Technology, 1973; M.S., Purdue University, 1975; Ph.D., 1979. Assistant Professor, University of Dallas (Irving), 1979-. Caltech, 1982-.

Robert Warner Oliver, Ph.D., Professor of Economics
A.B., University of Southern California, 1943; A.M., Princeton University, 1950; Ph.D., 1957. Assistant Professor, Caltech, 1959-61; Associate Professor, 1961-74; Professor, 1974-.

Kenji Osawa, D.Sc., Research Fellow in Biology

Steve W. Otto, Ph.D., Research Fellow in Theoretical Physics
B.S., University of California, 1978; Ph.D., Caltech, 1983. Research Fellow, 1983-.

Ray David Owen, Ph.D., Sc.D., Professor of Biology, Emeritus
B.S., Carroll College, 1937; Ph.M., University of Wisconsin, 1938; Ph.D., 1941. Gosney Fellow, Caltech, 1946-47; Associate Professor, 1947-53; Professor, 1953-83; Professor Emeritus, 1983-; Chairman, Division of Biology, 1961-68; Vice President for Student Affairs and Dean of Students, 1975-80.

Eung Gi Paek, Ph.D., Research Fellow in Electrical Engineering
B.S., Seoul National University, 1972; M.S., Korea Advanced Institute of Science, 1976; Ph.D., 1979. Caltech, 1982-.

Richmond Talbot Page, Ph.D., Senior Research Associate in Economics
A.B., Harvard College, 1962; Ph.D., Cornell University, 1972. Visiting Associate, Caltech, 1977-78; Research Associate, 1979-81; Senior Research Associate, 1981-.

Bruce M. Paine, Ph.D., Senior Research Fellow in Applied Physics
B.Sc., University of Melbourne, 1975; Ph.D., 1979. Research Fellow, Caltech, 1979-83; Senior Research Fellow, 1983-.

Trivan Pal, Ph.D., Research Fellow in Physics

Bernhard Paissou, Ph.D., Research Fellow in Chemical Engineering

Dimitri A. Papanastassiou, Ph.D., Senior Research Associate in Geochemistry
B.S., Caltech, 1965; Ph.D., 1970. Research Fellow in Physics, 1970-72; Senior Research Fellow in Planetary Science, 1972-76; Research Associate in Geochemistry, 1976-81; Senior Research Associate, 1981-.

Charles Herach Papas, Ph.D., Professor of Electrical Engineering
B.S., Massachusetts Institute of Technology, 1941; M.S., Harvard University, 1946; Ph.D., 1948. Lecturer, Caltech, 1952-54; Associate Professor, 1954-59; Professor, 1959-.

Boyd C. L. Parker III, M.A., Coach
B.S., California State University (Northridge), 1966; M.A., Azusa Pacific College, 1972. Caltech, 1980-.

Carl Stevens Parker, Ph.D., Assistant Professor of Chemical Biology

Howard Clinton Passmore, Ph.D., Visiting Associate in Biology

Edward Franklin Pace, Ph.D., Visiting Associate in Biology

Clair Cameron Patterson, Ph.D., Senior Research Associate in Geochemistry
A.B., Grinnell College, 1943; M.S., University of Iowa, 1944; Ph.D., University of Chicago, 1951. Research Fellow, Caltech, 1952-53; Senior Research Fellow, 1953-71; Research Associate, 1971-73; Senior Research Associate, 1973-.

Paul H. Patterson, Ph.D., Professor of Biology
Rodman Wilson Paul, Ph.D., Edward S. Harkness Professor of History, Emeritus

B.S., Oregon State College, 1922; Ph.D., Caltech, 1925. Research Associate, 1926-27; Assistant Professor, 1927-29; Associate Professor, 1929-31; Professor, 1931-64; Research Associate, 1964-71; Professor Emeritus, 1971-; Chairman of the Division of Chemistry and Chemical Engineering, 1936-58.

Irene Pech, Ph.D., Research Fellow in Biology

Charles William Peck, Ph.D., Professor of Physics; Executive Officer for Physics
B.S., New Mexico College of Agricultural and Mechanical Arts, 1956; Ph.D., Caltech, 1964. Research Fellow, 1964-65; Assistant Professor, 1965-69; Associate Professor, 1969-77; Professor, 1977-; Executive Officer, 1983-.

Dingyi Pei, Ph.D., Visiting Associate in Mathematics
Ph.D., The Graduate College of the Chinese Academy, 1968. Assistant Professor, Institute of Applied Mathematics, Academia Sinica (Beijing), 1972-. Caltech 1983-84.

Peter Anton Perry, Ph.D., Lecturer (PT) and Bantrell Research Fellow in Mathematical Physics

Thomas G. Phillips, D. Phil., Professor of Physics; Associate Director of Owens Valley Radio Observatory
B.A., University of Oxford, 1961; M.A., 1964; D.Phil., 1964. Visiting Associate in Radio Astronomy, Caltech, 1978-79; Professor of Physics, 1979-; Staff Member, Owens Valley Radio Observatory, 1978-; Associate Director, 1981-

E. Sterl Phinney, Ph.D., Assistant Professor of Theoretical Astrophysics
B.S., Caltech, 1980; Ph.D., University of Cambridge, 1983. Assistant Professor, Caltech, 1985-

Eric M. Phizicky, Ph.D., Research Fellow in Biology
B.S., McGill University, 1976; Ph.D., Cornell University, 1982. Caltech, 1983-.

William Hayward Pickering, Ph.D., D.Sc., D.Eng., Professor of Electrical Engineering, Emeritus
B.S., Caltech, 1932; M.S., 1933; Ph.D., 1936. Instructor, 1936-40; Assistant Professor, 1940-45; Associate Professor, 1945-47; Professor, 1947-79; Professor Emeritus, 1979-; Director, Jet Propulsion Laboratory, 1954-76.

John Robinson Pierce, Ph.D., D.Sc., D.Eng., E.D., LL.D., Professor of Engineering, Emeritus
B.S., Caltech, 1933; M.S., 1934; Ph.D., 1936. Professor, 1971-80; Professor Emeritus, 1980-; Executive Officer for Electrical Engineering, 1975-77; Chief Technologist, Jet Propulsion Laboratory (PT), 1977-.

George Wood Pigman III, Ph.D., Associate Professor of Literature
A.B., Harvard College, 1973; M.Phil., Yale University, 1975; Ph.D., 1977. Assistant Professor of English, Caltech, 1977-80; Associate Professor of Literature, 1980-83; Associate Professor, 1983-.

Lajos Piko, D.V.M., Visiting Associate in Biology
Dipl., University of Agricultural Science, Budapest-Godollo, 1956; D.V.M., Veterinary School of Alfort (France), 1957. Chief, Developmental Biology Laboratory, Veterans Administration Hospital (Los Angeles), 1966-; Research Fellow, Caltech, 1959-65; Senior Research Fellow, 1965-77; Visiting Associate, 1977-

Jerome Pinc, Ph.D., Professor of Physics
A.B., Princeton University, 1949; M.S., Cornell University, 1952; Ph.D., 1959. Associate Professor, Caltech, 1963-67; Professor, 1967-.

Randall Neal Pittman, Ph.D., Research Fellow in Biology
B.S., University of North Carolina (Chapel Hill), 1972; Ph.D., University of Colorado (Boulder), 1981. Caltech, 1983-

Milton S. Plesset, Ph.D., Professor of Engineering Science, Emeritus
B.S., University of Pittsburgh, 1929; Ph.D., Yale University, 1932. Associate Professor of Applied Mechanics, Caltech, 1948-51; Professor, 1951-63; Professor of Engineering Science, 1963-78; Professor Emeritus, 1978-.

Charles Raymond Plott, Ph.D., Professor of Economics
B.S., Oklahoma State University, 1961; M.S., 1964; Ph.D., University of Virginia, 1965. Caltech, 1971-

Hugh David Politzer, Ph.D., Professor of Theoretical Physics
B.S., University of Michigan, 1969; Ph.D., Harvard University, 1974. Visiting Associate, Caltech, 1975-76; Associate Professor, 1976-79; Professor, 1979-.
Carolyln C. Porco, Ph.D., Research Fellow in Planetary Science
B.S., State University of New York (Stony Brook), 1974; M.S., Caltech, 1979; Ph.D., 1983. Research Fellow, 1983.

Frank Clifford Porter, Ph.D., Assistant Professor of Physics
B.S., Caltech, 1972; Ph.D., University of California, 1977. Research Fellow, Caltech, 1977-78; Weizmann Research Fellow, 1978-80; Senior Research Fellow, 1980-82; Assistant Professor, 1982-.

Ned Allen Porter, Ph.D., Visiting Professor of Chemistry

Edward C. Posner, Ph.D., Visiting Professor of Electrical Engineering (PT)
B.A., University of Chicago, 1952; M.S., 1953; Ph.D., 1957. Manager, Advanced Projects, Jet Propulsion Laboratory, 1973-. Lecturer, Caltech, 1970; 1973-74; Visiting Associate Professor, 1977-79; Visiting Professor, 1979-82; Visiting Professor (PT), 1982-.

Charles Dwight Prater, Ph.D., Visiting Associate in Chemical Engineering
B.S., Auburn University, 1940; Ph.D., University of Pennsylvania, 1951. Consultant, Mobil Research and Development Corporation, 1982-. Caltech 1982-.

John Preskill, Ph.D., Associate Professor of Theoretical Physics

Mary Elizabeth Price, Ph.D., Research Fellow in Chemistry
B.S., San Diego State University, 1977; Ph.D., University of California (Davis), 1983. Caltech, 1983-84.

Thomas A. Prince, Ph.D., Assistant Professor of Physics
B.S., Villanova University, 1970; M.S., University of Chicago, 1972; Ph.D., 1978. Research Fellow, Caltech, 1979-80; Robert A. Millikan Fellow, 1980-82; Senior Research Fellow, 1982-83; Assistant Professor, 1983-.

Vladimir Privman, D.Sc., Bantrell Research Fellow in Theoretical Physics
B.Sc., Technion University (Haifa), 1975; M.Sc., 1979; D.Sc., 1982. Caltech, 1984-.

Robert Alan Proctor, Ph.D., Bantrell Research Fellow in Mathematics
B.S., University of Arizona, 1976; Ph.D., Massachusetts Institute of Technology, 1981. Caltech, 1984-.

Demetri Psaltis, Ph.D., Assistant Professor of Electrical Engineering

Peter Quinn, Ph.D., Research Fellow in Theoretical Astrophysics
B.S., University of Wollongong, 1978; Ph.D., Australian National University, 1982. Caltech, 1982-.

James P. Quirk, Ph.D., Professor of Economics

Michael Augustine Raftery, Ph.D., Sc.D., Professor of Chemical Biology
B.Sc., National University of Ireland, 1956; Ph.D., 1960; Sc.D., 1971. Noyes Research Instructor in Chemistry, Caltech, 1964-66; Assistant Professor of Chemical Biology, 1967-69; Associate Professor, 1969-72; Professor, 1972-.

K. Vijay Raghavan, Ph.D., Research Fellow in Biology

Fredric Raichlen, Sc.D., Professor of Civil Engineering
B.E., Johns Hopkins University, 1953; S.M., Massachusetts Institute of Technology, 1955; Sc.D., 1962. Assistant Professor, Caltech, 1962-67; Associate Professor, 1967-72; Professor, 1972-.

Vilayanur S. Ramachandran, Ph.D., Visiting Associate in Biology
M.B.B.S., Stanley Medical College (Madras), 1974; Ph.D., University of Cambridge, 1978. Lecturer, University of California (Irvine), 1981-. Research Fellow, Caltech, 1979-81; Visiting Associate, 1983-.

Simon Ramo, Ph.D., Visiting Associate in Engineering (PT)
W. Duncan Rannie, Ph.D., Robert H. Goddard Professor of Jet Propulsion and Professor of Mechanical Engineering, Emeritus

B.A., University of Toronto, 1936; M.A., 1937; Ph.D., Caltech, 1951. Assistant Professor of Mechanical Engineering, 1947-51; Associate Professor, 1951-55; Robert H. Goddard Professor of Jet Propulsion, 1955-78; Robert H. Goddard Professor of Jet Propulsion and Professor of Mechanical Engineering, 1978-81; Goddard Professor Emeritus and Professor Emeritus, 1981-.

Harinar Rao, Lecturer in Music

Ichtiaque S. Rasool, Ph.D., Visiting Associate in Planetary Science

Peter Neil Ratoff, Ph.D., Research Fellow in Physics and Lecturer (PT)

Lawrence L. Rauch, Ph.D., Visiting Professor of Electrical Engineering (PT)

A.B., University of Southern California, 1941; A.M., Princeton University, 1947; Ph.D., 1949. Senior Research Engineer, Jet Propulsion Laboratory, 1978-; Caltech, 1977-.

Zeev Rav-Noy, Ph.D., Research Fellow in Applied Physics

B.Sc., Tel Aviv University, 1968; M.Sc., 1974; Ph.D., Weizmann Institute of Science, 1979. Bantrell Research Fellow in Electrical Engineering, Caltech, 1982-84; Research Fellow in Applied Physics, 1984-.

Charles van Blekkingh Ray, M.S., Lecturer in Computer Science (PT); Director, Willis H. Booth Computing Center

Helen Beryl Rayburn, Ph.D., Research Fellow in Biology and Physics

B.Sc., University of Calgary, 1967; Ph.D., McMaster University, 1982. Caltech, 1983-.

Anthony Christopher Sanford Readhead, Ph.D., Professor of Radio Astronomy; Director of Owens Valley Radio Observatory

B.Sc., University of Witwatersrand, 1968; Ph.D., University of Cambridge, 1972. Research Fellow, Caltech, 1974-75; Senior Research Fellow, 1976-79; Research Associate, 1979-81; Professor, 1981-; Director, 1981-.

Douglas Alan Reinelt, Ph.D., Research Fellow in Applied Mathematics

Jennifer F. Reinganum, Ph.D., Associate Professor of Economics

B.A., Oberlin College, 1976; M.S., Northwestern University, 1978; Ph.D., 1979. Assistant Professor, Caltech, 1979-82; Associate Professor, 1982-.

James Allan Reiss, Ph.D., Visiting Associate in Chemistry

B.Sc., University of Adelaide, 1964; Ph.D., 1967. Senior Lecturer, La Trobe University (Australia), 1976-; Caltech, 1983-84.

Martin Rem, Ph.D., Visiting Professor of Computer Science (PT)

Jean-Paul Revel, Ph.D., Albert Billings Ruddock Professor of Biology

B.Sc., University of Strasbourg, 1949; Ph.D., Harvard University, 1957. Professor of Biology, Caltech, 1971-78; Ruddock Professor, 1978-.

Charles Moen Rice III, Ph.D., Research Fellow in Biology

B.S., University of California (Davis), 1974; Ph.D., Caltech, 1981. Gosney Research Fellow, 1981-82; Research Fellow, 1982-.

John Hall Richards, Ph.D., Professor of Organic Chemistry

B.A., University of California, 1951; B.Sc., University of Oxford, 1953; Ph.D., University of California, 1955. Assistant Professor, Caltech, 1957-61; Associate Professor, 1961-70; Professor, 1970-.

Thomas G. Richmond, Ph.D., Bantrell Research Fellow in Chemistry

Charles Francis Richter, Ph.D., Professor of Seismology, Emeritus

A.B., Stanford University, 1920; Ph.D., Caltech, 1928. Assistant Professor, 1937-47; Associate Professor, 1947-52; Professor, 1952-70; Professor Emeritus, 1970-.
Carl Frederick Ruoff, M.S., Lecturer in Mechanical Engineering
B.S., California State University (Long Beach), 1967; M.S., University of California (Los Angeles), 1971. Member, Technical Staff, Jet Propulsion Laboratory, 1978-85.

Mary Beth Ruskai, Ph.D., Visiting Associate in Mathematics
B.S., Notre Dame College (Cleveland), 1965; M.A., University of Wisconsin, 1969; Ph.D., 1969. Assistant Professor, University of Lowell, 1977-84.

James J. Russell, Ph.D., Senior Research Fellow in Physics
B.A., Ohio State University, 1972; Ph.D., University of Illinois, 1980. Research Fellow, Caltech, 1980-83; Senior Research Fellow, 1983.-

David B. Rutledge, Ph.D., Associate Professor of Electrical Engineering
B.A., Williams College, 1973; M.A., University of Cambridge, 1975; Ph.D., University of California, 1980. Assistant Professor, Caltech, 1980-84; Associate Professor, 1984.-

Herbert John Ryser, Ph.D., Professor of Mathematics

Asif Sabanovic, D.Sc., Visiting Associate Professor of Electrical Engineering
B.S.E.E., University of Sarajevo, 1970; M.Sc., 1975; D.Sc., 1979. Head Director, Power Electronics Dept., Research and Development Laboratories of Energoinvest (Sarajevo), 1975-. Caltech, 1983.-

Rolf Heinrich Sabersky, Ph.D., Professor of Mechanical Engineering
B.S., Caltech, 1942; M.S., 1943; Ph.D., 1949. Assistant Professor, 1949-55; Associate Professor, 1955-61; Professor, 1961.-

Inge-Juliana Sackmann, Ph.D., Faculty Associate in Physics
B.A., University of Toronto, 1963; M.A., 1965; Ph.D., 1968. Research Fellow, Caltech, 1971-74; Visiting Associate, 1974-76; Senior Research Fellow, 1976-81; Faculty Associate, 1981.-

Rita Saerens, Ph.D., Bateman Research Instructor in Mathematics

Philip Geoffrey Saffman, Ph.D., Professor of Applied Mathematics
B.A., Trinity College, University of Cambridge, 1953; M.A., Ph.D., 1956. Professor of Fluid Mechanics, Caltech, 1964-70; Professor of Applied Mathematics, 1970.-

Makoto Sakuda, Ph.D., Research Fellow in Physics

Jason Brian Saleeb, Ph.D., Associate Professor of Geology
B.S., California State University (Northridge), 1972; Ph.D., University of California (Santa Barbara), 1975. Caltech, 1978.-

Joseph Salzman, Ph.D., Bateman Research Fellow in Applied Physics

Sten Otto Samson, Fil.Dr., Senior Research Associate in Chemistry
Fil.kand., University of Stockholm, 1953; Fil.lc., 1956; Fil.Dr., 1968. Research Fellow, Caltech, 1953-56; 1957-61; Senior Research Fellow, 1969-72; Research Associate, 1973-81; Senior Research Associate, 1981.-

Ka-yiu San, Ph.D., Research Fellow in Chemical Engineering

Theodore N. Sarachman, Ph.D., Visiting Associate Professor of Physics
A.B., University of Chicago, 1951; M.S., 1954; Ph.D., Harvard University, 1961. Associate Professor and Chairman, Department of Physics, Whittier College, 1970-. Caltech, 1984-85.

Wallace Leslie William Sargent, Ph.D., Ira S. Bowen Professor of Astronomy
B.S., University of Manchester, 1956; M.Sc., 1957; Ph.D., 1959. Research Fellow, Caltech, 1959-62; Assistant Professor, 1966-68; Associate Professor, 1968-71; Professor, 1971-81; Bowen Professor, 1981-; Executive Officer for Astronomy, 1975-81; Staff Member, Owens Valley Radio Observatory, 1978.-

Balachandran Sathiapalan, Ph.D., Research Fellow in Theoretical Physics

Francesco Scaramuzzi, Lib.Doc., Visiting Professor of Physics

Helmut Schaefer, Ph.D., Visiting Associate in Mathematics
William Palzer Schaefer, Ph.D., Senior Research Associate in Chemistry
B.S., Stanford University, 1952; M.S., University of California (Los Angeles), 1954; Ph.D., 1960. Instructor, Caltech, 1960-62; Assistant Professor, 1962-66; Senior Research Fellow, 1968-77; Research Associate, 1977-81; Senior Research Associate, 1981--; Assistant Director of Admissions, 1968-73; Registrar, 1971-77; Director of Financial Aid, 1973-77.

Rafe H. Schindler, Ph.D., Senior Research Fellow in Physics
B.A., University of Rochester, 1974; M.A., Stanford University, 1975; Ph.D., 1979. Caltech, 1982--.

George Henry Schmidt, Ph.D., Visiting Associate in Environmental Engineering Science

Maarten Schmidt, Ph.D., Sc.D., Institute Professor of Astronomy
Ph.D., University of Leiden, 1956; Sc.D., Yale University, 1966. Associate Professor, Caltech, 1959-64; Professor, 1964-81; Institute Professor, 1981--; Executive Officer for Astronomy, 1972-75; Chairman, Division of Physics, Mathematics and Astronomy, 1976-78; Director, Hale Observatories, 1978-80.

Paul G. Schmidt, Ph.D., Visiting Associate in Chemistry
B.A., Pomona College, 1966; Ph.D., Stanford University, 1970. Associate Member, Laboratory of Protein Studies; Associate Professor, Department of Biochemistry and Molecular Biology, Oklahoma Medical Research Foundation, 1977--; Caltech, 1983-84.

Donald P. Schneider, Ph.D., Research Fellow in Astronomy
B.S., University of Nebraska, 1976; Ph.D., Caltech, 1982. Research Fellow, 1982--.

Roger Schofield, Ph.D., Sherman Fairchild Distinguished Scholar

Rudolf August Schohe, Ph.D., Research Fellow in Chemistry

James M. Schombert, Ph.D., Research Fellow in Astronomy
B.S., University of Maryland, 1979; M.Phil., Yale University, 1982; Ph.D., 1984. Caltech, 1984-85.

Elma Schonbach, B.M., Lecturer in Music
B.M., Cincinnati Conservatory of Music, 1939. Caltech, 1976--.

Geza Schrauf, Ph.D., Research Fellow in Applied Mathematics

Walter Adolph Schroeder, Ph.D., Senior Research Associate in Chemistry
B.Sc., University of Nebraska, 1939; M.A., 1940; Ph.D., Caltech, 1943. Research Fellow, 1943-46; Senior Research Fellow, 1946-56; Research Associate, 1956-81; Senior Research Associate, 1981--.

Alan Schwartz, LL.B., Professor of Law and Social Science (PT)
B.S., Bates College, 1961; LL.B., Yale University, 1964. Visiting Professor, Caltech, 1979-81; Professor, 1981-82; 1983--; Luce Professor of Law and Social Science (PT), 1982-83.

John Henry Schwarz, Ph.D., Senior Research Associate in Theoretical Physics (LOA)

Ricardo B. Schwarz, Ph.D., Visiting Associate in Materials Science

Ronald Fraser Scott, Sc.D., Professor of Civil Engineering
B.Sc., Glasgow University, 1951; S.M., Massachusetts Institute of Technology, 1953; Sc.D., 1955. Assistant Professor, Caltech, 1958-62; Associate Professor, 1962-67; Professor, 1967--.

Nicholas Z. Scoville, Ph.D., Professor of Astronomy

Thayer Scudder, Ph.D., Professor of Anthropology
A.B., Harvard College, 1952; Ph.D., Harvard University, 1960. Assistant Professor, Caltech 1964-66; Associate Professor, 1966-69; Professor, 1969--.

Eleanor M. Searle, Ph.D., D.M.S., Professor of History
A.B., Radcliffe College, 1948; Ph.D., Pontifical Institute of Medieval Studies, 1961; D.M.S., 1972. Caltech, 1979--.
John Hersh Seinfeld, Ph.D., Louis E. Nohl Professor and Professor of Chemical Engineering; Executive Officer for Chemical Engineering
B.S., University of Rochester, 1964; Ph.D., Princeton University, 1967. Assistant Professor, Caltech, 1967-70; Associate Professor, 1970-74; Professor, 1974-; Nohl Professor, 1979-; Executive Officer, 1974-.

Charles Lewis Seitz, Ph.D., Associate Professor of Computer Science
S.B., Massachusetts Institute of Technology, 1965; S.M., 1967; Ph.D., 1971. Visiting Associate Professor, Caltech, 1977; Research Associate, 1977-79; Research Associate and Visiting Professor (PT), 1979-80; Associate Professor, 1980-.

Ryoichi Seki, Ph.D., Visiting Associate in Physics (PT)
B.S., Waseda University, 1962; Ph.D., Northwestern University, 1968. Professor, California State University (Northridge), 1976-77. Caltech, 1978-.

Martin I. Sereno, Ph.D., Del E. Webb Research Fellow in Biology

Fredrick Harold Shair, Ph.D., Professor of Chemical Engineering
B.S., University of Illinois, 1957; Ph.D., University of California, 1963. Assistant Professor, Caltech, 1965-69; Associate Professor, 1969-76; Professor, 1976-.

Mark Howard Shapiro, Ph.D., Visiting Associate in Physics (PT)
A.B., University of California, 1962; M.S., University of Pennsylvania, 1963; Ph.D., 1966. Associate Professor, California State University (Fullerton), 1973-. Caltech, 1976-.

Robert Phillip Sharp, Ph.D., The Robert P. Sharp Professor of Geology, Emeritus

Sandra B. Sharp, Ph.D., Research Fellow in Chemistry
B.A., University of California, 1967; Ph.D., University of California (Los Angeles), 1981. Caltech, 1981-.

Edward Shaya, Ph.D., Bantrell Research Fellow in Astronomy

Charles Hunter Shelden, M.D., Visiting Associate in Chemistry
B.S., University of Wisconsin, 1928; M.D., University of Pennsylvania, 1932. Professor of Neurosurgery, University of Southern California Medical Center, 1968-. Visiting Associate in Biomedical Engineering (PT), Caltech, 1978-84; Visiting Associate in Chemistry, 1984-.

Gong-Xin Shen, Ph.D., Visiting Associate in Aeronautics
Ph.D., Beijing Institute of Aeronautics and Astronautics, 1960. Lecturer, 1961-. Caltech, 1982-.

Scott J. Shenker, Ph.D., Visiting Associate in Theoretical Physics

Cheng-ru Shi, Visiting Associate in Physics
Lanzhou University, 1959. Associate Professor, 1983-. Caltech, 1983-.

Rindge Shima, B.S., Visiting Associate in Applied Physics (PT)

Eugene Merle Shoemaker, Ph.D., Sc.D., Professor of Geology and Planetary Science (PT)

Heinz Karl Heinrich Siedentop, Dr. rer. nat., Visiting Associate in Mathematics
M.Sc., Technical University of Braunschweig, 1979; Dr. rer. nat., 1982. Research Fellow, 1982-. Caltech 1983-84.

Kerry Edward Sieh, Ph.D., Associate Professor of Geology
A.B., University of California (Riverside), 1972; Ph.D., Stanford University, 1977. Assistant Professor, Caltech, 1977-82; Associate Professor, 1982-.

Israel M. Sigal, Ph.D., Visiting Associate in Mathematics
Leon Theodore Silver, Ph.D., W. M. Keck Foundation Professor for Resource Geology
B.S., University of Colorado, 1945; M.S., University of New Mexico, 1948; Ph.D., Caltech, 1955. Assistant Professor of Geology, 1955-62; Associate Professor, 1962-65; Professor, 1965-83; Keck Foundation Professor for Resource Geology, 1983-.

Barry M. Simon, Ph.D., Professor of Mathematics and Theoretical Physics

Melvin E. Simon, Ph.D., Professor of Biology
B.S., City College of New York, 1959; Ph.D., Brandeis University, 1963. Caltech, 1982-.

Gabriel Sirat, Ph.D., Research Fellow in Electrical Engineering

Annette Jacqueline Smith, Ph.D., Associate Professor of French
B.A., University of Paris (Sorbonne), 1947; M.A., 1950; Ph.D., 1970. Visiting Assistant Professor, Caltech, 1970-71; Lecturer, 1971-82; Associate Professor, 1982-.

Brent Pendleton Smith, Ph.D., Assistant Professor of Mathematics
B.A., Reed College, 1971; Ph.D., Louisiana State University, 1977. Caltech, 1981-.

David Rodman Smith, Ph.D., Professor of Literature
B.A., Pomona College, 1944; M.A., Claremont Colleges, 1950; Ph.D., 1960. Instructor in English, Caltech, 1958-60; Assistant Professor 1960-66; Associate Professor, 1966-80; Associate Professor of Literature, 1980-82; Professor, 1982-; Master of Student Houses, 1969-75.

Hallett D. Smith, Ph.D., L.H.D., Professor of English, Emeritus
B.A., University of Colorado, 1928; Ph.D., Yale University, 1934. Professor, Caltech, 1949-75; Professor Emeritus, 1975-; Chairman, Division of the Humanities and Social Sciences, 1949-70.

Lloyd M. Smith, Ph.D., Research Fellow in Biology
A.B., University of California, 1976; Ph.D., Stanford University, 1981. Caltech, 1982-.

Theodore Beaton Smith, Ph.D., Visiting Associate in Chemical Engineering
B.A., Ohio State University, 1938; M.S., Caltech, 1940; Ph.D., 1949. Visiting Associate, 1984.

William Ralph Smythe, Ph.D., Professor of Physics, Emeritus
A.B., Colorado College, 1916; A.M., Dartmouth College, 1919; Ph.D., University of Chicago, 1921. National Research Fellow, Caltech, 1923-26; Research Fellow, 1926-27; Assistant Professor, 1927-34; Associate Professor, 1934-40; Professor, 1940-64; Professor Emeritus, 1964-.

Joel Sobel, Ph.D., Visiting Associate Professor of Economics

Laurence Soderblom, Ph.D., Visiting Associate in Planetary Science

Abraham Soffer, Ph.D., Chaim Weizmann Research Fellow in Mathematics and Theoretical Physics

Baruch Thomas Soifer, Ph.D., Senior Research Associate in Physics
B.S., Caltech, 1968; Ph.D., Cornell University, 1972. Senior Research Fellow, Caltech, 1978-81; Senior Research Associate, 1981-.

Kenneth L. Sokoloff, Ph.D., Visiting Assistant Professor of Economics
A.B., University of Pennsylvania, 1974; Ph.D., Harvard University, 1982. Assistant Professor, University of California (Los Angeles), 1980-; Caltech, 1984-85.

Salvatore Solimeno, Lib.Doc., Visiting Associate in Electrical Engineering

Sorin Solomon, Ph.D., Bantrell Research Fellow in Theoretical Physics
M.Sc., Weizmann Institute of Science, 1976; Ph.D., 1982. Caltech, 1982-.

Randal K. Sparks, Ph.D., Assistant Professor of Chemical Physics
A.B., Harvard College, 1974; Ph.D., University of California, 1979. Arthur Amos Noyes Research Instructor in Chemistry (PT), Caltech, 1980-82; Assistant Professor, 1982-.
Roger Wolcott Sperry, Ph.D., Sc.D., Nobel Laureate, Board of Trustees Professor of Psychobiology Emeritus
A.B., Oberlin College, 1935; A.M., 1937; Ph.D., University of Chicago, 1941. Hixon Professor of Psychobiology, Caltech, 1954-84; Board of Trustees Professor Emeritus, 1984-.

Friedrich Srienc, Ph.D., Research Fellow in Chemical Engineering
M.S., Technical University (Graz, Austria), 1976; Ph.D., 1980. Caltech, 1981-.

Debra Sue Stokes, Ph.D., Research Fellow in Geochemistry

Matthias Staufenbiel, Ph.D., Research Fellow in Biology
Dipl., University of Konstanz, 1978; Ph.D., University of Ulm, 1982. Research Fellow, Caltech, 1983-.

Gregory N. Stephanopoulos, Ph.D., Associate Professor of Chemical Engineering
B.S., National Technical University (Athens), 1973; M.Sc., University of Florida, 1975; Ph.D., University of Minnesota, 1978. Assistant Professor, Caltech, 1978-84; Associate Professor, 1984-.

Eli Sternberg, Ph.D., D.Sc., Professor of Mechanics
B.C.E., University of North Carolina, 1941; M.S., Illinois Institute of Technology, 1942; Ph.D., 1945. Professor of Applied Mechanics, Caltech, 1964-70; Professor of Mechanics, 1970-.

David J. Stevenson, Ph.D., Associate Professor of Planetary Science
B.S., Victoria University (New Zealand), 1971; M.S., 1972; Ph.D., Cornell University, 1976. Caltech, 1980-.

Homer Joseph Stewart, Ph.D., Professor of Aeronautics, Emeritus
B.Aero.E., University of Minnesota, 1936; Ph.D., Caltech, 1940. Instructor, 1939-42; Assistant Professor, 1942-46; Associate Professor, 1946-49; Professor, 1949-80; Professor Emeritus, 1980-.

Albert Edward Stieglman, Ph.D., Research Fellow in Chemistry

Edward M. Stolper, Ph.D., Professor of Geology
A.B., Harvard College, 1974; M.Phil., University of Edinburgh, 1976; Ph.D., Harvard University, 1979. Assistant Professor, Caltech, 1979-82; Associate Professor, 1982-83; Professor, 1983-.

Edward Carroll Stone, Jr., Ph.D., Professor of Physics; Chairman of the Division of Physics, Mathematics and Astronomy
S.M., University of Chicago, 1960; Ph.D., 1964. Research Fellow, Caltech, 1964-66; Senior Research Fellow, 1967; Associate Professor, 1967-71; Associate Professor, 1971-76; Professor, 1976-; Chairman, 1983-.

Ellen Glowacki Strauss, Ph.D., Senior Research Fellow in Biology

James Henry Strauss, Ph.D., Associate Professor of Biology; Executive Officer for Biology
B.S., Saint Mary's University, 1960; Ph.D., Caltech, 1967. Assistant Professor, 1969-75; Associate Professor, 1975-83; Professor, 1983-; Executive Officer, 1980-.

James Strnad II, J.D., Ph.D., Assistant Professor of Law and Economics (PT)
A.B., Harvard College, 1975; J.D., Yale University, 1979; Ph.D., 1982. Visiting Assistant Professor, Caltech, 1983; Assistant Professor, 1983-.

Thomas Foster Strong, M.S., Dean of Freshmen, Emeritus
B.S., University of Wisconsin, 1922; M.S., Caltech, 1937; Assistant Professor of Physics, 1944-65; Associate Professor, 1965-69; Dean of Freshmen, 1946-68; Dean Emeritus, 1969-.

Iwona Teresa Stroynowski, Ph.D., Research Fellow in Biology

Ryszard Stroynowski, Doctorat, Senior Research Associate in Physics
Magister, University of Warsaw, 1968; Doctorat, University of Geneva, 1973. Senior Research Fellow, Caltech, 1980-83; Senior Research Associate, 1983-.

William D. Stuart, Ph.D., Visiting Associate in Geophysics

Lisa J. Stubbs, Ph.D., Research Fellow in Biology
Bradford Sturtevant, Ph.D., Professor of Aeronautics
B.E., Yale University, 1955; M.S., Caltech, 1956; Ph.D., 1960. Research Fellow, 1960-62; Assistant Professor, 1962-66; Associate Professor, 1966-71; Professor, 1971-; Executive Officer for Aeronautics, 1972-76.

Winthrop Edward Sullivan III, Ph.D., Research Fellow in Biology
B.S., Cornell University, 1975; Ph.D., Washington University, 1981. Caltech, 1982-.

Katsuhiro Sumi, Ph.D., Research Fellow in Chemistry

Eric Suraud, Ph.D., Research Fellow in Physics

John A. Sutherland, Ph.D., Professor of Literature
B.A., University of Leicester, 1964; M.A., 1966; Ph.D., University of Edinburgh, 1973. Visiting Professor, Caltech, 1983; Professor, 1984-.

Laif Swanson, Ph.D., Lecturer in Mathematics (PT)

Alan R. Sweezy, Ph.D., Professor of Economics, Emeritus
A.B., Harvard College, 1929; Ph.D., Harvard University, 1934. Visiting Professor, Caltech, 1949-50; Professor, 1950-77; Professor Emeritus, 1977-.

Ernest Haywood Swift, Ph.D., LL.D., Professor of Analytical Chemistry, Emeritus
B.S., University of Virginia, 1918; M.S., Caltech, 1920; Ph.D., 1924. Instructor, 1920-28; Assistant Professor, 1928-39; Associate Professor, 1939-43; Professor, 1943-67; Professor Emeritus, 1967-; Chairman, Division of Chemistry and Chemical Engineering, 1958-63.

Naoki Takahashi, Ph.D., Research Fellow in Biology
B.S., University of Tokyo, 1976; M.S., 1978; Ph.D., 1982. Caltech, 1982-.

Terry Takeshi Takahashi, Ph.D., Research Fellow in Biology
B.S., University of California (Irvine), 1975; M.S., California State University (Long Beach), 1977; Ph.D., State University of New York (Downstate Medical Center), 1981. Caltech, 1981-.

Man-Qi Tan, Ph.D., Visiting Associate in Chemistry
B.S., Fudan University (Shanghai), 1954; Ph.D., Moscow University, 1962. Vice Director, Department of Biophysics of Membrane, Institute of Biophysics, Academia Sinica, 1980-. Caltech, 1982-.

Jawahar Lal Tandon, Ph.D., Visiting Associate in Applied Physics

Jia-yong Tang, Ph.D., Visiting Associate in Physics
Ph.D., Peking University, 1957. Associate Professor, Head of Nuclear Physics Division, Fudan University, 1980-. Caltech, 1984-85.

Armand R. Tanguay, Jr., Ph.D., Visiting Associate in Electrical Engineering

Toshiro Tanimoto, Ph.D., Research Fellow in Geophysics
B.S., University of Tokyo, 1977; M.S., 1979; Ph.D., University of California, 1982. Caltech, 1983-84.

Mark Allen Tanouye, Ph.D., Assistant Professor of Biology
A.B., Stanford University, 1972; A.M., 1973; Ph.D., Yale University, 1978. Research Fellow, Caltech, 1978-82; Senior Research Fellow, 1982-83; Assistant Professor, 1983-.

Saleh Ahmed Tanveer, Ph.D., Research Fellow in Applied Mathematics

Hugh Pettengill Taylor, Jr., Ph.D., The Robert P. Sharp Professor of Geology
B.S., Caltech, 1954; A.M., Harvard University, 1955; Ph.D., Caltech, 1959. Assistant Professor, 1959-61; Research Fellow, 1961; Assistant Professor, 1962-64; Associate Professor, 1964-69; Professor, 1969-81; Sharp Professor, 1981-.

Shirley Marian Taylor, Ph.D., Research Fellow in Chemistry
B.Sc., University of Cape Town, 1974; B.Sc., University of Stellenbosch, 1976; M.Sc., 1977; Ph.D., University of Southern California, 1981. Caltech, 1982-.
Valentine L. Telegdi, Ph.D., Visiting Professor of Physics

Paul J. Tempst, D.Sc., Research Fellow in Biology
Lic., State University (Ghent), 1976; D.Sc., 1981. Visiting Associate, Caltech, 1982-83; Research Fellow, 1983-.

Evelyn Lee Teng, Ph.D., Visiting Associate in Biology
B.S., Taiwan University, 1959; M.A., Stanford University, 1960; Ph.D., 1963. Associate Professor, University of Southern California School of Medicine, 1976-. Research Fellow, Caltech, 1963-69; Senior Research Fellow, 1969-72; Visiting Associate, 1972-77; Del E. Webb Visiting Associate, 1979-80; Visiting Associate, 1980-.

David B. Teplow, Ph.D., Research Fellow in Biology
B.A., University of California, 1974; M.S., University of Washington, 1977; Ph.D., 1981. Caltech, 1981-.

Barry Taft Thomas, Ph.D., Lecturer in Physics (PT)

James H. Thomas, Ph.D., Robert A. Millikan Fellow in Physics
B.S., Washington State University, 1976; M.S., Yale University, 1977; M.Phil., 1979; Ph.D., 1982. Research Fellow, Caltech, 1982-83; Millikan Fellow, 1983-.

Fritz Thommen-Meyer, Ph.D., Research Fellow in Chemistry

Bozena Henisz Thompson, Ph.D., Senior Research Associate in Linguistics
M.A., University of Warsaw, 1956; M.S., Georgetown University, 1961; Ph.D., 1965. Lecturer in English, Caltech, 1969; Senior Research Fellow, 1969-73; Research Associate in Linguistics, 1973-81; Senior Research Associate, 1981-.

Frederick Burtis Thompson, Ph.D., Professor of Applied Philosophy and Computer Science
A.B., University of California (Los Angeles), 1946; M.A., 1947; Ph.D., University of California, 1952. Professor of Applied Science and Philosophy, Caltech, 1965-77; Professor of Applied Philosophy and Computer Science, 1977-.

Peter M. Thompson, Ph.D., Assistant Professor of Electrical Engineering

Kip Stephen Thorne, Ph.D., D.h.c., William K. Kemeny, Jr. Professor and Professor of Theoretical Physics
B.S., Caltech, 1962; Ph.D., Princeton University, 1965. Research Fellow in Physics, Caltech, 1966-67; Associate Professor of Theoretical Physics, 1967-70; Professor, 1970-; Kemeny Professor, 1981-.

John Todd, B.Sc., Professor of Mathematics, Emeritus
B.Sc., Queen's University (Northern Ireland), 1931. Professor of Mathematics, Caltech, 1957-81; Professor Emeritus, 1981-.

Olga Taussky Todd, Ph.D., Professor of Mathematics, Emeritus
Ph.D., University of Vienna, 1930; M.A., University of Cambridge, 1937. Research Associate, Caltech, 1957-71; Professor, 1971-77; Professor Emeritus, 1977-.

Thomas Anthony Tombrello, Jr., Ph.D., Professor of Physics
B.A., Rice University, 1958; M.A., 1960; Ph.D., 1961. Research Fellow, Caltech, 1961-62; 1964-65; Assistant Professor, 1965-67; Associate Professor, 1967-71; Professor, 1971-.

John Matthew Tomich, Ph.D., Research Fellow in Chemistry
B.A., University of Connecticut, 1974; M.S., Purdue University, 1975; Ph.D., Guelph-Waterloo Center for Graduate Work in Chemistry (Canada), 1980. Caltech, 1983-84.

John Tonry, Ph.D., Bantrell Research Fellow in Astronomy
A.B., Princeton University, 1975; M.A., Harvard University, 1976; Ph.D., 1980. Caltech, 1982-.

John Robert Torczynski, Ph.D., Lecturer (PT) and Research Fellow in Applied Physics

Barry Toyonaga, Ph.D., Visiting Associate in Biology

John T. Trauger, Ph.D., Senior Research Fellow in Planetary Science
Thierry Troudet, Ph.D., Richard Chace Tolman Research Fellow in Theoretical Physics
Ph.D., Massachusetts Institute of Technology, 1982. Caltech, 1982-.

Nicholas William Tschoegl, Ph.D., Professor of Chemical Engineering
B.Sc., New South Wales University of Technology, 1954; Ph.D., University of New South Wales, 1958. Associate Professor of Materials Science, Caltech, 1965-67; Professor of Chemical Engineering, 1967-.

Yoshiobu Tsujimoto, D.Eng., Visiting Associate in Mechanical Engineering

Hsien-Hsin Thng, Ph.D., Research Fellow in Chemical Engineering
B.S., National Taiwan University, 1976; M.S., Northwestern University, 1981; Ph.D., 1984. Caltech, 1984-85.

Nicholas J. Turro, Ph.D., Sherman Fairchild Distinguished Scholar

James A. Tyburczy, Ph.D., Research Fellow in Geophysics

David R. Tytler, Ph.D., Weingart Research Fellow in Astronomy
B.Sc., University College (London), 1978; Ph.D., 1982. Caltech, 1982-.

Biing-Jiun Uang, Ph.D., Research Fellow in Chemistry
B.S., Tamkang University, 1975; M.S., National Tsing-hua University, 1979; M.Ph., 1982; Ph.D., Yale University, 1984. Caltech, 1984.

Masayuki Uchida, M.S., Visiting Associate in Chemical Engineering

Eric Umland, Ph.D., Bantrell Research Fellow in Physics
B.S., Massachusetts Institute of Technology, 1978; Ph.D., Rice University, 1982. Caltech, 1983-.

Karl Marlin Unruh, Ph.D., Bantrell Research Fellow in Applied Physics
B.S., Wichita State University, 1977; M.S., Johns Hopkins University, 1980; Ph.D., 1983. Caltech, 1983-84.

P. P. Vaidyanathan, Ph.D., Assistant Professor of Electrical Engineering
B.Sc., University of Calcutta, 1974; B.Tech., 1977; M.Tech., 1979; Ph.D., University of California (Santa Barbara), 1983. Caltech, 1983-.

Jan L.A. van de Snepscheut, Ph.D., Visiting Assistant Professor of Computer Science

David C. Van Essen, Ph.D., Associate Professor of Biology; Executive Officer for Biology
B.S., Caltech, 1967; Ph.D., Harvard University, 1971. Assistant Professor, Caltech, 1976-79; Associate Professor, 1979-. Executive Officer, 1982-.

Anthonie Van Harreveld, Ph.D., M.D., Professor of Physiology, Emeritus
B.A., University of Amsterdam, 1925; M.A., 1928; Ph.D., 1929; M.D., 1931. Research Assistant, Caltech, 1934-35; Instructor, 1935-40; Assistant Professor, 1940-42; Associate Professor, 1942-47; Professor, 1947-74; Professor Emeritus, 1974-.

Vito August Vanoni, Ph.D., Professor of Hydraulics, Emeritus
B.S., Caltech, 1926; M.S., 1932; Ph.D., 1940. Assistant Professor, 1942-49; Associate Professor, 1949-55; Professor, 1955-74; Professor Emeritus, 1974-.

Onno Sjoerd van Rooijen, Ph.D., Research Fellow in Physics
M.Sc., University of Nymegen (the Netherlands), 1978; Ph.D., University of Groningen, 1982. Caltech, 1982-.

Marc J. P. Van Rossum, M.D., Ph.D., Habil., IBM Research Fellow in Applied Physics

David Charles Vella, Ph.D., Bantrell Research Fellow in Mathematics
B.A., American International College (Springfield), 1976; Ph.D., University of Virginia, 1983. Caltech, 1984-.

T.N.C. Venkatesan, Ph.D., Visiting Associate in Applied Physics
Tadmiri Rangachar Venkatesh, Ph.D., Gosney Research Fellow in Biology
B.S., University of Mysore, 1970; M.Sc., Birla Institute of Technology and Science, 1973; Ph.D., 1977. James G. Boswell Research Fellow, Caltech, 1982; Gosney Research Fellow, 1982-

Gregory Charles Verchota, Ph.D., Bantrell Research Fellow in Mathematics
B.S., Purdue University, 1976; Ph.D., University of Minnesota, 1982. Caltech, 1982-

Gianfranco Vidali, Ph.D., Research Fellow in Physics
Ph.D., University of Genoa, 1977; Ph.D., Pennsylvania State University, 1982. Research Fellow in Chemical Engineering, Caltech, 1982-83; Research Fellow in Physics, 1983-84.

Pet Vogel, Ph.D., Senior Research Associate in Physics; Lecturer in Physics
Ph.D., Joint Institute of Nuclear Research (USSR), 1966. Senior Research Fellow, Caltech, 1970-75; Research Associate, 1975-81; Senior Research Associate, 1981--; Lecturer, 1983-

Rochus E. Vogt, Ph.D., Vice President and Provost; R. Stanton Avery Distinguished Service Professor and Professor of Physics S.M., University of Chicago, 1957; Ph.D., 1961. Assistant Professor, Caltech, 1962-65; Associate Professor, 1965-70; Professor, 1970--; R. Stanton Avery Distinguished Service Professor, 1982--; Chief Scientist, Jet Propulsion Laboratory, 1977-78; Chairman of the Division of Physics, Mathematics and Astronomy, 1978-83; Acting Director, Owens Valley Radio Observatory, 1980-81; Vice President and Provost, 1983-

Thad Vreeland, Jr., Ph.D., Professor of Materials Science
B.S., Caltech, 1949; M.S., 1950; Ph.D., 1952. Research Fellow in Engineering, 1952-54; Assistant Professor of Mechanical Engineering, 1954-58; Associate Professor, 1958-63; Associate Professor of Materials Science, 1963-68; Professor, 1968-

Jean-Luc Vuilleumier, Ph.D., Visiting Associate in Physics

Quang H. Vuong, Ph.D., Assistant Professor of Economics
M.S., Ecole des Mines de Paris, 1976; M.S., Northwestern University, 1980; Ph.D., 1981. Caltech, 1981-

Marianne Carol Walck, Ph.D., Research Fellow in Geophysics

David Bertram Wales, Ph.D., Professor of Mathematics
B.S., University of British Columbia, 1961; M.A., 1962; Ph.D., Harvard University, 1967. Bateman Research Fellow, Caltech, 1967-68; Assistant Professor, 1968-71; Associate Professor, 1971-77; Professor, 1977--; Associate Dean of Students, 1976-80; Dean of Students, 1980-84.

Robert Lee Walker, Ph.D., Professor of Physics, Emeritus
B.S., University of Chicago, 1941; Ph.D., Cornell University, 1948. Assistant Professor, Caltech, 1949-53; Associate Professor, 1953-59; Professor, 1959-81; Professor Emeritus, 1981--; Executive Officer for Physics, 1976-81.

Steven Walt, Ph.D., Mellon Postdoctoral Instructor in Philosophy

Stephen Roy Walton, Ph.D., Research Fellow in Astrophysics
M.S., University of Hawaii, 1979; Ph.D., 1983. Caltech, 1983-

Jing-jin Wang, Ph.D., Visiting Associate in Physics
Ph.D., Tsinghua University, 1957. Associate Professor, 1979-. Caltech, 1983-

M. Martha Ward, Ph.D., Assistant Professor of Art History
B.A., University of North Carolina, 1973; M.A., Johns Hopkins University, 1975; Ph.D., 1983. Instructor, Caltech, 1981-83; Assistant Professor, 1983-

David M. Wardlaw, Ph.D., Research Fellow in Chemistry
B.Sc., University of Toronto, 1975; Ph.D., 1981. Caltech, 1982-

Robert Rodger Wark, Ph.D., Lecturer in Art (PT)

Nicholas Philip Warner, Ph.D., Weingart Fellow in Theoretical Physics and Lecturer (PT)
B.Sc., Australian National University, 1979; Ph.D., University of Cambridge, 1982. Weingart Fellow, Caltech, 1982--; Lecturer (PT), 1983-.
Gerald J. Wasserburg, Ph.D., John D.
MacArthur Professor of Geology and Geophysics
S.B., University of Chicago, 1951; S.M., 1952; Ph.D., 1954. Assistant Professor of Geology, Caltech, 1955-59; Associate Professor, 1959-62; Professor, 1962-63; Professor of Geology and Geophysics, 1963-82; MacArthur Professor, 1982.

Dan M. Watson, Ph.D., Research Fellow in Physics

J. Harold Wayland, Ph.D., D.Sc., Professor of Engineering Science, Emeritus
B.S., University of Idaho, 1931; M.S., Caltech, 1935; Ph.D., 1937. Research Fellow in Mathematics, 1939-41; Associate Professor of Applied Mechanics, 1949-57; Professor, 1957-63; Professor of Engineering Science, 1963-79; Professor Emeritus, 1979.

Robert D. Wayne, M.A., Associate Professor of German, Emeritus
Ph.B., Dickinson College, 1935; M.A., Columbia University, 1940. Instructor, Caltech, 1952-62; Assistant Professor, 1962-69; Associate Professor, 1969-78; Associate Professor Emeritus, 1982.

Terry Howard Webb, Ph.D., Visiting Associate in Geophysics

Wayne D. Webley, Ph.D., Research Fellow in Chemistry

William Henry Weinberg, Ph.D., Chevron Professor of Chemical Engineering Related to Energy and Professor of Chemical Engineering and Chemical Physics
B.S., University of South Carolina, 1966; Ph.D., University of California, 1970. Assistant Professor of Chemical Engineering, Caltech, 1972-74; Associate Professor, 1974-77; Professor, 1977-78; Professor of Chemical Engineering and Chemical Physics, 1978; Chevron Professor of Chemical Engineering Related to Energy, 1981.

David Franklin Welch, I.D., Associate Professor of Engineering Design
A.B., Stanford University, 1941; I.D., Caltech, 1943. Instructor in Industrial Design and Engineering Drafting, 1947-49; Instructor in Engineering Drafting, 1949-51; Associate Professor, 1951-61; Associate Professor of Engineering Design, 1961.

Steven G. Wesnousky, Ph.D., Research Fellow in Geophysics

Paul Edward West, Ph.D., Research Fellow in Chemistry
B.A., Appalachian State University, 1978; M.S., Purdue University, 1980; Ph.D., Wesleyan University, 1983. Caltech, 1983-84.

Peter West, Ph.D., Visiting Associate in Theoretical Physics

Lonny Western, Ph.D., Bantrell Research Fellow in Astrophysics

James Adolph Westphal, B.S., Professor of Planetary Science
B.S., University of Tulsa, 1954. Senior Research Fellow, Caltech, 1966-71; Associate Professor, 1971-76; Professor, 1976.

Robert Joseph Wetmillcr, M.Sc., Visiting Associate in Geophysics

Ronald Myron Wexler, Ph.D., Bantrell Research Fellow in Chemistry

Ward Whaling, Ph.D., Professor of Physics
B.S., Rice University, 1944; M.A., 1947; Ph.D., 1949. Research Fellow, Caltech, 1949-52; Assistant Professor, 1952-58; Associate Professor, 1958-62; Professor, 1962.

Richard F. Whitek, Ph.D., Lecturer in Aeronautics (PT)

Stanley Ernest Whitcomb, Ph.D., Assistant Professor of Physics

Michael McCormick White, Ph.D., Research Fellow in Biology and Lecturer in Physics (PT)
B.S., Cornell University, 1977; Ph.D., Brandeis University, 1981. Research Fellow, Caltech, 1983-84; Lecturer (PT), 1983-84.
Gerald Beresford Whitham, Ph.D., Charles Lee Powell Professor of Applied Mathematics

Paul Michael Whitmore, Ph.D., Research Fellow in Chemistry
B.S., Caltech, 1977; Ph.D., University of California, 1982. Research Fellow, Caltech, 1982--.

Michael C.F. Wiescher, Ph.D., Visiting Associate in Physics

Frank Wilczek, Ph.D., Visiting Associate in Theoretical Physics

Louis L. Wilde, Ph.D., Professor of Economics
B.A., University of Iowa, 1972; M.A., University of Rochester, 1975; Ph.D., 1976. Assistant Professor, Caltech, 1976-79; Associate Professor, 1979-83; Professor, 1983-.

Michael Wilkinson, Ph.D., Weingart Research Fellow in Theoretical Physics

Roy David Williams, Ph.D., Research Fellow in Physics
B.A., University of Cambridge, 1979; Ph.D., Caltech, 1983. Research Fellow, 1983-.

Richard M. Wilson, Ph.D., Professor of Mathematics
B.S., Indiana University, 1966; M.S., Ohio State University, 1968; Ph.D., 1969. Sherman Fairchild Distinguished Scholar, Caltech, 1976; Professor, 1980-.

Charles Harold Wilts, Ph.D., Professor of Electrical Engineering and Applied Physics, Emeritus
B.S., Caltech, 1940; M.S., 1941; Ph.D., 1948. Assistant Professor of Electrical Engineering, 1947-52; Associate Professor, 1952-57; Professor, 1957-74; Professor of Electrical Engineering and Applied Physics, 1974-84; Professor Emeritus, 1984-; Executive Officer for Electrical Engineering, 1972-75.

Howard Winet, Ph.D., Visiting Associate in Engineering Science (PT)
B.S., University of Illinois, 1959; M.A., University of California (Los Angeles), 1962; Ph.D., 1969. Associate Professor, Department of Orthopedics, University of Southern California, 1980-. Caltech, 1978--.

Mark Wise, Ph.D., Associate Professor of Theoretical Physics
B.Sc., University of Toronto, 1976; M.Sc., 1977; Ph.D., Stanford University, 1980. Assistant Professor, Caltech, 1982-84; Associate Professor, 1984--.

Barbara J. Wold, Ph.D., Assistant Professor of Biology
B.S., Arizona State University (Tempe), 1973; Ph.D., Caltech, 1978. Research Fellow, 1978; Assistant Professor, 1981-.

Thomas H. Wolff, Ph.D., Assistant Professor of Mathematics

David Shotwell Wood, Ph.D., Professor of Materials Science
B.S., Caltech, 1941; M.S., 1946; Ph.D., 1949. Lecturer in Mechanical Engineering, 1949-50; Assistant Professor, 1950-55; Associate Professor, 1955-61; Professor, 1961-63; Professor of Materials Science, 1963--; Acting Associate Dean of Students, 1968-69; Associate Dean, 1969-74.

W. Hugh Woodin, Ph.D., Professor of Mathematics
B.S., Caltech, 1977; Ph.D., University of California, 1980. Assistant Professor, Caltech, 1980-83; Professor, 1983-.

Catherine Mary Woods-Lazairides, Ph.D., Research Fellow in Biology
B.A., University of Lancaster, 1973; M.S., University of Massachusetts, 1980; Ph.D., University of California (Davis), 1983. Caltech, 1984--.

James Francis Woodward, Ph.D., Mellon Postdoctoral Instructor in Philosophy
B.A., Carleton College, 1968; Ph.D., University of Texas (Austin), 1977. Caltech, 1983-.

Dorothy Scholl Woolum, Ph.D., Visiting Associate in Geochemistry
B.A., Cornell University, 1964; Ph.D., Washington University, 1971. Professor of Physics, California State University (Fullerton), 1980-. Research Fellow in Geology and Physics, Caltech, 1971-74; Visiting Associate in Geochemistry, 1974-.

Joan M. Wrobel, Ph.D., Research Fellow in Astronomy
Ph.D., University of Toronto, 1982. Caltech, 1982-.

Theodore Yao-Tsu Wu, Ph.D., Professor of Engineering Science
B.S., Chiao-Tung University, 1946; M.S., Iowa State University, 1948; Ph.D., Caltech, 1952. Research Fellow in Hydrodynamics, 1952-55; Assistant Professor of Applied Mechanics, 1955-57; Associate Professor, 1957-61; Professor, 1961-66; Professor of Engineering Science, 1966-.

Oliver Reynolds Wulf, Ph.D., Senior Research Associate in Physical Chemistry, Emeritus
B.S., Worcester Polytechnic Institute, 1920; M.S., American University, 1922; Ph.D., Caltech, 1926. Research Associate, 1945-67; Research Associate Emeritus, 1967-74; Senior Research Associate Emeritus, 1974-.

Peter John Wyllie, Ph.D., Professor of Geology; Chairman of the Division of Geological and Planetary Sciences
B.Sc., University of St. Andrews (Scotland), 1952; B.Sc., 1955; Ph.D., 1958. Professor, Caltech, 1983-; Chairman, 1983-.

S. Barbara Yancey, Ph.D., Senior Research Fellow in Biology
B.A., Whittier College, 1950; M.S., 1972; Ph.D., University of Southern California, 1977. Research Fellow, Caltech, 1977-79; Senior Research Fellow, 1979-.

Jiyoung Kim Yang, Ph.D., Research Fellow in Geochemistry

Zhong-Hua Yang, B.S., Visiting Associate in Applied Mathematics
B.S., Fudan University, 1964. Lecturer, Shanghai University of Science and Technology, 1978-. Caltech, 1982-.

Amnon Yariv, Ph.D., Thomas G. Myers Professor of Electrical Engineering and Professor of Applied Physics
B.S., University of California, 1954; M.S., 1956; Ph.D., 1958. Associate Professor of Electrical Engineering, Caltech, 1964-66; Professor, 1966-74; Professor of Electrical Engineering and Applied Physics, 1974-79; Myers Professor of Electrical Engineering and Professor of Applied Physics, 1979-.

Tolga Yarman, Ph.D., Visiting Associate in Engineering Science

George Thomas Yates, Ph.D., Senior Research Fellow in Engineering Science
B.S., Purdue University, 1971; M.S., Caltech, 1972; Ph.D., 1977. Research Fellow, 1976-78; Senior Research Fellow, 1978-; Lecturer (PT), 1980-82.

Maobin Yi, M.S., Visiting Associate in Applied Physics
M.S., Jilin University, 1961. Lecturer, 1961-. Caltech, 1983-.

Paul Kit-Lai Yu, Ph.D., Research Fellow in Applied Physics
B.Sc., Caltech, 1979; M.Sc., 1979; Ph.D., 1983. Research Fellow, 1983-.

Yuk Ling Yung, Ph.D., Associate Professor of Planetary Science
B.S., University of California, 1969; Ph.D., Harvard University, 1974. Visiting Associate, Caltech, 1976; Assistant Professor, 1977-82; Associate Professor, 1982-.

Fredrik Zachariasen, Ph.D., Professor of Theoretical Physics
B.S., University of Chicago, 1951; Ph.D., Caltech, 1956. Assistant Professor, 1960-62; Associate Professor, 1962-66; Professor, 1966-.

Eran Zaidel, Ph.D., Visiting Associate in Biology

Dominic Michael Zarro, Ph.D., Research Fellow in Astronomy
B.Sc., University of Sydney, 1978; Ph.D., Australian National University, 1983. Caltech, 1983-.

Leila Neomi Zeiri, Ph.D., Research Fellow in Geochemistry (PT)
B.Sc., Beersheva University, 1975; M.Sc., Weizmann Institute of Science, 1977; Ph.D., 1982. Caltech, 1982-.

Johann Anton Zensus, Ph.D., Research Fellow in Radio Astronomy
Ahmed H. Zewail, Ph.D., Professor of Chemical Physics
B.Sc., Alexandria University (Egypt), 1967; Ph.D., University of Pennsylvania, 1974. Assistant Professor, Caltech, 1976-78; Associate Professor, 1978-82; Professor, 1982-.

Xin-an Zhao, Ph.D., Visiting Associate in Applied Physics
Ph.D., Fudan University, 1965. Research Staff Member, Shanghai Institute of Metallurgy, 1965-84; Caltech, 1984-85.

Ren-Yuan Zhu, Ph.D., Research Fellow in Physics

Stephen L. Zipursky, Ph.D., Research Fellow in Biology
A.B., Oberlin College, 1977; M.Sc., Albert Einstein College of Medicine, 1979; Ph.D., 1981. Caltech, 1981-.

Harold Zirin, Ph.D., Professor of Astrophysics; Director of Big Bear Solar Observatory

Martin Rudolf Zirnbauer, Ph.D., Weingart Research Fellow in Theoretical Physics

Benjamin Michael Zuckerman, Ph.D., Visiting Associate in Radio Astronomy (PT)

Edward Edom Zukoski, Ph.D., Professor of Jet Propulsion and Mechanical Engineering
B.S., Harvard College, 1950; M.S., Caltech, 1951; Ph.D., 1954. Lecturer in Jet Propulsion, Caltech, 1956-57; Assistant Professor, 1957-60; Associate Professor, 1960-66; Professor, 1966-78; Professor of Jet Propulsion and Mechanical Engineering, 1978-.

Martha Cecilia Zuniga, Ph.D., Research Fellow in Biology
B.A., University of Texas (Austin), 1971; M.Phil., Yale University, 1975; Ph.D., 1977. Caltech, 1981-.

Amikam Zur, Ph.D., Bantrell Research Fellow in Applied Physics
B.Sc., Tel Aviv University, 1972; M.Sc., 1973; Ph.D., Caltech, 1983. Bantrell Fellow, 1983-.

Richard William Zurek, Ph.D., Visiting Associate Professor of Planetary Science (PT)
B.Sc., Michigan State University, 1969; Ph.D., University of Washington, 1974. Caltech, 1983-.

Wojciech H. Zurek, Ph.D., Research Fellow in Theoretical Astrophysics
Magister, Stanislaw Staszic Technical University of Krakow, 1974; Ph.D., University of Texas, 1979. Richard Chace Tolman Fellow, Caltech, 1981-83; Research Fellow, 1984.

Stewart Zweben, Ph.D., Senior Research Fellow in Applied Physics
B.S., State University of New York (Stony Brook), 1972; Ph.D., Cornell University, 1977. Caltech, 1980-.

George Zweig, Ph.D., Visiting Associate in Theoretical Physics
B.S., University of Michigan, 1959; Ph.D., Caltech, 1964. Research Fellow in Physics, 1963; Assistant Professor, 1964-66; Associate Professor, 1966-67; Professor of Theoretical Physics, 1967-83; Visiting Associate, 1983-.

Barton Zwiebach, Ph.D., Research Fellow in Theoretical Physics
M.S., Caltech, 1978; Ph.D., 1983. Research Fellow, 1983-.
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>169</td>
</tr>
<tr>
<td>Accreditations</td>
<td>26</td>
</tr>
<tr>
<td>Administrative Committees</td>
<td>267</td>
</tr>
<tr>
<td>Administrative Officers</td>
<td>266</td>
</tr>
<tr>
<td>Admission</td>
<td></td>
</tr>
<tr>
<td>Application for</td>
<td>57</td>
</tr>
<tr>
<td>High School Credits</td>
<td>58</td>
</tr>
<tr>
<td>Notification of</td>
<td>59</td>
</tr>
<tr>
<td>To Freshman Class</td>
<td>57</td>
</tr>
<tr>
<td>To Graduate Standing</td>
<td>116</td>
</tr>
<tr>
<td>To Undergraduate Standing</td>
<td>57</td>
</tr>
<tr>
<td>Transfer from Other Institutions</td>
<td>61</td>
</tr>
<tr>
<td>Admission to Candidacy</td>
<td></td>
</tr>
<tr>
<td>Doctor's Degree</td>
<td>122</td>
</tr>
<tr>
<td>Engineer's Degree</td>
<td>120</td>
</tr>
<tr>
<td>Master's Degree</td>
<td>120</td>
</tr>
<tr>
<td>Advanced Placement Program</td>
<td>60</td>
</tr>
<tr>
<td>Aeronautics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>170</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>129</td>
</tr>
<tr>
<td>Study and Research</td>
<td>33</td>
</tr>
<tr>
<td>Air Force ROTC</td>
<td>63</td>
</tr>
<tr>
<td>Anthropology Courses</td>
<td>173</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>173</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>131</td>
</tr>
<tr>
<td>Study and Research</td>
<td>35</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>85</td>
</tr>
<tr>
<td>Applied Mechanics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>176</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>133</td>
</tr>
<tr>
<td>Study and Research</td>
<td>36</td>
</tr>
<tr>
<td>Applied Physics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>178</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>134</td>
</tr>
<tr>
<td>Study and Research</td>
<td>36, 54</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>86</td>
</tr>
<tr>
<td>Art Courses</td>
<td>182</td>
</tr>
<tr>
<td>Art Gallery, Baxter</td>
<td>23</td>
</tr>
<tr>
<td>Assistantships</td>
<td>127</td>
</tr>
<tr>
<td>Associated Students of the California Institute of Technology, Inc. (ASCIT)</td>
<td>22</td>
</tr>
<tr>
<td>Astronomy</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>183</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>136</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>288</td>
</tr>
<tr>
<td>Study and Research</td>
<td>37</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>88</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>38</td>
</tr>
<tr>
<td>Athenaum</td>
<td>15</td>
</tr>
<tr>
<td>Athletics and Physical Education</td>
<td>22, 72</td>
</tr>
<tr>
<td>Members of the Staff</td>
<td>295</td>
</tr>
<tr>
<td>Auditing of Courses</td>
<td>66</td>
</tr>
<tr>
<td>Awards</td>
<td>80, 128</td>
</tr>
<tr>
<td>Bachelor of Science Degree</td>
<td></td>
</tr>
<tr>
<td>Candidacy</td>
<td>71</td>
</tr>
<tr>
<td>Requirement for Second</td>
<td>70</td>
</tr>
<tr>
<td>Beckman Auditorium</td>
<td>17, 24</td>
</tr>
<tr>
<td>Big Bear Solar Observatory</td>
<td>19, 38</td>
</tr>
<tr>
<td>Bioinformation Systems</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>185</td>
</tr>
<tr>
<td>Research Areas</td>
<td>45</td>
</tr>
<tr>
<td>Biology</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>186</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>137</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>270</td>
</tr>
<tr>
<td>Study and Research</td>
<td>39</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>90</td>
</tr>
<tr>
<td>Board of Trustees</td>
<td>263</td>
</tr>
<tr>
<td>Bookstore</td>
<td>24</td>
</tr>
<tr>
<td>Buildings and Facilities</td>
<td>15</td>
</tr>
<tr>
<td>Business Economics and Management Courses</td>
<td>190</td>
</tr>
<tr>
<td>Calendar</td>
<td>4-5</td>
</tr>
<tr>
<td>Campus Directory</td>
<td>7</td>
</tr>
<tr>
<td>Career Development</td>
<td>25</td>
</tr>
<tr>
<td>Chairman of Divisions</td>
<td>266</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>191</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>139</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>273</td>
</tr>
<tr>
<td>Study and Research</td>
<td>40</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>92</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>193</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>141</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>273</td>
</tr>
<tr>
<td>Study and Research</td>
<td>41</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>93</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>198</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>144</td>
</tr>
<tr>
<td>Study and Research</td>
<td>42</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>199</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>146</td>
</tr>
<tr>
<td>Study and Research</td>
<td>43</td>
</tr>
<tr>
<td>Computing Support Services</td>
<td>19, 295</td>
</tr>
<tr>
<td>Courses</td>
<td>169</td>
</tr>
<tr>
<td>Course Schedule</td>
<td></td>
</tr>
<tr>
<td>First Year, All Options</td>
<td>85</td>
</tr>
<tr>
<td>Credits and Units</td>
<td>67</td>
</tr>
<tr>
<td>Deans</td>
<td>266</td>
</tr>
<tr>
<td>Deferral of Entrance</td>
<td>59</td>
</tr>
<tr>
<td>Dining Facilities</td>
<td>126</td>
</tr>
<tr>
<td>Directory, Campus</td>
<td>7</td>
</tr>
<tr>
<td>Doctor of Philosophy Degree</td>
<td></td>
</tr>
<tr>
<td>Regulations and Requirements</td>
<td>122</td>
</tr>
<tr>
<td>Dual Degree Plan</td>
<td>63</td>
</tr>
<tr>
<td>Early Decision Plan</td>
<td>60</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>203</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>96</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>206</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>146</td>
</tr>
<tr>
<td>Study and Research</td>
<td>45</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>98</td>
</tr>
<tr>
<td>Employment</td>
<td>79</td>
</tr>
<tr>
<td>Employment Experience of Recent Graduates</td>
<td></td>
</tr>
<tr>
<td>Engineering and Applied Science</td>
<td></td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>277</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>100</td>
</tr>
<tr>
<td>Engineering (General) Courses</td>
<td>210</td>
</tr>
<tr>
<td>Engineering Graphics Courses</td>
<td>211</td>
</tr>
<tr>
<td>Engineering Science Courses</td>
<td>211</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>148</td>
</tr>
<tr>
<td>Study and Research</td>
<td>46</td>
</tr>
<tr>
<td>Engineer's Degree Regulations and Requirements</td>
<td>120</td>
</tr>
<tr>
<td>English</td>
<td>211</td>
</tr>
<tr>
<td>Environmental Engineering Science Courses</td>
<td>212</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>149</td>
</tr>
<tr>
<td>Study and Research</td>
<td>47</td>
</tr>
<tr>
<td>Environmental Quality Laboratory Members of the Staff</td>
<td>296</td>
</tr>
<tr>
<td>Examinations Entrance, Undergraduate Placement for Graduate Students (see Placement Examinations) Term</td>
<td>70</td>
</tr>
<tr>
<td>Exchange Programs</td>
<td>63, 119</td>
</tr>
<tr>
<td>Expenses Graduate</td>
<td>125</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>72</td>
</tr>
<tr>
<td>Faculty Members</td>
<td>299</td>
</tr>
<tr>
<td>Faculty Officers and Committees</td>
<td>268</td>
</tr>
<tr>
<td>Faculty-Student Relations</td>
<td>21</td>
</tr>
<tr>
<td>Fairchild Scholars Program 1984-85 Scholars</td>
<td>294</td>
</tr>
<tr>
<td>Fees Application</td>
<td>57</td>
</tr>
<tr>
<td>General Deposit Graduate Tuition</td>
<td>125</td>
</tr>
<tr>
<td>Late Registration Undergraduate Tuition</td>
<td>72</td>
</tr>
<tr>
<td>Fellowships Graduate Postdoctoral</td>
<td>127</td>
</tr>
<tr>
<td>Financial Aid, Undergraduate Financial Assistance, Graduate</td>
<td>74</td>
</tr>
<tr>
<td>Financial Payment Plans</td>
<td>127</td>
</tr>
<tr>
<td>First-Year Course, All Options</td>
<td>79</td>
</tr>
<tr>
<td>Foreign Students Employment Program English Requirement Financial Aid International Desk</td>
<td>79</td>
</tr>
<tr>
<td>French (see Languages) Freshman Advisers</td>
<td>21</td>
</tr>
<tr>
<td>GALCIT Geological and Planetary Sciences Courses</td>
<td>214</td>
</tr>
<tr>
<td>Graduate Option Staff of Instruction and Research Study and Research Undergraduate Option</td>
<td>151</td>
</tr>
<tr>
<td>Graduate Assistantships Graduate Courses Graduate Program</td>
<td>127</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>29</td>
</tr>
<tr>
<td>Graduation Requirements With Honor</td>
<td>70, 83</td>
</tr>
<tr>
<td>Grievance Procedure</td>
<td>27</td>
</tr>
<tr>
<td>Health Center Health Services</td>
<td>25</td>
</tr>
<tr>
<td>Historical Sketch</td>
<td>10</td>
</tr>
<tr>
<td>History Courses Graduate Subject Minor Undergraduate Option</td>
<td>222</td>
</tr>
<tr>
<td>Honor Standing</td>
<td>156</td>
</tr>
<tr>
<td>Honor System</td>
<td>106</td>
</tr>
<tr>
<td>Housing, on-campus</td>
<td>70</td>
</tr>
<tr>
<td>Humanities Courses HSS Tutorial</td>
<td>227</td>
</tr>
<tr>
<td>Staff of Instruction and Research Study and Research</td>
<td>228</td>
</tr>
<tr>
<td>Undergraduate Requirements</td>
<td>284</td>
</tr>
<tr>
<td>Hydraulics Courses</td>
<td>50</td>
</tr>
<tr>
<td>Independent Studies Program Undergraduate Option</td>
<td>228</td>
</tr>
<tr>
<td>Industrial Relations Center Insurance, Health</td>
<td>107</td>
</tr>
<tr>
<td>Interhouse Activities</td>
<td>25</td>
</tr>
<tr>
<td>International Desk</td>
<td>59</td>
</tr>
<tr>
<td>Interviews, Personal Jet Propulsion Courses Study and Research</td>
<td>230</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>18, 297</td>
</tr>
<tr>
<td>Kellogg Radiation Laboratory Kerckhoff Marine Laboratory</td>
<td>53</td>
</tr>
<tr>
<td>Kellogg Marine Laboratory</td>
<td>18, 40, 48</td>
</tr>
<tr>
<td>Language Courses Laser Laboratory Leave of Absence Libraries Linguistics Courses</td>
<td>231</td>
</tr>
<tr>
<td>Literature Courses Undergraduate Option Loan Funds</td>
<td>45</td>
</tr>
<tr>
<td>Loan Funds</td>
<td>65</td>
</tr>
<tr>
<td>Map and Directory Marine Biology Laboratory</td>
<td>78, 128</td>
</tr>
<tr>
<td>Master of Science Degree Regulations and Requirements</td>
<td>6-7</td>
</tr>
<tr>
<td>Materials Science Courses Graduate Option Study and Research</td>
<td>120</td>
</tr>
<tr>
<td>Mathematics Courses Graduate Option</td>
<td>51</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>158</td>
</tr>
<tr>
<td>Tuition</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Graduate</td>
<td>Assignment of Assignment of</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>Excess or Fewer than Normal</td>
</tr>
<tr>
<td></td>
<td>Unpaid Bills</td>
</tr>
<tr>
<td>Tutorial Programs</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Vacations</td>
</tr>
<tr>
<td>History</td>
<td>Veterans, Academic Records of</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Courses</td>
<td>Withdrawals</td>
</tr>
<tr>
<td>Undergraduate Options</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Program</td>
<td>Work-Study Program</td>
</tr>
<tr>
<td>Undergraduate Research</td>
<td></td>
</tr>
<tr>
<td>Underloads</td>
<td>Y, Caltech</td>
</tr>
</tbody>
</table>