CONTENTS

Abbreviation Key
Academic Calendar
Map and Directory

SECTION I
Board of Trustees
Administrative Officers
Administrative Committees
Faculty Officers and Committees
Staff
 Division of Biology
 Division of Chemistry and Chemical Engineering
 Division of Engineering and Applied Science
 Division of Geological and Planetary Sciences
 Division of the Humanities and Social Sciences
 Division of Physics, Mathematics and Astronomy
Sherman Fairchild Distinguished Scholars
Environmental Quality Laboratory
Hale Observatories
Willis H. Booth Computing Center
Industrial Relations Center
Institute Libraries
Department of Athletics and Physical Education
Health Center
Musical Activities
Officers and Faculty

SECTION II GENERAL INFORMATION
Introduction
Historical Sketch
Buildings and Facilities
 Libraries
 Industrial Relations Center
 The Willis H. Booth Computing Center
 Postdoctoral Appointments
Sherman Fairchild Distinguished Scholars Program
Study and Research
 Aeronautics
 Applied Mathematics
 Applied Mechanics
 Applied Physics
 Astronomy
 Biology
 Chemical Engineering
 Chemistry
 Civil Engineering
 Electrical Engineering
 Energy
 Engineering Science
 Environmental Engineering Science
 Environmental Quality Laboratory

PAGE
3
4
6
9
12
13
14
16
20
25
32
35
38
44
45
46
47
47
47
48
48
48
49
97
99
103
107
108
108
108
109
109
111
111
112
113
115
117
119
121
121
123
123
125
128
SECTION III INFORMATION AND REGULATIONS FOR THE GUIDANCE OF UNDERGRADUATE STUDENTS

Requirements for Admission to Undergraduate Standing
Admission to the Freshman Class
Admission to Upper Classes by Transfer
Registration Regulations
Scholastic Requirements: Grading
Physical Education
Student Health
Undergraduate Expenses
Financial Aid
Undergraduate Options and Course Schedules

SECTION IV INFORMATION AND REGULATIONS FOR THE GUIDANCE OF GRADUATE STUDENTS

General Regulations
Degree Regulations
Special Regulations of the Graduate Options
Graduate Expenses
Financial Assistance

SECTION V SUBJECTS OF INSTRUCTION

KEY TO ABBREVIATIONS

Aeronautics Ae
Anthropology An
Applied Mathematics AMa
Applied Mechanics AM
Applied Physics APh
Art ... Art
Astronomy Ay
Biology ... Bi
Business Economics
and Management BEM
Chemical Engineering ChE
Chemistry Ch
Civil Engineering CE
Economics Ec
Electrical Engineering EE
Engineering E
Engineering and Applied Science E & AS
Engineering Graphics Gr
Engineering Science ES
Environmental Engineering
Science .. Env

e
Hyd
ISP
IS
JP
L
Lin
Lit
Ma
Me
Mu
Pl
PE
Ph
PS
Psy
SS
ACADEMIC CALENDAR
1975-76

First Term

1975
September 24 Registration of entering freshmen — 1:00 p.m.-3:00 p.m.
September 25-27 New Student Orientation
September 29 General Registration — 8:30 a.m.-3:30 p.m.
September 29 Undergraduate Academic Standards and Honors Committee — 9:00 a.m.
September 30 Beginning of instruction — 8:00 a.m.
October 17 Last day for adding courses
October 18 Examinations for the removal of conditions and incompletes

November 3-7 Mid-Term week
November 7 Last day for admission to candidacy for Master's and Engineer's degrees
November 10 Mid-Term deficiency notices due — 9:00 a.m.
November 17-21 Pre-registration for second term, 1975-76
November 27-30 Thanksgiving recess
November 27-28 Thanksgiving holidays for employees
December 5 Last day for dropping courses, changing sections and track changes

Second Term

1976
January 1 New Year's Day holiday for employees
January 5 General Registration — 8:30 a.m.-3:30 p.m.
January 5 Undergraduate Academic Standards and Honors Committee — 9:00 a.m.
January 6 Beginning of instruction — 8:00 a.m.
January 23 Last day for adding courses
January 24 Examinations for the removal of conditions and incompletes
February 9-13 Mid-Term week
February 16 Mid-Term deficiency notices due — 9:00 a.m.
February 23-27 Pre-registration for third term, 1975-76
March 5 Last day for dropping courses, changing sections and track changes
March 13-19 Final examinations, second term, 1975-76
March 19 Last day for obtaining admission to candidacy for the degree of Doctor of Philosophy
March 20 End of second term, 1975-76
March 21-28 Spring recess
March 22 Instructors' final grade reports due — 9:00 a.m.
1976

March 29
General Registration — 8:30 a.m.-3:30 p.m.

March 29
Undergraduate Academic Standards and Honors Committee — 9:00 a.m.

March 30
Beginning of instruction — 8:00 a.m.

April 16
Last day for adding courses

April 17
Examinations for the removal of conditions and incompletes

April 26-30
Mid-Term week

May 3
Mid-Term deficiency notices due — 9:00 a.m.

May 7-8
Examinations for admission to upper classes, September 1976

May 17-21
Pre-registration for first term, 1976-77, and registration for summer research (graduate and undergraduate)

May 21
Last day for dropping courses, changing sections and track changes

May 28
Last day for final oral examinations and presenting theses for the degree of Doctor of Philosophy

May 28
Last day for presenting theses for Engineer’s degree

May 29-June 4
Final examinations for senior and graduate students, third term, 1975-76

May 31
Memorial Day holiday

June 5-11
Final examinations for undergraduate students, third term, 1975-76

June 7
Instructors’ final grade reports due for senior and graduate students — 9:00 a.m.

June 9
Undergraduate Academic Standards and Honors Committee — 9:00 a.m.

June 9
Curriculum Committee Meeting — 10:00 a.m.

June 9
Faculty Meeting — 2:00 p.m.

June 10
Class Day

June 11
Commencement

June 12
End of third term, 1975-76

June 14
Instructors’ final grade reports due for undergraduate students — 9:00 a.m.

June 23
Undergraduate Academic Standards and Honors Committee — 9:00 a.m.

July 5
Independence Day holiday for employees

September 6
Labor Day

1976

First Term 1976-77

September 22
Registration of entering freshmen — 1:00 p.m.-3:00 p.m.

September 23-25
New Student Orientation

September 27
General Registration — 8:30 a.m.-3:30 p.m.

September 28
Beginning of instruction — 8:00 a.m.
OFF-CAMPUS UNIT LOCATIONS

Azusa Hydraulics Laboratory
Azusa

Big Bear Solar Observatory
Fawnskin

Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena

Kerckhoff Marine Laboratory
Corona del Mar

Owens Valley Radio Observatory
Big Pine

Palomar Observatory
Palomar Mountain
San Diego County
CAMPUS DIRECTORY

Information — Building 71

<table>
<thead>
<tr>
<th>Number</th>
<th>Building Name</th>
<th>Department/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Alles Laboratory</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>Alumni Swimming Pool</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Arms Laboratory</td>
<td>Geological and Planetary Sciences</td>
</tr>
<tr>
<td>77</td>
<td>Art Gallery</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Athenaeum</td>
<td>Faculty Club</td>
</tr>
<tr>
<td>77</td>
<td>Baxter, Donald E., M.D., Hall</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>77</td>
<td>Baxter Lecture Hall</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Beckman Auditorium</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Beckman Laboratories</td>
<td>Behavioral Biology</td>
</tr>
<tr>
<td>60</td>
<td>Blacker House</td>
<td>Undergraduate Residence</td>
</tr>
<tr>
<td>51</td>
<td>Bookstore (Student Center)</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Booth Computing Center</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Braun House (Graduate Residence)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bridge Laboratory (Physics)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Brown Gymnasium</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Campbell Laboratory (Plant Research)</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Central Engineering Services</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Central Plant</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Chandler Dining Hall</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Chemical Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Chemistry Laboratory, Undergraduate</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Church Laboratory (Chemical Biology)</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Coffeehouse, Student</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cooling Tower Buildings</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Cosmic Ray Laboratory</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Crellin Laboratory (Chemistry)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Dabney Hall (Administration, EQL, and Humanities)</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Dabney House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Development Offices</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Downs Laboratory (Physics)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Firestone Laboratory (Flight Sciences and Applied Mathematics)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Fleming House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Gates Building</td>
<td></td>
</tr>
<tr>
<td>31A</td>
<td>Gates Annex (Chemistry)</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Grounds Operations Office</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Guggenheim Laboratory (Aeronautics and Applied Physics)</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Housing Office</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Industrial Relations Center</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Isotope Handling Laboratory</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Jorgensen Laboratory (Information Science)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Karman Laboratory (Fluid Mechanics and Jet Propulsion)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Keck House (Graduate Residence)</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Keck Laboratory (Environmental Engineering and Materials Science)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Kellogg Radiation Laboratory</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Kerckhoff Laboratory (Biological Sciences)</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Lauritsen Laboratory (High Energy Physics)</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Lloyd House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Marks House (Graduate Residence)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Millikan (Library and Administration)</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Mosher-Jorgensen House (Graduate Residence)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mudd, North (Geology and Geochemistry)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mudd, South (Geophysics and Planetary Sciences)</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Noyes Laboratory (Chemical Physics)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Page House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>7, 82, 83, 84</td>
<td>Physical Plant</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Public Events Office</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Public Relations and Publications</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Ramo Auditorium</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ricketts House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Robinson Laboratory (Astrophysics)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Ruddock House (Undergraduate Residence)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Sloan Laboratory (Mathematics and Physics)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spalding Building (Business Services)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Spalding Laboratory (Chemical Engineering)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Steele House (Residence, Master of Student Houses)</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Steele Laboratory (Applied Physics and Electrical Engineering)</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Thomas Laboratory (Civil and Mechanical Engineering)</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Ticket Agency</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Transportation and Grounds Operations</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Winnett Student Center</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Caltech Y</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Young Health Center</td>
<td></td>
</tr>
</tbody>
</table>
Section I
CALIFORNIA INSTITUTE OF TECHNOLOGY

OFFICERS
R. Stanton Avery, Chairman
Harold Brown, President
Deane F. Johnson, Vice Chairman
William M. Keck, Jr., Vice Chairman
Harry J. Volk, Vice Chairman

Robert F. Christy .. Vice President and Provost
William H. Corcoran .. Vice President for Institute Relations
Robert B. Gilmore... Vice President for Business Affairs
David W. Morrisroe .. Vice President for Financial Affairs and Treasurer
Ray D. Owen ... Vice President for Student Affairs
Hardy C. Martel... Secretary

BOARD OF TRUSTEES
Robert Anderson (1975)* .. Pittsburgh, Pennsylvania
Robert O. Anderson (1967) .. Roswell, New Mexico
R. Stanton Avery (1971) .. Pasadena
Stephen D. Bechtel, Jr. (1967) ... Piedmont
Benjamin F. Biaggini (1970) .. San Francisco
J. G. Boswell II (1962) .. Pasadena
John G Braun (1959) .. Pasadena
Harold Brown (1969) .. Pasadena
William Clayton (1963) .. Pasadena
Richard P. Cooley (1972) .. San Francisco
Gilbert W. Fitzhugh (1972) .. Rancho Santa Fe
James W. Glanville (1970) .. Darien, Connecticut
Stanton G. Hale (1969) ... Los Angeles
Fred L. Hartley (1967) ... Palos Verdes Estates
Philip M. Hawley (1975) ... Los Angeles
Harold J. Haynes (1974) .. Kentfield
Robert S. Ingersoll (1961) .. Washington, D.C.
Deane F. Johnson (1968) ... Los Angeles
Earle M. Jorgensen (1957) ... Los Angeles
William M. Keck, Jr. (1961) ... La Quinta
Augustus B. Kinzel (1963) .. La Jolla
Frederick G. Larkin, Jr. (1969) ... Los Angeles
L. F. McCollum (1961) ... Houston, Texas

*Year of initial election
Dean A. McGee (1970) .. Oklahoma City, Oklahoma
Ruben F. Mettler (1969) .. Los Angeles
Rudolph A. Peterson (1967) .. Piedmont
Simon Ramo (1964) .. Beverly Hills
Howard G. Vesper (1954) ... Oakland
Harry J. Volk (1950) .. Los Angeles
Richard R. Von Hagen (1955) ... Los Angeles
Lew R. Wasserman (1971) ... Beverly Hills
Thomas J. Watson, Jr. (1961) ... Greenwich, Connecticut
Lawrence A. Williams (1954) ... Laguna Hills
Dean E. Wooldridge (1974) .. Santa Barbara
William E. Zisch (1963) ... La Jolla

Life Trustees

Chairman Emeritus
Arnold O. Beckman (1953, 1974) .. Corona del Mar

President Emeritus
Lee A. DuBridge (1947, 1969) .. Laguna Hills

Honorary Life Trustee
Mrs. Norman Chandler (1974) .. Los Angeles

Life Trustees

John S. Griffith (1962, 1973) .. Pasadena
Herbert L. Hahn (1955, 1970) ... Pasadena
Louis E. Nohl (1966, 1973) .. La Jolla
John O’Melveny (1940, 1968) ... Los Angeles
Howard G. Vesper (1954, 1974) ... Oakland

Year of Life Trustee or Emeritus election is shown following year of initial election.

Trustee Elected Committees

Executive Committee
R. Stanton Avery, Chairman
Deane F. Johnson, Vice Chairman
William M. Keck, Jr., Vice Chairman
Harry J. Volk, Vice Chairman

John G. Braun
Harold Brown
Stanton G. Hale
Fred L. Hartley
Lew R. Wasserman
William E. Zisch
Consulting Member: Arnold O. Beckman

Advisory Members:
Robert F. Christy
Robert B. Gilmore
David W. Morrisroe

Note: The Secretary of the Board of Trustees is secretary of all committees.

Investment Committee
Harry J. Volk, Chairman
Frederick G. Larkin, Jr., Vice Chairman

R. Stanton Avery
Harold Brown
Richard P. Cooley
Stanton G. Hale
Earle M. Jorgensen
William M. Keck, Jr.
Simon Ramo

Consulting Members:
Arnold O. Beckman
J. G. Boswell II
Louis E. Nohl

Advisory Member:
David W. Morrisroe

Budget and Capital Expenditures Committee
Ruben F. Mettler, Chairman
William E. Zisch, Vice Chairman

Robert Anderson
R. Stanton Avery
Harold Brown
Gilbert W. Fitzhugh
Philip Hawley

Consulting Members:
Arnold O. Beckman
Howard G. Vesper

Advisory Members:
Robert F. Christy
David W. Morrisroe

Buildings and Grounds Committee
Richard R. Von Hagen, Chairman

R. Stanton Avery
Benjamin F. Biaggini
John G Braun
Harold Brown
William A. Hewitt
Earle M. Jorgensen

Consulting Member:
Arnold O. Beckman

Advisory Members:
Robert F. Christy
William H. Corcoran
Robert B. Gilmore

Audit Committee
Frederick G. Larkin, Jr., Chairman

R. Stanton Avery
Harold Brown
William Clayton
Gilbert W. Fitzhugh
Harold J. Haynes

Advisory Member:
David W. Morrisroe

Nominating Committee
Deane F. Johnson, Chairman
Simon Ramo, Vice Chairman

R. Stanton Avery
Harold Brown
Gilbert W. Fitzhugh
Mrs. William W. Scranton
Thomas J. Watson, Jr.

Consulting Member:
Arnold O. Beckman

Advisory Member:
William H. Corcoran
ADMINISTRATIVE OFFICERS

Vice President for Student Affairs and
Dean of Students: Ray D. Owen
Director of Student Relations: Lyman G. Bonner
Registrar and Director of Financial Aid: William P. Schaefer
Dean of Graduate Studies: Cornelius J. Pings
Director of Admissions and Financial Aid and
Associate Dean of Graduate Studies: Stirling L. Huntley
Director of Health Services: Gregory Ketabgian, M.D.
Director of Physical Education and Athletics: Warren G. Emery
Director of Secondary School Relations: Lee F. Browne
Master of Student Houses: James W. Mayer

Business and Administrative Officers

Vice President for Business Affairs: Robert B. Gilmore
Vice President for Financial Affairs and Treasurer: David W. Morrisroe
Vice President for Institute Relations: William H. Corcoran
Administrative Committees

FACULTY OFFICERS AND COMMITTEES

1975-1976

OFFICERS

Chairman: R. E. Vogt
Vice Chairman: F. C. Anson
Secretary: D. C. Elliot

FACULTY BOARD — Ch., R. E. Vogt, Vice Ch., F. C. Anson, Sec., D. C. Elliot

Term expires June 30, 1976

J. F. Benton
N. R. Corngold
D. L. Goodstein
J. L. Greenstein
L. E. Hood
P. C. Jennings

Term expires June 30, 1977

S. I. Chan
H. B. Gray
R. G. Noll
E. C. Stone
R. W. Vaughan
J. Vinograd

Term expires June 30, 1978

B. C. Barish
J. N. Franklin
P. M. Goldreich
J. Mathews
J. J. Morgan
N. W. Tschoegl

ACADEMIC FREEDOM AND TENURE COMMITTEE — Ch., N. H. Brooks, Vice Ch., N. R. Davidson

Term expires June 30, 1976

N. H. Brooks
H. B. Gray
R. P. Sharp

Term expires June 30, 1977

Leverett Davis, Jr.
N. R. Davidson
A. Kuppermann

STANDING COMMITTEES

*Ex officio

HEALTH — J. Vinograd, C. A. Barnes, L. Breger, J. R. Goodstein, L. E. Hood, J. D. Pettigrew, M. S. Plesset, J. P. Quirk

PATENTS — A. J. Acosta, D. J. Kevles, J. E. Mercereau, R. D. Middlebrook, S. O. Sampson, R. M. Stroud

*Ex officio
STAFF OF INSTRUCTION AND RESEARCH

Division of Biology

Robert L. Sinsheimer, Chairman
Norman H. Horowitz, Executive Officer

Professors Emeriti

Henry Borsook, Ph.D., M.D. ... Biochemistry
Sterling Emerson, Ph.D. .. Genetics
Arie J. Haagen-Smit, Ph.D. ... Bio-Organic Chemistry
George E. MacGinitie, M.A. ... Biology
Anthonie Van Harreveld, Ph.D., M.D. ... Physiology

Professors

Giuseppe Attardi, M.D. ... Biology
Seymour Benzer, Ph.D., D.Sc. .. James G. Boswell Professor of Neuroscience
James F. Bonner, Ph.D.* ... Biology
Charles J. Brokaw, Ph.D. ... Biology
Eric H. Davidson, Ph.D. ... Biology
Max Delbrück, Ph.D., Sc.D., Nobel Laureate... Albert Billings Ruddock Professor of Biology
William J. Dreyer, Ph.D. ... Biology
Derek H. Fender, Ph.D. ... Biology and Applied Science
Leroy E. Hood, M.D., Ph.D.** .. Biology
Norman H. Horowitz, Ph.D. .. Biology
Masakazu Konishi, Ph.D. .. Biology
Edward B. Lewis, Ph.D. .. Thomas Hunt Morgan Professor of Biology
Herschel K. Mitchell, Ph.D. ... Biology
James Olds, Ph.D. .. Bing Professor of Behavioral Biology
Ray D. Owen, Ph.D., Sc.D. ... Biology
Jean-Paul Revel, Ph.D. ... Biophysics
Robert L. Sinsheimer, Ph.D. ... Biophysics
Roger W. Sperry, Ph.D., Sc.D. ... Hixon Professor of Psychobiology
Felix Strumwasser, Ph.D. ... Biology
Jerome Vinograd, Ph.D. ... Chemistry and Biology
Cornelis A. G. Wiersma, Ph.D. .. Biology
William B. Wood, Ph.D.* ... Biology

*Graduate Student Adviser
**Pre-Medical Adviser
1On leave, University of Copenhagen
2On leave, University of Colorado

Senior Research Associates

Roy J. Britten, Ph.D.* ... Biology
Ken-ichi Naka, Ph.D. ... Biology and Applied Science

*Joint appointment with Carnegie Institution of Washington
Gosney Visiting Professor

Burke H. Judd, Ph.D. ... Biology

Visiting Associates

Susan B. Brown, Ph.D.* .. Biology
Allen R. Chilina, D.V.M., Ph.D. Biology
Gerald D. Fasman, Ph.D.* Biology
Nelson Freedman, Ph.D. ... Biology
Stanley A. Klein, Ph.D. .. Biology and Applied Science
Evelyn Lee-Teng, Ph.D. ... Biology
Michel LeMoal, M.D.* ... Biology
Robert G. McDaniel, Ph.D.* Biology
Andrei D. Mirzabekov, Ph.D. Biology
Antonio Montalvo-Correa, M.D. Biology
Jose L. Reissig, Ph.D. ... Biology
Miriam M. Salpeter, Ph.D.* Biology

Associate Professor

James H. Strauss, Jr., Ph.D. Biology

Research Associates

Charles R. Hamilton, Ph.D. Biology
Peter H. Lowy, Doctorandum Biology
Marianne E. Olds, Ph.D. .. Biology
Helen R. Revel, Ph.D. ... Biology

Assistant Professors

John M. Allman, Ph.D. .. Biology
A. James Hudspeth, Ph.D. Biology
Ronald J. Konopka, Ph.D. Biology
Henry A. Lester, Ph.D. ... Biology
John D. Pettigrew, M.D. ... Biology
Richard L. Russell, Ph.D. Biology

Senior Research Fellows

Barbara R. Hough, Ph.D. Biology
Harumi Kasamatsu, Ph.D. Biology
Edward D. Lipson, Ph.D. Biology
Carolyn A. H. Mitchell, Ph.D. Biology
Lajos Piko, D.V.M. .. Biology
Jack Silver, Ph.D. .. Biology
Michael J. Smith, Ph.D. .. Biology
Ellen G. Strauss, Ph.D. ... Biology
Hans-Peter Vosberg, Ph.D. Biology
Jung-Rung Wu, Ph.D. .. Biology

**University of Texas
*In residence 1974-75
Gosney Visiting Associate

Rolf Nöthiger, Ph.D.* ... Biology

Boswell Research Fellow

Deane B. Jacques, M.D. ... Biology

Gosney Research Fellows

Minnie McMillan, Ph.D. ... Biology
Aladar Szalay, D.Sc. ... Biology

Spencer Research Fellows

Frank N. Atencio, Ph.D. ... Biology
Dorwin L. Birt, Ph.D. ... Biology
Takuji Kasamatsu, Ph.D. .. Biology
James Kelly, Ph.D. ... Biology
Nancy Peters, Ph.D. ... Biology
Joyce Norman, Ph.D. ... Biology

Research Fellows

Manfred K.L. Albring, M.D.1
Francois Amalric, Ph.D.2
Robert C. Angerer, Ph.D.3
Paul B. Bell, Jr., Ph.D.4
Joseph Bonner, Ph.D.
William L. Byerly, Ph.D.2
William R. Crain, Ph.D.2
Joseph G. Culotti, Ph.D.3
Jerry Daniels, Ph.D.
Angeline Douvas, Ph.D.2
Yadin Dudai, Ph.D.5
Francine C. Eden, Ph.D.3
Robert M. Goodfleish, Ph.D.
Karel Grohmann, Ph.D.3
Joseph F. Hare, Ph.D.
David A. Henderson, Ph.D.
Jeffrey J. Hubert, Ph.D.2
Ernest Yuh Nung Jan, Ph.D.

Lily Kung-Chung Jan, Ph.D.6
William H. Klein, PhD.7
Donald D. Koblin, Ph.D.
Amy So-Ming Lee, Ph.D.3
Michael M. Lieber, Ph.D.
Dennis C. Lynch, Ph.D.3
Ronald L. Meyer, Ph.D.
Marcia M. Miller, Ph.D.2
Keith E. Peters, Ph.D.
Rona Pettigrew, Ph.D.
David E. Pulleyblank, Ph.D.8
Walter H. Schroeder, Dr. rer. nat.1
Philip Serwer, Ph.D.
Carol H. Sibley, Ph.D.
Laura F. Testa, Ph.D.
Klaus-Sten Thompson, Ph.D.1
Norma P. Williams, Ph.D.
Andrew Wiseman, Ph.D.
Eran Zaidel, Ph.D.2

*University of Zurich; in residence 1974-75
1Deutsche Forschungsgemeinschaft Fellow
2U.S. Public Health Service Fellow
3American Cancer Society Fellow
4Jane Coffin Childs Memorial Fund for Medical Research Fellow
5European Molecular Biology Organization Fellow
6Fight for Sight, Inc. Fellow
7Damon Runyon Memorial Fund Fellow
8Medical Research Council of Canada Fellow
Graduate Students 1974-75

David Lee Armstrong
Gerald Joseph Audesirk
Antony Clifford Bakke
Paul Arlyn Barstad
Osgood Massee Bateman, Jr.
John Richard Bell
Welcome William Bender
Elizabeth Peters Blankenhorn
Wesley Monroe Brown
Andrew Duncan Byers
James Rodney Carl
Edwin Paul Ching
Anne Chomyn
Toni Rosina Claudio
Susan Ellen Conrad
Michael Lee Cooper
Franklin David Costantini
John William Cross, Jr.
Mark Morris Davis
Michael Joseph Deniro
James William Deutsch
John Robinson Duguid
Philip Warren Early
Jay Barry Edelman
Ellen Jeanne Elliott
Ernst-Peter Fischer
Teryl Kenneth Frey
Cynthia L. Friedman
Jonathan Samuel Fuhrman
Glenn Allan Galau
Robert Allen Gelfand
Mitchell Paul Goldfarb
Joel Melvin Gottesfeld
Karen Faye Greif
David Howard Hall
William Anthony Harris
Alvin Joseph Hill, Jr.
Stanley Roy Hoffman

Henry Vincent Huang
David Saul Isenberg
Carl Douglas Johnson
Nelson Daniell Johnson
Gary Stephen Jones
Barbara Frances Keenan
Michael William Klymkowsky
Mitchell Edwin Kronenberg
Elwyn Yuan Loh
Kenneth Lawrence Marton
Jeffrey Terrell Mayne
Mark James Miller
Galina Dmitriyevna Moller
Robert Francis Murphy
William Thomas Newsome III
Charles Edward Novitski
Dominic Ping-Yim Orr
Richard Carl Parker
William Raymond Pearson
Donald Furner Ready
Robert George Rohwer
Barry Samuel Rothman
Margaret Yoshiko Scott
Brian Sarsfield Seed
Robert Edward Sheridan
Mavis Shure
Lloyd Herbert Smith
Barbara Landale Stitt
Duncan Knight Stuart
William Edward Stumph
Michael A. Surkes
David Tang
Betty Anne Vermeire
Donald Ernest Weller
Christopher Mark West
William Lee Wheatley
Barbara Jane Wold
Division of Chemistry and Chemical Engineering

John D. Baldeschwieler, Chairman
Fred C. Anson, Executive Officer for Chemistry
John H. Seinfeld, Executive Officer for Chemical Engineering

Professors Emeriti

William N. Lacey, Ph.D. ... Chemical Engineering
Linus Pauling, Ph.D., Sc.D., L.H.D., U.J.D., Dr. h.c., D.F.A., LL.D., Nobel Laureate Chemistry
Bruce H. Sage, Ph.D., Eng.D. .. Chemical Engineering
Ernest H. Swift, Ph.D., LL.D. ... Analytical Chemistry
Don M. Yost, Ph.D. ... Inorganic Chemistry

Professors

Fred C. Anson, Ph.D. .. Chemistry
John D. Baldeschwieler, Ph.D. ... Chemistry
Jesse L. Beauchamp, Ph.D. ... Chemistry
Robert G. Bergman, Ph.D. ... Chemistry
Sunney I. Chan, Ph.D. .. Chemical Physics
William H. Corcoran, Ph.D. ... Chemical Engineering
Norman Davidson, Ph.D. ... Chemistry
Richard E. Dickerson, Ph.D. ... Physical Chemistry
David A. Evans, Ph.D. .. Chemistry
Sheldon K. Friedlander, Ph.D. .. Chemical and Environmental Health Engineering
George R. Gavalas, Ph.D. ... Chemical Engineering
William A. Goddard III, Ph.D. .. Theoretical Chemistry
Harry B. Gray, Ph.D. .. Chemistry
Robert E. Ireland, Ph.D. ... Organic Chemistry
Aron Kuppermann, Ph.D. ... Chemical Physics
Vincent McKoy, Ph.D. ... Theoretical Chemistry
Cornelius J. Pings, Ph.D. ... Chemical Engineering and Chemical Physics
Michael A. Raftery, Ph.D. ... Chemical Biology
John H. Richards, Ph.D. .. Organic Chemistry
John D. Roberts, Ph.D., Dr. rer. nat. h.c., Sc.D. .. Institute Professor of Chemistry
G. Wilse Robinson, Ph.D. ... Physical Chemistry
John H. Seinfeld, Ph.D. ... Chemical Engineering
Nicholas W. Tschoegl, Ph.D. ... Chemical Engineering
Jerome Vinograd, Ph.D. ... Chemistry and Biology
Jurg Waser, Ph.D. ... Chemistry

Visiting Professors

Jefferson C. Davis, Ph.D. .. Chemistry
Charles E. Klopfenstein, Ph.D. .. Chemistry
Robin M. Hochstrasser, Ph.D. .. Chemistry

Senior Research Associates Emeriti

Edward W. Hughes, Ph.D. .. Chemistry
Joseph B. Koepfli, D. Phil. ... Chemistry
Oliver R. Wulf, Ph.D. .. Physical Chemistry
Visiting Associates

Ettore Benedetti, Ph.D. ... Chemistry
Ivano Bertini, Ph.D. ... Chemistry
Costello L. Brown ... Chemistry
Stephen L. Cunningham, Ph.D. ... Chemical Engineering
David Eisenberg, Ph.D. ... Chemistry
Kui-huang Huang, Ph.D. ... Chemistry
Robert G. Lamb, Ph.D. ... Chemical Engineering
Rudolf Lenk, Ph.D. ... Chemical Engineering
John P. O'Connell, Ph.D. ... Chemical Engineering
Gabriel Ogunmola, Ph.D. ... Chemistry
T. E. Ramabhadran, Ph.D. ... Chemical Engineering
David M. Roundhill, Ph.D. ... Chemistry
Frank H. Westheimer, Ph.D. ... Chemistry
Kenneth L. Williamson, Ph.D. ... Chemistry

Associate Professors

L. Gary Leal, Ph.D. ... Chemical Engineering
Fredrick H. Shair, Ph.D. ... Chemical Engineering
Robert M. Stroud, Ph.D. ... Chemistry
Robert W. Vaughan, Ph.D. ... Chemical Engineering
W. Henry Weinberg, Ph.D. ... Chemical Engineering

Research Associates

Richard E. Marsh, Ph.D. ... Chemistry
Sten O. Samson, Fil. Dr. ... Chemistry
Walter A. Schroeder, Ph.D. ... Chemistry

Associate

Lyman G. Bonner, Ph.D. ... Chemistry

Assistant Professors

John E. Bercaw, Ph.D. ... Chemistry
Peter B. Dervan, Ph.D. ... Chemistry
Joseph G. Gordon II, Ph.D. ... Chemistry

Noyes Research Instructor

Robert R. Gagne, Ph.D. ... Chemistry

Senior Research Fellows

H. Hollis Reamer, M.S. ... Chemical Engineering
William P. Schaefer, Ph.D. ... Chemistry
Research Fellows

Hans-Josef Altenbach,3 Ph.D.
Lyne M. Angerer,1 Ph.D.
James M. Bailey,2 Ph.D.
William H. Bearden, Ph.D.
Robert E. Botto, Ph.D.
Jeffrey L. Bresloff,5 Ph.D.
Alan P. Brown,8 Ph.D.
Paul A. Cain, Ph.D.
James W. Casey,5 Ph.D.
Peter Chandler, Ph.D.
Yueh-Hsiu Chien,5 Ph.D.
Louise Tsi Chow, Ph.D.
Maurice Cohen, Jr., Ph.D.
Diane Cummins, Ph.D.
Peter J. Drivas, Ph.D.
D. Michael Duggan, Ph.D.
Rudolf O. Duthaler, Ph.D.
Cecil R. Dybowski, Ph.D.
Volker Markowski,6 Ph.D.
Rudiger Lawaczek,7 Ph.D.
Ming Taun Leu, Ph.D.
Simon R. Levinson,6 Ph.D.

Carol D. Linden,5 Ph.D.
Rung-Tai Ling, Ph.D.
Charles B. Mallon, Ph.D.
Lorraine P. McDonnell, Ph.D.
Richard B. Moon, Ph.D.
Mitsuo Oka, Ph.D.
Maria Pellegrini,9 Ph.D.
Tamar Posner, Ph.D.
Thomas N. Rescigno, Ph.D.
LeRoy L. Richer, Ph.D.
Denis E. Ryono, Ph.D.
Laurine S. Ryono, Ph.D.
Neil E. Schore,5 Ph.D.
Ann Sodja,9 Ph.D.
John Stofko, Ph.D.
Katsuo Takahashi, Ph.D.
Alan Howard Tench,5 Ph.D.
John A. Thich, Ph.D.
Russell Timkovich, Ph.D.
Glen L. Tolman, Ph.D.
Samuel J. Tremont, Ph.D.
Alexander J. Vega, Ph.D.
William V. Walter, Ph.D.
James R. Wareing, Ph.D.
Michael J. Weaver, Ph.D.
Nicholas G. Webb, Ph.D.
Peter Wellnauer,10 Ph.D.
Philip H. Westerman, Ph.D.
Ralph A. Whitney,12 Ph.D.
Stephen P. Withrow,13 Ph.D.
Akifumi Yamada, Ph.D.
Pauline Hsiao Yen, Ph.D.

1Damon Runyon Cancer Research Fund
2Helen Hay Whitney Foundation Fellowship
3Deutsche Forschungsgemeinschaft Fellowship
4Jane Coffin Childs Memorial Fund for Medical Research
5National Institutes of Health Fellowship
6Deutscher Akademischer Austauschdienst Fellowship
7IREX Fellowship
8Universitat Basel Fellowship
9American Cancer Society Fellowship
10Cystic Fibrosis
11North American Treaty Organization Fellowship
12National Research Council of Canada Fellowship
13National Science Foundation Fellowship
<table>
<thead>
<tr>
<th>Graduate Students 1974-75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Abe, Chemistry</td>
</tr>
<tr>
<td>George Adler, Chemistry</td>
</tr>
<tr>
<td>Mark Andrew Allen, Chemistry</td>
</tr>
<tr>
<td>Judith Lee Allison, Chemistry</td>
</tr>
<tr>
<td>Robert James Almassy, Chemistry</td>
</tr>
<tr>
<td>Paul Adrian Aristrof, Chemistry</td>
</tr>
<tr>
<td>Amir Attar, Chemical Engineering</td>
</tr>
<tr>
<td>William Walter Bachovchin, Chemistry</td>
</tr>
<tr>
<td>David Joseph Baillargeon, Chemistry</td>
</tr>
<tr>
<td>Raymond Alan Bair, Chemistry</td>
</tr>
<tr>
<td>Kiran Ravindra Bakshi, Chemical Engineering</td>
</tr>
<tr>
<td>Joe Timothy Bamberg, Chemistry</td>
</tr>
<tr>
<td>Kenneth Edward Bencala, Chemical Engineering</td>
</tr>
<tr>
<td>Jacqueline Gail Berg, Chemistry</td>
</tr>
<tr>
<td>Ricardo Bloch, Chemical Engineering</td>
</tr>
<tr>
<td>Gary Wayne Bogan, Chemistry</td>
</tr>
<tr>
<td>Nick Allan Brette, Chemistry</td>
</tr>
<tr>
<td>Jonathan Arno Burke, Chemistry</td>
</tr>
<tr>
<td>Douglas Glenn Carson, Chemical Engineering</td>
</tr>
<tr>
<td>Boyd Jay Carter, Chemistry</td>
</tr>
<tr>
<td>John Lyman Chambers, Chemistry</td>
</tr>
<tr>
<td>Paul Chun-Ho Chan, Chemical Engineering</td>
</tr>
<tr>
<td>Wen-ji Victor Chang, Chemical Engineering</td>
</tr>
<tr>
<td>Paul How-Kei Cheong, Chemical Engineering</td>
</tr>
<tr>
<td>Ying Chee Chung, Chemical Engineering</td>
</tr>
<tr>
<td>Roger L. Clough, Chemistry</td>
</tr>
<tr>
<td>Reed Roeder Corderman, Chemistry</td>
</tr>
<tr>
<td>Donald Edward Cormack, Chemical Engineering</td>
</tr>
<tr>
<td>Catherine Louise Coyle, Chemistry</td>
</tr>
<tr>
<td>James Hubbard Davis, Chemistry</td>
</tr>
<tr>
<td>Nicki Lee Davis, Chemistry</td>
</tr>
<tr>
<td>Kilian Dill, Chemistry</td>
</tr>
<tr>
<td>Daniel Paul Dolata, Chemistry</td>
</tr>
<tr>
<td>Kevin Gerard Donohoe, Chemical Engineering</td>
</tr>
<tr>
<td>David Marlin Dooley, Chemistry</td>
</tr>
<tr>
<td>John Eugene Dutra, Chemical Engineering</td>
</tr>
<tr>
<td>John Patrick Dwyer, Chemistry</td>
</tr>
<tr>
<td>David Keith Erwin, Chemistry</td>
</tr>
<tr>
<td>Howard Edwin Evans, Chemical Engineering</td>
</tr>
<tr>
<td>Harry Osborn Finklea, Chemistry</td>
</tr>
<tr>
<td>James Brian Flanagan, Chemistry</td>
</tr>
<tr>
<td>Wayne Michael Flicker, Chemistry</td>
</tr>
<tr>
<td>William Paul Fornaciari, Jr., Chemistry</td>
</tr>
<tr>
<td>Claude Clinton Frazier III, Chemistry</td>
</tr>
<tr>
<td>Ben Sherman Freiser, Chemistry</td>
</tr>
<tr>
<td>Franklin Robert Fronczek, Chemistry</td>
</tr>
<tr>
<td>Robert Paul Frueholz, Chemistry</td>
</tr>
<tr>
<td>Freddy Morris Gelbard, Chemical Engineering</td>
</tr>
<tr>
<td>Andrew Michael Goetze, Chemistry</td>
</tr>
<tr>
<td>Alan Mark Golob, Chemistry</td>
</tr>
<tr>
<td>John Charles Hammar, Chemical Engineering</td>
</tr>
<tr>
<td>Lawrence Brook Harding, Chemistry</td>
</tr>
<tr>
<td>Richard Randolphp Hardy, Chemistry</td>
</tr>
<tr>
<td>Jeffrey Wayne Hare, Chemistry</td>
</tr>
<tr>
<td>David Harry Hawke, Chemistry</td>
</tr>
<tr>
<td>Bosco Po-Wai Ho, Chemical Engineering</td>
</tr>
<tr>
<td>Ellen Yuan-Chu Ho, Chemistry</td>
</tr>
<tr>
<td>Wilson Ho, Chemistry</td>
</tr>
<tr>
<td>Sue Carol Hocker, Chemistry</td>
</tr>
<tr>
<td>Ronald Vernon Hodges, Chemistry</td>
</tr>
<tr>
<td>Frances Anne Houle, Chemistry</td>
</tr>
<tr>
<td>Shaw-Fen Sylvia Hu, Chemistry</td>
</tr>
<tr>
<td>Valerie Wallin Hu, Chemistry</td>
</tr>
<tr>
<td>Kenneth Murrill Hurst, Chemistry</td>
</tr>
<tr>
<td>David Michael Ingle, Chemistry</td>
</tr>
<tr>
<td>Ravi Jain, Chemical Engineering</td>
</tr>
<tr>
<td>Gilbert Collier Johnson, Chemistry</td>
</tr>
<tr>
<td>Carl Ruth Jones, Chemistry</td>
</tr>
<tr>
<td>Nicholas Alexandrou Kaffes, Chemical Engineering</td>
</tr>
<tr>
<td>Mark Howard Keil, Chemistry</td>
</tr>
<tr>
<td>Diane Jacalyn Kent, Chemistry</td>
</tr>
<tr>
<td>Robert James Kinney, Chemistry</td>
</tr>
<tr>
<td>Roger Erdman Koepppe II, Chemistry</td>
</tr>
<tr>
<td>Dale Alvin Kooistra, Chemistry</td>
</tr>
<tr>
<td>Carl Anthony Koval, Chemistry</td>
</tr>
<tr>
<td>Monty Krieger, Chemistry</td>
</tr>
<tr>
<td>Paulus Arie Kroon, Chemistry</td>
</tr>
<tr>
<td>Dennis George Kuba, Chemical Engineering</td>
</tr>
<tr>
<td>Donald Leroy Kuehne, Chemical Engineering</td>
</tr>
<tr>
<td>Sudarshan Kumar, Chemical Engineering</td>
</tr>
<tr>
<td>Hsing-Jien Kung, Chemistry</td>
</tr>
<tr>
<td>Brian Kent Lamb, Chemistry</td>
</tr>
<tr>
<td>Arthur Lai Yin Lau, Chemistry</td>
</tr>
<tr>
<td>Richard Edward Laura, Chemistry</td>
</tr>
<tr>
<td>Seong Hee Lee, Chemical Engineering</td>
</tr>
<tr>
<td>Theodore Tsan-Tsung Lee, Chemistry</td>
</tr>
<tr>
<td>Vincent Kwok-Kin Leung, Chemical Engineering</td>
</tr>
<tr>
<td>Deborah Ann Levin, Chemistry</td>
</tr>
<tr>
<td>Carol Elizabeth Lyons, Chemical Engineering</td>
</tr>
<tr>
<td>Charlotte Lowe Ma, Chemistry</td>
</tr>
<tr>
<td>Kent Robert Mann, Chemistry</td>
</tr>
<tr>
<td>Juan Manuel Manriquez, Chemistry</td>
</tr>
<tr>
<td>Patrick Henry Souza Martin, Chemistry</td>
</tr>
<tr>
<td>Donald Robert McAlister, Chemistry</td>
</tr>
<tr>
<td>James V. McArthur, Chemistry</td>
</tr>
<tr>
<td>Clyde William McCurdy, Jr., Chemistry</td>
</tr>
<tr>
<td>Thomas Joe McMillen, Chemical Engineering</td>
</tr>
<tr>
<td>John Wayne Miller, Chemical Engineering</td>
</tr>
<tr>
<td>Donald Mills Mintz, Chemistry</td>
</tr>
<tr>
<td>Terry W. Moody, Chemistry</td>
</tr>
<tr>
<td>Richard B. Moon, Chemistry</td>
</tr>
<tr>
<td>Kevin William Moore, Chemistry</td>
</tr>
</tbody>
</table>
David Wayne Morris, Chemistry
Barry Joel Moss, Chemistry
Milton Keith Murphy, Chemistry
Marco Antonio Chaer Nascimento, Chemistry
Stephen Lee Nesbitt, Chemistry
Ann Tryon Nicol, Chemistry
Barry Duane Olafson, Chemistry
William Lee Olbracht, Chemical Engineering
Thomas Howard O'Neill, Chemistry
Thomas Edward Orlowski, Chemistry
Bruce Alan Parkinson, Chemistry
Pamela Jane Peerce, Chemistry
Nils Overgaard Petersen, Chemistry
Thomas William Peterson, Chemical Engineering
Anton Emil Pietsch, Chemistry
Anthony Kay Rappe, Chemistry
Jill Rawlings, Chemistry
Robert Henry Reiner, Chemistry
Ronald Rianda, Chemistry
Daryl Lynn Roberts, Chemical Engineering
Grant Earl Robertson, Chemical Engineering
Randy Richard Robinson, Chemistry
Michael Jay Ross, Chemistry
John Edward Ruark, Chemistry
Napapon Sailasuta, Chemistry
Vega Sankur, Chemical Engineering
Robert D. Sanner, Chemistry
George Chappell Schatz, Chemistry
Steven Alan Schichman, Chemistry
Loren Bennett Schreiber, Chemical Engineering
Jeffrey Alan Sell, Chemistry
Michael Allen Shippey, Chemistry
Winston Rei-Yun Shu, Chemical Engineering
John Thomas Slankas, Chemistry
Jeffrey Bernard Smith, Chemistry
Michael Joe Sollenberger, Chemistry
Steven Andrew Spencer, Chemistry
Frank Alan Stackhouse, Chemistry
Ralph Horton Staley, Chemistry
Chaim N. Sukenik, Chemistry
Sally Anne Sullivan, Chemistry
Grover Timothy Surra, Chemistry
James Long Taylor, Chemical Engineering
Newell Derrill Taylor, Chemistry
Glenn Ellwood Thomas, Chemical Engineering
Richard Charles Thomas, Chemistry
Wayne Julius Thompson, Chemistry
Grant Fred Tiefenbruck, Chemistry
Jerry Tobler, Chemistry
Florence Lucy Trentacosti, Chemistry
William Charles Trogler, Chemistry
Thomas Hallworth Upton, Chemistry
Julius Urudnischeck III, Chemical Engineering
John Henry Van Drie, Jr., Chemistry
Sorab Rustom Vatcha, Chemical Engineering
David Mark Walba, Chemistry
Stephen Perry Walch, Chemistry
Gerald Wayne Ward, Chemical Engineering
Albert Theodore Watson, Chemical Engineering
David Allan Weisblat, Chemistry
Larry Allan Wendling, Chemistry
Gary Eugene Whatley, Chemical Engineering
Scot Edward Wherland, Chemistry
Craig Stephens Wilcox, Chemistry
Mahlon McGregor Wilkes, Chemistry
Alvin K. Willard, Chemistry
Roger Macaulay Williams, Chemistry
Ashley Deas Williamson, Chemistry
John Scott Winterle, Chemistry
Rayman Young Wong, Chemistry
Stephen Hseng Wong, Chemistry
Philip Eric Wood, Chemical Engineering
Richard Lawrence Woodin, Chemistry
Danny Lee Yeager, Chemistry
Ajit P. Yogananthan, Chemical Engineering
Yannis Christos Yortsos, Chemical Engineering
Erdinc Zana, Chemical Engineering
Division of Engineering and Applied Science

Robert H. Cannon, Jr., Chairman
Roy W. Gould, Executive Officer for Applied Physics
Paul C. Jennings, Executive Officer for Civil Engineering and Applied Mechanics
Hans W. Liepmann, Director of the Graduate Aeronautical Laboratories
James J. Morgan, Executive Officer for Environmental Engineering Science
John R. Pierce, Executive Officer for Electrical Engineering
Bradford Sturtevant, Executive Officer for Aeronautics
Gerald B. Whitham, Executive Officer for Applied Mathematics

Professors Emeriti

Donald S. Clark, Ph.D. ... Physical Metallurgy
Frederick J. Converse, B.S. .. Soil Mechanics
Robert L. Daugherty, M.E. ... Mechanical and Hydraulic Engineering
Arthur L. Klein, Ph.D. ... Aeronautics
Frederick C. Lindvall, Ph.D., D.Sc., D.Eng. Engineering
William W. Michael, B.S. ... Civil Engineering
Vito A. Vanoni, Ph.D. ... Hydraulics

Professors

Allan J. Acosta, Ph.D. ... Mechanical Engineering
Charles D. Babcock, Jr., Ph.D. .. Aeronautics
Norman H. Brooks, Ph.D. .. Environmental Science and Civil Engineering; Director, Environmental Quality Laboratory
Thomas K. Caughey, Ph.D. .. Applied Mechanics
Francis H. Clauser, Ph.D. .. Clark Blanchard Millikan Professor of Engineering
Donald S. Cohen, Ph.D. ... Applied Mathematics
Donald E. Coles, Ph.D. ... Aeronautics
Noel R. Corngold, Ph.D. .. Applied Physics
Fred E. C. Culick, Ph.D. ... Jet Propulsion
Pol E. Duwez, D.Sc. ... Applied Physics and Materials Science
Derek H. Fender, Ph.D. ... Biology and Applied Science
Joel N. Franklin, Ph.D. ... Applied Mathematics
Sheldon K. Friedlander, Ph.D. .. Chemical and Environmental Health Engineering
Roy W. Gould, Ph.D. ... Applied Physics
George W. Housner, Ph.D. ... Carl F Braun Professor of Engineering
Donald E. Hudson, Ph.D. ... Mechanical Engineering and Applied Mechanics
Floyd B. Humphrey, Ph.D. ... Electrical Engineering and Applied Physics
Wilfred D. Iwan, Ph.D. ... Applied Mechanics
Paul C. Jennings, Ph.D. ... Applied Mechanics
Herbert B. Keller, Ph.D. .. Applied Mathematics
James K. Knowles, Ph.D. ... Applied Mechanics
Toshi Kubota, Ph.D. ... Aeronautics
Paco A. Lagerstrom, Ph.D. .. Applied Mathematics
Robert V. Langmuir, Ph.D. ... Electrical Engineering
Lester Lees, M.S. ... Environmental Engineering and Aeronautics
Hans W. Liepmann, Ph.D. .. Aeronautics and Applied Physics
Frank E. Marble, Ph.D. ... Jet Propulsion and Mechanical Engineering
James W. Mayer, Ph.D. ... Electrical Engineering
Staff of Instruction and Research

James O. McCalbin, Ph.D. ... Applied Science and Electrical Engineering
Gilbert D. McCann, Ph.D. ... Applied Science
Jack E. McKee, Sc.D., D.Eng. .. Environment Engineering
Carver A. Mead, Ph.D. .. Engineering
Robert D. Middlebrook, Ph.D. .. Engineering
Julius Miklowitz, Ph.D. ... Applied Mechanics
James J. Morgan, Ph.D. ... Environmental Engineering Science
Marc-Aurele Nicolet, Ph.D. ... Electrical Engineering
Wheeler J. North, Ph.D. .. Environmental Science
Charles H. Papas, Ph.D. ... Electrical Engineering
William H. Pickering, Ph.D.* ... Electrical Engineering
John R. Pierce, Ph.D., D.Sc., D.Eng., E.D., LL.D. Engineering
Milton S. Plesset, Ph.D. .. Engineering Science
Fredric Raichlen, Sc.D. ... Civil Engineering
W. Duncan Rannie, Ph.D. ... Robert H. Goddard Professor of Jet Propulsion
Anatol Roshko, Ph.D. ... Aeronautics
Rolf H. Sabersky, Ph.D. ... Mechanical Engineering
Philip G. Saffman, Ph.D. ... Applied Mathematics
Ronald F. Scott, Sc.D. ... Civil Engineering
Ernest E. Sechler, Ph.D.** .. Aeronautics
Eli Sternberg, Ph.D., D.Sc. ... Mechanics
Homer J. Stewart, Ph.D. .. Aeronautics
Bradford Sturtevant, Ph.D. ... Aeronautics
Frederick B. Thompson, Ph.D. ..Applied Science and Philosophy
Thad Vreeland, Jr., Ph.D. .. Materials Science
J. Harold Wayland, Ph.D. ... Engineering Science
Gerald B. Whitham, Ph.D. ... Applied Mathematics
Charles H. Wilts, Ph.D. ... Electrical Engineering and Applied Physics
David S. Wood, Ph.D. .. Materials Science
Theodore T. Y. Wu, Ph.D. ... Engineering Science
Amnon Yariv, Ph.D. .. Electrical Engineering and Applied Physics
Edward E. Zukoski, Ph.D. .. Jet Propulsion

Senior Research Associate

Ken-Ichi Naka, D.Sc .. Biology and Applied Science

Associate Professors

Per Brinch-Hansen, M.S. ... Computer Science
Francis S. Buffington, Sc.D. ... Materials Science
Nicholas George, Ph.D. .. Electrical Engineering
Wolfgang G. Knauss, Ph.D. .. Aeronautics
Ericson John List, Ph.D. .. Environmental Engineering Science
Hardy C. Martel, Ph.D. ... Electrical Engineering
Thomas C. McGill, Ph.D. .. Applied Physics
David F. Welch, I.D. ... Engineering Design

*On leave of absence
**Half-time
Research Associates

Christopher Brennen, Ph.D. .. Engineering Science
James E. Broadwell, Ph.D. .. Aeronautics
Robert C. Y. Koh, Ph.D. ... Environmental Engineering Science

Associate

Martin Goldsmith, Ph.D. .. Environmental Engineering

Visiting Professor

Visiting Associates

Richard F. Baker, Ph.D. ... Biomedical Engineering
Stanley A. Berger, Ph.D.* ... Engineering Science
Richard J. Bing, M.D. ... Biomedical Engineering
Walter S. Bradfield, Ph.D.* .. Engineering
Garry L. Brown, D.Phil.* ... Aeronautics
Stephen H. Caine ... Electrical Engineering
Claudio Canali, Ph.D.* ... Applied Physics
Ivan Catton, Ph.D. ... Engineering Science
Paul K. Chien, Ph.D.* ... Environmental Engineering Science
Laszlo Csepregi, Dipl. ... Applied Physics
Wallace G. Frasher, M.D. ... Biomedical Engineering
Kenji Gamo, Ph.D. ... Electrical Engineering
Roland Gemperlein, Dr. habil.* .. Applied Science
E. Kent Gordon, B.S. ... Electrical Engineering
Mordechai Halpern, Ph.D.* ... Computer Science
Joseph L. Hammack, Jr., Ph.D.* ... Hydraulics
Thomas C. Hanks, Ph.D. ... Geophysics and Earthquake Engineering
Marvin Hass, Ph.D.* ... Applied Physics
Peter Henderson, Ph.D.* ... Computer Science
George M. Hidy, D.Eng. ... Environmental Engineering Science
Giorgio Ingargiola, Ph.D.* ... Applied Science
Marylou Ingram, M.D.* ... Biomedical Engineering
Ivar G. Jonsson, Ph.D.* ... Hydraulics
Kenjro Kamiji, D.Eng. ... Mechanical Engineering
Tsutomo Kobayashi, Ph.D. .. Electrical Engineering
Rachmiel Levine, M.D. ... Biomedical Engineering
Robert T. Menzies, Ph.D. ... Electrical Engineering
Robert H. Pudenz, M.D. ... Biomedical Engineering
Simon Ramo, Ph.D. ... Engineering
Bernhard M. U. Scherzer, Ph.D.* ... Applied Physics
Rindge Shima, B.S. ... Electrical Engineering
Hans True, Ph.D. ... Applied Mathematics
Giulio Venezian, Ph.D.* ... Engineering Science
Yoshimasa Watanabe, Ph.D. ... Environmental Engineering Science
Dean E. Wooldridge, Ph.D. ... Engineering

*In residence 1974-75
Assistant Professors

Paul E. Dimotakis, Ph.D. ... Aeronautics and Applied Physics
Bengt Fornberg, Ph.D. ... Applied Mathematics
Mihailo D. Trifunac, Ph.D. ... Applied Science

Senior Research Fellows

Johann Arbocz, Ph.D. ... Aeronautics
Allen T. Chwang, Ph.D. ... Engineering Science
Viktor Evtuhov, Ph.D. ... Electrical Engineering
Aurora M. Landel, Ph.D. ... Biomedical Engineering
Silvanus S. Lau, Ph.D.* ... Applied Physics
Nicholas R. Moore, Ph.D. ... Engineering

Instructors

Darryl L. Smith, Ph.D. ... Ramo Instructor in Applied Physics
Benjamin S. White, Ph.D. ... Bateman Research Instructor in Applied Mathematics

Lecturers

Kenneth R. Castleman, Ph.D.** ... Information Science
Robert S. Deverill, B.S. ... Information Science
Robert J. McEliece, Ph.D. ... Electrical Engineering
Charles B. Ray, M.S. ... Applied Science
Michael S. Shumate, E.E.** ... Electrical Engineering

Research Fellows

John G. Anderson, Ph.D. ... Applied Science
Charles D. Boley, Ph.D. ... Applied Science
Thomas C. Brown, Ph.D.,** ... Information Science
Anthony Tze-Wai Cheung, Ph.D. ... Engineering Science
Marijan Dravinski, Ph.D. ... Applied Mechanics
Jacques Durand, D.Sc. ... Applied Physics
Samuel A. Ellias, Ph.D.*** ... Kaplan Research Fellow in Applied Mathematics
Gary Evans, Ph.D.** ... Electrical Engineering
James R. Fox, Ph.D. ... Biomedical Engineering
William R. Goodin, Ph.D. ... Environmental Engineering Science
Susanne V. Hering, Ph.D. ... Environmental Health Engineering
Michael R. Hoffman, Ph.D. ... Environmental Engineering Science
Taroh Inada, Ph.D. ... Applied Physics
William L. Johnson, Ph.D.** ... Applied Physics
Abraham Katzir, Ph.D. ... Electrical Engineering

*Also Lecturer in Materials Science (part-time)
**In residence 1974-75
***Also Lecturer in Applied Mathematics (part-time)
Nikolas E. Kotsovinos, Ph.D. ... Civil Engineering
Vijay Kulkarny, Ph.D.* ... Aeronautics
Glenn A. Laguna, Ph.D. ... Applied Physics
Chun-Hian Lee, Ph.D.** ... Applied Mathematics
Hsi-ping Liu, Ph.D. .. Engineering and Geophysics
Alexander C. R. Livanos, Ph.D.*** .. Applied Physics
Vincent Marrello, Ph.D.** ... Applied Physics
Fausto Milinazzo, Ph.D. .. Applied Mathematics
Kunio Nakamura, B.S. .. Electrical Engineering
Andrea Prosperetti, Ph.D. .. Engineering Science
Ilan Samid, M.Sc. ... Electrical Engineering
Edgar H. Satorius, Ph.D.** ... Electrical Engineering
Thomas W. Sigmon, Ph.D.*** ... Applied Physics
Mario D. Simonetti, Jr., Ph.D. ... Applied Physics
Haruo Takizawa, D.Eng. .. Earthquake Engineering
B. Manfred Ulrich, Ph.D.* ... Applied Physics
Marc F. Wittmer, Ph.D. .. Applied Physics
Hung Leung Wong, Ph.D. .. Applied Science
Syozo Yasui, Ph.D. .. Applied Science

Graduate Students 1974-75

Ahmed Mansour Abdel-Ghaffar, Civil Engineering
Ervin Adler, Mechanical Engineering
Pinchas Agmon, Applied Physics
Bernard Allen Alfred, Jr., Applied Mathematics
Allen Alexander Arata, Aeronautics
Jerome Martin Auerbach, Mechanical Engineering
John Chen Wei Au Yeung, Electrical Engineering
Robert Joseph Axelrad, Civil Engineering
Ronald Frederick Ayres, Engineering Science
Gregory Richard Baker, Applied Mathematics
James Leslie Beck, Civil Engineering
Dale Evan Berg, Aeronautics
Luis Paulino Bernal, Aeronautics
John Beauchamp Berrill, Civil Engineering
Ronald Lee Boistrong, Applied Physics
Kwasi Kete Bofah, Aeronautics
Mark Stephen Bohn, Mechanical Engineering
Peter Borgesen, Applied Physics
William Matthew Bowser, Applied Physics
David Miner Braisted, Applied Mechanics
Robert Edward Breidenthal, Jr., Aeronautics
Thomas Carl Brown, Jr., Engineering Science
Roger D. Brum, Mechanical Engineering
Fernando Cadena-Cepeda, Environmental Engineering Science
Dennis Vern Calhoun, Mechanical Engineering
Brian Joseph Cantwell, Aeronautics
Glen Rowan Cass, Environmental Engineering Science

Alan Lee Cassel, Electrical Engineering
Man-Kin Chan, Engineering Science
Raymond Yuen-Fong Chan, Engineering Science
Liang-Chou Chang, Aeronautics
Craig McClain Cheetham, Electrical Engineering
Jing-Chang Chen, Civil Engineering
Lenora Yee-Ling Chen, Engineering Science
Yu-Wen Martin Chen, Applied Physics
Edmund Kai-Lien Cheng, Electrical Engineering
Mary Ellen Close, Environmental Engineering Science
Gene Alan Clough, Applied Physics
Robert William Collier, Environmental Engineering Science
Raymond Robert Cosner, Aeronautics
Kurt Ogden Cozens, Materials Science
James Eldon Craig, Aeronautics
Slobodan Milojko Cuk, Electrical Engineering
Yoshiaki T. Daimon, Electrical Engineering
Terrance Michael Darcey, Engineering Science
Cliff Ian Davidson, Environmental Engineering Science
Dwight William Decker, Applied Mathematics
Steven Keith Decker, Applied Physics
Walter Kamiel De Logi, Electrical Engineering
Raymond Joseph Dever, Jr., Environmental Engineering Science
Joseph Stirling Devlinny, Environmental Engineering Science
Daniel Bruce Diner, Engineering Science
Lee Don Dobbs, Applied Mathematics

*Also Lecturer in Aeronautics (part-time)
**In residence 1974-75
***Also Lecturer in Applied Physics (part-time)
Dean Barton Edwards, Mechanical Engineering
Bruce Scott Eisenhart, Electrical Engineering
Norman Coleman Elfer, Mechanical Engineering
Kenneth Robert Elliott, Applied Physics
Joe Patrick Elmers, Electrical Engineering
William Karl Faisst, Environmental Engineering Science
Douglas Allen Foutch, Civil Engineering
Samuel Robert Maurice Gardiner, Mechanical Engineering
W. Riley Garrott, Applied Mechanics
Gregory Gartrell, Jr., Environmental Engineering Science
Edward Maurice Gates, Mechanical Engineering
Nathan Craig Gates, Applied Mechanics
Thomas Anthony Gerard, Civil Engineering
Ari Glezer, Aeronautics
John Charles Gord, Electrical Engineering
Derek Garard Goring, Environmental Engineering Science
Avraham Graubart Gover, Applied Physics
Crockett Lane Grabbe, Applied Physics
William Mark Grossman, Applied Physics
Gregory Prince Hamill, Applied Physics
Jeffrey John Hamilton, Applied Physics
Robert Bruce Hammond, Applied Physics
Calvin Dean Harr, Aeronautics
Joe Marion Harris, Jr., Electrical Engineering
Alfred Clyde Hartmann, Engineering Science
Mark Allen Hedemann, Applied Physics
Steven Ludvic Heisler, Environmental Engineering Science
Lambertus Hesselink, Applied Mechanics
Hiroshi Higuchi, Aeronautics
Jean Howard Ho, Electrical Engineering
Thomas Russell Holm, Environmental Engineering Science
John Lucke Holmquist, Aeronautics
Chi-Shain Hong, Electrical Engineering
Li-ho Raymond Hou, Engineering Science
Gerhard Huhn, Aeronautics
David Li-shuei Quek Hwang, Applied Physics
Tsutomu Imai, Electrical Engineering
George Anthony Jackson, Environmental Engineering Science
Clarence Burdett Jacobs, Mechanical Engineering
Dwight Lincoln Jaggard, Electrical Engineering
Arthur Roy Jensen, Environmental Engineering Science
John Hallock Jerman, Electrical Engineering
Robert Edward Johnson, Engineering Science
Kochan Ju, Electrical Engineering
Jonathan Daniel Katz, Applied Physics
Michael Joseph Kavaya, Electrical Engineering
Stuart Ronald Keller, Engineering Science
Peter Douglas Kirkwood, Environmental Engineering Science
Arthur Joseph Koblasz, Engineering Science
Keith Koenig, Aeronautics
John Harrison Konrad, Aeronautics
Nikolas Evangelos Kotsovinos, Civil Engineering
Steven Philip Kreckeler, Electrical Engineering
Randall Lynn Kubena, Applied Physics
Vijay A. Kulkarny, Aeronautics
Glenn Alan Laguna, Applied Physics
Ignatius Po-Cheung Lam, Civil Engineering
Ross Martin Larkin, Engineering Science
James Laurens Latimer, Electrical Engineering
Kei-Fung Lau, Applied Physics
Chien-Ping Lee, Applied Physics
Marianela Lentini-Gil, Applied Mathematics
Bruce Stephen Levine, Electrical Engineering
Kenneth MacDougall Liechti, Aeronautics
Howard Michael Liljestrand, Environmental Engineering Science
Mingin Philip Lo, Environmental Engineering Science
Stephen Aplin Lyon, Applied Physics
Bruce Edward MacNeal, Applied Physics
David R. MacQuigg, Applied Physics
Kiran Ramanal Magiawala, Aeronautics
Vasilis Zissis Marmarelis, Engineering Science
Alfred Barr Mason, Applied Mechanics
Rodney Tak Masumoto, Electrical Engineering
Derek John McKay, Environmental Engineering Science
Brian Michael McKenna, Aeronautics
Pamela Schain McMurry, Environmental Engineering Science
Peter H. McMurry, Environmental Engineering Science
Gregory John McRae, Environmental Engineering Science
Carl Joseph Meade, Electrical Engineering
Luis Manuel Vaillard Medina, Engineering Science
Richard Deverm Melville, Jr., Electrical Engineering
Alan Rolf Mickelson, Electrical Engineering
Donald William Miklovic, Applied Mathematics
Richard Keith Miller, Applied Mechanics
Antonmaria Alessio Minzoni, Applied Mathematics
Marc Jules Moronval, Aeronautics
Terrence Marshall Morris, Applied Physics
Adrian Leigh Moyle, Mechanical Engineering
Ehud Naheer, Civil Engineering
Stephen Taylor Neely, Engineering Science
Sheung Lip Ng, Mechanical Engineering
Willie Wing Lau Ng, Electrical Engineering
Pericles Leonidas Nicolaides, Engineering Science
Kiam Thian Oey, Aeronautics
Johnson Olufemi Olowolafe, Applied Physics
Thomas Eugene Osheroff, Applied Physics
Dennis John Packard, Electrical Engineering
James Frederick Pankow, Environmental Engineering Science
Harry Lawrence Parker, Electrical Engineering
George Edward Pashel, Environmental Engineering Science
James Charles Pearce, Mechanical Engineering
John Paul Pelegano, Aeronautics
David Mort Pepper, Applied Physics
Ramon Peralta-Fabi, Applied Physics
Linda Carina Perry, Applied Physics
Jack Peter, Mechanical Engineering
Stephen Vaughn Petersen, Engineering Science
Siu-Joe Poon, Applied Physics
Robert Lewis Powers, Engineering Science
Robert William Prindle, Civil Engineering
Dale Austen Prouty, Applied Physics
David Wayne Quance, Mechanical Engineering
Orville Glenn Ramer, Applied Physics
Charles Lee Ramiller, Electrical Engineering
Ram Rao, Engineering Science
Antonio Redondo-Muino, Applied Physics
Loman Rensink, Electrical Engineering
Paul Thomas Roberts, Environmental Engineering Science
Philip Joseph William Roberts, Environmental Engineering Science
Scott Darrell Roth, Engineering Science
Michael David Rourke, Electrical Engineering
Stanley Paul Sander, Environmental Engineering Science
Haluk Sankur, Electrical Engineering
Thomas Peter Santoro, Engineering Science
William Stapf Sargent, Aeronautics
Virendra Sarohia, Aeronautics
Omer Savas, Aeronautics
Louis Kossuth Scheffer, Electrical Engineering
Barry Schneidman, Mechanical Engineering
Julius Segal, Civil Engineering
Piyush Chimanal Shah, Aeronautics
Michael Joe Shantz, Engineering Science
Dhiraj Kumar Sharma, Electrical Engineering
John Richard Shea III, Aeronautics
David Sheby, Engineering Science
Mei-Ling Shek, Applied Physics
David Carl Sherman, Mechanical Engineering
Yoji Shibato, Mechanical Engineering
Gordon Lynn Small, Engineering Science
Dana Lynn Small, Engineering Science
John William Snyder, Environmental Engineering Science
Yasuo Soeda, Mechanical Engineering
Emilio Temoche Soevero, Applied Physics
Polihronis-Thomas Dimitrios Spanos, Civil Engineering
Sankaran Srinivas, Engineering Science
Arlan Duane Steinolfson, Aeronautics
Kent Allen Stevens, Engineering Science
Pieter Wilhelm Stoker, Mechanical Engineering
Michael Edward Stoll, Applied Physics
Douglas Michael Storsved, Aeronautics
Yoshitaka Suezawa, Electrical Engineering
Steven Bart Sunshine, Applied Mathematics
Joseph Eugene Sweeney, Jr., Aeronautics
William Allan Symington, Mechanical Engineering
Robert Michael Szejn, Applied Mathematics
Choon Sooi Tan, Aeronautics
Gregory Ligot Tangonan, Applied Physics
Timothy James Thurgate, Applied Physics
Joseph D. Tittow, Applied Mechanics
Gordon Paul Treweek, Environmental Engineering Science
Timothy Neal Turner, Aeronautics
Shriram Mahabal Udupa, Engineering Science
Hans Van der Kogel, Civil Engineering
Ramon del C. Varela, Engineering Science
Charles Lee Ramiller, Electrical Engineering
Shriram Mahabal Udupa, Engineering Science
Alan August Vetter, Mechanical Engineering
Jasenka Vuceta, Environmental Engineering Science
Kadri Vural, Electrical Engineering
Alan James Wadcock, Aeronautics
Bruce Donald Westermo, Applied Mechanics
John Bernard Wilgen, Electrical Engineering
Randall Gary Williams, Applied Mathematics
Rick Alan Williams, Engineering Science
Jack Leroy Wise, Aeronautics
David Richmond Witwer, Environmental Engineering Science
Greg Lynn Wojcik, Aeronautics
Chak Lang Won, Electrical Engineering
Hung Leung Wong, Applied Mechanics
Vincent Sydney Wong, Electrical Engineering
Steven Jay Wright, Civil Engineering
Fang-Chou Yang, Electrical Engineering
George Thomas Yates, Engineering Science
Huan-wun Yen, Electrical Engineering
Paul Jerome Yoder, Applied Mechanics
Tetsushi Yoshida, Mechanical Engineering
James Robert Young, Environmental Engineering Science
Stephen Nelson Young, Mechanical Engineering
Kwang-I Yu, Engineering Science
James Robert Zagel, Mechanical Engineering
James Zivic, Mechanical Engineering
Division of Geological and Planetary Sciences
Barclay Kamb, Chairman
Arden L. Albee, Academic Officer
Don L. Anderson, Director, Seismological Laboratory

Professors Emeriti

Ian Campbell, Ph.D. ... Geology
C. Hewitt Dix, Ph.D. .. Geophysics
Charles F. Richter, Ph.D. .. Seismology

Professors

Arden L. Albee, Ph.D. ... Geology
Clarence R. Allen, Ph.D. .. Geology and Geophysics
Don L. Anderson, Ph.D. ... Geophysics
Harrison S. Brown, Ph.D., LL.D., Sc.D., D.Sc. Geochemistry
Samuel Epstein, Ph.D. .. Geochemistry
Peter Goldreich, Ph.D. .. Planetary Science and Astronomy
Barclay Kamb, Ph.D. ... Geology and Geophysics
Hiroo Kanamori, Ph.D. ... Geophysics
Heinz A. Lowenstam, Ph.D. .. Paleoecology
Duane O. Muhlenberg, Ph.D. ... Paleontology
Bruce C. Murray, Ph.D. .. Planetary Science
Robert P. Sharp, Ph.D. .. Geology
Eugene M. Shoemaker, Ph.D., Sc.D. .. Geology
Leon T. Silver, Ph.D. ... Geology
Hugh P. Taylor, Jr., Ph.D. ... Geology
Gerald J. Wasserburg, Ph.D. ... Geology and Geophysics

Visiting Professor

David H. Green, Ph.D. ... Petrology

Senior Research Associate

Clair C. Patterson, Ph.D., D.Sc. .. Geochemistry

Associate Professors

Thomas J. Ahrens, Ph.D. ... Geophysics
Donald S. Burnett, Ph.D. .. Nuclear Geochemistry
David G. Harkrider, Ph.D. ... Geophysics
Donald V. Helmsberger, Ph.D. ... Geophysics
Andrew P. Ingersoll, Ph.D. .. Planetary Science
James A. Westphal, B.S. ... Planetary Science

Visiting Associate Professor

Richard J. Proctor, M.A. .. Geology
Staff of Instruction and Research

Research Associates

Richard M. Goldstein, Ph.D. ... Planetary Science
Fouad Tera, Ph.D. .. Geochemistry

Visiting Associates

Alfred J. Ferrari, D.Sc. ... Planetary Science
Gary S. Fuis, Ph.D. ... Geophysics
Thomas C. Hanks, Ph.D. ... Geophysics and Earthquake Engineering
S. Douglas McDowell, Ph.D. ... Geology
Tai-Liang Teng, Ph.D. ... Geophysics
Dorothy S. Woolum, Ph.D. ... Geochemistry

Assistant Professors

George R. Rossman, Ph.D. .. Mineralogy
Jean-Bernard H. Minster, Ph.D. ... Geophysics

Senior Research Fellows

Glenn L. Berge, Ph.D. ... Planetary Science and Radio Astronomy
John C. Huneke, M.S. ... Planetary Science
Dimitri A. Papanastassiou, Ph.D. .. Planetary Science
James H. Whitcomb, Ph.D. ... Geophysics

Lecturer

David T. Burhans, Ph.D. .. Speech Communication

Instructor

H. Jay Melosh, Ph.D. ... Geophysics and Planetary Science

Research Fellows

David C. Curtis, Ph.D. ... Geochemistry
Andrew D. Eaton, Ph.D. .. Environmental Geochemistry
Robert W. Elias, Ph.D. ... Geochemistry
Neil R. Goulty, Ph.D. ... Geophysics
Thomas A. Heppenheimer, Ph.D. .. Planetary Science
Ian N. S. Jackson, Ph.D. ... Geophysics
Steven J. Lambert, Ph.D. ... Geochemistry
Hsi-ping Liu, Ph.D. ... Geophysics
Mordeckai Magaritz, Ph.D. ... Geochemistry
Christine A. Powell, Ph.D. ... Geophysics
Sundar Rajan, Ph.D. ... Planetary Science and Physics
Kunihiko Shimazaki, Ph.D. ... Geophysics
Hsueh-Wen Yeh, Ph.D. ... Geochemistry
Graduate Students 1974-75

Jon Elling Ahlquist, Planetary Science
James Rodney Anderson, Geology
Warren Scott Baldridge, Geology
Marian Judith Basin, Geology
Timothy Miller Benjamin, Geology
Bruce Gordon Bills, Planetary Science
Karl Richard Blasius, Planetary Science
Lawrence James Burdick, Geophysics
Michael Welch Burnett, Geology
Rhett Giffen Butler, Geophysics
Duane Edwin Champion, Geology
Wai Ying Chung, Geophysics
David Martin Cole, Geophysics
Clay Michael Conway, Geology
Robert Everett Criss, Geology
Michael Irvin Daily, Geology
Donald James DePaolo, Geology
David Joseph Diner, Planetary Science
Anthony Robert Dobrovolskis, Planetary Science
John Joseph Dvorak, Planetary Science
Robert F. Dymek, Geology
Daniel Dzurisin, Planetary Science
Joel Earl Everson, Geology
Michael Glen Foley, Geology
Richard W. Forester, Geology
Alexander John Gancarz, Geology
Robert James Geller, Geophysics
Stephen Lee Gillett, Geology
Don Steven Goldman, Geology
Robert Theodore Gregory, Geology
Lewis Peter Gromet, Geology
David Milton Hadley, Geophysics
Robert Stuart Hart, Geophysics
Thomas Harrison Heaton, Geophysics
James Alan Hileman, Geophysics
Todd King Hinkley, Geology
Tai-Lin Hong, Geophysics
Raymond Francois Jeanloz, Geology
Carl Edward Johnson, Geophysics
John Hume Jones, Geology
Joseph Lynn Kirschvink, Geology
Stephen Nathan Kitzis, Planetary Science
Dan Douglas Kosloff, Geophysics
Theodore Charles Labotka, Geology
Jo Laird, Geology
Steven Judson Lambert, Geology
Charles Adam Langston, Geophysics
Richard Jerry Louie, Geology
Anastasia Lumsden, Geology
Anne Marie Lyne, Planetary Science
Michael Charles Malin, Planetary Science
Joseph Richard Marx, Geology
Malcolm Thomas McCulloch, Geology
Lyle Dean Meier, Geophysics
George Robert Mellman, Geophysics
Jay Dennis Murray, Geology
David Lee Nelson, Geology
Philip David Nicholson, Planetary Science
Barbara Jean Noyes, Geology
James George Ogg, Planetary Science
Emile Andre Okal, Geophysics
Glenn Scott Orton, Planetary Science
David Pollard, Planetary Science
Carolyn C. Porco, Planetary Science
Russell Marsh Potter, Geology
Robert Edward Powell, Geology
James Edward Quick, Geology
Susan Ann Raikes, Geophysics
Mark Jonathan Reid, Planetary Science
Bernhard Karl Schaule, Geology
Frederic Peter Schloerb, Planetary Science
Stephen Pritchard Smith, Geology
Lawrence Warren Sneee, Geology
Marita Irene Stapanian, Planetary Science
Michael Anthony Stephens, Geology
Gordon Selbie Stewart, Geophysics
Richard John Terrille, Planetary Science
David Ralph Van Alstine, Geology
Stephen Weiner, Geology
Spencer Hoffman Wood, Geology
Division of the Humanities and Social Sciences
Robert A. Huttenback, Chairman

Professors Emeriti

Paul Bowerman, A.M. ... Modern Languages
Paul C. Eaton, A.M. .. English
Hallett D. Smith, Ph.D., L.H.D .. English
Roger F. Stanton, Ph.D. ... English
Alfred Stern, Ph.D. ... Philosophy
Ray E. Untereiner, Ph.D. .. Economics

Lecturer Emeritus

Charles Newton, Ph.B. .. English

Professors

John F. Benton, Ph.D. .. History
Harrison S. Brown, Ph.D., Sc.D., LL.D., D.Sc. Geochemistry and Science and Government
J. Kent Clark, Ph.D. .. English
Lance E. Davis, Ph.D. .. Economics
David C. Elliot, Ph.D. ... History
Peter W. Fay, Ph.D. ... History
Robert D. Gray, B.S. ... Economics and Industrial Relations
David M. Grether, Ph.D. ... Economics
Robert A. Huttenback, Ph.D. .. History
William T. Jones, Ph.D.* .. Philosophy
Burton H. Klein, Ph.D. .. Economics
Beach Langston, Ph.D. .. English
Michael E. Levine, J.D.* ... Luce Professor of Law and Social Change
Oscar Mandel, Ph.D. .. English
George P. Mayhew, Ph.D.** .. English
Edwin S. Munger, Ph.D. ... Geography
Roger G. Noll, Ph.D. .. Economics
Robert W. Oliver, Ph.D. .. Economics
Rodman W. Paul, Ph.D. ... Edward S. Harkness Professor of History
Charles R. Plokt, Ph.D. .. Economics
James P. Quirk, Ph.D. .. Economics
Robert A. Rosenstone, Ph.D. ... History
Thayer Scudder, Ph.D. .. Anthropology
Alan R. Sweezy, Ph.D. .. Economics
Frederick B. Thompson, Ph.D. ... Applied Science and Philosophy

Visiting Associate

David A. Hamburg, M.D. ... Social Science

*Part time
**Leave of absence
Staff of Instruction and Research

Visiting Professor

Ramon Gubern.................................. Andrew W. Mellon Visiting Professor of Visual Arts

Associate Professors

Robert H. Bates, Ph.D.. Political Science
Louis Breger, Ph.D... Psychology
Heinz E. Ellersieck, Ph.D... History
Stuart A. Ende, Ph.D.. English
John Ferejohn, Ph.D.. Political Science
Morris P. Fiorina, Ph.D... Political Science
Daniel J. Kevles, Ph.D... History
J. Morgan Kousser, Ph.D.. History
David R. Smith, Ph.D.. English
Robert D. Wayne, M.A.. German

Research Associate

Bozena Henisz-Dostert Thompson, Ph.D............................... Linguistics

Assistant Professors

Russell Z. Abrams, Ph.D... Philosophy
Robert E. Forsythe, Ph.D.. Economics
Holly Jackson, Ph.D... English
Jenijoy Labelle, Ph.D... English
W. David Montgomery, Ph.D.**.. Economics
Forrest D. Nelson, Ph.D... Economics
Joyce Penn, Ph.D... English
Martin H. Rubin, Ph.D.. English
R. Allison Ryan, Ph.D.. Philosophy
Randolph N. Splitter, Ph.D.. English

Lecturers

Nancy G. Beakel, Ph.D.. Psychology
Irving S. Bengelsdorf, Ph.D... Science Communication
Lee F. Browne, M.S... Education
Klara Carmely, M.A... German
Stirling L. Huntley, Ph.D... Drama
Edward Hutchings, Jr., B.A... Journalism
Galina Moller, M.S... Russian
David W. Morrisroe, M.B.A... Business Economics
Orpha C. Ochse, Ph.D.. Music
Jon Richard Pariser, M.A... Russian
Aimee Brown Price, Ph.D... Art History
Annette Smith, Dr. d’Université.. French
Robert R. Wark, Ph.D.. Art
Valentina Zaydman, M.A.. Russian

**Leave of absence
Senior Research Fellow
Clayton R. Koppes, Ph.D. ... History

Research Fellow
Tracy Lewis, Ph.D. ... Economics

Research Assistant
Doris P. Stover, B.A. ... Public Affairs

Graduate Students
Naim Hassan Al-Adhadh
Brian R. Binger
Linda Rachel Cohen
Steven Allen Matthews
Darwin C. Niekerk

Phillip A. Sher
Lee Ira Sparling
Matthew L. Spitzer
Barry Robert Weingast
Division of Physics, Mathematics and Astronomy

Maarten Schmidt, Chairman
Jon Mathews, Executive Officer for Physics
W. A. J. Luxemburg, Executive Officer for Mathematics
W. L. W. Sargent, Executive Officer for Astronomy

Professors Emeriti

H. F. Bohnenblust, Ph.D. .. Mathematics
Jesse W. M. DuMond, Ph.D., D.H.C. .. Physics
H. Victor Neher, Ph.D., Sc.D.. Physics
William R. Smythe, Ph.D. ... Physics

Professors

Carl D. Anderson, Ph.D., Sc.D., LL.D., Nobel Laureate Physics
Tom M. Apostol, Ph.D. ... Mathematics
Robert F. Bacher, Ph.D., Sc.D. ... Physics
Barry C. Barish, Ph.D. .. Physics
Charles A. Barnes, Ph.D. ... Physics
Felix H. Boehm, Ph.D. .. Physics
Robert F. Christy, Ph.D. ... Theoretical Physics
Donald S. Cohen, Ph.D. .. Applied Mathematics
Marshall H. Cohen, Ph.D. ... Radio Mathematics
Eugene W. Cowan, Ph.D. ... Physics
Leverett Davis, Jr., Ph.D. ... Theoretical Astronomy
Richard A. Dean, Ph.D. .. Mathematics
Charles R. DePrima, Ph.D. ... Mathematics
Robert P. Dilworth, Ph.D. ... Mathematics
Richard F. Feynman, Ph.D., Nobel Laureate Richard Chace Tolman Professor of Theoretical Physics
William A. Fowler, Ph.D. ... Institute Professor of Physics
Steven C. Frautschi, Ph.D. ... Theoretical Physics
F. Brock Fuller, Ph.D. .. Mathematics
Gordon P. Garmire, Ph.D. ... Physics
Murray Gell-Mann, Ph.D., Sc.D., Nobel Laureate* Robert Andrews Millikan Professor of Theoretical Physics
Peter Goldreich, Ph.D. ... Planetary Science and Astronomy
Roy W. Gould, Ph.D. ... Applied Physics
Jesse L. Greenstein, Ph.D. .. Lee A. DuBridge Professor of Astrophysics
James E. Gunn, Ph.D. .. Astronomy
Marshall Hall, Jr., Ph.D. ... IBM Professor of Mathematics
Ralph W. Kavanagh, Ph.D. .. Physics
Herbert B. Keller, Ph.D. ... Applied Mathematics
Robert B. Leighton, Ph.D. .. Physics
W. A. J. Luxemburg, Ph.D. ... Mathematics
Jon Mathews, Ph.D. ... Theoretical Physics
James E. Mercereau, Ph.D., D.Sc. .. Physics and Applied Physics
Alan T. Moffet, Ph.D. .. Radio Astronomy
Guido Münch, Ph.D. .. Astronomy

*Leave of absence, first term, 1975-76
Gerry Neugebauer, Ph.D. ... Physics
J. Beverley Oke, Ph.D. ... Astronomy
Jerome Pine, Ph.D. ... Physics
Herbert J. Ryser, Ph.D. ... Mathematics
Wallace L. W. Sargent, Ph.D. .. Astronomy
Maarten Schmidt, Ph.D., Sc.D. ... Theoretical Physics
Kip S. Thorne, Ph.D. ... Astronomy
John Todd, B.Sc. ... Mathematics
Olga T. Todd, Ph.D. ... Mathematics
Alvin V. Tollestrup, Ph.D.* ... Physics
Thomas A. Tombrello, Jr., Ph.D. .. Physics
Rochus E. Vogt, Ph.D. ... Physics
Robert L. Walker, Ph.D. ... Physics
Ward Whaling, Ph.D. ... Physics
Gerald B. Whitham, Ph.D. ... Applied Mathematics
Fredrik Zachariasen, Ph.D.* ... Theoretical Physics
Harold Zirin, Ph.D. ... Astrophysics
George Zweig, Ph.D. ... Theoretical Physics

Visiting Associates

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric G. Adelberger, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Thomas W. Appelquist, Ph.D.</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>Vladimir Belinskii, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>William B. Campbell, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Georgeanne E. Caughlan, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Chia Hwa Chen, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Inge-Juliana Christy-Sackmann, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>William A. Coles, Ph.D.</td>
<td>Radio Astronomy</td>
</tr>
<tr>
<td>Charles H. Holbrow, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Paul Hoyer, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Sir Fred Hoyle, D.Sc.</td>
<td>Physics</td>
</tr>
<tr>
<td>William J. Kauffman, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Joseph J. Y. Liang, Ph.D.</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Jayant Narlikar, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Robin W. Ollerhead, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Yutaka Onodera, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Peter D. M. Parker, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>John R. Patterson, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Wilhelm Plesken, Ph.D.</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Michael Pohst, Ph.D.</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Hugh D. Politzer, Ph.D.</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>Chris Quigg, Ph.D.</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>Hans P. Rehm, Ph.D.</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>Claus Rolfs, Ph.D.</td>
<td>Theoretical Physics</td>
</tr>
<tr>
<td>Jonathan L. Rosner, Ph.D.</td>
<td>Mathematics</td>
</tr>
<tr>
<td>S. I. Salem, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Francesco Scarmuzza, Libera Docenza</td>
<td>Physics</td>
</tr>
<tr>
<td>Katsuo Tanaka, Ph.D.</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>Ole Ulfbeck, Ph.D.</td>
<td>Physics</td>
</tr>
<tr>
<td>Aage Winther, Ph.D.</td>
<td>Physics</td>
</tr>
</tbody>
</table>

*Leave of absence, 1975-76
Staff of Instruction and Research

Associate Professors
Michael Aschbacher, Ph.D. ... Mathematics
Geoffrey Fox, Ph.D. .. Theoretical Physics
Ricardo Gomez, Ph.D. ... Physics
David L. Goodstein, Ph.D. .. Physics and Applied Physics
Gary Lorden, Ph.D. .. Mathematics
Charles W. Peck, Ph.D. .. Physics
Frank J. Sciulli, Ph.D. .. Physics
Edward C. Stone, Jr., Ph.D. .. Physics
David B. Wales, Ph.D. .. Mathematics

Visiting Associate Professor
Peter Rowlinson, Ph.D. .. Mathematics

Research Associates
Eric E. Becklin, Ph.D. .. Physics
Edwin W. Dennison, Ph.D. ... Astronomy
John H. Schwarz, Ph.D. .. Theoretical Physics
George A. Seielstad, Ph.D. ... Radio Astronomy
Gordon J. Stanley, Dipl. .. Radio Astronomy
Petr Vogel, Ph.D. ... Physics

Assistant Professors
Joel H. Anderson, Ph.D. .. Mathematics
Colin Bennett, Ph.D. .. Mathematics
Glennys Farrar, Ph.D. .. Theoretical Physics
Alexander S. Kechris, Ph.D. .. Mathematics
Hershey H. Kisilevsky, Ph.D. .. Mathematics
Steven E. Koonin, Ph.D. ... Theoretical Physics
Arnold J. Sierk, Ph.D. .. Physics
Michael Werner, Ph.D. ... Physics

Visiting Assistant Professor
Michael Singer, Ph.D. .. Mathematics

Senior Research Fellows
Glenn L. Berge, Ph.D. .. Planetary Science and Radio Astronomy
G. John Dick, Ph.D. ... Physics
Richard D. Field, Ph.D. .. Theoretical Physics
Harald Fritzsch, Ph.D. .. Theoretical Physics
Brosl Hasslacher, Ph.D. .. Theoretical Physics
Dwight J. Mellema, Ph.D. .. Physics
Richard A. Mewaldt, Ph.D. .. Physics
Peter Minkowski, Ph.D.* ... Theoretical Physics
Harris A. Notarys, Ph.D. ... Physics

*Richard Chace Tolman Senior Research Fellow
Richard J. Powers, Ph.D. ... Physics
John A. Scheid, Ph.D. ... Physics
Alan Pei-In Sheng, Ph.D. ... Physics
Paul R. Stevens, Ph.D. ... Theoretical Physics

Instructors

Frederick K. Dashiell, Jr., Ph.D. ¹ .. Mathematics
Kenneth Holladay, Ph.D. ¹ .. Mathematics
John S. Schlipf, Ph.D. ¹ ... Mathematics
Jeff Vaaler, Ph.D. ¹ ... Mathematics

Lecturers

Albert R. Hibbs, Ph.D. ... Physics
Darrell R. Jackson, Ph.D. ... Physics
Donald W. Skelton, Ph.D. .. Physics

Research Fellows

William M. Adams, Ph.D. .. Astrophysics
Arie Bodek, Ph.D. ² ... Physics
Neal J. Evans, Ph.D. ... Radio Astronomy
Sydney W. Falk, Ph.D. ... Physics
Yitzhak Frishman, Ph.D. .. Theoretical Physics
John A. Herb, Ph.D. ... Physics
Wolfgang Hillebrandt, Ph.D. .. Physics
Gillian Knapp, Ph.D. ... Radio Astronomy
William Lennard, Ph.D. ... Physics
Kwok-Yung Lo, Ph.D. ... Radio Astronomy
Frederick W. Mann, Ph.D. .. Physics
Roscoe E. Marrs, Ph.D. ... Physics
Jonathan D. Melvin, Ph.D. ² .. Physics
David R. Mikkelsen, Ph.D. .. Physics
James P. Miller, Ph.D. ... Physics
Mark R. Morris, Ph.D. ... Radio Astronomy
Michael J. Newman, Ph.D. .. Physics
Wolfgang Ochs, Ph.D. ... Theoretical Physics
Anthony C. S. Readhead, Ph.D. .. Radio Astronomy
Douglas O. Richstone, Ph.D. ... Astronomy
Ivan Rival, Ph.D. ... Mathematics
Hugh N. Ross, Ph.D. ... Radio Astronomy
Richard Schilizzi, Ph.D. ... Radio Astronomy
Rafael D. Sorkin, Ph.D. ... Physics
Linda G. Stutte, Ph.D. ... Physics
Massimo Testa, Ph.D. ... Theoretical Physics
Scott Tremaine, Ph.D. ... Theoretical Physics
Run-Han Wang, Ph.D. ... Physics
Peter N. Wilkinson, Ph.D. .. Radio Astronomy
Alex Zehnder, Ph.D. ... Physics
Anna Zytkow, Ph.D. ... Physics

¹Harry Bateman Research Instructor, 1975-76
²Robert Andrews Millikan Research Fellow
Members of the Professional Staff

Martin S. Ewing, Senior Research Engineer
Herbert E. Henrikson, Senior Design Engineer
Keith Matthews, Scientist
Richard B. Read, Senior Engineer
Barbara A. Zimmerman, Computing Analyst

Graduate Students 1974-75

Victor Renos Akylas, Physics
Charles Roger Alcock, Astronomy
John Arao, Applied Mathematics
William George Bagnuolo, Astronomy
Alan Voltz Barnes, Physics
Frank Edward Barnes, Physics
Bertrand Charles Barrois, Physics
Peter Andrew Batay-Csorba, Physics
Steven Van Walter Beckwith, Physics
Gary Bedrosian, Physics
Edward John Bissett, Applied Mathematics
John Roll Bloom, Mathematics
John Richard Bond, Physics
Kay Wyatt Brown, Physics
Douglas Peter Burum, Applied Physics
Neville Ray Campbell, Mathematics
Bernard John Carr, Physics
Carlton Morris Caves, Physics
James Robert Celoni, Mathematics
Benito Chen-Charpentier, Applied Mathematics
Nim-Kwan Cheung, Physics
Yam Ki Chu, Physics
Menachem Cimerman, Astronomy
James Carl Conwell, Physics
Walter Richardson Cook, Physics
France Anne Cordova, Physics
William Marvin Coughran, Jr., Mathematics
David Philip Crewther, Physics
James Emmett Curry, Applied Mathematics
Thomas Lynn Curtright, Physics
Vaughn Omer Davidson, Physics
Peter David D'Eath, Physics
Dean Alan Deeds, Physics
William Kenneth Delaney, Mathematics
Jean Roger Delayen, Applied Physics
Robert Mark DeLeonardis, Physics
Nathan Myron Denklin, Physics
John A. Dentinger, Jr., Mathematics
Keith Howard Despain, Physics
Deepak Dhar, Physics
Eva Maria Dohrn, Physics
Joseph Robert D'Onofrio, Physics
David Steven Dummit, Mathematics
Jonathan Hart Elias, Astronomy
David Walter Erbach, Mathematics
Warren E. Ferguson, Jr., Applied Mathematics
Elliott Fischer, Applied Mathematics
Richard Alan Flammang, Physics
Bradley Arnold Flanders, Physics
George Fox, Applied Physics
James Dean Franson, Physics
Tomas Ganz, Applied Physics
Carl Linwood Gardner, Mathematics
Ian Gatley, Physics
Richard Henry Goldberg, Physics
Richard Frederick Green, Astronomy
Thomas Russell Greenlee, Physics
Ronald Leonard Gregg, Applied Physics
Jeffrey Mark Greif, Physics
Joseph Edward Griffith, Physics
Alan Andrew Hahn, Physics
Steward Russell Hartman, Physics
Paul Hickson, Astronomy
Christopher Thaddeus Hill, Physics
John Greg Hoessel, Astronomy
Jeffrey Alan Holmes, Physics
Yupai Hsu, Physics
John Peter Huchra, Astronomy
Steven Thomas Huff, Physics
Thomas Frederick Humphrey, Physics
Darrell Richard Jackson, Physics
C. Jayaprakash, Physics
Harold Jeffrey Katz, Physics
Donald Eugene Keenan, Mathematics
Rosemary Gillian Kennett, Applied Mathematics
Stephen Matthew Kent, Astronomy
Jaisam Kim, Physics
Charles King III, Astronomy
Melvin John Knight, Mathematics
John Kormendy, Astronomy
Michael Alan Kosecoff, Applied Mathematics
Sandor Janos Kovacs, Jr., Physics
Daniel Sai Wah Kwoh, Physics
Barry James Labonte, Astronomy
Warren Yiu-cho Lat, Physics
Daniel Fung Lam, Physics
Henry Herman Laxen, Mathematics
James Roy Lee, Physics
Louchuang Lee, Physics
Typhoon Lee, Physics
Zong-Long Liau, Physics
James Tse-Ming Lin, Physics
Knox Stedman Long, Jr., Physics
Michael Murdock Lowry, Physics
Frederick Michael Mann, Physics
Daniel George Marks, Mathematics
Francis Elbert Marshall, Physics
Max Marshall, Physics
Philip Louis Massey, Astronomy
Robert Patrick McNamara, Applied Physics
Jorge Hershel Melnick, Astronomy
Frank Smith Merritt, Physics
Arthur Ira Metz, Applied Mathematics
William Edwin Moore, Physics
James Marshall Mosher, Physics
Frank Joseph Nagy, Physics
John Charles Neu, Applied Mathematics
Daniel Edward Novoseller, Physics
James B. Orlin, Mathematics
Don Nelson Page, Physics
David William Palmer, Physics
Dee-Son Pan, Physics
Joseph A. Parker, Jr., Mathematics
Jay Cee Pigg, Jr., Astronomy
Steven Pohorsky, Mathematics
David Eugene Presti, Physics
William Charles Friedhorsky, Physics
Douglas Mark Rabin, Astronomy
Russell Ormond Redman, Astronomy
Martha Carroll Riherd, Physics
Jonathan Daniel Romney, Astronomy
Rodolfo Ruben Rosales, Applied Mathematics
Leo Carl Rosenfeld, Physics
Arthur Leonard Rubin, Mathematics
Karl Hansell Rudnick, Mathematics
William Armstrong Russell, Physics
Anthony Francis Santacroce, Mathematics
Anneila Isabel Sargent, Astronomy
Paul Leonard Schechter, Physics
Joel Nathan Schulman, Physics
William Lawrence Sebok, Astronomy
John Steven Sheffield, Applied Mathematics
Chun-Ching Shih, Physics
Sai Wan Elias Shiu, Mathematics
David Frank Sholle, Astronomy
Henry Clark Simpson, Applied Mathematics
Eric Jonathan Siskind, Physics
Stephen Avery Slutz, Physics
William Leonard Spence, Physics
Paul Lewis Springer, Mathematics
Stuart Reh Stampke, Physics
Roque Kwok-hung Szeto, Applied Mathematics
Peter Taborek, Physics
Theodore Dean Tarbell, Physics
Edwin Lewis Turner, Astronomy
Barry Edmund Turnrose, Astronomy
John Reinhold Valanis, Physics
Eric Paul Verheiden, Jr., Mathematics
Solomon Benjamin Vidor, Physics
Howard Andrew Walter, Jr., Physics
Keh-chung Wang, Physics
Robert Tung-Hsing Wang, Physics
Alfred Reinhold Weiss, Mathematics
Robert Allen Weller, Jr., Physics
William Elmer Westbrook, Physics
Mark Edward Wiedenbeck, Physics
Theodore Burton Williams, Astronomy
Steven Paul Willner, Astronomy
Harold Stevenson Wilson, Physics
Shiu-Chin Wu, Physics
Pochi Albert Yeh, Physics
Huan-Chun Yen, Physics
Michael Franz Yeh, Physics
Demetrious George Zaferis, Mathematics
Mark Edward Zimmermann, Physics
John Lehrer Zyskind, Physics

Owens Valley Radio Observatory
Staff Members

Alan T. Moffet, Director

Glenn L. Berge, Ph.D.
Marshall H. Cohen, Ph.D.
Martin S. Ewing, Ph.D.
Jesse L. Greenstein, Ph.D.
Alan T. Moffet, Ph.D.
Duane O. Muhleman, Ph.D.

Richard B. Read, Ph.D.
Bruce H. Rule, B.S.
Maarten Schmidt, Ph.D.
George A. Seielstad, Ph.D.
Gordon J. Stanley, Dipl.
Melvyn C. H. Wright, Ph.D.
Sherman Fairchild Distinguished Scholars
1974-75

Shyam K. Dube, Ph.D.
Head of Research Unit, Max Planck Institute for Experimental Medicine
John Derek Smith, Ph.D.
Chief Investigator, Medical Research Council Laboratory of Molecular Biology, University Post-graduate Medical School, Cambridge, England

1975-76

Howard Brenner, Eng.Sc.D.
Professor of Chemical Engineering, Carnegie-Mellon University
Detlev W. Bronk, Ph.D.
President Emeritus, Rockefeller University
Felix E. Browder, Ph.D.
Louis Block Professor of Mathematics; Chairman of the Department of Mathematics, University of Chicago
Charles R. Cantor, Ph.D.
Professor of Chemistry and Biological Science, Columbia University
A. William Castleman, Jr., Ph.D.
Group Leader, Brookhaven National Laboratory
Enrique Cerda-Olmedo, Ph.D.
Professor of Genetics, University of Seville
Elizabeth F. Colson, Ph.D.
Professor of Anthropology, University of California
James Gilluly, Ph.D.
Professor of Geology, University of California (Santa Cruz); U. S. Geological Survey (retired)
Dudley R. Herschbach, Ph.D.
Professor of Chemistry, Harvard University
Melvin J. Hinich, Ph.D.
Professor of Political Economy and Statistics, Center for the Study of Public Choice, Virginia Polytechnic Institute
Louis N. Howard, Ph.D.
Professor of Applied Mathematics, Massachusetts Institute of Technology
Bohdan Paczynski, Ph.D.
Assistant Professor, Institute of Astronomy, Warsaw University
Ralph G. Pearson, Ph.D.
Professor of Chemistry, Northwestern University
Albert Rose, Ph.D.
David Sarnoff Research Center, RCA
S. Jonathan Singer, Ph.D.
Professor of Biology, University of California (San Diego)
James B. Thompson, Ph.D.
Professor of Geology, Harvard University
Herbert F. Weisberg, Ph.D.
Associate Professor of Political Science, The Ohio State University
J. Tuzo Wilson, Ph.D.
Professor of Geophysics, University of Toronto; Director-General, Ontario Science Centre
Environmental Quality Laboratory

Norman H. Brooks, Director
Martin Goldsmith, Deputy Director

Staff Members

John D. Baldeschwieler, Ph.D., Professor of Chemistry; Chairman of the Division of Chemistry and Chemical Engineering
*Norman H. Brooks, Ph.D., Professor of Environmental Science and Civil Engineering
Samuel Epstein, Ph.D., Professor of Geochemistry
Morris P. Fiorina, Ph.D., Associate Professor of Political Science
Sheldon K. Friedlander, Ph.D., Professor of Chemical and Environmental Health Engineering
Murray Gell-Mann, Ph.D., Sc.D., D.Sc., Nobel Laureate, Robert Andrews Millikan Professor of Theoretical Physics
*Martin Goldsmith, Ph.D., Associate in Environmental Engineering
Arie J. Haagen-Smit, Ph.D., Professor of Bio-organic Chemistry, Emeritus
Burton H. Klein, Ph.D., Professor of Economics
*Lester Lees, M.S., Professor of Environmental Engineering and Aeronautics
*E. John List, Ph.D., Associate Professor of Environmental Engineering Science
Jack E. McKee, Sc.D., Professor of Environmental Engineering
‡W. David Montgomery, Ph.D., Assistant Professor of Economics
*Roger G. Noll, Ph.D., Professor of Economics
Charles R. Plott, Ph.D., Professor of Economics
John H. Seinfeld, Ph.D., Professor of Chemical Engineering; Executive Officer for Chemical Engineering

*Members of the Executive Committee
†On leave of absence, 1975-76

Staff Associates

Peter S. Eagleson, Ph.D., Visiting Associate (Professor and Head, Department of Civil Engineering, MIT)
Andrew Eaton, Ph.D., Research Fellow in Environmental Geochemistry
William R. Goodin, Ph.D., Research Fellow in Environmental Engineering Science
Michael R. Hoffman, Ph.D., Research Fellow in Environmental Engineering Science
Robert C. Y. Koh, Ph.D., Research Associate in Environmental Engineering Science
James E. Krier, J.D., Visiting Associate [Professor of Law, University of California (Los Angeles)]
Tracy R. Lewis, Ph.D., Research Fellow in Economics
Rolf H. Sabersky, Ph.D., Professor of Mechanical Engineering
Brent D. Taylor, Ph.D., Senior Research Engineer

Graduate Research Assistants (1974-75)

Glen R. Cass
Arthur R. Jensen
Mingin Philip Lo
Derek McKay

Gregory John McRae
Phillip A. Sher
Lee I. Sparling
Hale Observatories
Operated jointly with the Carnegie Institution of Washington

Horace W. Babcock, Director
J. Beverley Oke, Associate Director

Observatory Committee

Horace W. Babcock, Chairman
Jerome Kristian
Guido Münch
J. Beverley Oke
Wallace L. W. Sargent
Maarten Schmidt
Leonard Searle
Arthur H. Vaughan, Jr.

Staff Members

Halton C. Arp, Ph.D.
Horace W. Babcock, Ph.D., Sc.D.
Edwin W. Dennison, Ph.D.
Jesse L. Greenstein, Ph.D.
James E. Gunn, Ph.D.
Robert F. Howard, Ph.D.
Jerome Kristian, Ph.D.
Robert B. Leighton, Ph.D.
Guido Münch, Ph.D.
Gerry Neugebauer, Ph.D.
J. Beverley Oke, Ph.D.
S. Eric Persson, Ph.D.
George W. Preston, Ph.D.
Bruce H. Rule, B.S., Chief Engineer
Allan R. Sandage, Ph.D., Sc.D., D.Sc., LL.D.
Wallace L. W. Sargent, Ph.D.
Maarten Schmidt, Ph.D., Sc.D.
Leonard Searle, Ph.D.
Stephen A. Shectman, Ph.D.
Arthur H. Vaughan, Jr., Ph.D.
James A. Westphal, B.S.
Olin C. Wilson, Ph.D.
Harold Zirin, Ph.D.

Staff Associates

Eric E. Becklin, Ph.D.
Robert J. Brucato, Ph.D.
Michael W. Werner, Ph.D.

Senior Research Fellow

Ronald Moore, Ph.D.

Research Fellows

A. G. de Bruyn, Ph.D.
Daniel Y. Gezari, Ph.D.
Eduardo J. Hardy, Ph.D.
Mark R. Hartoog, Ph.D.
Gordon J. Hurford, Ph.D.
Stephen L. Knapp, Ph.D.
Andrew G. Michalitsanos, Ph.D.
Douglas Richstone, Ph.D.
Francois Schweizer, Ph.D.
Keith Taylor, Ph.D.
Trinh X. Thuan, Ph.D.
Christopher P. Wilson, Ph.D.
Robert J. Zinn, Ph.D.
Willis H. Booth Computing Center
Charles B. Ray, Director

Computing Facilities Executive Committee
Robert F. Christy, Chairman
John D. Baldeschwieler
Robert H. Cannon
Robert A. Huttenback
W. Barclay Kamb
Robert B. Leighton
Alan T. Moffet
David W. Morrisroe
Charles B. Ray
Robert L. Sinsheimer
Robertson Stevens

Computing Facilities Advisory Committee
Alan T. Moffet, Chairman
Per Brinch-Hansen
Eric Carter
William J. Dreyer
George Fox
D. M. Grether
David G. Harkrider
Herbert B. Keller
Aron Kuppermann
Richard E. Marsh
Charles W. Peck
Scott D. Roth
Edward C. Stone
Frederick B. Thompson
John Todd
Robert L. Walker
Barbara Zimmerman

Staff Members
Charles B. Ray, Director
Computing Center
Kiku Matsumoto, Deputy Director

Industrial Relations Center
Robert D. Gray, B.S., Director, Industrial Relations Center;
Professor of Economics and Industrial Relations
Robert M. Sloane, M.S., Lecturer in Industrial Relations

Institute Libraries
Johanna E. Tallman, Director

Representatives for the Departmental Libraries
Clarence R. Allen, Ph.D.
Tom M. Apostol, Ph.D.
Felix H. Boehm, Ph.D.
Charles J. Brokaw, Ph.D.
Norman H. Brooks, Ph.D.
Francis S. Buffington, Ph.D.
Donald E. Coles, Ph.D.
George R. Gavlas, Ph.D.
Robert D. Gray, B.S.
Paco A. Lagerstrom, Ph.D.
Gilbert D. McCann, Ph.D.
Edwin S. Munger, Ph.D.
Charles H. Papas, Ph.D.
Rolf H. Sabersky, Ph.D.
Wallace L. W. Sargent, Ph.D.
Walter A. Schroeder, Ph.D.
Leonard Searle, Ph.D.

47
Department of Athletics and Physical Education
Warren G. Emery, M.S., Director of Athletics and Physical Education

Full-time Staff

Thomas Gutman, M.S.
E. Leroy Neal, M.A.

Edward T. Preisler, B.A.
Edwin Spencer, B.S.

Part-time Staff

David E. Beck
Dean G. Bond, B.A.
Delmar Calvert, B.M.
Donald R. Cameron, B.Sc.
Harold G. Cassriel, B.S.

Karen Goodman
John L. Lamb
Marie Marchowsky
Tsutomu Ohshima, B.A.
Hudson L. Scott, M.S.

Athletic Council
The intercollegiate athletic program is under the supervision of the Athletic Council, which consists of representatives of the faculty, the Associated Students of the California Institute of Technology (ASCIT), and the alumni of the Institute.

Health Center

Gregory Ketabgian, M.D. .. Director of Health Services
Nancy G. Beakel, Ph.D. .. Institute Psychologist
Marlene Coleman, M.D. ... Attending Physician
Judson James, M.D. ... Attending Physician
Warren Jones, M.D. ... Consulting Psychiatrist
Jack Lindheimer, M.D. .. Consulting Psychiatrist
Nerses Matossian, M.D. ... Attending Physician
Patti Schneider ... Staff
Anita Wimsett ... Staff

Musical Activities

Lauris Jones ... Director of Instrumental Music
Olaf Frodsham ... Director of Choral Music
Monica Roegler .. Assistant Director of Choral Music
OFFICERS AND FACULTY

Harold Brown, Ph.D., D.Eng., LL.D., Sc.D., President

Russell Z. Abrams, Ph.D., Assistant Professor of Philosophy
A.B., Harvard College, 1969; Ph.D., Yale University, 1974. California Institute, 1974-. (Baxter)

Allan James Acosta, Ph.D., Professor of Mechanical Engineering
B.S., California Institute, 1945; M.S., 1949; Ph.D., 1952. Assistant Professor, 1954-58; Associate Professor, 1958-66; Professor, 1966-. (Thomas)

William Merritt Adams, Ph.D., Research Fellow in Astrophysics

Eric G. Adelberger, Ph.D., Visiting Associate in Physics

Brian Michael Adger, Ph.D., Research Fellow in Chemistry
B.Sc., Queens University (Belfast), 1970; Ph.D., University of Liverpool, 1973. California Institute, 1974-75.

Prahlad C. Agrawal, Ph.D., Research Fellow in Physics
B.Sc., University of Delhi, 1970; Ph.D., Tata Institute, 1972. California Institute, 1974-75.

Manfred K. L. Albring, M.D., Research Fellow in Biology
M.D., Philipps University (Marburg), 1972. California Institute, 1974-75.

Clarence Roderic Allen, Ph.D., Professor of Geology; Academic Officer, Geological and Planetary Sciences
B.A., Reed College, 1949; M.S., California Institute, 1951; Ph.D., 1957. Visiting Assistant Professor, California Institute, 1959-60; Associate Professor, 1960-66; Professor, 1966-; Academic Officer, 1971-. (Arms)

Manfred K. L. Albring, M.D., Research Fellow in Biology
M.D., Philipps University (Marburg), 1972. California Institute, 1974-75.

Francois Amalric, Ph.D., Research Fellow in Biology
Ph.D., Toulouse University, 1973. California Institute, 1974-. (Church)

Carl David Anderson, Ph.D., Sc.D., LL.D., Nobel Laureate, Professor of Physics
B.S., California Institute, 1927; Ph.D., 1930. Research Fellow, 1930-33; Assistant Professor, 1933-37; Associate Professor 1937-39; Professor, 1939-; Chairman, Division of Physics, Mathematics and Astronomy, 1962-70. (E. Bridge)

Don Lynn Anderson, Ph.D., Professor of Geophysics; Director, Seismological Laboratory
B.S., Rensselaer Polytechnic Institute, 1955; M.S., California Institute, 1958; Ph.D., 1962. Research Fellow, 1962-63; Assistant Professor, 1963-64; Associate Professor, 1964-66; Professor, 1966-; Director, 1967-. (S. Mudd)

Joel Hilary Anderson, Ph.D., Assistant Professor of Mathematics
B.A., Oberlin College, 1964; Ph.D., Indiana University, 1971. Bateman Research Instructor, California Institute, 1971-73; Assistant Professor, 1973-. (Skalan)

John G. Anderson, Ph.D., Research Fellow in Applied Science
B.S., Michigan State University, 1972; Ph.D., Columbia University, 1975. California Institute, 1975-76.

Lynne Musgrave Angerer, Ph.D., Research Fellow in Chemistry

**Part-time
Robert C. Angerer, Ph.D., Research Fellow in Biology
B.Sc., The Ohio State University, 1966; Ph.D., The Johns Hopkins University, 1973. California Institute, 1973-. (Alles)

Fred Colvig Anson, Ph.D., Professor of Chemistry; Executive Officer for Chemistry
B.S., California Institute, 1954; Ph.D., Harvard University, 1957. Instructor, California Institute, 1957-58; Assistant Professor, 1958-62; Associate Professor, 1962-68; Professor, 1968-. Executive Officer for Chemistry, 1973-. (Noyes)

Thomas W. Appelquist, Ph.D., Visiting Associate in Theoretical Physics

Tom M. Apostol, Ph.D., Professor of Mathematics
B.S., University of Washington, 1944; M.S., University of California, 1948. Assistant Professor, California Institute, 1950-56; Associate Professor, 1956-62; Professor, 1962-. (Sloan)

Johann Arboz, **Ph.D., Senior Research Fellow in Aeronautics
B.S., Northrop Institute of Technology, 1963; M.S., California Institute, 1964; Ph.D., 1968. Associate Professor, Northrop Institute of Technology, 1969-. Research Fellow, California Institute, 1968-71; Senior Research Fellow, 1971-. (Firestone)

Halton Christian Arp, Ph.D., Staff Member, Hale Observatories
A.B., Harvard College, 1949; Ph.D., California Institute, 1953. Staff Member, Hale Observatories, 1957-. (Hale Office)

Michael Aschbacher, Ph.D., Associate Professor of Mathematics
B.S., California Institute, 1966; Ph.D., University of Wisconsin, 1969. Bateman Research Instructor, California Institute, 1970-72; Assistant Professor, 1972-74; Associate Professor, 1974-. (Sloan)

Giuseppe Attardi, M.D., Professor of Biology
M.D., University of Padua, 1947. Research Fellow, California Institute, 1959-60; Assistant Professor, 1963; Associate Professor, 1963-67; Professor, 1967-. (Church)

Gerald Audesirk, Ph.D., Research Fellow in Biology
B.A., Rutgers University, 1970; Ph.D., California Institute, 1975. Research Fellow, 1974-75.

Alex Avdeef, Ph.D., Research Fellow in Chemistry
B.S., University of California, 1969; Ph.D., Case Western Reserve University, 1973. California Institute, 1973-. (Noyes)

Charles Dwight Babcock, Jr., Ph.D., Professor of Aeronautics
B.S., Purdue University, 1957; M.S., California Institute, 1958; Ph.D., 1962. Research Fellow, 1962-63; Assistant Professor, 1963-68; Associate Professor, 1968-74; Professor, 1974-. (Firestone)

Horace Welcome Babcock, Ph.D., Sc.D., Director, Hale Observatories
B.S., California Institute, 1934; Ph.D., University of California, 1938. Staff Member, Hale Observatories, 1946-. Assistant Director, Hale Observatories, 1956-63; Associate Director, 1963-64; Director, 1964-. (Hale Office)

Robert Fox Bacher, **Ph.D., Sc.D., Professor of Physics
B.S., University of Michigan, 1926; Ph.D., 1930; Sc.D., 1948. Professor of Physics, California Institute, 1949--; Chairman, Division of Physics, Mathematics and Astronomy; Director, Norman Bridge Laboratory of Physics, 1949-62; Provost, 1962-70; Vice President, 1969-70. (Downs)

James Michael Bailey, Ph.D., Research Fellow in Chemistry
B.S., Davidson College, 1969; Ph.D., University of North Carolina (Chapel Hill), 1973. California Institute, 1973-. (Crelin)

Richard Freilight Baker, **Ph.D., Visiting Associate in Biomedical Engineering
B.S., The Pennsylvania State University, 1922; M.S., 1933; Ph.D., The University of Rochester, 1938. Professor of Microbiology, University of Southern California School of Medicine, 1958-. Senior Research Fellow in Chemistry, California Institute, 1953-57; Research Associate in Engineering Science, 1968-72; Visiting Associate in Biomedical Engineering, 1972-. (Thomas)

John Dickson Baldeschwieler, Ph.D., Professor of Chemistry; Chairman of the Division of Chemistry and Chemical Engineering
B.Chem.E., Cornell University, 1956; Ph.D., University of California, 1959. California Institute, 1973-. (Crelin)

Barry Clark Barish, Ph.D., Professor of Physics
B.A., University of California, 1957; Ph.D., 1962. Research Fellow, California Institute, 1963-66; Assistant Professor, 1966-69; Associate Professor, 1969-72; Professor, 1972-. (Laursen)

Charles Andrew Barnes, Ph.D., Professor of Physics
B.A., McMaster University, 1943; M.A., University of Toronto, 1944; Ph.D., University of Cambridge, 1950. Research Fellow, California Institute, 1953-54; Senior Research Fellow, 1954-55; 1956-58; Associate Professor, 1958-62; Professor, 1962-. (Kellogg)

**Part-time
George Keith Batchelor, Ph.D., Sherman Fairchild Distinguished Scholar
B.Sc., University of Melbourne, 1940; M.Sc., 1941; Ph.D., University of Cambridge, 1948. Head of Department of Applied Mathematics and Theoretical Physics, 1959-. California Institute, 1974; 1975-76.

Margaret Rouse Bates, Ph.D., Senior Research Fellow in Political Science
A.B., Duke University, 1963; M.A., Harvard University, 1966; Ph.D., 1971. Lecturer, California Institute, 1971; Senior Research Fellow, 1974-75.

Robert Hinrichs Bates, Ph.D., Associate Professor of Political Science
B.A., Haverford College, 1964; Ph.D., Massachusetts Institute of Technology, 1969. Assistant Professor, California Institute, 1969-75; Associate Professor, 1975-. (Baxter)

Nancy G. Beakel, Ph.D., Lecturer in Psychology
B.S., University of Texas, 1958; M.A., University of California, 1967; Ph.D., University of California (Los Angeles), 1970. Lecturer, California Institute, 1971-; Institute Psychologist, 1971-. (Baxter, Health Center)

Jesse Lee Beauchamp, Ph.D., Professor of Chemistry
B.S., California Institute, 1964; Ph.D., Harvard University, 1967. Noyes Research Instructor, California Institute, 1967-69; Assistant Professor, 1969-71; Associate Professor, 1971-74; Professor, 1974-. (Crellin)

Eric Edward Becklin, Ph.D., Research Associate in Physics
B.S., University of Minnesota, 1963; Ph.D., California Institute, 1968. Research Fellow, 1968-70; Senior Research Fellow, 1971-74; Research Associate, 1974-. Staff Associate, Hale Observatories, 1971-. (Downs, Hale Office)

Vladimir A. Belinskii, Ph.D., Visiting Associate in Physics
Ph.D., Moscow University, 1968. Assistant Director, Landau Institute of Theoretical Physics (Moscow). California Institute, 1975.

Paul B. Bell, Jr., Ph.D., Research Fellow in Biology
A.B., Washington University, 1968; Ph.D., Yale University, 1974. California Institute, 1974-75.

Ettore Benedetti, Ph.D., Visiting Associate in Chemistry

Irving S. Bengelsdorf, Ph.D., Lecturer in Science Communication
B.S., University of Illinois, 1943; M.S., University of Chicago, 1948; Ph.D., 1951. Lecturer, California Institute 1971-; Director of Science Communication, 1971-. (Spalding)

Colin Bennett, Ph.D., Assistant Professor of Mathematics
B.Sc., University of Newcastle Upon Tyne, 1967; Ph.D., 1971. Bateman Research Instructor, California Institute, 1971-73; Assistant Professor, 1973-. (Sloan)

John Frederick Benton, Ph.D., Professor of History
B.A., Haverford College, 1953; M.A., Princeton University, 1955; Ph.D., 1959. Assistant Professor, California Institute, 1963-66; Associate Professor, 1966-70; Professor, 1970-. (Baxter)

Seymour Benzer, Ph.D., D.Sc., James G. Boswell Professor of Neuroscience
B.A., Brooklyn College, 1942; M.S., Purdue University, 1943; Ph.D., 1947. Research Fellow, California Institute, 1949-50; Visiting Associate, 1965-67; Professor, 1967-75; Boswell Professor, 1975-.. (Church)

John Edward Bercaw, Ph.D., Assistant Professor of Chemistry
B.S., North Carolina State University, 1967; Ph.D., University of Michigan, 1971. Arthur Amos Noyes Research Fellow, California Institute, 1972-74; Assistant Professor, 1974-. (Noyes)

Glenn Leroy Berge, Ph.D., Senior Research Fellow in Planetary Science and Radio Astronomy

Stanley Allan Berger, Ph.D., Visiting Associate in Engineering Science
B.S., Brooklyn College, 1955; Ph.D., Brown University, 1959. Professor of Mechanical Engineering, University of California, 1970-. California Institute, 1974-75.

Jacqueline Bergeron, Ph.D., Visiting Associate in Theoretical Astrophysics

Robert George Bergman, Ph.D., Professor of Chemistry
B.A., Carleton College, 1963; Ph.D., University of Wisconsin, 1966. Noyes Research Instructor, California Institute, 1967-69; Assistant Professor, 1969-71; Associate Professor, 1971-73; Professor, 1974-. (Crellin)

Ivano Bertini, Lib. Doc., Visiting Associate in Chemistry

**Part time
Richard John Bing, M.D., Visiting Associate in Biomedical Engineering
M.D., University of Munich, 1934; M.D., University of Bern, 1935. Professor of Medicine, University of Southern California; Director, Cardiology and Intramural Medicine, Huntington Memorial Hospital, 1969-. Research Associate in Engineering Science, California Institute, 1970-72; Visiting Associate in Biomedical Engineering, 1972-. (Thomas)

Dorwin L. Birt, Ph.D., Research Fellow in Biology
B.S., Purdue University, 1968; Ph.D., Indiana University, 1973. California Institute, 1974-75.

Robert J. Bishop, Ph.D., Research Fellow in Biology
B.S., Marietta College, 1961; M.S., Rutgers University, 1965; Ph.D., Princeton University, 1970. California Institute, 1970-. (Kerckhoff)

Arie Bodek, Ph.D., Robert Andrews Millikan Research Fellow in Physics
S.B., Massachusetts Institute of Technology, 1968; Ph.D., 1972. California Institute, 1974-. (Lauritsen)

Felix Hans Boehm, Ph.D., Professor of Physics
Dipl. Phys., Federal Institute of Technology, Zurich, 1948; Ph.D., 1951. Research Fellow, California Institute, 1953-55; Senior Research Fellow, 1955-58; Assistant Professor, 1958-59; Associate Professor, 1959-61; Professor, 1961-. (W. Bridge)

Henri Frederic Bohnenblust, Ph.D., Professor of Mathematics, Emeritus
A.B., Federal Institute of Technology, Zurich, 1928; Ph.D., Princeton University, 1931; Professor, California Institute, 1946-74; Dean of Graduate Studies, 1956-70; Executive Officer for Mathematics, 1964-66; Professor Emeritus, 1974-. (Sloan)

Charles D. Boley, Ph.D., Research Fellow in Applied Science
S.B., Massachusetts Institute of Technology, 1966; Ph.D., 1971. California Institute, 1973-. (Thomas)

James F. Bonner, Ph.D., Professor of Biology
A.B., University of Utah, 1931; Ph.D., California Institute, 1934. Research Assistant, 1935-36; Instructor, 1936-38; Assistant Professor, 1938-42; Associate Professor, 1942-46; Professor, 1946-. (Kerckhoff)

Joseph James Bonner, Ph.D., Research Fellow in Biology
B.A., University of Colorado, 1971; Ph.D., University of Southern California, 1975. California Institute, 1975-76.

Lyman Gaylord Bonner, Ph.D., Director of Student Relations; Associate in Chemistry
B.A., University of Utah, 1932; Ph.D., California Institute, 1935. Director of Foundation Relations, 1965-67; Associate, 1966-. Assistant to the President, 1967-69, Director, 1969-. (Dabney)

Emilio Bordignon, Ph.D., Visiting Associate in Chemistry
Ph.D., University of Padua, 1963. Professor, University of Venice, 1971-. California Institute, 1974; 1975.

Henry Borsook, Ph.D., M.D., Professor of Biochemistry, Emeritus
Ph.D., University of Toronto, 1924; M.B.; 1927; M.D., 1940. Assistant Professor, California Institute, 1929-35; Professor, 1935-68; Professor Emeritus, 1968-. (Lauder)

Paul Bowerman, A.M., Professor of Modern Languages, Emeritus
A.B., Dartmouth College, 1920; A.M., The University of Michigan, 1926. Instructor, California Institute, 1942-45; Assistant Professor, 1945-47; Associate Professor, 1947-69; Professor Emeritus, 1969-. (Dabney)

Walter S. Bradfield, Ph.D., Visiting Associate in Engineering
B.S., Purdue University, 1941; M.S., California Institute, 1945; Ph.D., University of Minnesota, 1967. Professor of Engineering, State University of New York (Stony Brook), 1961-. California Institute, 1975.

Louis Breger, Ph.D., Associate Professor of Psychology
B.A., University of California (Los Angeles), 1957; M.A., The Ohio State University, 1959; Ph.D., 1961. Visiting Associate Professor, California Institute, 1970-71; Associate Professor, 1971-. (Baxter)

Christopher Brennen, Ph.D., Senior Research Fellow in Engineering Science
B.A., Oxford University, 1963; M.A., Ph.D., 1966. Research Fellow, California Institute, 1969-72; Senior Research Fellow, 1972-. (Karman)

Howard Brenner, Eng.Sc.D., Sherman Fairchild Distinguished Scholar

Jeffrey L. Bresloff, Ph.D., Research Fellow in Chemistry
B.S., The Cooper Union, 1968; Ph.D., Yale University, 1974. California Institute, 1974-75.

Per Brinch-Hansen, M.S., Associate Professor of Computer Science
M.S., Technical University of Denmark, 1963. California Institute, 1972-. (Jorgensen)

Roy John Britten, Ph.D., Senior Research Associate in Biology
B.S., University of Virginia, 1940; Ph.D., Princeton University, 1951. Staff Member, Carnegie Institution, 1951-. Visiting Associate, California Institute, 1971-73; Senior Research Associate, 1973-. (Kerckhoff Marine Lab.)
James Eugene Broadwell, Ph.D., Research Associate in Aeronautics
B.S., Georgia Institute of Technology, 1942; M.S., California Institute, 1944; Ph.D., The University of Michigan, 1952. Senior Staff Engineer, TRW Systems, 1964-; Senior Research Fellow, California Institute, 1967-72; Research Associate, 1972-. (Karman)

Charles Jacob Brokaw, Ph.D., Professor of Biology
B.S., California Institute, 1955; Ph.D., University of Cambridge, 1958. Visiting Assistant Professor, California Institute, 1960; Assistant Professor, 1961-63; Associate Professor, 1963-68; Professor, 1968-. (Alles, Kerckhoff Marine Lab.)

Norman Herrick Brooks, Ph.D., Professor of Environmental Science and Civil Engineering; Director of Environmental Quality Laboratory
A.B., Harvard College, 1949; M.S., Harvard University, 1950; Ph.D., California Institute, 1954. Instructor, 1953-54; Assistant Professor, 1954-58; Associate Professor, 1958-62; Professor, 1962-; Academic Officer, 1972-74; Director, 1974-. (Keck)

Felix E. Browder, Ph.D., Sherman Fairchild Distinguished Scholar
B.S., Massachusetts Institute of Technology, 1946; M.A., Princeton University, 1947; Ph.D., 1948. Louis Block Professor of Mathematics and Chairman of the Department of Mathematics, University of Chicago, 1972-. Visiting Associate, California Institute, 1967; Sherman Fairchild Distinguished Scholar, 1976.

Alan P. Brown, Ph.D., Research Fellow in Chemistry
B.Sc., Southampton University, 1971; Ph.D., 1974. California Institute, 1974-75.

Costello L. Brown, Ph.D., Visiting Associate in Chemistry
B.S., Hampton Institute, 1963; M.S., Iowa State University, 1966; Ph.D., 1968. Associate Professor, California State University (Los Angeles), 1973-. California Institute, 1975.

Garry Leslie Brown, D.Phil., Visiting Associate in Aeronautics

Harold Brown, Ph.D., D.Eng., LL.D., Sc.D., President
(see page 49.)

Harrison Scott Brown, Ph.D., LL.D., Sc.D., D.Sc., Professor of Geochemistry and of Science and Government
B.S., University of California, 1938; Ph.D., The Johns Hopkins University, 1941. Professor of Geochemistry, California Institute, 1951-67; Professor of Geochemistry and of Science and Government, 1967-. (Baxter)

Joe Ned Brown, Jr., Ph.D., Research Fellow in Chemistry
B.S., Texas A & M University, 1969; Ph.D., Louisiana State University (New Orleans), 1972. California Institute, 1972-. (Church)

Susan Smith Brown, Ph.D., Visiting Associate in Biology

Thomas C. Brown, Jr., Ph.D., Research Fellow in Information Science
B.S., University of North Carolina, 1966; M.S., 1969; Ph.D., California Institute, 1975. Research Fellow, 1974-75.

Lee F. Browne, M.S., Lecturer in Education
B.S., West Virginia State College, 1944; M.S., New York University, 1950. Director of Secondary School Relations, California Institute, 1970-; Lecturer, 1971-. (Dabney)

Robert Joseph Brucato, Ph.D., Staff Associate, Hale Observatories
B.S., University of Illinois, 1966; M.S., University of Chicago, 1968; Ph.D., Northwestern University, 1970. Research Fellow, California Institute, 1971-72; Staff Associate, 1972-. (Hale Office)

Francis Stephan Buffington, Sc.D., Associate Professor of Materials Science
S.B., Massachusetts Institute of Technology, 1938; Sc.D., 1951. Assistant Professor of Mechanical Engineering, California Institute, 1951-56; Associate Professor, 1956-63; Associate Professor of Materials Science, 1965-. (Keck)

David T. Burhans, Ph.D., Lecturer in Speech Communication
B.A., Pepperdine College, 1967; M.A., University of Southern California, 1969; Ph.D., 1973. Instructor, California Institute, 1969-71; Lecturer, 1972-. (Mudd)

Donald Stacy Burnett, Ph.D., Associate Professor of Nuclear Geochemistry
B.S., University of Chicago, 1959; Ph.D., University of California, 1963. Research Fellow in Physics, California Institute, 1963-65; Assistant Professor of Nuclear Geochemistry, 1965-68; Associate Professor, 1968-. (Mudd)

**Part-time
****Supported in part by the Koepfli Fund
William Louis Byerly, Ph.D., Research Fellow in Biology
(Beckman Labs.)

Stephen Howard Caine,** Visiting Associate in Electrical Engineering

Ian Campbell, Ph.D., Professor of Geology, Emeritus
A.B., University of Oregon, 1922; A.M., 1924; Ph.D., Harvard University, 1931. Assistant Professor, California Institute, 1931-35; Associate Professor, 1935-46; Professor, 1946-60; Research Associate, 1960-70; Professor Emeritus, 1970.

William Bruce Campbell, Ph.D., Visiting Associate in Physics
B.A., Rice University, 1959; Ph.D., University of Colorado (Boulder), 1966. Assistant Professor, University of Nebraska, 1967-. California Institute, 1975.

Salvatore Ugo Campisano, Ph.D., Research Fellow in Applied Physics
Ph.D., Catania University (Italy), 1969; California Institute, 1974-75.

Claudio Canali, Ph.D., Visiting Associate in Applied Physics
Ph.D., University of Bologna, 1968. Assistant Professor of Physics, University of Modena (Italy), 1970-. Research Fellow, California Institute, 1974-75; Visiting Associate, 1975.

Robert Hamilton Cannon, Jr., Sc.D., Professor of Engineering; Chairman of the Division of Engineering and Applied Science
B.S., The University of Rochester, 1944; Sc.D., Massachusetts Institute of Technology, 1950. California Institute, 1974-.

Charles R. Cantor, Ph.D., Sherman Fairchild Distinguished Scholar
A.B., Columbia University, 1963; Ph.D., University of California, 1966. Professor of Chemistry and Biological Science, Columbia University, 1972-. California Institute, 1975-76.

George A. Carlson,** Ph.D., Visiting Associate in Chemistry

Klara Carmely, M.A., Lecturer in German

Joseph E. Carroll, Ph.D., Bateman Research Instructor in Mathematics
B.S., University of Notre Dame, 1969; Ph.D., Harvard University, 1973. California Institute, 1973-.

Serge J. Caser, Ph.D., Research Fellow in Theoretical Physics

James W. Casey, Ph.D., Research Fellow in Chemistry
B.S. Wayne State University, 1965; Ph.D., University of Chicago, 1973. California Institute, 1974-. (Crellin)

Randall C. Cassada, Jr., Ph.D., Research Fellow in Biology
B.S., California Institute, 1965; Ph.D., University of California, 1971. California Institute, 1971-.

Kenneth R. Castleman,** Ph.D., Lecturer in Information Science

Thomas Kirk Caughey, Ph.D., Professor of Applied Mechanics
B.Sc., Glasgow University, 1948; M.M.E., Cornell University, 1952; Ph.D., California Institute, 1954. Instructor, 1953-54; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-. (Thomas)

Georgeanne Robertson Caughlan, Ph.D., Visiting Associate in Physics
B.S., University of Washington, 1937; Ph.D., 1964. Associate Professor of Physics, Montana State University, 1965-. Research Fellow, California Institute, 1961; 1962; 1963; Visiting Associate, 1966; 1974.

Enrique Cerda-Olmedo, Ph.D., Sherman Fairchild Distinguished Scholar
M.A., University of Madrid, 1965; Ph.D., Stanford University, 1967. Professor of Genetics, University of Seville, 1970-. Research Fellow, California Institute, 1967-69; Sherman Fairchild Distinguished Scholar, 1975-76.

Massimo Cerdonio, Laurea, Visiting Associate in Physics

**Part-time
Sunney Ignatius Chan, Ph.D., Professor of Chemical Physics
B.S., University of California, 1957; Ph.D., 1960. Assistant Professor, California Institute, 1963-64; Associate Professor, 1964-68; Professor, 1968-. (Noyes)

Peter Chandler, Ph.D., Research Fellow in Chemistry

Chin-an Chang, Ph.D., Research Fellow in Chemistry
B.S., Chung-Hsing University (Taiwan), 1963; M.S., Colorado State University, 1967; Ph.D., University of California, 1970. California Institute, 1972-. (Noyes)

Daniel P.Y. Chang, Ph.D., Research Fellow in Environmental Health Engineering

Chia Hwa Chen, Ph.D., Visiting Associate in Physics
B.S., National Taiwan University, 1953; Ph.D., State University of New York (Buffalo), 1964. Associate Professor, California State University (Long Beach), 1969-. California Institute, 1974.

Anthony Tze-Wai Cheung, Ph.D., Research Fellow in Engineering Science
B.S., Loyola University (Los Angeles), 1969; M.A., University of California (Los Angeles), 1971; Ph.D., 1973. California Institute, 1973-. (Thomas)

Paul Kwan Chien, Ph.D., Visiting Associate in Environmental Engineering Science
B.S., Chinese University (Hong Kong), 1962; Ph.D., University of California (Irvine), 1971. Assistant Professor of Biology, University of San Francisco, 1973-. Research Fellow, California Institute, 1971-73; Visiting Associate, 1974.

Yueh-Hsiu Chien, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1968; Ph.D., University of Illinois, 1973. California Institute, 1974-. (Church)

Paul Seiko Chihara, M.A., Andrew W. Mellon Visiting Professor of Music

Seung Jung Choi, Ph.D., Research Fellow in Chemical Engineering
B.S., Seoul National University, 1966; M.S., University of Notre Dame, 1968; M.A., Princeton University, 1969; Ph.D., 1972. California Institute, 1972-. (Spalding)

Louise Tsi Chow, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1966; Ph.D., California Institute, 1973. Research Fellow, 1974-75.

Per Rex Christensen, Ph.D., Visiting Associate in Physics
Ph.D., University of Copenhagen, 1960. Permanent Staff Member, 1963-. Research Fellow, California Institute, 1965-66; Visiting Associate, 1974-75.

Inge-Juliana Christy-Sackmann, Ph.D., Visiting Associate in Physics
B.A., University of Toronto, 1963; M.A., 1965; Ph.D., 1968. Research Fellow, California Institute, 1971-74; Visiting Associate, 1974-. (Kellogg)

Robert Frederick Christy, Ph.D., Professor of Theoretical Physics; Vice President and Provost
B.A., University of British Columbia, 1938; Ph.D., University of California, 1941. Associate Professor of Physics, California Institute, 1946-50; Professor of Theoretical Physics, 1950-; Executive Officer for Physics, 1968-70; Vice President and Provost, 1970-. (Milkman)

Allen Tse-Yung Chwang, Ph.D., Senior Research Fellow in Engineering Science
B.Sc., Chu Hai College (Hong Kong), 1965; M.Sc., University of Saskatchewan, 1967; Ph.D., California Institute, 1971. Research Fellow, 1971-74; Senior Research Fellow, 1974-. (Karman)

Donald Sherman Clark, Ph.D., Professor of Physical Metallurgy, Emeritus
B.S., California Institute, 1929; M.S., 1930; Ph.D., 1934. Instructor in Mechanical Engineering, 1934-37; Director of Placements, 1935-71; Assistant Professor, 1937-45; Associate Professor, 1945-51; Professor, 1951-63; Professor of Physical Metallurgy, 1963-75; Professor Emeritus, 1975-. (Keck)

J. Kent Clark, Ph.D., Professor of English
A.B., Brigham Young University, 1939; Ph.D., Stanford University, 1950. Instructor, California Institute, 1947-50; Assistant Professor, 1950-54; Associate Professor, 1954-60; Professor, 1960-. (Baxter)

Francis Hettinger Clausen, Ph.D., Clark Blanchard Millikan Professor of Engineering
B.S., California Institute, 1934; M.S., 1935; Ph.D., 1937. Millikan Professor, 1969-; Chairman, Division of Engineering and Applied Science, 1969-74. (Thomas)

Donald S. Cohen, Ph.D., Professor of Applied Mathematics
Sc.B., Brown University, 1956; M.S., Cornell University, 1959; Ph.D., New York University (Courant Institute), 1962. Assistant Professor of Mathematics, California Institute, 1965-67; Associate Professor of Applied Mathematics, 1967-71; Professor, 1971-. (Firestone)
Emanuel Richard Cohen, **Ph.D., Research Associate in Engineering Science**
A.B., University of Pennsylvania, 1943; M.S., California Institute, 1946; Ph.D., 1949. Associate Director, North American Rockwell Science Center, 1964-. Senior Lecturer, California Institute, 1962-63; Research Associate, 1964-. (Thomas)

Eri Jay Cohen, Ph.D., *Research Fellow in Physics*

Marshall Harris Cohen, Ph.D., *Professor of Radio Astronomy*
B.E.E., The Ohio State University, 1948; M.S., 1949; Ph.D., 1952. Visiting Associate Professor, California Institute, 1965; Professor, 1968-. (Robinson)

Maurice Cohen, Jr., Ph.D., *Research Fellow in Chemistry*
B.S., Florida State University, 1968; M.S., 1970; Ph.D., University of Tennessee, 1974. California Institute, 1974-75.

Donald Earl Coles, Ph.D., *Professor of Aeronautics*
B.S., University of Minnesota, 1947; M.S., California Institute, 1948; Ph.D., 1953. Research Fellow, 1953-55; Senior Research Fellow, 1955-56; Assistant Professor, 1956-59; Associate Professor, 1959-64; Professor, 1964-. (Karan)

William Arthur Coles, Ph.D., *Visiting Associate in Radio Astronomy; Staff Member, Owens Valley Radio Observatory*
B.A.Sc., University of British Columbia, 1963; M.Eng., McGill University, 1965; Ph.D., University of California (San Diego), 1968-. California Institute, 1971-. (Spalding)

Elizabeth F. Colson, Ph.D., *Sherman Fairchild Distinguished Scholar*
B.A., University of Minnesota, 1938; M.A., 1940; M.A., Harvard (Radcliffe College), 1941; Ph.D., 1945. Professor of Anthropology, University of California, 1964-. Visiting Professor, California Institute, 1969-70; Sherman Fairchild Distinguished Scholar, 1975-76.

Craig Moray Comrie, Ph.D., *Research Fellow in Chemical Engineering*
B.Sc., University of Natal, 1969; M.Sc., 1971; Ph.D., University of Cambridge, 1974. California Institute, 1974-. (Spalding)

Carolyn J. Connell, Ph.D., *Visiting Associate in Biology*

Frederick James Converse, B.S., *Professor of Soil Mechanics, Emeritus*
B.S., The University of Rochester, 1914. Instructor, California Institute, 1921-33; Assistant Professor, 1933-39; Associate Professor, 1939-47; Professor, 1947-62; Professor Emeritus, 1962-. (Thomas)

William Harrison Corcoran, Ph.D., *Professor of Chemical Engineering; Vice President for Institute Relations*
B.S., California Institute, 1941; M.S., 1942; Ph.D., 1948. Associate Professor, 1952-57; Professor, 1957-. Executive Officer for Chemical Engineering, 1967-69; Vice President, 1969-. (Spalding, Millikan)

Noel Robert Corngold, Ph.D., *Professor of Applied Physics*
A.B., Columbia College, 1949; A.M., Harvard University, 1950; Ph.D., 1954. Professor of Applied Science, California Institute, 1966-74; Professor of Applied Physics, 1974-. (Thomas)

Eugene Woodville Cowan, Ph.D., *Professor of Physics*
B.S., University of Missouri, 1941; S.M., Massachusetts Institute of Technology, 1943; Ph.D., California Institute, 1948. Research Fellow, 1948-50; Assistant Professor, 1950-54; Associate Professor, 1954-61; Professor, 1961-. (W. Bridge)

William R. Crain, Jr., Ph.D., *Research Fellow in Biology*
B.A., University of Texas (Austin), 1967; M.S., University of Houston, 1969; Ph.D., University of Texas (Houston), 1974. California Institute, 1974-75.

Ronald J. Crowley, Ph.D., *Visiting Associate in Physics*
B.S., University of Southern California, 1961; M.A., 1963; Ph.D., 1967. Associate Professor of Physics, California State University (Fullerton), 1967-. California Institute, 1974-. (Bridge Annex)

Laszlo Csepregi, Dipl., *Visiting Associate in Applied Physics*
Dipl., Budapest Technical University, 1970. Central Research Institute for Physics (Budapest), 1970-. California Institute, 1974-75.

Fred E. C. Culick, Ph.D., *Professor of Jet Propulsion*
S.B., S.M., Massachusetts Institute of Technology, 1957; Ph.D., 1961. Research Fellow, California Institute, 1961-63; Assistant Professor, 1963-66; Associate Professor, 1966-71; Professor, 1971-. (Karman)

Part-time
Joseph Culotti, Ph.D., Research Fellow in Biology
B.S., University of California (Irvine), 1969; Ph.D., University of Washington, 1974. California Institute, 1974-75.

Diane Cummins, Ph.D., Research Fellow in Chemistry
B.S., University of Sheffield, 1971; Ph.D., 1974. California Institute, 1974-75.

Nicholas Alexander Cumpsty, Ph.D., Visiting Associate in Jet Propulsion
B.Sc., Imperial College (London), 1964; M.A., University of Cambridge, 1966; Ph.D., 1967. Lecturer in Engineering and Senior Research Fellow, Turbomachinery Laboratory, University of Cambridge. California Institute, 1974.

Christopher T. Cunningham, Ph.D., Research Fellow in Physics

Stephen L. Cunningham, Ph.D., Visiting Associate in Chemical Engineering
B.S., University of Denver, 1967; M.S., University of Nebraska, 1969; Ph.D., 1971. California Institute, 1974-75.

David B. Curtis, Ph.D., Research Fellow in Geochemistry
B.A., University of Colorado, 1962; Ph.D., Oregon State University, 1973. California Institute, 1974-75. (Arm's)

Jerry Delmar Daniels, Ph.D., Research Fellow in Biology
B.S., University of California, 1968; M.S., 1972; Ph.D., 1973. California Institute, 1974-75. (Beckman Labs.)

Frederick K. Dashiell, Jr., Ph.D., Bateman Research Instructor in Mathematics

Robert Long Daugherty, M.E., Professor of Mechanical and Hydraulic Engineering, Emeritus
A.B., Stanford University, 1909; M.E., 1914. California Institute, 1919-56; Professor Emeritus., 1956-. (Thomas)

Eric Harris Davidson, Ph.D., Professor of Biology
B.A., University of Pennsylvania, 1958; Ph.D., The Rockefeller University, 1963. Visiting Assistant Professor, California Institute, 1970; Associate Professor, 1971-74; Professor, 1974-. (Alles)

Norman Ralph Davidson, Ph.D., Professor of Chemistry
B.S., University of Chicago, 1937; B.Sc., Oxford University, 1938; Ph.D., University of Chicago, 1941. Instructor, California Institute, 1946-49; Assistant Professor, 1949-52; Associate Professor, 1952-57; Professor, 1957-. Executive Officer for Chemistry, 1967-73. (Crelin)

Jefferson C. Davis, Jr., Ph.D., Visiting Professor of Chemistry
B.S., University of Arizona, 1953; M.S., 1954; Ph.D., University of California, 1959. Professor, University of South Florida, 1972-. California Institute, 1975.

Lance Edwin Davis, Ph.D., Professor of Economics

Leverett Davis, Jr., Ph.D., Professor of Theoretical Physics
B.S., Oregon State College, 1936; M.S., California Institute, 1938; Ph.D., 1941. Instructor, 1941-46; Assistant Professor, 1946-50; Associate Professor, 1950-56; Professor, 1956-. (Downs)

Roland Dayras, Ph.D., Research Fellow in Physics
Engineer, Institute National des Sciences (France), 1966; M.S., Laval University (Canada), 1969; Ph.D., 1972. California Institute, 1973-. (Kellogg)

Richard Albert Dean, Ph.D., Professor of Mathematics
B.S., California Institute, 1945; A.B., Denison University, 1947; M.S., The Ohio State University, 1948; Ph.D., 1953. Harry Bateman Research Fellow, California Institute, 1954-55; Assistant Professor, 1955-59; Associate Professor, 1959-66; Professor, 1966-68. (Sloan)

Max Delbrück, Ph.D., Sc.D., Nobel Laureate, Albert Billings Ruddock Professor of Biology
Ph.D., University of Gottingen, 1931. Research Fellow, California Institute, 1937-39; Professor, 1947-71; Ruddock Professor, 1971-. (Alles)

Pierre Raymond Demarque, Ph.D., Visiting Associate in Astronomy

Edwin Walter Dennison, Ph.D., Research Associate in Astronomy
B.A., Swarthmore College, 1949; M.A., The University of Michigan, 1952; Ph.D., 1954. Staff Member, Hale Observatories, California Institute, 1963-. Research Associate, 1971-. (Robinson)

**Part-time
Richard C. Deonier, Ph.D., Research Fellow in Chemistry
B.S., Oklahoma State University, 1964; Ph.D., University of Wisconsin, 1970. California Institute, 1971-. (Crellin)

Charles Raymond De Prima, Ph.D., Professor of Mathematics
B.A., New York University, 1940; Ph.D., 1943. Assistant Professor of Applied Mechanics, California Institute, 1946-51; Associate Professor, 1951-56; Professor, 1956-64; Professor of Mathematics, 1964-. (Sloan)

Peter B. Dervan, Ph.D., Assistant Professor of Chemistry
B.S., Boston College, 1967; Ph.D., Yale University, 1972. California Institute, 1973-. (Crellin)

Robert S. Deverill, B.S., Lecturer in Information Science
B.S., California Institute, 1957. Lecturer, 1975-. (Jorgensen)

Rashmi C. Desai, Ph.D., Visiting Associate in Chemical Engineering
B.S., Bombay University, 1957; Ph.D., Cornell University, 1966. Associate Professor of Physics, University of Toronto, 1971-. California Institute, 1975.

George John Dick, Ph.D., Senior Research Fellow in Physics
A.B., Bethel College, 1961; Ph.D., University of California, 1969. Research Fellow, California Institute, 1969-73; Senior Research Fellow, 1973-. (Sloan)

Richard Earl Dickerson, Ph.D., Professor of Physical Chemistry
B.S., Carnegie-Mellon University, 1953; Ph.D., University of Minnesota, 1957. Associate Professor, California Institute, 1963-68; Professor, 1968-. (Church)

Robert Palmer Dilworth, Ph.D., Professor of Mathematics
B.S., California Institute, 1936; Ph.D., 1943. Assistant Professor, 1943-45; Associate Professor, 1945-51; Professor, 1951-. (Sloan)

Paul Emmanuel Dimotakis, Ph.D., Assistant Professor of Aeronautics
B.S., California Institute, 1968; M.S., 1969; Ph.D., 1973. Research Fellow, 1973-74. Research Fellow and Lecturer, 1974-75; Assistant Professor, 1975-77; (Karman)

Charles Hewitt Dix, Ph.D., Professor of Geophysics, Emeritus
B.S., California Institute, 1927; A.M., Rice Institute, 1928; Ph.D., 1931. Associate Professor, California Institute, 1948-54; Professor, 1954-73; Professor Emeritus, 1973-. (N. Mudd)

Tommy C. Douglas, Ph.D., Research Fellow in Biology

Angeline Douvas, Ph.D., Research Fellow in Biology

Marijan Dravinski, Ph.D., Research Fellow in Applied Mechanics

William Jakob Dreyer, Ph.D., Professor of Biology
B.A., Reed College, 1952; Ph.D., University of Washington, 1956. California Institute, 1963-. (Church)

Peter John Drivas, Ph.D., Research Fellow in Chemical Engineering
B.S., Massachusetts Institute of Technology, 1969; M.S., 1970; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Shyam K. Dube, Ph.D., Sherman Fairchild Distinguished Scholar
B.S., Agra University, 1952; M.S., 1954; Ph.D., Kansas State University, 1961. Head of Research Unit, Max Planck Institute for Experimental Medicine (Gottingen), 1970-. California Institute, 1974-75.

Lee Alvin DuBridge, Ph.D., Sc.D., LL.D., President Emeritus
A.B., Cornell College (Iowa), 1922; A.M., University of Wisconsin, 1924; Ph.D., 1926. President, California Institute, 1946-69; President Emeritus, 1969-

Yadin Dudai, Ph.D., Research Fellow in Biology
B.Sc., Hebrew University of Jerusalem, 1969; Ph.D., Weizmann Research Institute, 1974. California Institute, 1974-. (Church)

D. Michael Duggan, Ph.D., Research Fellow in Chemistry

Jesse William Monroe DuMond, Ph.D., D.H.C., Professor of Physics, Emeritus
B.S., California Institute, 1916; M.E., Union College, 1918; Ph.D., California Institute, 1929. Research Associate, California Institute, 1931-38; Associate Professor, 1938-46; Professor, 1946-63; Professor Emeritus, 1963-. (W. Bridge)

**Part-time
Jacques Durand, D.Sc., Research Fellow in Applied Physics
B.S., University of Strasbourg, 1969; D.Sc., 1973. California Institute, 1974- (Keck)

Rudolf Otto Duthaler, Ph.D., Research Fellow in Chemistry

Pol Edgard Duwez, D.Sc., Professor of Applied Physics and Materials Science
Metallurgical Engineer, School of Mines, Mons, Belgium, 1932; D.Sc., University of Brussels, 1933. Research Engineer, California Institute, 1942-47; Associate Professor, 1947-52; Professor, 1952-. (Keck)

Michael M. Dworetzky, Ph.D., Research Fellow in Astronomy
B.S., Harvey Mudd College, 1965; M.A., University of California (Los Angeles), 1966; Ph.D., 1971. California Institute, 1971-. (Keck)

Rudolf Otto Duthaler, Ph.D., Research Fellow in Chemistry

Pol Edgard Duwez, D.Sc., Professor of Applied Physics and Materials Science
Metallurgical Engineer, School of Mines, Mons, Belgium, 1932; D.Sc., University of Brussels, 1933. Research Engineer, California Institute, 1942-47; Associate Professor, 1947-52; Professor, 1952-. (Keck)

Michael M. Dworetzky, Ph.D., Research Fellow in Astronomy
B.S., Harvey Mudd College, 1965; M.A., University of California (Los Angeles), 1966; Ph.D., 1971. California Institute, 1971-. (Keck)

Paul Conant Eaton, A.M., Professor of English, Emeritus
S.B., Massachusetts Institute of Technology, 1927; A.M., Harvard University, 1930. Visiting Lecturer in English, California Institute, 1946; Associate Professor, 1947-71; Dean of Students, 1952-69; Professor Emeritus, 1971-. (Baxter)

Francine Claire Eden, Ph.D., Research Fellow in Biology

William Frederick Egelhoff, Jr., Ph.D., Research Fellow in Chemical Engineering
B.S., Harvard College, 1946; Ph.D., Oxford University, 1952. Associate Professor, University of California (Los Angeles), 1955-60; Professor, 1960-. (Baxter)

Robert L. Elgin, Ph.D., Research Fellow in Physics

Robert William Elias, Ph.D., Research Fellow in Geochemistry

Heinz E. Ellersieck, Ph.D., Associate Professor of History
A.B., University of California (Los Angeles), 1942; M.A., 1946; Ph.D., 1955. Instructor, California Institute, 1950-55; Assistant Professor, 1955-60; Associate Professor, 1960-. (Baxter)

Samuel A. Ellias, Ph.D., Lecturer in Applied Mathematics**, Kaplun Research Fellow in Applied Mathematics
B.S., University of California (Los Angeles), 1969; Ph.D., Massachusetts Institute of Technology, 1974. California Institute, 1974-. (Guggenheim)

David Clephandles Elliot, Ph.D., Professor of History
M.A., St. Andrew's University, 1939; A.M., Harvard University, 1948; Ph.D., 1951. M.A., Oxford University, 1956. Assistant Professor, California Institute, 1950-53; Associate Professor, 1953-63; Professor, 1960-65; Executive Officer for Humanities and Social Sciences, 1967-71. (Baxter)

Sterling Emerson, Ph.D., Professor of Genetics, Emeritus
B.Sc., Cornell University, 1922; M.A., University of Michigan, 1924; Ph.D., 1928. Assistant Professor, California Institute, 1928-37; Associate Professor, 1937-46; Professor, 1946-71; Professor Emeritus, 1971-. (Keckhoff)

Warren G. Emery, M.S., Director of Physical Education and Athletics
B.S., University of Nebraska, 1948; M.S., University of California (Los Angeles), 1959. Coach, California Institute, 1955-61; Assistant Director, 1963-64; Director, 1964-. (Gymnasium)

Stuart Alan Ende, Ph.D., Associate Professor of English
A.B., Cornell University, 1963; M.A., New York University, 1966; Ph.D., Cornell University, 1970. Assistant Professor, California Institute, 1970-74; Associate Professor, 1974-. (Baxter)
60 Officers and Faculty

Susan K. Ende, A.M., Lecturer in English

James Douglas Engel, Ph.D., Research Fellow in Chemistry
B.A., University of California (San Diego), 1970; Ph.D., University of Oregon, 1975. California Institute, 1975-76.

Samuel Epstein, Ph.D., Professor of Geochemistry
B.Sc., University of Manitoba, 1941; M.Sc., 1942; Ph.D., McGill University, 1944. Research Fellow, California Institute, 1952-53; Senior Research Fellow, 1953-54; Associate Professor, 1954-59; Professor, 1959-. (N. Mudd)

Arturo P. Eslava, Ph.D., Research Fellow in Biology
B.S., University of Valencia, 1969; Ph.D., University of Seville, 1973. California Institute, 1973-. (Church)

David A. Evans, Ph.D., Professor of Chemistry
A.B., Oberlin College, 1963; Ph.D., California Institute, 1968. Professor, 1974- (Crellin)

Gary Evans, Ph.D., Research Fellow in Electrical Engineering

Neal J. Evans II, Ph.D., Research Fellow in Radio Astronomy

Viktor Evtuhov, **Ph.D., Senior Research Fellow in Electrical Engineering
B.S., University of California (Los Angeles), 1956; M.S., California Institute, 1957; Ph.D., 1961. Senior Staff Physicist, Hughes Research Laboratories, 1965-. Research Fellow, California Institute, 1960-61; Senior Research Fellow, 1969-. (Steele)

Martin S. Ewing, Ph.D., Staff Member, Owens Valley Radio Observatory
B.A., Swarthmore College, 1966; Ph.D., Massachusetts Institute of Technology, 1971. Research Fellow, California Institute, 1971-73; Staff Member, 1975-. (Robinson)

Daryl S. Fair, Ph.D., Research Fellow in Biology
B.S., University of California (Irvine), 1965; M.S., University of Washington, 1971; Ph.D., 1974. California Institute, 1974-75.

Sydney W. Falk, Jr., Ph.D., Research Fellow in Physics
B.A., Rice University, 1969; M.S., 1972; Ph.D., 1974. California Institute, 1974-. (Kellogg)

Glennys R. Farrar, Ph.D., Assistant Professor of Theoretical Physics
B.A., University of California, 1967; Ph.D., Princeton University, 1970. Senior Research Fellow, California Institute, 1973-74; Assistant Professor, 1974-. (Downs)

Gerald D. Fasman, Ph.D., Visiting Associate in Biology
B.Sc., University of Alberta, 1948; Ph.D., California Institute, 1952. Professor of Biochemistry, Brandeis University, 1967-. Visiting Associate, California Institute, 1975.

Peter Ward Fay, Ph.D., Professor of History
A.B., Harvard College, 1947; B.A., Oxford University, 1949; Ph.D., Harvard University, 1954. Assistant Professor, California Institute, 1955-60; Associate Professor, 1960-70; Professor, 1970-. (Baxter)

Derek Henry Fender, Ph.D., Professor of Biology and Applied Science
B.Sc., Reading University, England, 1939; M.Sc., 1946; Ph.D., 1956. Senior Research Fellow in Engineering, California Institute, 1961-62; Associate Professor of Biology and Electrical Engineering, 1962-66; Professor of Biology and Applied Science, 1966-. (Booth)

John Ferejohn, Ph.D., Associate Professor of Political Science
B.A., San Fernando Valley State College, 1966; Ph.D., Stanford University, 1971. Assistant Professor, California Institute, 1971-74; Associate Professor, 1974-. (Baxter)

Salvador Fernandez, Ph.D., Research Fellow in Chemistry
Lic., Tecnologico de Monterrey (Mexico), 1969; Ph.D., University of Alberta, 1973. California Institute, 1974-75.

Alfred John Ferrari, D.Sc., Visiting Associate in Planetary Science
B.E.E., Manhattan College (Riverdale), 1963; M.S., George Washington University, 1967; D.Sc., 1971. Member, Technical Staff, Jet Propulsion Laboratory, 1972-. California Institute, 1974-75.

Donald R. Ferrier, Ph.D., Research Fellow in Chemistry
B.S., University of Wisconsin, 1967; Ph.D., Wayne State University, 1971. California Institute, 1971-. (Noyes)

**Part-time
Richard Phillips Feynman, Ph.D., Nobel Laureate, Richard Chace Tolman Professor of Theoretical Physics
B.S., Massachusetts Institute of Technology, 1939; Ph.D., Princeton University, 1942. Visiting Professor, California Institute, 1950; Professor, 1950-59; Tolman Professor, 1959-. (Lauritsen)

Richard D. Field, Jr., Ph.D., Senior Research Fellow in Theoretical Physics
B.S., University of California, 1966; Ph.D., 1971. Research Fellow, California Institute, 1973-75; Senior Research Fellow, 1975-. (Lauritsen)

Eva Fifkova, M.D., Ph.D., Research Associate in Biology
M.D., Charles University (Prague), 1957; Ph.D., Czechoslovakian Academy of Sciences, 1963. Research Fellow, California Institute, 1968-70; Senior Research Fellow, 1970-72; Research Associate, 1972-. (Kerckhoff)

Morris P. Fiorina, Ph.D., Associate Professor of Political Science
B.A., Allegheny College, 1968; Ph.D., The University of Rochester, 1972. Assistant Professor, California Institute, 1972-74; Associate Professor, 1974-. (Baxter)

Graham Richard Fleming, Ph.D., Research Fellow in Chemistry
B.Sc., University of Bristol, 1971; Ph.D., University of London, 1974. California Institute, 1974-75.

Bengt Fornberg, Ph.D., Assistant Professor of Applied Mathematics
B.S., Uppsala University, 1969; Ph.D., 1972. Bateman Research Instructor, California Institute, 1974-75; Assistant Professor, 1975-. (Firestone)

Robert Elliott Forsythe, Ph.D., Assistant Professor of Economics
B.S., The Pennsylvania State University, 1970; M.S., Carnegie Institute of Technology, 1972; M.S., Graduate School of Industrial Administration, Carnegie-Mellon University, 1974; Ph.D., 1975. California Institute, 1975-. (Baxter)

William Alfred Fowler, Ph.D., Institute Professor of Physics
B.Eng., The Ohio State University, 1933; Ph.D., California Institute, 1936. Research Fellow, 1936-39; Assistant Professor, 1939-42; Associate Professor, 1942-46; Professor, 1946-71; Institute Professor, 1971-. (Firestone)

Geoffrey Charles Fox, Ph.D., Associate Professor of Theoretical Physics
B.A., University of Cambridge, 1964; Ph.D., 1967. Robert Andrews Millikan Research Fellow, California Institute, 1970-71; Assistant Professor, 1971-74; Associate Professor, 1974-. (Lauritsen)

James R. Fox, Ph.D., Research Fellow in Biomedical Engineering
B.S., Northwestern University, 1966; M.S., 1967; Ph.D., University of Washington, 1972. California Institute, 1973-. (Thoma)

Joel N. Franklin, Ph.D., Professor of Applied Mathematics
B.S., Stanford University, 1950; Ph.D., 1953. Associate Professor of Applied Mechanics, California Institute, 1957-65; Professor of Applied Science, 1965-69; Professor of Applied Mathematics, 1969-. (Firestone)

Wallace Goodman Frasher, Jr., M.D., Visiting Associate in Biomedical Engineering
A.B., University of Southern California, 1941; M.D., 1951. Associate Research Professor of Medicine, Loma Linda University, 1963-. Research Fellow in Engineering, California Institute, 1961-63; Senior Research Fellow in Engineering Science, 1963-72; Visiting Associate in Biomedical Engineering, 1972-. (Thomas)

Steven Clark Frautschi, Ph.D., Professor of Theoretical Physics
A.B., Harvard College, 1954; Ph.D., Stanford University, 1958. Assistant Professor, California Institute, 1962-64; Associate Professor, 1964-66; Professor, 1966-. (Lauritsen)

Nelson Leslie Freedman, Ph.D., Visiting Associate in Biology
B.Sc., Ohio State University, 1960; Ph.D., University of Missouri, 1966. Associate Professor of Psychology, Queen's University (Ontario, Canada), 1970-. California Institute, 1974-75.

Sheldon Kay Friedlander, Ph.D., Professor of Chemical and Environmental Health Engineering
B.S., Columbia University, 1949; M.S., Massachusetts Institute of Technology, 1951; Ph.D., University of Illinois, 1954. California Institute, 1964-. (Keck)

Yitzshak Frishman, Ph.D., Visiting Associate in Theoretical Physics
B.S., Hebrew University (Jerusalem), 1962; M.S., 1964; Ph.D., Weizmann Institute, 1966. Associate Professor, 1972- California Institute, 1975-76.

Harald Fritzsch, Ph.D., Senior Research Fellow in Theoretical Physics
Dipl., University of Leipzig, 1968; Ph.D., Technical University of Munich, 1971. Research Fellow, California Institute, 1972-74; Senior Research Fellow, 1974-. (Lauritsen)

**Part-time

Gary Stephen Fuis, Ph.D., Visiting Associate in Geophysics

Francis Brock Fuller, Ph.D., Professor of Mathematics
A.B., Princeton University, 1949; M.A., 1950; Ph.D., 1952. Research Fellow, California Institute, 1952-55; Assistant Professor, 1953-59; Associate Professor, 1959-66; Professor, 1966-. (Sloan)

Okitsugu Furuya, Ph.D., Research Fellow in Mechanical Engineering
B.S., University of Tokyo, 1965; M.S., California Institute, 1969; Ph.D., 1972. Research Fellow, 1972-. (Karman)

Robert R. Gagne, Ph.D., Arthur Amos Noyes Research Instructor in Chemistry
B.S., Worcester Polytechnic Institute, 1969; Ph.D., Stanford University, 1974. California Institute, 1974-. (Noyes)

Robert Stephen Gall, Ph.D., Research Fellow in Chemistry
B.S., Michigan State University, 1968; Ph.D., University of Wisconsin, 1973. California Institute, 1973-. (Noyes)

Ronald Carl Gamble, Ph.D., Research Fellow in Chemistry
B.S., Purdue University, 1968; Ph.D., Massachusetts Institute of Technology, 1974. California Institute, 1974-. (Noyes)

Kenji Gamo, Ph.D., Visiting Associate in Electrical Engineering

Paul R. Garabedian, Ph.D., Sherman Fairchild Distinguished Scholar

Gordon Paul Garmire, Ph.D., Professor of Physics
A.B., Harvard College, 1959; Ph.D., Massachusetts Institute of Technology, 1962. Senior Research Fellow, California Institute, 1966-68; Associate Professor, 1968-72; Professor, 1972-. (Downs)

George Rousetos Gavalas, Ph.D., Professor of Chemical Engineering
B.S., Technical University of Athens, 1958; M.S., University of Minnesota, 1962; Ph.D., 1964. Assistant Professor, California Institute, 1964-67; Associate Professor, 1967-75; Professor, 1975-. (Spalding)

Murray Gell-Mann,* Ph.D., Sc.D., D.Sc., Nobel Laureate, Robert Andrews Millikan Professor of Theoretical Physics
B.S., Yale University, 1948; Ph.D., Massachusetts Institute of Technology, 1950. Associate Professor, California Institute, 1955-56; Professor, 1956-67; Millikan Professor, 1967-. (Laursen)

Roland Geumperlein, Dr. habil., Visiting Associate in Applied Science
Dipl., University of Munich, 1965; Ph.D., Technical University of Berlin, 1969; Dr. habil., University of Munich, 1972. Assistant Professor, 1972-. California Institute, 1974; 1975.

Nicholas George, Ph.D., Associate Professor of Electrical Engineering
B.S., University of California, 1949; M.S., University of Maryland, 1956; Ph.D., California Institute, 1959. Visiting Associate Professor, 1959-60; Associate Professor, 1960-. (Steele)

Paul Geshelin, M.D., Ph.D., Research Fellow in Chemistry
B.A., The Johns Hopkins School of Medicine, 1972; M.D., 1974; Ph.D., 1974. California Institute, 1975-76.

Daniel Y. Gezari, Ph.D., Research Fellow in Astrophysics
A.B., Cornell University, 1966; M.S., New York University, 1966; Ph.D., State University of New York (Stony Brook), 1973. California Institute, 1973-. (Downs)

Ghassan Ibrahime Ghandour, Ph.D., Research Fellow in Physics

Alain Ghysen, D.Sc., Research Fellow in Biology
D.Sc., University of Brussels, 1971. California Institute, 1973-. (Church)

Donald Dominic Giannini, Ph.D., Research Fellow in Chemistry
B.S., University of San Francisco, 1965; Ph.D., University of California (San Francisco), 1973. California Institute, 1973-. (Crellin)

*Leave of Absence, First Term, 1975-76.
****Supported by The Koepfli Fund.
Rudolf Giger, Ph.D., Research Fellow in Chemistry

Horace Nathaniel Gilbert, M.B.A., D.B.A., Professor of Business Economics, Emeritus
A.B., University of Washington, 1923; M.B.A., Harvard University, 1926. Assistant Professor, California Institute, 1929-30; Associate Professor, 1930-47; Professor, 1947-69; Professor Emeritus, 1969. (Baxter)

James Gilluly, Ph.D., Sc.D., Sherman Fairchild Distinguished Scholar
B.S., University of Washington, 1920; M.S., The Johns Hopkins University, 1922; Ph.D., Yale University, 1926. Professor of Geology, University of California (Santa Cruz); U.S. Geological Survey (retired). California Institute, 1976.

Robert Blythe Gilmore, B.S., C.P.A., Vice President for Business Affairs
B.S., University of California (Los Angeles), 1937; C.P.A., State of California; State of Iowa, 1946. Manager of Accounting, California Institute, 1948-52; Assistant Controller, 1952-58; Controller, 1958-62; Vice President for Business and Finance, 1962-1974; Vice President for Business Affairs, 1974. (Millikan)

Jean-Luc Girardet, Ph.D., Research Fellow in Chemistry

William Andrew Goddard III, Ph.D., Professor of Theoretical Chemistry
B.S., University of California (Los Angeles), 1960; Ph.D., California Institute, 1965. Noyes Research Fellow in Chemistry, 1964-66; Noyes Research Instructor, 1966-67; Assistant Professor of Theoretical Chemistry, 1967-71; Associate Professor, 1971-74; Professor, 1974-. (Noyes)

Peter Martin Goldreich, Ph.D., Professor of Planetary Science and Astronomy
B.S., Cornell University, 1960; Ph.D., 1963. Associate Professor, California Institute, 1966-69; Professor, 1969-. (S. Mudd)

Martin Goldsmith, Ph.D., Associate in Environmental Engineering
B.S., University of California, 1951; M.S., California Institute, 1952; Ph.D., 1955. Group Director, Aerospace Corporation, 1961-. Visiting Associate, 1971-75. Associate, 1975-. (Thomas, Dabney)

Richard Morris Goldstein, Ph.D., Research Associate in Planetary Science
B.S., Purdue University, 1947; M.S., California Institute, 1959; Ph.D., 1962. Manager, Telecommunications Research Section, Jet Propulsion Laboratory, 1958-. Visiting Associate Professor of Planetary Science, California Institute, 1967-73; Research Associate, 1973-. (N. Mudd)

Ricardo Gomez, Ph.D., Associate Professor of Physics
S.B., Massachusetts Institute of Technology, 1963; Ph.D., 1966. Research Fellow, California Institute, 1956-59; Senior Research Fellow, 1959-61; Associate Professor, 1971-. (Laursen)

Robert M. Goodfleish, Ph.D., Research Fellow in Biology
B.S., Cornell University, 1966; M.S., University of Wisconsin, 1969; Ph.D., 1974. California Institute, 1974-. (Church)

William R. Goodin, Ph.D., Research Fellow in Environmental Engineering Science
B.A., San Jose State University, 1969; M.S., University of California, 1971; Ph.D., 1975. California Institute, 1975-76.

David Louis Goodstein, Ph.D., Associate Professor of Physics and Applied Physics
B.S., Brooklyn College, 1960; Ph.D., University of Washington, 1965. Research Fellow, California Institute, 1966-67; Assistant Professor of Physics, 1967-71; Associate Professor, 1971-75; Associate Professor of Physics and Applied Physics, 1975-. (Sloan)

E. Kent Gordon, Ph.D., Visiting Associate in Electrical Engineering

Joseph Grover Gordon II, Ph.D., Assistant Professor of Chemistry

Roy Walter Gould, Ph.D., Professor of Applied Physics; Executive Officer for Applied Physics
B.S., California Institute, 1949; M.S., Stanford University, 1950; Ph.D., California Institute, 1956. Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor of Physics, 1962-74; Professor of Applied Physics, 1974-. Executive Officer for Applied Physics, 1973-. (Steele)

Neil Rivers Goulty, Ph.D., Research Fellow in Geophysics
B.A., Oxford University, 1970; Ph.D., Cambridge University, 1974. California Institute, 1974-75.

Harry Barkus Gray, Ph.D., Professor of Chemistry
B.S., Western Kentucky College, 1957; Ph.D., Northwestern University, 1960. Visiting Professor of Inorganic Chemistry, California Institute, 1965; Professor of Chemistry, 1966-. (Noyes)

**Part-time
Robert Davis Gray, B.S., Professor of Economics and Industrial Relations; Director of Industrial Relations Center
B.S., Wharton School of Finance and Commerce, University of Pennsylvania, 1930. Associate Professor, California Institute, 1940-42; Professor, 1942-; Director, Industrial Relations Center, 1941-. (Industrial Relations Center)

David H. Green, Ph.D., Visiting Professor of Petrology

Jesse Leonard Greenstein, Ph.D., Lee A. DuBridge Professor of Astrophysics
B.A., Harvard College, 1929; A.M., Harvard University, 1930; Ph.D., 1937. Associate Professor, California Institute, 1948-50; Professor, 1950-70; Staff Member, Hale Observatories, 1948; Executive Officer for Astronomy, 1964-72; DuBridge Professor, 1970-. (Robinson)

David M. Grether, Ph.D., Professor of Economics
B.S., University of California, 1960; Ph.D., Stanford University, 1969. Associate Professor, California Institute, 1970-74; Professor, 1974-. (Baxter)

Martin Lewis Griss, Ph.D., Research Fellow in Theoretical Physics
B.Sc., Technion (Haifa), 1967; M.Sc., 1969; Ph.D., University of Cambridge, 1971. California Institute, 1971-.

Karel Grohmann, Ph.D., Research Fellow in Biology
Ph.D., University of Chemical Technology (Prague), 1965; Ph.D., University of Houston, 1972. California Institute, 1972-. (Church)

Roman Gubern, Andrew W. Mellon Visiting Professor of Visual Arts
California Institute, 1975-76.

James Edward Gunn, Ph.D., Professor of Astronomy
B.A., Rice University, 1961; Ph.D., California Institute, 1966. Assistant Professor, 1970-72; Professor, 1972-; Staff Member, Hale Observatories, 1972-. (Robinson)

John Devens Gust, Jr., Ph.D., Research Fellow in Chemistry

Thomas Gutman, M.S., Coach

Mark Samuel Guyer, Ph.D., Research Fellow in Chemistry

Jozsef Gyulai, Ph.D., Visiting Associate in Applied Physics

Arie Jan Haagen-Smit, Ph.D., Professor of Bio-organic Chemistry, Emeritus
A.B., University of Utrecht, 1922; A.M., 1926; Ph.D., 1929. Associate Professor, California Institute, 1937-40; Professor, 1940-71; Professor Emeritus, 1971-. (Kerckhoff)

Peter K. Haff, Ph.D., Senior Research Fellow in Physics
A.B., Harvard College, 1966; Ph.D., University of Virginia, 1970. Research Fellow, California Institute, 1972-74; Senior Research Fellow, 1974-. (Kellogg)

Marshall Hall, Jr., Ph.D., IBM Professor of Mathematics
B.A., Yale University, 1932; Ph.D., 1936. Professor, California Institute, 1959-73; Executive Officer for Mathematics, 1966-69; IBM Professor, 1973-. (Sloan)

Mordechai Halpern, Ph.D., Visiting Associate in Computer Science
M.Sc., Hebrew University (Jerusalem), 1960; Ph.D., University of Colorado, 1968. Associate Professor, Temple University, 1974-. California Institute, 1974.

David Hamburg, M.D., Visiting Associate in Social Sciences
A.B., Indiana University, 1944; M.D., 1947. Professor of Psychiatry, Stanford University School of Medicine, 1964-; Chairman, Department of Psychiatry, 1969-; Sherman Fairchild Distinguished Scholar, California Institute, 1974-75; Visiting Associate, 1975-76.

Charles Robert Hamilton, Ph.D., Research Associate in Biology
B.S., The University of the South, 1957; Ph.D., California Institute, 1964. Research Fellow, 1964-65; Senior Research Fellow, 1971-74; Research Associate, 1974-. (Alles)

Joseph Leonard Hammack, Jr., Ph.D., Visiting Associate in Hydraulics
B.S., University of North Carolina, 1966; M.S., 1968; Ph.D., California Institute, 1972. Assistant Professor of Civil Engineering, Clemson University, 1972-. Research Fellow, California Institute, 1972-75; Visiting Associate, 1975.
Thomas C. Hanks, Ph.D., Visiting Associate in Geophysics and Earthquake Engineering
B.S., Princeton University, 1966; Ph.D., California Institute, 1972. U.S. Geological Survey, 1974-. Research Fellow, California Institute, 1972-74; Visiting Associate, 1974-. (S. Mudd)

James F. Hare, Ph.D., Research Fellow in Biology

David Garrison Harkrider, Ph.D., Associate Professor of Geophysics
B.A., Rice University, 1953; M.A., 1957; Ph.D., California Institute, 1963. Associate Professor, 1970-. (S. Mudd)

Michael H. Hart, Ph.D., Research Fellow in Astronomy

Marvin Hass, Ph.D., Visiting Associate in Applied Physics
B.S., City University of New York, 1950; M.S., Syracuse University, 1952; Ph.D., University of Michigan, 1955. Naval Research Laboratories, Washington, D.C. California Institute, 1974-75.

Brosil Hasslacher, Ph.D., Senior Research Fellow in Theoretical Physics
B.S., Harvard University, 1962; Ph.D., State University of New York, 1971. California Institute, 1975-. (Lauritsen)

Eri Heller, Ph.D., Senior Research Fellow in Chemistry
B.Sc., Israel Institute of Technology, 1964; M.Sc., Hebrew University of Jerusalem, 1965; Ph.D., Weizmann Institute of Science, 1969. Research California Fellow, California Institute, 1969-73, Senior Research Fellow, 1973-. (Church)

Donald Vincent Helmerberger, Ph.D., Associate Professor of Geophysics
B.S., University of Minnesota, 1961; M.S., University of California (San Diego), 1965; Ph.D., 1967. Assistant Professor, California Institute, 1970-74; Associate Professor, 1974-. (S. Mudd)

David Andrew Henderson, Ph.D., Research Fellow in Biology
B.S., University of Edinburgh, 1970; Ph.D., Vanderbilt University, 1974. California Institute, 1974-75.

Peter Henderson, Ph.D., Visiting Associate in Computer Science

Thomas A. Heppenheimer, Ph.D., Research Fellow in Planetary Science

John A. Herb, Ph.D., Research Fellow in Physics
B.S., Miami University, 1968; Ph.D., University of Washington, 1974. California Institute, 1974-75.

Susanne V. Hering, Ph.D., Research Fellow in Environmental Health Engineering
B.A., University of California (Santa Cruz), 1969; M.S., University of Washington, 1971; Ph.D., 1974. California Institute, 1974-75.

Richard O. Herrmann, Ph.D., Research Fellow in Biology
Ph.D., Max Planck Institute, 1969. California Institute, 1972-. (Kerckhoff)

Dudley R. Herschbach, Ph.D., Sherman Fairchild Distinguished Scholar

Richard Alan Hertz, Ph.D., Assistant Professor of Philosophy
B.A., University of California (Los Angeles), 1962; M.A., University of California (Santa Barbara), 1964; Ph.D., University of Pittsburgh, 1967. California Institute, 1968-. (Baxter)

Albert Roach Hibbs,** Ph.D., Lecturer in Physics
B.S., California Institute, 1945; M.S., University of Chicago, 1947; Ph.D., California Institute, 1955. Senior Staff Scientist, Jet Propulsion Laboratory, 1950-. Lecturer, 1972-. (Thomas)

George Martel Hidy,** D.Eng, Visiting Associate in Environmental Engineering Science
B.A., Columbia University, 1956; B.S., 1957; M.S.E., Princeton University, 1958; D.Eng., Johns Hopkins University, 1962; Staff Member, North American-Rockwell Corp. (Thousand Oaks), 1968-. Research Fellow in Environmental Health Engineering, California Institute, 1969-73; Visiting Associate in Environmental Engineering Science, 1973-. (Keck)

Wolfgang Hillebrandt, Dr. rer. nat., Research Fellow in Physics

**Part-time
Melvin J. Hinich, Ph.D., *Sherman Fairchild Distinguished Scholar*

Yoshimitsu Hirao, Ph.D., *Research Fellow in Geochemistry*

Michael R. Hoffman, Ph.D., *Research Fellow in Environmental Engineering Science*

Charles H. Holbrow, Ph.D., *Visiting Associate in Physics*
B.A., University of Wisconsin, 1955; A.M., Columbia University, 1957; M.S., University of Wisconsin, 1960; Ph.D., 1963. Associate Professor, Colgate University, 1967-. California Institute, 1975-76.

Kenneth W. Holladay, Ph.D., *Bateman Research Instructor in Mathematics*
B.S., Massachusetts Institute of Technology, 1972; Ph.D., 1974. California Institute, 1975-76.

David Salway Holmes, Ph.D., *Research Fellow in Chemistry*
B.A., Trinity College (Dublin), 1969; Ph.D., California Institute, 1973. Research Fellow, 1973-. (Kerckhoff)

Leroy E. Hood, M.D., Ph.D., *Professor of Biology*
B.S., California Institute, 1960; M.D., The Johns Hopkins University, 1964; Ph.D., California Institute, 1967. Assistant Professor, 1970-73; Associate Professor, 1973-75; Professor, 1975-. (Church)

Norman Harold Horowitz, Ph.D., *Professor of Biology; Executive Officer for Biology*
B.S., University of Pittsburgh, 1936; Ph.D., California Institute, 1939. Research Fellow, 1940-42; Senior Research Fellow, 1946; Associate Professor, 1947-53; Professor, 1953-; Executive Officer, 1971-; Acting Chairman, Division of Biology, 1973. (Kerckhoff)

Barbara Raymond Hough, Ph.D., *Senior Research Fellow in Biology*
B.A., Swarthmore College, 1945; M.A., Cornell University, 1948; Ph.D., State University of New York (Stony Brook), 1968. Research Fellow, California Institute, 1971-72; Senior Research Fellow, 1972-. (Alles)

George William Housner, Ph.D., *Carl F Braun Professor of Engineering*
B.S., University of Michigan, 1933; M.S., California Institute, 1934; Ph.D., 1941. Assistant Professor, 1945-49; Associate Professor, 1949-53; Professor, 1953-74; Carl F Braun Professor, 1974-77. (Thomas)

Louis N. Howard, Ph.D., *Sherman Fairchild Distinguished Scholar*

Robert Franklin Howard, Ph.D., *Staff Member, Hale Observatories*
B.A., Ohio Wesleyan University, 1954; Ph.D., Princeton University, 1957. Carnegie Fellow, Hale Observatories, 1957-59; Staff Member, 1961-. (Hale Office)

Paul Gustav Hoyer, Ph.D., *Visiting Associate in Theoretical Physics*
B.S., University of Helsinki, 1968; Ph.D., 1973. Research Associate, Institute for Theoretical Physics, State University of New York (Stony Brook), 1973-. California Institute, 1974-75.

Sir Fred Hoyle, M.A., D.Sc., *Visiting Associate in Physics*
M.A., University of Cambridge, 1939; D.Sc., University of Norwich, 1967; University of Leeds, 1967. Visiting Professor of Astronomy, California Institute, 1953; 1954; 1956; Addison White Greenway Visiting Professor of Astronomy; Staff Member, Hale Observatories, 1957-62; Visiting Associate, 1963-; Sherman Fairchild Distinguished Scholar, 1974-75.

Kuei-Huang Huang, Ph.D., *Visiting Associate in Chemistry*
B.A., National Taiwan University, 1963; M.A., Boston University, 1965; Ph.D., University of Illinois (Urbana), 1968. Research Associate, Department of Chemistry, Columbia University, 1970-. California Institute, 1974-. (Noyes)

Hans Peter Huber, Ph.D., *Research Fellow in Chemistry*
Dipl., Swiss Federal Institute of Technology (Zurich), 1968; Ph.D., University of Basel, 1972. California Institute, 1972-. (Crenin)

Jeffrey J. Hubert, Ph.D., *Research Fellow in Biology*

Donald Ellis Hudson, Ph.D., *Professor of Mechanical Engineering and Applied Mechanics*
B.S., California Institute, 1938; M.S., 1939; Ph.D., 1942. Instructor of Machine Design, 1942-43; Assistant Professor of Mechanical Engineering, 1943-49; Associate Professor, 1949-55; Professor, 1955-63; Professor of Mechanical Engineering and Applied Mechanics, 1963-. (Thomas)

A. James Hudspeth, M.D., Ph.D., *Assistant Professor of Biology*
Arthur Hurn Huffman, Ph.D., Senior Research Fellow in Physics
B.S., Virginia Polytechnic Institute, 1961; S.M., Massachusetts Institute of Technology, 1965; Ph.D., University of Washington, 1968. Research Fellow, California Institute, 1970-72; Senior Research Fellow, 1972-. (Kellogg)

Edward Wesley Hughes, Ph.D., Senior Research Associate in Chemistry, Emeritus
B.Chem., Cornell University, 1924; Ph.D., 1935. Research Fellow, California Institute, 1958-63; Senior Research Fellow, 1964-68; Senior Research Associate in Chemistry, Emeritus, 1974-. (Noyes)

Floyd Bernard Humphrey, Ph.D., Professor of Electrical Engineering and Applied Physics
B.S., California Institute, 1950; Ph.D., 1956. Senior Research Fellow, 1960-64; Associate Professor of Electrical Engineering, 1964-71; Professor, 1971-74; Professor of Electrical Engineering and Applied Physics, 1974-. (Steele)

John Clifton Huneké, M.S., Senior Research Fellow in Planetary Science
B.S., University of Redlands, 1961; M.S., University of Minnesota, 1964. California Institute, 1972-. (Arms)

Michael W. Hunkapiller, Ph.D., Research Fellow in Chemistry
B.S., Oklahoma Baptist University, 1970; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Ian Hunter,** Ph.D., Lecturer in Psychology

Stirling Louis Huntley, Ph.D., Lecturer in Drama; Associate Dean of Graduate Studies; Director of Admissions and Financial Aid
B.A., University of California (Los Angeles), 1945; M.S., 1949; Ph.D., Stanford University, 1956. Associate Dean of Graduate Studies, California Institute, 1971-; Lecturer, 1973-; Director, 1973-. (Dabney)

Gordon James Hurford, Ph.D., Research Fellow in Solar Physics
M.Sc., McGill University, 1963; M.A., University of Toronto, 1964; Ph.D., California Institute, 1975. Research Fellow, 1974-75.

Edward Hutchings, Jr., B.A., Lecturer in Journalism
B.A., Dartmouth College, 1933. Editor of Engineering and Science Magazine, California Institute, 1948-. Lecturer, 1952-; Director of Institute Publications, 1964-74. (1107 San Pasqual)

Robert A. Huttenback, Ph.D., Professor of History; Chairman of the Division of the Humanities and Social Sciences
B.A., University of California (Los Angeles), 1951; Ph.D., 1959. Master of Student Houses, California Institute, 1958-69; Lecturer in History, 1958-60; Assistant Professor, 1960-63; Associate Professor, 1963-66; Professor, 1966-. Dean of Students, 1969-72; Acting Division Chairman, 1970-72; Division Chairman, 1972-. (Baxter)

Karl J. Hwang, Ph.D., Research Fellow in Chemistry

Casmir Stanislaus Ilena, Ph.D., Research Fellow in Chemistry
B.S., University of Minnesota, 1969; Ph.D., University of Colorado, 1973. California Institute, 1974-. (Crellin)

Taroh Inada, Ph.D., Research Fellow in Applied Physics

Paul D. Ingalls, Ph.D., Research Fellow in Physics
B.S., University of Washington, 1966; Ph.D., Princeton University, 1971. California Institute, 1973-. (Kellogg)

Giorgio Ingargiola, Ph.D., Visiting Associate in Applied Science

Andrew Perry Ingersoll, Ph.D., Associate Professor of Planetary Science
B.A., Amherst College, 1960; A.M., Harvard University, 1961; Ph.D., 1966. Assistant Professor, California Institute, 1966-71; Associate Professor, 1971-; Staff Associate, Hale Observatories, 1971-. (S. Mudd)

Marylou Ingram, M.D., Visiting Associate in Biomedical Engineering
B.A., Western Reserve University, 1942; M.S., 1943; M.D., The University of Rochester, 1947. Research Associate, California Institute, 1971-75. Visiting Associate, 1975-76.

Robert Ellsworth Ireland, Ph.D., Professor of Organic Chemistry
B.A., Amherst College, 1951; M.S., University of Wisconsin, 1953; Ph.D., 1954. California Institute, 1965-. (Crellin)

**Part-time
68 Officers and Faculty

Wilfred Dean Iwan, Ph.D., Professor of Applied Mechanics
B.S., California Institute, 1957; M.S., 1958; Ph.D., 1961. Assistant Professor, 1964-67; Associate Professor, 1967-; Professor, 1972-. (Thomas)

Darrell R. Jackson, Ph.D., Lecturer in Physics

Holly Jackson, Ph.D., Assistant Professor of English
B.A., Agnes Scott College (Georgia), 1969; M.A., Stanford University, 1971; Ph.D., 1975. California Institute, 1975-.

Ernest Yuh-Nung Jan, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, 1967; M.S., 1968; Ph.D., 1972. California Institute, 1975-76.

Lily K.C.Y. Jan, Ph.D., Research Fellow in Biology
B.S., National Taiwan University, 1968; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Paul Christian Jennings, Ph.D., Professor of Applied Mechanics; Executive Officer for Civil Engineering and Applied Mechanics
B.S., Colorado State University, 1958; M.S., 1960; Ph.D., 1963. Research Fellow in Civil Engineering, 1960; Assistant Professor of Applied Mechanics, 1966-68; Associate Professor, 1968-72; Professor, 1972-; Executive Officer, 1975-. (Thomas)

Hans Burkal Jensen, Ph.D., Research Fellow in Physics

William Lewis Johnson, Ph.D., Research Fellow in Applied Physics
B.A., Hamilton College, 1970; Ph.D., California Institute, 1975. Research Fellow, 1974-75.

Louis Winchester Jones, A.B., Dean of Admissions, Emeritus
A.B., Princeton University, 1922. Instructor in English, California Institute, 1925-37. Assistant Professor, 1937-43; Registrar, 1942-52; Associate Professor, 1943-68; Dean of Admissions; Director of Undergraduate Scholarships, 1957-68; Dean Emeritus, 1969.

Patrick Ray Jones, Ph.D., Research Fellow in Chemistry
B.S., University of Texas (Austin), 1966; Ph.D., Stanford University, 1971. California Institute, 1973-. (Noyes)

William Thomas Jones, Ph.D., Professor of Philosophy
A.B., Swarthmore College, 1931; B.Litt., Oxford University, 1933; A.M., Princeton University, 1936; Ph.D., 1937. Visiting Professor, California Institute, 1970-72; Andrew W. Mellon Professor, 1972-73; Professor, 1973-. (Baxter)

Ivar Gregerz Jonsson, Ph.D., Visiting Associate in Hydraulics

Poul Jorgensen, Ph.D., Research Fellow in Chemistry
Ph.D., Aarhus University (Denmark), 1969. California Institute, 1974-75.

Masatsune Kainosho, D.Sc., Research Fellow in Chemistry
B.Sc., Tokyo Metropolitan University, 1964; D.Sc., 1970. California Institute, 1973-. (Noyes)

Susumu Kamata, Ph.D., Research Fellow in Chemistry

Walter Barclay Kamb, Ph.D., Professor of Geology and Geophysics; Chairman of the Division of Geological and Planetary Sciences
B.S., California Institute, 1952; Ph.D., 1956. Assistant Professor of Geology, 1956-60; Associate Professor, 1960-62; Professor, 1962-63; Professor of Geology and Geophysics, 1963-; Division Chairman, 1972-. (N. Mudd)

Kenjori Kamijyo, D.Eng., Visiting Associate in Mechanical Engineering

Hiroo Kanamori, Ph.D., Professor of Geophysics
B.S., Tokyo University, 1959; M.S., 1961; Ph.D., 1964. Research Fellow, California Institute, 1965-66; Professor, 1972-. (S. Mudd)

Robert H. Kargon, Ph.D., Visiting Associate in History and Philosophy of Science
B.S., Duke University, 1959; M.S., Yale University, 1960; Ph.D., Cornell University, 1964. Professor and Chairman of History and Philosophy of Science, The Johns Hopkins University, 1972-. California Institute, 1975.

**Part-time
Harumi Uwatoko Kasamatsu, Ph.D., Senior Research Fellow in Biology
B.S., Osaka University, 1961; Ph.D., 1969. Research Fellow, California Institute, 1970-73; Senior Research Fellow, 1973-. (Church)

Takuji Kasamatsu, M.D., Senior Research Fellow in Biology
B.S., Osaka University, 1959; M.D., 1963. California Institute, 1975-. (Church)

Ronald James Kasman, Ph.D., Visiting Associate in Theoretical Physics

Abraham Katzir, Ph.D., Research Fellow in Electrical Engineering
B.Sc., Hebrew University of Jerusalem, 1965; M.Sc., 1965; Ph.D., 1973. California Institute, 1974-. (Steele)

William John Kaufmann III, Ph.D., Visiting Associate in Physics
B.A., Adelphi University, 1963; M.S., Rutgers University, 1965; Ph.D., Indiana University, 1968. Director, Griffith Observatory, 1970-. Research Fellow, California Institute, 1969-70; Visiting Associate, 1974-75.

Ralph William Kavanagh, Ph.D., Professor of Physics
B.A., Reed College, 1950; M.A., University of Oregon, 1952; Ph.D., California Institute, 1956. Research Fellow, 1956-58; Senior Research Fellow, 1958-60; Assistant Professor, 1960-65; Associate Professor, 1965-70; Professor, 1970-. (Kellogg)

Alexander S. Kechris, Ph.D., Assistant Professor of Mathematics
M.S., National Technological University (Athens), 1969; Ph.D., University of California (Los Angeles), 1972. California Institute, 1974-. (Sloan)

Herbert Bishop Keller, Ph.D., Professor of Applied Mathematics
B.E., Georgia Institute of Technology, 1945; M.A., New York University, 1948; Ph.D., 1954. Visiting Professor of Applied Mathematics, California Institute, 1965-66; Professor, 1967-. (Firestone)

James P. Kelly, Ph.D., Senior Research Fellow in Biology
B.A., Harpur College, 1966; Ph.D., Washington University, 1971. California Institute, 1974-. (Beckman Labs.)

Robert W. Kerrich, Ph.D., Visiting Associate in Geology

Gregory Ketabgian, M.D., Director of Health Services
B.A., University of California (Los Angeles), 1959; M.D., University of Southern California Medical School, 1963. California Institute, 1973-. (Health Center)

Daniel Jerome Kevels, Ph.D., Associate Professor of History
A.B., Princeton University, 1960; Ph.D., 1964. Assistant Professor, California Institute, 1964-68; Associate Professor, 1968-. (Baxter)

William M. Kinnersley, Ph.D., Visiting Assistant Professor of Applied Mathematics
B.S., Rensselaer Polytechnic Institute, 1964; Ph.D., California Institute, 1969. Assistant Professor, Montana State University, 1971-. California Institute, 1973-. (Firestone)

Hershy Harry Kisilevsky, Ph.D., Assistant Professor of Mathematics
B.S., McGill University, 1964; Ph.D., Massachusetts Institute of Technology, 1968. Ford Foundation Research Fellow, California Institute, 1968-70; Instructor, 1970-71; Assistant Professor, 1971-. (Sloan)

Arthur Louis Klein, Ph.D., Professor of Aeronautics, Emeritus
B.S., California Institute, 1921; M.S., 1924; Ph.D., 1925. Research Fellow in Physics and Aeronautics, 1927-29; Assistant Professor of Aeronautics, 1929-34; Associate Professor, 1934-54; Professor, 1954-68; Professor Emeritus, 1968-. (Firestone)

Burton H. Klein, Ph.D., Professor of Economics
A.B., Harvard College, 1940; Ph.D., Harvard University, 1948. California Institute, 1967-. (Baxter)

Stanley A. Klein, Ph.D., Visiting Associate in Biology
B.S., California Institute, 1961; M.A., Brandeis University, 1965; Ph.D., 1967. Associate Professor, Joint Science Department, Claremont Colleges, 1967-. California Institute, 1974-75.

William H. Klein, Ph.D., Research Fellow in Biology

Charles E. Klopfenstein, Visiting Professor of Chemistry
Joan L. Klotz, Ph.D., *Gosney Research Fellow in Biology*

Gillian R. Knapp, Ph.D., *Research Fellow in Radio Astronomy*
B.Sc., University of Edinburgh, 1966; Ph.D., University of Maryland, 1972. California Institute, 1974-. (Robinson)

Stephen L. Knapp, Ph.D., *Research Fellow in Astronomy*
Ph.D., University of Maryland, 1974. California Institute, 1975-76.

Wolfgang Gustav Knauss, Ph.D., *Associate Professor of Aeronautics*
B.S., California Institute, 1958; M.S., 1959; Ph.D., 1963. Research Fellow, 1963-65; Assistant Professor, 1965-69. Associate Professor, 1969-. (Firestone)

Dennis W. Kneff, Ph.D., *Research Fellow in Physics*

James Kenyon Knowles, Ph.D., *Professor of Applied Mechanics*
B.S., Massachusetts Institute of Technology, 1952; Ph.D., 1957. Assistant Professor, California Institute, 1958-61; Associate Professor, 1961-65; Professor, 1965-. Academic Officer, 1972-75. (Thomas)

Joseph Blake Koepfl, D.Phil, *Senior Research Associate in Chemistry, Emeritus*
A.B., Stanford University, 1924; M.A., 1925; D.Phil., Oxford University, 1928. Research Associate, California Institute, 1932-72; Research Associate Emeritus, 1972-74; Senior Research Associate Emeritus, 1974-. (Church)

Robert C. Y. Koh, Ph.D., *Research Associate in Environmental Engineering Science*
B.S., California Institute, 1960; M.S., 1961; Ph.D., 1964. Research Fellow, 1964-65; Research Associate, 1972-. (Keck)

Hans Michael Kolb, Ph.D., *Research Fellow in Chemistry*
Ph.D., Justus-Liebig University (Germany), 1975. California Institute, 1974-. (Crel]lin)

Masakazu Konishi, Ph.D., *Professor of Biology*
B.S., Hokkaido University, 1956; M.S., 1958; Ph.D., University of California, 1963. California Institute, 1975-. (Beckman Labs.)

Ronald J. Konopka, Ph.D., *Assistant Professor of Biology*
B.S., University of Dayton, 1967; Ph.D., California Institute, 1972. Assistant Professor, 1972-. (Beckman Labs.)

Steven E. Koonin, Ph.D., *Assistant Professor of Theoretical Physics*
B.S., California Institute, 1972; Ph.D., Massachusetts Institute of Technology, 1975. Assistant Professor, California Institute, 1975-. (Kelloog)

Clayton R. Koppes, Ph.D., *Senior Research Fellow in History*
B.A., Bethel College, 1967; M.A., Emory University, 1968; Ph.D., University of Kansas, 1974. California Institute, 1974-. (Baxter)

Anthony Alexander Kossiakoff, Ph.D., *Research Fellow in Chemistry*

Joseph Morgan Kousser, Ph.D., *Associate Professor of History*
B.A., Princeton University, 1965; M.A., Yale University, 1968; Ph.D., 1971. Instructor, California Institute, 1969-71; Assistant Professor, 1971-74; Associate Professor, 1974-. (Baxter)

Friedrich R. Kreisl, Ph.D., *Research Fellow in Chemistry*

James E. Krier, J.D., *Visiting Associate in Law*

Jerome Kristian, Ph.D., *Staff Member, Hale Observatories*
A.B., Shimer College (Illinois) 1953; M.S., University of Chicago, 1956; Ph.D., 1962. Research Fellow in Astronomy, California Institute, 1967-68; Staff Member, Hale Observatories, 1968-. (Hale Office)

Mitsuru Kubota, Ph.D., *Visiting Associate in Chemistry*
B.A., University of Hawaii, 1954; Ph.D., University of Illinois (Urbana), 1959. Professor of Chemistry, Harvey Mudd College, 1959-. California Institute, 1974-75.

Toshi Kubota, Ph.D., *Professor of Aeronautics*
B.E., Tokyo University, 1947; M.S., California Institute, 1952; Ph.D., 1957. Research Fellow, 1957-59; Assistant Professor, 1959-63; Associate Professor, 1963-71; Professor, 1971-. (Firestone)
Vijay Anand Kulkarny, Ph.D., Research Fellow and Lecturer** in Aeronautics

Wei-Jen Jenny Hu Kung, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1969; M.S., Columbia University, 1970; Ph.D., 1973. California Institute, 1973-. (Noyes)

Aron Kuppermann, Ph.D., Professor of Chemical Physics
M.S., University of Sao Paulo, 1948; Ph.D., University of Notre Dame, 1956. California Institute, 1963-. (Noyes)

John Ying-Kuen Kwan, Ph.D., Research Fellow in Astrophysics
B.S., Utah State University, 1969; Ph.D., California Institute, 1972. Research Fellow, 1972-. (Robinson)

Jenijoy LaBelle, Ph.D., Assistant Professor of English
B.A., University of Washington, 1965; Ph.D., University of California (San Diego), 1969. California Institute, 1969-. (Baxter)

William Noble Lacey, Ph.D., Professor of Chemical Engineering, Emeritus
A.B., Stanford University, 1911; Ch.E., 1912; M.S., University of California, 1913; Ph.D., 1915. Instructor, California Institute, 1916-17; Assistant Professor, 1917-19; Associate Professor, 1919-31; Professor, 1932-62; Dean of Graduate Studies, 1946-56; Dean of the Faculty, 1961-62; Professor Emeritus, 1962-. (Spalding)

Paco Axel Lagerstrom, Ph.D., Professor of Applied Mathematics
Fil.kand., University of Stockholm, 1935; Fil.lic., 1939; Ph.D., Princeton University, 1942. Research Associate in Aeronautics, California Institute, 1946-47; Assistant Professor, 1947-49; Associate Professor, 1949-52; Professor, 1952-66; Professor of Applied Mathematics, 1967-. (Firestone)

Glenn A. Laguna, Ph.D., Research Fellow in Applied Physics

Robert Goodman Lamb, Ph.D., Visiting Associate in Chemical Engineering
B.S., University of California, 1966; M.S., University of California (Los Angeles), 1968; Ph.D., 1971. Research Fellow, California Institute, 1971-73; Visiting Associate, 1974-. (Spalding)

Aurora Mamauag Landel, Ph.D., Senior Research Fellow in Biomedical Engineering
B.S., University of the Philippines, 1949; M.S., University of Wisconsin, 1952; Ph.D., 1955. Research Fellow in Chemistry, California Institute, 1968-71; Senior Research Fellow in Biomedical Engineering, 1973-. (Thomas)

Robert Vose Langmuir, Ph.D., Professor of Electrical Engineering
A.B., Harvard College, 1935; Ph.D., California Institute, 1943. Senior Research Fellow, 1948-50; Assistant Professor, 1950-52; Associate Professor, 1952-57; Professor, 1957-. (Steele)

Beach Langston, Ph.D., Professor of English
A.B., The Citadel, 1933; M.A., The Claremont Colleges, 1934; Ph.D., University of North Carolina, 1940. Assistant Professor, California Institute, 1947-53; Associate Professor, 1953-74; Professor, 1974-. (Baxter)

Silvanus S. Lau, Ph.D., Senior Research Fellow in Applied Physics; Lecturer in Materials Science**
B.S., University of California, 1964; M.S., 1966; Ph.D., 1968. Bechtel Instructor in Materials Science, California Institute, 1972-74; Senior Research Fellow in Applied Physics; Lecturer in Materials Science, 1974-. (Keck)

Roger G. Lautzenheiser, Ph.D., Bateman Research Instructor in Mathematics

Rudiger Llawaceck, Ph.D., Research Fellow in Chemistry
Dipl., Technische Universität Braunschweig, 1970; Ph.D., Gesellschaft für Molekularbiologie Forschung, 1972. California Institute, 1974-. (Noyes)

Leslie Gary Leal, Ph.D., Associate Professor of Chemical Engineering
B.S., University of Washington, 1965; Ph.D., Stanford University, 1969. Assistant Professor, California Institute, 1970-75; Associate Professor, 1975-. (Spalding)

Amy Shiu Lee, Ph.D., Research Fellow in Biology
A.B., University of California, 1967; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Chun-Hian Lee, Ph.D., Research Fellow in Applied Mathematics
B.S., Cheng Kung University (Taiwan), 1963; M.S., New Mexico State University, 1967; Ph.D., State University of New York (Buffalo), 1972. California Institute, 1974.

David Li Lee,** Ph.D., Lecturer in Physics
B.Sc., McGill University, 1970; Ph.D., California Institute, 1974 Research Fellow, 1974; Lecturer, 1974-. (Bridge Annex)

**Part-time
Lester Lees, M.S., Professor of Environmental Engineering and Aeronautics
S.B., Massachusetts Institute of Technology, 1940; M.S., 1941. Associate Professor, California Institute, 1953-55; Professor, 1955-; Director, Environmental Quality Laboratory, 1971-74. (Firestone)

Evelyn May Lee-Teng, Ph.D., Visiting Associate in Biology
B.S., Taiwan University, 1959; M.A., Stanford University, 1960. Ph.D., 1963. Assistant Professor, University of Southern California Medical School, 1972-. Research Fellow, California Institute, 1963-68; Senior Research Fellow, 1969-72; Visiting Associate, 1972-. (Church)

Robert Benjamin Leighton, Ph.D., Professor of Physics
B.S., California Institute, 1941; M.S., 1944; Ph.D., 1947. Research Fellow, 1947-49; Assistant Professor, 1949-53; Associate Professor, 1953-59; Professor, 1959-; Staff Member, Hale Observatories, 1963-; Chairman of the Division of Physics, Mathematics and Astronomy, 1970-75. (E. Bridge)

Michel Le Moal, Ph.D., M.D., Visiting Associate in Biology
B.S., National Taiwan University, 1951; Ph.D., 1964. Assistant Professor, Laboratory of Psychophysiology, 1967-. California Institute, 1974-75.

Rudolf Lenk, Ph.D., Research Fellow in Chemistry

William Norman Lennard, Ph.D., Research Fellow in Physics
B.Sc., University of Toronto, 1969; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Henry A. Lester, Ph.D., Assistant Professor of Biology

Ming-Taun Leu, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1967; M.S., University of Pittsburgh, 1970; Ph.D., 1972. California Institute, 1974-. (Noyes)

Michael E. Levine, J.D., Luce Professor of Law and Social Change in the Technological Society
B.A., Reed College, 1962; J.D., Yale University, 1965. Professor of Law, University of Southern California, 1972-. California Institute, 1973-. (Baxter)

Rachmiel Levine, M.D., Visiting Associate in Biomedical Engineering
B.A., McGill University, 1932; M.D., 1936. Director, City of Hope Medical Center (Duarte), 1971-. California Institute, 1973-. (Thomas)

Simon Rock Levinson, Ph.D., Research Fellow in Chemistry
B.S., California Institute, 1966; Ph.D., University of Cambridge, 1974. California Institute, 1974-. (Church)

Edward B. Lewis, Ph.D., Thomas Hunt Morgan Professor of Biology
B.A., University of Minnesota, 1939; Ph.D., California Institute, 1942. Instructor, 1946-48; Assistant Professor, 1948-49; Associate Professor, 1949-56; Professor, 1956-66; Morgan Professor, 1966-. (Kerckhoff)

Tracy R. Lewis, Ph.D., Research Fellow in Economics
B.A., University of California (San Diego), 1969; Ph.D., 1975. California Institute, 1975-76.

Joseph Jen Yin Liang, Ph.D., Visiting Associate in Mathematics
B.A., National University (Taiwan), 1958; M.A., University of Detroit, 1962; Ph.D., The Ohio State University, 1969. Associate Professor, University of South Florida, 1973-. Research Fellow, California Institute, 1969-70; Visiting Associate, 1975.

Michael M. Lieber, Ph.D., Research Fellow in Biology

Hans Wolfgang Liepmann, Ph.D., Professor of Aeronautics and Applied Physics; Director of Graduate Aeronautical Laboratories
Ph.D., University of Zurich, 1938. Assistant Professor of Aeronautics, California Institute, 1939-46; Associate Professor, 1946-49; Professor, 1949-74; Professor of Aeronautics and Applied Physics, 1974-. Director of Graduate Aeronautical Laboratories, 1972-. (Kerman)

Carol D. Linden, Ph.D., Research Fellow in Chemistry
A.B., Bryn Mawr College, 1970; Ph.D., University of California, 1974. Research Fellow, California Institute, 1974-75.

Frederick Charles Lindvall, Ph.D., D.Sc., D.Eng., Professor of Engineering, Emeritus
B.S., University of Illinois, 1924; Ph.D., California Institute, 1928. Instructor in Electrical Engineering, 1930-31; Assistant Professor, 1931-37; Associate Professor of Electrical and Mechanical Engineering, 1937-41; Professor, 1942-70; Division Chairman, 1945-69; Professor Emeritus, 1970-. (Thomas)

**Part-time
***Leave of absence, Academic Year, 1975-76
Rung Tai Ling, Ph.D., *Research Fellow in Chemistry*
B.S., National Taiwan University, 1965; M.S., University of Missouri, 1968; Ph.D., University of California (San Diego), 1972. California Institute, 1973-. (Noyes)

Richard Gwin Lipes, Ph.D., **Ph.D., Lecturer in Electrical Engineering**
S.B., Massachusetts Institute of Technology, 1964; Ph.D., California Institute, 1969. Research Fellow and Lecturer in Electrical Engineering, 1973-75; Lecturer, 1975-. (Steele)

Edward David Lipson, Ph.D., **Senior Research Fellow in Biology**
B.S.C., University of Manitoba, 1966; Ph.D., California Institute, 1971. Research Fellow in Physics, 1971; Research Fellow in Biology, 1971-73; Instructor, 1973; Senior Research Fellow, 1974-. (Alles)

Ericson John List, Ph.D., **Associate Professor of Environmental Engineering Science**
B.E., University of Auckland, 1961; M.E., 1962; Ph.D., California Institute, 1965. Research Fellow, 1965-66; Assistant Professor, 1969-72; Associate Professor, 1972-. (Keck)

Hsi-Ping Liu, Ph.D., **Research Fellow in Engineering and Geophysics**
B.Sc., Tunghai University (Taiwan), 1964; M.A., Dartmouth College, 1968; Ph.D., California Institute, 1974. Research Fellow in Geophysics, 1974-75; Research Fellow in Engineering and Geophysics, 1975-. (S. Mudd)

Alexander C. R. Livanos, Ph.D., **Research Fellow and Lecturer** **in Applied Physics**
B.S., California Institute, 1970; M.S., 1973; Ph.D., 1974. Research Fellow and Lecturer, 1974-. (S. Mudd)

Kwok-Yung Lo, Ph.D., **Research Fellow in Radio Astronomy**
S.B., Massachusetts Institute of Technology, 1969; Ph.D., 1974. California Institute, 1974-. (Robinson)

Philip Loftus, Ph.D., **Research Fellow in Chemistry**
B.Sc., University of Liverpool, 1971; Ph.D., 1974. California Institute, 1974-75.

Gary Allen Lorden, Ph.D., **Associate Professor of Mathematics**
B.S., California Institute, 1962; Ph.D., Cornell University, 1966. Assistant Professor, California Institute, 1968-71; Associate Professor, 1971-. (Sloan)

Heinz Adolph Lowenstam, Ph.D., **Professor of Paleoecology**
B.A., University of Chicago, 1939. California Institute, 1952-. (Arms)

Peter Herman Lowy, Doctorandum, **Research Associate in Biology**
Doctorandum, University of Vienna, 1936. Research Fellow, California Institute, 1949-65; Senior Research Fellow, 1965-72; Research Associate, 1972-. (Kerckhoff)

Wilhelmus A. J. Luxemburg, Ph.D., **Professor of Mathematics; Executive Officer for Mathematics**
B.A., University of Leiden, 1950; M.A., 1953; Ph.D., Delft Institute of Technology, 1955. Assistant Professor, California Institute, 1958-62; Associate Professor, 1960-62; Professor, 1962-; Executive Officer, 1970-. (Sloan)

Dennis C. Lynch, Ph.D., **Research Fellow in Biology**
B.S., Brooklyn College, 1968; Ph.D., Massachusetts Institute of Technology, 1973. California Institute, 1973-. (Church)

Hans Maag, Ph.D., **Research Fellow in Chemistry**

George Eber MacGinitie, M.A., **Professor of Biology, Emeritus**
A.B., Fresno State College, 1925; M.A., Stanford University, 1928. California Institute, 1932-57; Professor Emeritus, 1957-. (Kellogg)

Mordeckai Magaritz, Ph.D., **Research Fellow in Geochemistry**

Hay Boon Mak, Ph.D., **Research Fellow in Physics**
B.Sc., McGill University, 1966; Ph.D., California Institute, 1971. Research Fellow, 1971-. (Kellogg)

Charles Bernard Mallon, Ph.D., **Research Fellow in Chemistry**
B.S., Georgetown University, 1971; Ph.D., Rutgers University, 1975. California Institute, 1975-76.

Howard L. Malm, Ph.D., **Research Fellow in Applied Physics**

Part-time
Gretchen Sue Mandel, Ph.D., Research Fellow in Chemistry
B.S., University of Southern California, 1968; Ph.D., University of Pennsylvania, 1972. California Institute, 1972-. (Noyes)

Oscar Mandel, Ph.D., Professor of English
B.A., New York University, 1947; M.A., Columbia University, 1948; Ph.D., The Ohio State University, 1951. Visiting Associate Professor, California Institute, 1964-62; Associate Professor, 1962-68; Professor, 1968-. (Baxter)

Frederick M. Mann, Ph.D., Research Fellow in Physics
B.S., Stanford University, 1970; Ph.D., California Institute, 1974. Research Fellow, 1974-. (Kellogg)

Frank Earl Marble, Ph.D., Professor of Jet Propulsion and Mechanical Engineering
B.S., Case Institute of Technology, 1940; M.S., 1942; A.E., California Institute, 1947; Ph.D., 1948. Instructor, 1948-49; Assistant Professor, 1949-53; Professor, 1953-57; Professor, 1957-. (Guggenheim)

Volker Felix Markowski, Ph.D., Research Fellow in Chemistry

Vincent Marrello, Ph.D., Research Fellow in Applied Physics
B.A.Sc., University of Toronto, 1970; M.S., California Institute, 1971; Ph.D., 1975. Research Fellow, 1974-75.

Roscoe Earl Marrs, Ph.D., Research Fellow in Physics

Richard Edward Marsh, Ph.D., Research Associate in Chemistry
B.S., California Institute, 1943; Ph.D., University of California (Los Angeles), 1960. Research Fellow, California Institute, 1950-58; Senior Research Fellow, 1955-72; Research Associate, 1973-. (Noyes)

Hardy Cross Martel, Ph.D., Associate Professor of Electrical Engineering; Executive Assistant to the President; Secretary of the Board of Trustees
B.S., California Institute, 1949; M.S., Massachusetts Institute of Technology, 1950; Ph.D., California Institute, 1956. Instructor, 1953-55; Assistant Professor 1955-58; Associate Professor, 1958-; Executive Assistant to the President, 1969-; Secretary, 1973-. (Steele, Millikan)

Jon Mathews, Ph.D., Professor of Theoretical Physics; Executive Officer for Physics
B.A., Pomona College, 1952; Ph.D., California Institute, 1957. Instructor, 1957-59; Assistant Professor, 1959-62; Associate Professor, 1962-66; Professor, 1966-; Executive Officer, 1970-. (Downs)

James Walter Mayer, Ph.D., Professor of Electrical Engineering; Master of Student Houses
B.S., Purdue University, 1952; Ph.D., 1959. Associate Professor, California Institute, 1967-71; Professor, 1971-; Master of Student Houses, 1975-. (Steele, Lloyd House)

George P. Mayhew, Ph.D., Professor of English
A.B., Harvard College, 1941; M.A., Harvard University, 1947; Ph.D., 1953. Assistant Professor, California Institute, 1954-60; Associate Professor, 1960-68; Professor, 1968-. (Baxter)

James Oeland McCaldin, Ph.D., Professor of Applied Science and Electrical Engineering
B.A., University of Texas, 1944; Ph.D., California Institute, 1954. Associate Professor of Applied Science, 1968-73; Professor of Applied Science and Electrical Engineering, 1973-. (Keck)

Gilbert Donald McCann, Ph.D., Professor of Applied Science
B.S., California Institute, 1934; M.S., 1935; Ph.D., 1939. Associate Professor of Electrical Engineering, 1946-47; Professor, 1947-66; Professor of Applied Science, 1966-; Director, Willis H. Booth Computing Center, 1966-71. (Booth)

Robert G. McDaniel, Ph.D., Visiting Associate in Biology
A.B., West Virginia University, 1963; Ph.D., 1967. Associate Professor, Department of Agronomy and Plant Genetics, University of Arizona, 1972-. California Institute, 1974.

Lorraine P. McDonnell, Ph.D., Research Fellow in Chemistry
B.S., Pace University, 1971; Ph.D., Boston University, 1975. California Institute, 1975-76.

Stewart Douglas McDowell, Ph.D., Visiting Associate in Geology
B.S., Pennsylvania State University, 1960; M.S., California Institute, 1962; Ph.D., 1967. Assistant Professor, Case Western University, 1969-. Visiting Associate, California Institute, 1975-76.

*Leave of absence
Robert J. McEliece, **Ph.D., Lecturer in Electrical Engineering**
B.S., California Institute, 1964; Ph.D., 1967. Supervisor, Information Processing Group, Jet Propulsion Laboratory, 1967-. Lecturer, California Institute, 1972-. (Steele)

Thomas C. McGill, Ph.D., Associate Professor of Applied Physics
B.S., Lamar State College of Technology, 1964; M.S., California Institute, 1965; Ph.D., 1969. Assistant Professor, 1971-74; Associate Professor, 1974-. (Steele)

Jack Edward McKee, Sc.D., D.Eng., Professor of Environmental Engineering
B.S., Carnegie Institute of Technology, 1936; M.S., Harvard University, 1939; Sc.D., 1941. Associate Professor of Sanitary Engineering, California Institute, 1949-56; Professor, 1956-60; Professor of Environmental Health Engineering, 1960-70; Professor of Environmental Engineering, 1970-. (Keck)

Basil Vincent McKoy, Ph.D., Professor of Theoretical Chemistry
B.S., Nova Scotia Technical College, 1960; Ph.D., Yale University, 1964. Noyes Research Instructor in Chemistry, California Institute, 1964-66; Assistant Professor of Theoretical Chemistry, 1967-69; Associate Professor, 1969-75; Professor, 1975-. (Noyes)

Daniel McMahon, Ph.D., Assistant Professor of Biology
A.B., Case Western Reserve University, 1961; M.S., University of Chicago, 1962; Ph.D., 1968-. (Kerckhoff)

Carver Andress Mead, Ph.D., Professor of Electrical Engineering
B.S., California Institute, 1956; M.S., 1957; Ph.D., 1960. Instructor, 1958-59; Assistant Professor, 1959-62; Associate Professor, 1962-67; Professor, 1967-. (Steele)

Dwight Joel Mellema, Ph.D., Senior Research Fellow in Physics
A.B., Calvin College, 1964; M.S., University of California (Los Angeles), 1966; Ph.D., 1970. Research Fellow, California Institute, 1972-74; Senior Research Fellow, 1974-. (Lauritsen)

H. Jay Melosh, Ph.D., Instructor in Geophysics and Planetary Science
B.S., Princeton University, 1969; Ph.D., California Institute, 1973. Instructor, 1973-. (S. Mudd)

Jonathan D. Melvin, Ph.D., Research Fellow in Physics
B.A., M.A., Yale University, 1968; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

Robert Thomas Menzies, **Ph.D., Visiting Associate in Electrical Engineering**
S.B., Massachusetts Institute of Technology, 1965; M.S., California Institute, 1967; Ph.D., 1970. Staff Scientist, Jet Propulsion Laboratory, 1970-. Research Fellow, 1970-73; Visiting Associate, 1973-. (Jet Propulsion Lab.)

James Edgar Mercereau, Ph.D., D.Sc., Professor of Physics and Applied Physics
B.A., Pomona College, 1953; M.S., University of Illinois, 1954; Ph.D., California Institute, 1959. Assistant Professor of Physics, 1959-62; Visiting Associate, 1964-65; Research Associate, 1965-69; Professor, 1969-74; Professor of Physics and Applied Physics, 1974-. (Sloan)

Richard Alvin Mewaldt, Ph.D., Senior Research Fellow in Physics
B.A., Lawrence University, 1965; M.A., Washington University, 1967; Ph.D., 1971. Research Fellow, California Institute, 1971-75; Senior Research Fellow, 1975-. (Downs)

Ronald Leo Meyer, Ph.D., Research Fellow in Biology
B.A., Don Bosco College, 1966; Ph.D., California Institute, 1974. Research Fellow, 1974-. (Alles)

William Whipple Michael, B.S., Professor of Civil Engineering, Emeritus
B.S., Tufts College, 1908. Associate Professor, California Institute, 1918-36; Professor Emeritus, 1936-. (Thomas)

Daniel Morris Michaelson, Research Fellow in Chemistry
B.Sc., Hebrew University of Jerusalem, 1968; Ph.D., University of California, 1973. California Institute, 1974-. (Church)

Robert David Middlebrook, Ph.D., Professor of Electrical Engineering
B.A., University of Cambridge, 1952; M.S., Stanford University, 1953; Ph.D., 1955. Assistant Professor, California Institute, 1955-58; Associate Professor, 1958-65; Professor, 1965-. (Steele)

David Robert Mikkelson, Ph.D., Research Fellow in Physics

Julius Miklowitz, Ph.D., Professor of Applied Mechanics
B.S., University of Michigan, 1943; Ph.D., 1949. Associate Professor, California Institute, 1956-62; Professor, 1962-. (Thomas)

**Part time
Fausto Milinazzo, Ph.D., Research Fellow in Applied Mathematics
B.S., University of British Columbia, 1970; Ph.D., 1974. California Institute, 1974-. (Frostone)

James Paul Miller, Ph.D., Research Fellow in Physics

Marcia Madsen Miller, Ph.D., Research Fellow in Biology
B.S., University of California (Davis), 1965; M.A., 1966; Ph.D., University of California (Los Angeles), 1972. California Institute, 1972-. (Alles)

Peter Minkowski, Ph.D., Senior Research Fellow in Theoretical Physics

Jean-Bernard Honoré Minster, Ph.D., Assistant Professor of Geophysics

Carolyn Hattoo Mitchell, Ph.D., Senior Research Fellow in Biology
B.S., Louisiana State University, 1963; Ph.D., University of Texas, 1967. Research Fellow, California Institute, 1971-74; Senior Research Fellow, 1974-. (Kerckhoff)

Herschel Kenworthy Mitchell, Ph.D., Professor of Biology
B.S., Pomona College, 1936; M.S., Oregon State College, 1938; Ph.D., University of Texas, 1941. Senior Research Fellow, California Institute, 1946-49; Associate Professor, 1949-53; Professor, 1953-. (Alles)

Alan Theodore Moffet, Ph.D., Professor of Radio Astronomy; Director of Owens Valley Radio Observatory
B.A., Wesleyan University, 1957; Ph.D., California Institute, 1961. Research Fellow, 1962-66; Assistant Professor, 1966-68; Associate Professor, 1968-71; Professor, 1971-. Director, 1975-. (Robinson)

Galina Moller,** M.S., Lecturer in Russian
M.S., University of Moscow, 1968. California Institute, 1971-. (Baxter)

Antonio Montalvo, M.D., Visiting Associate in Biology
Lic., University of Navarra (Spain), 1969; M.D., University of Madrid, 1973; M.D., University of Rome, 1974. Professor and Director of the Department of Biochemistry and General Physiology, University of Santander Medical School, 1974-. California Institute, 1974.

William David Montgomery,* Ph.D., Assistant Professor of Economics
B.A., Wesleyan University, 1966; Ph.D., Harvard University, 1971. California Institute, 1971-. (Baxter)

Richard B. Moon, Ph.D., Research Fellow in Chemistry

Nicholas R. Moore, Ph.D., Senior Research Fellow in Engineering

Ronald Lee Moore, Ph.D., Senior Research Fellow in Solar Physics
B.S., Purdue University, 1964; Ph.D., Stanford University, 1972. Research Fellow, California Institute, 1972-74; Senior Research Fellow, 1974-. (W. Bridge)

James John Morgan, Ph.D., Professor of Environmental Engineering Science; Executive Officer for Environmental Engineering Science
B.C.E., Manhattan College, 1954; M.S.E., The University of Michigan, 1956; M.A., Harvard University, 1962; Ph.D., 1964. Associate Professor, California Institute, 1965-69; Professor, 1969-; Academic Officer for Environmental Engineering Science, 1971-72; Dean of Students, 1972-73; Executive Officer, 1974-. (Keck)

Mark R. Morris, Ph.D., Research Fellow in Radio Astronomy
B.A., University of California (Riverside), 1969; Ph.D., University of Chicago, 1974. California Institute, 1974-. (Robinson)

David W. Morristoe, M.B.A., Lecturer in Business Economics**;
Vice President for Financial Affairs and Treasurer
B.A., Manhattan College, 1954; M.A., Columbia University, 1956; M.B.A., Harvard School of Business Administration, 1964. Director of Financial Services, California Institute, 1969-74; Lecturer, 1971-; Vice President and Treasurer, 1974-. (Millikan)

Edward Randolph Moser, M.S., Associate Director of Libraries
A.B., Wheaton College, 1943; M.S., Cornell University, 1944. Associate Director, California Institute, 1967-. (Millikan Library)

*Leave of absence
**Part-time
Duane Owen Muhleman, Ph.D., Professor of Planetary Science
B.S., University of Toledo, 1953; Ph.D., Harvard University, 1963. Associate Professor, California Institute, 1967-71; Professor, 1971-. (Mudd)

Guido Münch, Ph.D., Professor of Astronomy
B.S., Universidad Nacional Autonoma de Mexico, 1938; M.S., 1944; Ph.D., University of Chicago, 1947. Assistant Professor, California Institute, 1951-54; Associate Professor, 1954-59; Professor, 1959-. Staff Member, Hale Observatories, 1951-. (Robinson)

Edwin Stanton Munger, Ph.D., Professor of Geography
M.S., University of Chicago, 1948; Ph.D., 1951. Visiting Lecturer, American Universities Field Staff, California Institute, 1954, 1957; Professor, 1960. (Mudd)

Bruce Churchill Murray, Ph.D., Professor of Planetary Science
S.B., Massachusetts Institute of Technology, 1953; S.M., 1954; Ph.D., 1955. Research Fellow in Space Science, California Institute, 1960-63; Associate Professor of Planetary Science, 1963-68; Professor, 1968-. (Mudd)

Ken-Ichi Naka, D.Sc., Senior Research Associate in Biology and Applied Science
B.S., Kyushu University, 1955; M.S., 1957; D.Sc., 1960. Research Associate, California Institute, 1967-73; Senior Research Associate, 1973-. (Booth)

Kunio Nakamura, B.S., Research Fellow in Electrical Engineering
B.S., University of Tokyo, 1972. California Institute, 1974-75.

Jayant V. Narlikar, Ph.D., Visiting Associate in Physics

Edwin Leroy Neal, M.A., Coach
B.A., Occidental College, 1964; M.A., California State University (San Diego), 1971. California Institute, 1973-. (Gymnasium)

Henry Victor Neher, Ph.D., Sc.D., Professor of Physics, Emeritus
A.B., Pomona College, 1926; Ph.D., California Institute, 1931. Research Fellow, 1931-33; Instructor, 1933-37; Assistant Professor, 1937-40; Associate Professor, 1940-44; Professor, 1944-70; Professor Emeritus, 1970-. (Downs)

Forrest D. Nelson, Ph.D., Assistant Professor of Economics
B.S., Colorado State University, 1968; M.S., The University of Rochester, 1973; Ph.D., 1975. California Institute, 1975-. (Baxter)

Berney Roy Neufeld, Ph.D., Visiting Associate in Biology
B.A., Columbia Union College, 1963; M.A., Loma Linda University, 1965; Ph.D., Indiana University, 1968. Research Fellow, Biology, California Institute, 1971-73; Visiting Associate, 1973-. (Kerckhoff Marine Lab.)

Gerry Neugebauer, Ph.D., Professor of Physics
A.B., Cornell University, 1954; Ph.D., California Institute, 1960. Assistant Professor, 1962-65; Associate Professor, 1965-70; Professor, 1970-. Staff Member, Hale Observatories, 1970-. (Kerckhoff Marine Lab.)

Michael J. Newman, Ph.D., Research Fellow in Physics
B.A., Rice University, 1972; M.S., Louisiana State University, 1971; M.S., Rice University, 1973; Ph.D., 1975. California Institute, 1975-76.

Charles Newton, Ph.B., Lecturer in English, Emeritus
Ph.B., University of Chicago, 1933. Assistant to the President, California Institute, 1948-68; Director of Development, 1961-66; Lecturer, 1955; 1960-62; 1966-75; Lecturer Emeritus, 1975-. (Baxter)

Marc-Aurele Nicolet, Ph.D., Professor of Electrical Engineering
Ph.D., University of Basel, 1958. Assistant Professor, California Institute, 1959-65; Associate Professor, 1965-73; Professor, 1973-. (Steele)

Roger Gordon Noll, Ph.D., Professor of Economics
B.S., California Institute, 1962; A.M., Harvard University, 1965; Ph.D., 1967. Instructor, California Institute, 1965-67; Assistant Professor, 1967-69; Associate Professor, 1969-71; Professor, 1973-. (Baxter)

Joyce L. Norman, Ph.D., Research Fellow in Biology
B.S., University of California (Los Angeles), 1962; M.S., 1964; B.A., California State University (Los Angeles), 1969; M.A., University of California (Riverside), 1972; Ph.D., 1974. California Institute, 1974-75.

Wheeler James North, Ph.D., Professor of Environmental Science
B.S., California Institute, 1944; M.S., 1950; Ph.D., University of California, 1953. Visiting Assistant Professor of Biology, California Institute, 1962; Associate Professor of Environmental Health Engineering, 1963-68; Professor, 1968-. (Keck)
Harris Anthony Notarys, Ph.D., Senior Research Fellow in Physics
S.B., Massachusetts Institute of Technology, 1954; Ph.D., California Institute, 1964. Research Fellow, 1969; Senior Research Fellow, 1970-. (Sloan)

Wolfgang Ochs, Ph.D., Research Fellow in Physics
Dipl., Max Planck Institute, 1969; Ph.D., 1973. California Institute, 1974-. (Lauritsen)

Orpha Caroline Ochse, Ph.D., Lecturer in Music
B.M., Central College (Missouri), 1947; M.M., Eastman School of Music, The University of Rochester, 1969; Ph.D., 1953. Lecturer in Music, California Institute, 1960-72; 1973-; Andrew W. Mellon Lecturer, 1972. (Baxter)

Mitsuo Oka, Ph.D., Research Fellow in Chemical Engineering
B.S., Sophia University (Japan), 1966; M.S., University of Arkansas, 1970; Ph.D., 1973. California Institute, 1974-75.

John Beverley Oke, Ph.D., Professor of Astronomy; Associate Director, Hale Observatories
B.A., University of Toronto, 1949; M.A., 1950; Ph.D., Princeton University, 1953. Assistant Professor, California Institute, 1958-61; Staff Member, Hale Observatories, 1958-69; Associate Professor, 1961-64; Professor, 1964-; Associate Director, 1970-. (Robinson)

James Olds, Ph.D., Bing Professor of Behavioral Biology
B.A., Amherst College, 1947; M.A., Harvard University, 1951; Ph.D., 1951. Professor, California Institute, 1969-70; Bing Professor, 1970-. (Beckman Labs.)

Marianne Nicole Olds, Ph.D., Research Associate in Biology
B.A., Smith College, 1947; M.A., Radcliffe College, 1950; Ph.D., 1951. Senior Research Fellow, California Institute, 1969-72; Research Associate, 1972-. (Beckman Labs.)

Robert Warner Oliver, Ph.D., Professor of Economics
A.B., University of Southern California, 1943; A.M., 1948; A.M., Princeton University, 1950; Ph.D., 1957. Assistant Professor, California Institute, 1959-61; Associate Professor, 1961-74; Professor, 1974-. (Baxter)

Robin W. Ollerhead, Ph.D., Visiting Associate in Physics
B.Sc., University of Western Ontario, 1959; M.S., Yale University, 1960; Ph.D., 1964. Professor of Physics, University of Guelph, 1971-. California Institute, 1974-. (Kellogg)

Yutaka Onodera, Ph.D., Visiting Associate in Physics
B.S., Tohoku University, 1969; M.S., Yale University, 1965; Ph.D., 1964. Professor of Physics, University of Guelph, 1971-. California Institute, 1974-. (Kellogg)

Jack C. Overley, Ph.D., Visiting Associate in Physics
B.S., Massachusetts Institute of Technology, 1954; Ph.D., California Institute, 1961. Associate Professor of Physics, University of Oregon, 1968-; Research Fellow, California Institute, 1964; Visiting Associate, 1975-76.

Ray David Owen, Ph.D., Sc.D., Professor of Biology; Vice President for Student Affairs and Dean of Students
B.S., Carroll College, 1937; Ph.M., University of Wisconsin, 1938; Ph.D., 1941. Gosney Fellow, California Institute, 1946-47; Associate Professor, 1947-53; Professor, 1953--; Division Chairman, 1961-68; Vice President for Student Affairs and Dean of Students, 1975-. (Kerrckhoff, Dabney)

William R. Pangratz, Ph.D., Research Fellow in Chemistry
B.S., Alliance College, 1969; M.S., Case Western Reserve University, 1971; Ph.D., 1973. California Institute, 1973-. (Noyes)

Dimitri A. Papanastassiou, Ph.D., Senior Research Fellow in Planetary Science

Charles Herach Papas, Ph.D., Professor of Electrical Engineering
B.S., Massachusetts Institute of Technology, 1941; M.S., Harvard University, 1946; Ph.D., 1948. Lecturer, California Institute, 1952-54; Associate Professor, 1954-59; Professor, 1959-. (Steele)

Bohdan Paczynski, Ph.D., Sherman Fairchild Distinguished Scholar
Ph.D., University of Warsaw, 1964; Docent, 1967. Assistant Professor, Institute of Astronomy, Polish Academy of Sciences, 1970-; California Institute, 1975-76.

Jon R. Pariser, M.A., Lecturer in Russian

Peter D. Parker, Ph.D., Visiting Associate in Physics
B.A., Amherst College, 1958; Ph.D., California Institute, 1963. Associate Professor of Physics, Yale University, 1967-. California Institute, 1975.

Part-time
Clair Cameron Patterson, Ph.D., Senior Research Associate in Geochemistry
A.B., Grinnell College, 1943; M.S., University of Iowa, 1944; Ph.D., University of Chicago, 1951; Research Fellow, California Institute, 1952-53; Senior Research Fellow, 1953-71; Research Associate, 1971-73; Senior Research Associate, 1973- (N. Mudd)

John Rayden Patterson, Ph.D., Visiting Associate in Physics
B.Sc., University of Adelaide, 1963; Ph.D., Australian National University, 1966. Lecturer in Physics, University of Adelaide, 1968-. Research Fellow, California Institute, 1966-67; Visiting Associate, 1974-75.

Rodman Wilson Paul, Ph.D., Edward S. Harkness Professor of History
A.B., Harvard College, 1936; M.A., Harvard University, 1937; Ph.D., 1943. Associate Professor, California Institute, 1947-51; Professor, 1951-72; Harkness Professor, 1972-. (Baxter)

B.S., Oregon State College, 1922; Ph.D., California Institute, 1925. Research Associate, 1926-27; 1964-71; Assistant Professor, 1927-29; Associate Professor, 1929-31; Professor, 1931-64; Chairman of the Division of Chemistry and Chemical Engineering, 1936-58; Professor Emeritus, 1971-.

Ralph G. Pearson, Ph.D., Sherman Fairchild Distinguished Scholar
B.A., Illinois Institute of Technology, 1940; Ph.D., Northwestern University, 1943. Professor of Chemistry, Northwestern University, 1957-. California Institute, 1975.

Charles William Peck, Ph.D., Associate Professor of Physics
B.S., New Mexico College of Agricultural and Mechanical Arts, 1956; Ph.D., California Institute, 1964. Research Fellow, 1964-65; Assistant Professor, 1965-69; Associate Professor, 1969-. (Lauritsen)

Maria Catherine Pellegrini-Dervan, Ph.D., Research Fellow in Chemistry

Joyce Penn, Ph.D., Assistant Professor of English

Zbigniew Peradzynski, Ph.D., Visiting Associate in Applied Mathematics

S. Eric Persson, Ph.D., Staff Member, Hale Observatories
B.Sc., McGill University, 1966; Ph.D., California Institute, 1972. Staff Member, Hale Observatories, 1975-76.

Keith E. Peters, Ph.D., Research Fellow in Biology

Nancy S. Peters, Ph.D., Research Fellow in Biology
B.A., Mount Holyoke College, 1966; Ph.D., Northwestern University, 1974. California Institute, 1974-75.

John D. Pettigrew, M.D., Assistant Professor of Biology
B.Sc. (MED), University of Sydney, 1966; M.Sc., 1966; M.B., B.S., 1968. California Institute, 1973-. (Beckman Labs.)

Rona Pettigrew, Ph.D., Research Fellow in Biology
B.Sc., University of New South Wales, 1969; Ph.D., 1972. California Institute, 1973-. (Beckman Labs.)

William Hayward Pickering, Ph.D., Professor of Electrical Engineering; Director of Jet Propulsion Laboratory
B.S., California Institute, 1932; M.S., 1933; Ph.D., 1936. Instructor, 1936-40; Assistant Professor, 1940-45; Associate Professor, 1945-47; Professor, 1947-; Director, Jet Propulsion Laboratory, 1954-. (Jet Propulsion Lab.)

John Robinson Pierce, Ph.D., D.Sc., D.Eng., E.D., LL.D., Professor of Engineering; Executive Officer for Electrical Engineering
B.S., California Institute, 1933; M.S., 1934; Ph.D., 1936. Professor, 1971-. Executive Officer, 1973-. (Steele)

Lajos Piko, D.V.M., Senior Research Fellow in Biology
Dipl., University of Agricultural Science, Budapest-Godziel, 1956; D.V.M., Veterinary School of Alfort, France, 1957. Chief, Developmental Biology Laboratory, Veterans Administration Hospital (Los Angeles), 1966-. Research Fellow, California Institute, 1959-65; Senior Research Fellow, 1965-. (Church)

**Part-time
Jerome Pine, Ph.D., Professor of Physics
B.A., Princeton University, 1949; Ph.D., Cornell University, 1956. Associate Professor, California Institute, 1963-67; Professor, 1967-. (Lauritsen)

Cornelius John Pings, Ph.D., Professor of Chemical Engineering and Chemical Physics; Vice Provost and Dean of Graduate Studies
B.S., California Institute, 1951; M.S., 1952; Ph.D., 1955. Associate Professor of Chemical Engineering, 1959-64; Professor, 1964-70; Professor of Chemical Engineering and Chemical Physics, 1970-; Executive Officer for Chemical Engineering, 1969-72; Vice Provost and Dean of Graduate Studies, 1971-. (Millikan)

Joe Ernest Plofth, Ph.D., Research Fellow in Chemical Engineering
B.S., Southern Methodist University, 1961; M.S., Texas Technical University, 1964; Ph.D., University of Washington, 1971. California Institute, 1973-. (Spalding)

Wilhelm Plesken, Dr. rer. nat., Visiting Associate in Mathematics
Dipl., West German Technical University (Aachen), 1973; Dr. rer. nat., 1974. Research Fellow, 1974-. California Institute, 1974-75.

Milton S. Plesset, Ph.D., Professor of Engineering Science
B.S., University of Pittsburgh, 1929; Ph.D., Yale University, 1932. Associate Professor of Applied Mechanics, California Institute, 1948-51; Professor, 1951-63; Professor of Engineering Science, 1963-. (Thomas)

Charles Raymond Plott, Ph.D., Professor of Economics
B.S., Oklahoma State University, 1961; M.S., 1964; Ph.D., University of Virginia, 1965. California Institute, 1971-.

Michael Erich Pohst, Ph.D., Visiting Associate in Mathematics

Hugh D. Politzer, Ph.D., Visiting Associate in Theoretical Physics

Sir George Porter, Ph.D., Nobel Laureate, Visiting Professor of Chemistry
B.Sc., University of Leeds, 1941; Ph.D., University of Cambridge, 1949. Director and Fulbright Professor, Royal Institution, London, 1970-. Sherman Fairchild Distinguished Scholar, California Institute, 1974-75; Visiting Professor, 1975-76.

Tamar Beatrice Posner, Ph.D., Research Fellow in Chemistry
B.Sc., University of London King's College, 1970; Ph.D., 1974. California Institute, 1974-. (Crelin)

Christine Ann Powell, Ph.D., Research Fellow in Geophysics

Richard James Powers, Ph.D., Senior Research Fellow in Physics

Edward T. Preisler, B.A., Coach
B.A., San Diego State College, 1941. California Institute, 1947-. (Gymnasium)

Frank Press, Ph.D., Distinguished Visiting Scholar in Geophysics
B.S., College of the City of New York, 1944; M.A., Columbia University, 1946; Ph.D., 1949. Professor of Geophysics and Head, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, 1965-. Professor of Geophysics, California Institute, 1955-65; Director of Seismological Laboratory, 1957-65; Distinguished Visiting Scholar, 1976.

George Worrall Preston III, Ph.D., Staff Member, Hale Observatories
B.S., Yale University, 1952; Ph.D., University of California, 1959. Research Fellow in Astronomy, California Institute, 1959-60; Staff Member, Hale Observatories, 1968-. (Hale Office)

Aimee Brown Price,** Ph.D., Lecturer in Art History

Richard J. Proctor, ** M.A., Visiting Associate Professor of Geology

**Part-time
Katherine M. Proppe, Ph.D., Lecturer in Literature

Andrea Prosperetti, Ph.D., Research Fellow in Engineering Science
Laurea, University of Milan, 1968; M.S., California Institute, 1972; Ph.D., 1974. Research Fellow, 1974-. (Thomas)

Robert Harry Pudenz, ** M.D., Visiting Associate in Biomedical Engineering
B.S., University of Dayton, 1933; M.D., Duke University, 1937. Director of Research, Huntington Institute of Applied Medical Research (Pasadena), 1970-. Clinical Professor of Surgery, University of Southern California School of Medicine, 1970- California Institute, 1974-75.

David Pulleyblank, Ph.D., Research Fellow in Biology
B.S., University of British Columbia, 1970; Ph.D., University of Alberta, 1974. California Institute, 1974-75.

Chris Quigg, Ph.D., Visiting Associate in Physics
B.S., Yale University, 1966; Ph.D., University of California, 1970. Physicist, Fermi National Accelerator Laboratory, 1974-. California Institute, 1974.

James P. Quirk, Ph.D., Professor of Economics
B.A., University of Minnesota, 1948; M.A., 1949; Ph.D., 1959. California Institute, 1971-. (Baxter)

Mark S. Radomski, Ph.D., Research Fellow in Physics
B.S., California Institute, 1969; M.S., Stanford University, 1970; Ph.D., 1973. California Institute, 1973-. (Kellogg)

Michael Augustine Raftery, *** Ph.D., Sc.D., Professor of Chemical Biology
B.Sc., National University of Ireland, 1956; Ph.D., 1960; Sc.D., 1971. Noves Research Instructor in Chemistry, California Institute, 1964-66; Assistant Professor of Chemical Biology, 1967-69; Associate Professor, 1969-72; Professor, 1972-. (Church)

Fredric Raichlen, Sc.D., Professor of Civil Engineering
B.E., Johns Hopkins University, 1953; S.M., Massachusetts Institute of Technology, 1955; Sc.D., 1962. Assistant Professor, California Institute, 1962-67; Associate Professor, 1967-72; Professor, 1972-. (Keck)

Sundar R. Rajan, Ph.D., Research Fellow in Physics and Planetary Science
B.Sc., Nadia College (India), 1964; Ph.D., University of California, 1973. California Institute, 1973-. (Arms)

T. E. Ramabhadran, ** Ph.D., Visiting Associate in Chemical Engineering
B.Tech., University of Madras; Ph.D., The University of Rochester. Assistant Professor, Indian Institute of Technology (Madras). California Institute, 1974-. (Spalding)

Simon Ramo, Ph.D., Visiting Associate in Engineering
B.S., University of Utah, 1933; Ph.D., California Institute, 1936. Research Associate, 1946-74; Visiting Associate, 1974-. (Booth)

W. Duncan Rannie, Ph.D., Robert H. Goddard Professor of Jet Propulsion
B.A., University of Toronto, 1936; M.A., 1937; Ph.D., California Institute, 1951. Assistant Professor of Mechanical Engineering, 1947-51; Associate Professor, 1951-53; Goddard Professor, 1955-. (Guggenheim)

Charles van Blokkingh Ray, M.S., Lecturer in Applied Science**: Director, Willis H. Booth Computing Center
B.E.E., Cornell University, 1952; M.S., California Institute, 1956. Senior Engineer, Computing Center, 1964-71. Lecturer, 1965--; Acting Director, Willis H. Booth Computing Center, 1971-72; Director, 1972-. (Booth)

Donald Roy Rayburn, Ph.D., Research Fellow in Astrophysics
B.Sc., University of Calgary, 1968; Ph.D., Queen's University (Canada), 1971. California Institute, 1972-. (Robinson)

Anthony C. S. Readhead, Ph.D., Research Fellow in Radio Astronomy
B.Sc., University of Witwatersrand (South Africa), 1967; Ph.D., Cambridge University, 1972. California Institute, 1974-75.

H. Hollis Reamer, M.S., Senior Research Fellow in Chemical Engineering
A.B., University of Redlands, 1937; M.S., California Institute, 1938. Research Assistant, 1938-52; Research Fellow, 1952-58; Senior Research Fellow, 1958-. (Spalding)

Juta Kuttis Reed, Ph.D., Research Fellow in Chemistry
B.A., Queen's University (Canada), 1966; M.Sc., University of Western Ontario, 1967; Ph.D., University of Wisconsin, 1972. California Institute, 1973-. (Church)

**Part-time
***Leave of absence, second and third terms
Kenton Lewis Reed, Ph.D., Research Fellow in Chemistry
B.S., University of Alaska, 1964; M.S., 1966; Ph.D., University of Wisconsin, 1973. California Institute, 1973-. (Church)

Hans Peter Rehm, Dr. rer. nat., Visiting Associate in Mathematics
Dr. rer. nat., Technical University of Karlsruhe, 1972. Research Fellow, 1972-. California Institute, 1974-75.

Jose Ruiz Reissig, Ph.D., Visiting Associate in Biology
B.S., The University of Michigan, 1948; Ph.D., California Institute, 1942. Research Professor, C. W. Post College of Long Island University, 1967-. Research Fellow, California Institute, 1966; Visiting Associate, 1975-76.

Thomas Nicola Rescigno, Ph.D., Research Fellow in Chemistry

Helen Ruth Revel, Ph.D., Research Associate in Biology
B.S., Mount Holyoke College, 1949; Ph.D., Harvard University, 1957. Senior Research Fellow, California Institute, 1971-72; Research Associate, 1972-. (Church)

Jean-Paul Revel, Ph.D., Professor of Biology
B.Sc., University of Strasbourg, 1949; Ph.D., Harvard University, 1957. California Institute, 1971-. (Alles)

John Hall Richards, Ph.D., Professor of Organic Chemistry
B.A., University of California, 1951; B.Sc., Oxford University, 1953; Ph.D., University of California, 1955. Assistant Professor, California Institute, 1957-61; Associate Professor, 1961-70; Professor, 1970-. (Crellein)

Leroy Leonard Richer, Ph.D., Research Fellow in Chemistry

Douglas O. Richstone, Ph.D., Research Fellow in Astronomy
B.S., California Institute, 1971; Ph.D., Princeton University, 1974. Research Fellow, California Institute, 1974-. (Robinson)

Charles Francis Richter, Ph.D., Professor of Seismology, Emeritus
A.B., Stanford University, 1920; Ph.D., California Institute, 1928. Assistant Professor, 1947-52; Professor, 1952-70; Professor Emeritus, 1970-. (S. Mudd)

Ivan Rival, Ph.D., Research Fellow in Mathematics
B.S., McMaster University, 1966; Ph.D., University of Manitoba, 1974. California Institute, 1974-75.

John D. Roberts, Ph.D., Dr. rer. nat., Sc.D., Institute Professor of Chemistry
B.A., University of California (Los Angeles), 1941; Ph.D., 1944. Professor, California Institute, 1953-72; Division Chairman, 1963-68; Institute Professor, 1972-; Acting Chairman, 1972-73. (Crellein)

George Wilse Robinson,* Ph.D., Professor of Physical Chemistry
B.S., Georgia Institute of Technology, 1947; M.S., 1949; Ph.D., State University of Iowa, 1952. Associate Professor, California Institute, 1959-61; Professor, 1961-. (Noyes)

Robert George Rohwer, Ph.D., Research Fellow in Biology

Claus Ernst Rolfs, Ph.D., Visiting Associate in Physics
M.S., University of Freiburg, 1966; Ph.D., 1967. Senior Research Fellow, California Institute, 1973-75; Visiting Associate, 1975.

Albert Rose, Ph.D., Sherman Fairchild Distinguished Scholar

John Morris Rosenberg, Ph.D., Research Fellow in Chemistry
B.S., Case Western Reserve University, 1967; Ph.D., Massachusetts Institute of Technology, 1973. California Institute, 1973-. (Church)

Robert Allan Rosenstone, Ph.D., Professor of History
B.A., University of California (Los Angeles), 1957; Ph.D., 1965. Visiting Assistant Professor, California Institute, 1966-68; Assistant Professor, 1968-69; Associate Professor, 1969-75; Professor, 1975-. (Baxter)

Anatol Roshko, Ph.D., Professor of Aeronautics
B.Sc., University of Alberta, 1945; M.S., California Institute, 1947; Ph.D., 1952. Research Fellow, 1952-54; Senior Research Fellow, 1954-55; Assistant Professor, 1955-58; Associate Professor, 1958-62; Professor, 1962-. (Karman)

*Leave of Absence
Jonathan Lincoln Rosner, Ph.D., *Visiting Associate in Theoretical Physics*

Hugh Norman Ross, Ph.D., *Research Fellow in Radio Astronomy*

George Robert Rossman, Ph.D., *Assistant Professor of Mineralogy*

B.S., Wisconsin State University, 1966; Ph.D., California Institute, 1971. Instructor in Mineralogy, 1971; Assistant Professor, 1972-. (Arms)

Peter Rowlinson, Ph.D., *Visiting Associate Professor in Mathematics*

Martin H. Rubin, Ph.D., *Assistant Professor of English*

B.A., Yale University, 1971; M.A., University of Virginia, 1972; Ph.D., 1975. California Institute, 1975-. (Baxter)

Bruce Herbert Rule, B.S., *Staff Member, Hale Observatories; Staff Member, Owens Valley Radio Observatory*

B.S., California Institute, 1932. Staff Member, 1965-. (Hale Office)

Richard Lawson Russell, Ph.D., *Assistant Professor of Biology*

A.B., Harvard College, 1962; Ph.D., California Institute, 1967. Assistant Professor, 1970-. (Beckman Labs.)

R. Allison Ryan, Ph.D., *Assistant Professor of Philosophy*

B.A., Radcliffe College, 1969; Ph.D., The Rockefeller University, 1974. California Institute, 1974-. (Baxter)

Dennis E. Ryono, Ph.D., *Research Fellow in Chemistry*

Laurnine S. Ryono, Ph.D., *Research Fellow in Chemistry*

Herbert John Ryser, Ph.D., *Professor of Mathematics*

B.A., University of Wisconsin, 1943; Ph.D., 1948. California Institute, 1967-. (Sloan)

Rolf Heinrich Sabersky, Ph.D., *Professor of Mechanical Engineering*

B.S., California Institute, 1942; M.S., 1943; Ph.D., 1949. Assistant Professor, 1949-55; Associate Professor, 1955-61; Professor, 1961-. (Thomas)

Philip Geoffrey Saffman, Ph.D., *Professor of Applied Mathematics*

B.A., Trinity College, University of Cambridge, 1953; M.A., Ph.D., 1956. Professor of Fluid Mechanics, California Institute, 1964-70; Professor of Applied Mathematics, 1970-. (Firestone)

Bruce Hornbrook Sage, Ph.D., Eng.D., *Professor of Chemical Engineering, Emeritus*

B.S., New Mexico State College, 1929; M.S., California Institute, 1931; Ph.D., 1934. Research Fellow, 1934-35; Senior Fellow in Chemical Research, 1935-37; Assistant Professor of Chemical Engineering, 1937-39; Associate Professor, 1939-44; Professor, 1944-69; Research Associate, 1969-74; Professor Emeritus, 1974-.

Sema'an Ibrahim Salem, Ph.D., *Visiting Associate in Physics*

B.Sc., American University of Cairo, 1954; Ph.D., University of Texas (Austin), 1959. Professor, California State University (Long Beach), 1961-. California Institute, 1975.

Miriam M. Salpeter, Ph.D., *Visiting Associate in Biology*

Ilan Samid, M.Sc., *Research Fellow in Electrical Engineering*

B.Sc., Technion Institute of Technology (Israel), 1966; M.Sc., 1969. California Institute, 1973-. (Steele)

Sten Otto Samson, Fil.Dr., *Research Associate in Chemistry*

Fil.kand., University of Stockholm, 1953; Fil.lc., 1956; Fil.Dr., 1968. Research Fellow, California Institute, 1953-56; 1957-61; Senior Research Fellow, 1969-72. Research Associate, 1973-. (Noyes)

Allan Rex Sandage, Ph.D., Sc.D., D.Sc., LL.D., *Staff Member, Hale Observatories*

A.B., University of Illinois, 1948; Ph.D., California Institute, 1953; Sc.D., Yale University, 1966. Staff Member, Hale Observatories, 1948-. (Hale Office)

Philip A. Sandberg, Ph.D., *Visiting Associate in Geology*

B.S., Louisiana State University, 1960; M.S., 1961; Ph.D., University of Stockholm, 1965. Associate Professor, University of Illinois, 1969-. California Institute, 1975-76.
Craig L. Sarazin, Ph.D., Robert A. Millikan Research Fellow in Physics

Wallace Leslie William Sargent, Ph.D., Professor of Astronomy; Executive Officer for Astronomy
B.Sc., Manchester University, 1956; M.Sc., 1957; Ph.D., 1959. Research Fellow, California Institute, 1959-62; Assistant Professor, 1966-68; Associate Professor, 1968-71; Professor, 1971-. Staff Member, Hale Observatories, 1966-; Executive Officer, 1975-. (Robinson)

Edgar Harry Satorius, Ph.D., Research Fellow in Electrical Engineering
B.S., University of California, 1970; M.S., California Institute, 1971; Ph.D., 1974. Research Fellow, 1974-75.

John Michael Scalo, Ph.D., Research Fellow in Physics
B.S., University of Southern California, 1969; M.A., University of California (Los Angeles), 1971; Ph.D., 1973. California Institute, 1974-. (Kellogg)

William Palzer Schaefer, Ph.D., Senior Research Fellow in Chemistry; Registrar; Director of Financial Aid
B.S., Stanford University, 1952; M.S., University of California (Los Angeles), 1954; Ph.D., 1960. Instructor, California Institute, 1960-62; Assistant Professor, 1962-66; Senior Research Fellow, 1968-. Assistant Director of Admissions, 1968-73; Registrar, 1971-; Director of Financial Aid, 1973-. (Crellin, Dobney)

John A. Scheid, Ph.D, Senior Research Fellow in Physics
B.A., Northwestern University, 1957; M.S., University of Chicago, 1963; Ph.D., 1970. California Institute, 1974-.

Bernhard M. U. Scherzer, Ph.D., Visiting Associate in Applied Physics
Dipl., University of Munich, 1960; Ph.D, Technical University of Munich, 1969. Scientific Employee, Max Planck Institute for Physics, 1975-.

Richard Theodore Schilizzi, Ph.D., Research Fellow in Radio Astronomy
B.Sc., University of New England (Australia), 1966; Ph.D., University of Sydney, 1972. California Institute, 1973-.

Maarten Schmidt, Ph.D., Sc.D., Professor of Astronomy; Chairman of the Division of Physics, Mathematics and Astronomy
Ph.D., University of Leiden, 1956; Sc.D., Yale University, 1966. Carnegie Fellow, Hale Observatories, 1956-58; Associate Professor, California Institute, 1959-64; Professor, 1964-; Executive Officer for Astronomy, 1972-75; Division Chairman, 1975-. Staff Member, Hale Observatories, 1959-. (E. Bridge)

Harrison H. Schmitt, Ph.D., Sherman Fairchild Distinguished Scholar
B.S., California Institute, 1957; Ph.D., Harvard University, 1964. Scientist Astronaut, National Aeronautics and Space Administration, 1969-. Assistant Administrator for Energy Programs, 1974-. California Institute, 1974-. (N. Mudd)

William Paul Schneider, Visiting Associate in Chemistry

Neil E. Schore, Ph.D., Research Fellow in Chemistry

Walter Schroeder, Ph.D., Research Fellow in Biology
Ph.D., University of Cologne, 1974. California Institute, 1974-75.

Walter Adolph Schroeder, Ph.D., Research Associate in Chemistry
B.Sc., University of Nebraska, 1939; M.A., 1940; Ph.D., California Institute, 1943. Research Fellow, 1943-46; Senior Research Fellow, 1946-56; Research Associate, 1956-.

John Henry Schwarz, Ph.D., Research Associate in Theoretical Physics

Walter Schroeder, Ph.D., Research Associate in Chemistry
B.Sc., University of Nebraska, 1939; M.A., 1940; Ph.D., California Institute, 1943. Research Fellow, 1943-46; Senior Research Fellow, 1946-56; Research Associate, 1956-.

John Henry Schwarz, Ph.D., Research Associate in Theoretical Physics
Jeffrey Stewart Schweitzer, Ph.D., Research Fellow in Physics
B.S., Carnegie Institute of Technology, 1967; M.S., Purdue University, 1969; Ph.D., 1972. California Institute, 1972-. (Kellogg)

Francois Schweizer, Ph.D., Research Fellow in Astronomy
Lic., Universität (Berna), 1968; M.A., University of California, 1970; Ph.D., 1973. California Institute, 1974-. (Hale Office)

Frank Joseph Sciulli, Ph.D., Associate Professor of Physics
A.B., University of Pennsylvania, 1960; M.S., 1961; Ph.D., 1965. Research Fellow, California Institute, 1966-68; Assistant Professor, 1969-71; Associate Professor, 1971-. (Lauritsen)

Richard A. Scott, Ph.D., Visiting Associate in Applied Mechanics
B.S., National University of Ireland, 1957; M.S., 1960; Ph.D., California Institute, 1964. Associate Professor of Applied Mechanics, University of Michigan, 1971-. Research Fellow, California Institute, 1966-67; Visiting Associate, 1974.

Ronald Fraser Scott, Sc.D., Professor of Civil Engineering
B.Sc., Glasgow University, 1951; S.M., Massachusetts Institute of Technology, 1953; Sc.D., 1955. Assistant Professor, California Institute, 1958-62; Associate Professor, 1962-67; Professor, 1967-. (Thomas)

Thayer Scudder, Ph.D., Professor of Anthropology
A.B., Harvard College, 1932; Ph.D., Harvard University, 1960. Assistant Professor, California Institute, 1964-66; Associate Professor, 1966-69; Professor, 1969-. (Baxter)

Leonard Searle, Ph.D., Staff Member, Hale Observatories
Ph.D., Princeton University, 1956. Senior Research Fellow in Astronomy, California Institute, 1960-63; Staff Member, Hale Observatories, 1968-. (Hale Office)

Ernest Edwin Sechler, Ph.D., Professor of Aeronautics
B.S., California Institute, 1928; M.S., 1929; Ph.D., 1934. Instructor, 1930-37; Assistant Professor, 1937-40; Associate Professor, 1940-46; Professor, 1946-; Executive Officer, 1966-71. (Firestone)

George Andrew Seielstad, Ph.D., Research Associate in Radio Astronomy
A.B., Dartmouth College, 1959; Ph.D., California Institute, 1963. Research Fellow, 1964-67; Senior Research Fellow, 1967-72; Research Associate, 1972-. (Robinson)

John Hersh Seinfeld, Ph.D., Professor of Chemical Engineering; Executive Officer for Chemical Engineering;
B.S., The University of Rochester, 1964; Ph.D., Princeton University, 1967. Assistant Professor, California Institute, 1967-70; Associate Professor, 1970-74; Professor, 1974-. Acting Executive Officer for Chemical Engineering, 1973-74; Executive Officer, 1974-. (Spalding)

Philip Serwer, Ph.D., Research Fellow in Biology
A.B., The University of Rochester, 1963; M.S., New York Medical College, 1968; Ph.D., Harvard University, 1972. California Institute, 1972-. (Kerckhoff)

Fredrick Harold Shair, Ph.D., Associate Professor of Chemical Engineering
B.S., University of Illinois, 1957; Ph.D., University of California, 1963. Assistant Professor, California Institute, 1965-69; Associate Professor, 1969-. (Spalding)

Robert Phillip Sharp, Ph.D., Professor of Geology
B.S., California Institute, 1934; M.S., 1935; A.M., Harvard University, 1936; Ph.D., 1938. Professor, California Institute, 1947-; Chairman, Division of Geology, 1952-68. (N. Mudd)

Kenneth John Shea, Ph.D., Research Fellow in Chemistry
B.S., The University of Toledo, 1966; M.S., 1968; Ph.D., Pennsylvania State University, 1972. California Institute, 1973-. (Crelin)

Stephen A. Shectman, Ph.D., Staff Member, Hale Observatories
B.S., Yale University, 1969; Ph.D., California Institute, 1973. Staff Member, Hale Observatories, 1975-76.

Kelvin Kei-Wei Shen, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1964; Ph.D., University of Massachusetts, 1968. California Institute, 1972-. (Crelin)

Alan Pei-In Sheng, Ph.D., Senior Research Fellow in Physics
B.A., University of California, 1965; Ph.D., Massachusetts Institute of Technology, 1970. California Institute, 1973-. (Lauritsen)

Dennis John Shields, Ph.D., Research Fellow in Physics
B.S., University of San Francisco, 1964; Ph.D., University of California (San Diego), 1971. California Institute, 1971-. (Lauritsen)

**Part-time
86 Officers and Faculty

Rindge Shima, B.S., Visiting Associate in Electrical Engineering
B.S., University of California, 1936. Consultant, Jet Propulsion Laboratory, 1970-. California Institute, 1974-. (Steele)

Kunihiko Shimazaki, Ph.D., Research Fellow in Geophysics
B.S., Geophysical Institute, University of Tokyo, 1968; M.S., 1970. Ph.D., 1974. California Institute, 1974-. (S. Mudd)

Kosuke Shobatake, Ph.D., Research Fellow in Chemistry

Eugene Merle Shoemaker, Ph.D., Sc.D., Professor of Geology

Michael S. Shumate,** E.E., Lecturer in Electrical Engineering
B.S., Purdue University, 1955; M.S., 1956; E.E., California Institute, 1964. Member, Technical Staff, Jet Propulsion Laboratory, 1962-. Lecturer, California Institute, 1975-76.

Carol Hopkins Sibley, Ph.D., Research Fellow in Biology
B.A., The University of Rochester, 1965; M.A., 1966; Ph.D., University of California (San Francisco), 1974. California Institute, 1974-. (Kerckhoff)

Arnold J. Sierk, Ph.D., Assistant Professor of Physics
B.S., Cornell University, 1968; Ph.D., California Institute, 1972. Assistant Professor, 1974-. (Kellogg)

Thomas William Sigmon, Ph.D., Research Fellow and Lecturer in Applied Physics

Jack Silver, Ph.D., Senior Research Fellow in Biology
B.S., Brooklyn College, 1966; Ph.D., Boston University, 1971. Research Fellow, California Institute, 1971-74; Senior Research Fellow, 1974-. (Church)

Leon Theodore Silver, Ph.D., Professor of Geology
B.S., University of Colorado, 1945; M.S., University of New Mexico, 1948; Ph.D., California Institute, 1955. Assistant Professor, 1955-62; Associate Professor, 1962-65; Professor, 1965-. (N. Mudd)

Mario Daniel Simonutti, Jr., Ph.D., Research Fellow in Applied Physics
B.S., Rensselaer Polytechnic Institute, 1968; M.S., Massachusetts Institute of Technology, 1970; Ph.D., 1974. California Institute, 1974-. (Steele)

Michael Singer, Ph.D., Visiting Assistant Professor of Mathematics

S. Jonathan Singer, Ph.D., Sherman Fairchild Distinguished Scholar
A.B., Columbia University, 1943; A.M., 1945; Ph.D., Polytechnic Institute of Brooklyn, 1947. Professor of Biology, University of California (San Diego), 1961-. California Institute, 1975-76.

Robert Louis Sinsheimer, Ph.D., Professor of Biophysics; Chairman of the Division of Biology
S.B., Massachusetts Institute of Technology, 1941; S.M., 1942; Ph.D., 1948. Senior Research Fellow, California Institute, 1953; Professor, 1957--; Division Chairman, 1968-. (Church)

Donald W. Skelton,** M.S., Lecturer in Physics
B.A., California State College (Los Angeles), 1963; M.S., 1965. California Institute, 1973-. (E. Bridge)

Robert M. Sloane, M.S., Lecturer in Industrial Relations
A.B., Brown University, 1954; M.S., Columbia University, 1958. Medical Center Administrator, City of Hope National Medical Center, 1969-. California Institute, 1974-. (Industrial Relations Center)

Annette Jacqueline Smith, Ph.D., Lecturer in French
B.A., University of Paris (Sorbonne), 1947; M.A., 1950; Ph.D., 1970. Visiting Assistant Professor, California Institute, 1970-71; Lecturer, 1971-. (Baxter)

Darryl L. Smith, Ph.D., Ramo Instructor in Applied Physics
B.A., St. Mary's College, 1968; M.S., University of Illinois, 1971; Ph.D., 1974. California Institute, 1974-. (Steele)

David Rodman Smith, Ph.D., Associate Professor of English
B.A., Pomona College, 1944; M.A., The Claremont Colleges, 1950; Ph.D., 1960. Instructor, California Institute, 1958-60; Assistant Professor, 1960-66; Associate Professor, 1966--; Master of Student Houses, 1969-75. (Baxter)

**Part-time
Hallett D. Smith, Ph.D., L.H.D., Professor of English, Emeritus
B.A., University of Colorado, 1928; Ph.D., Yale University, 1934; Professor, California Institute, 1949-75; Chairman of the Division of the Humanities and Social Sciences, 1949-70; Professor Emeritus, 1975-. (Baxter)

Michael Joseph Smith, Ph.D., Senior Research Fellow in Biology
B.Sc., St. Mary’s of California, 1963; Ph.D., University of British Columbia, 1969. Research Fellow, California Institute, 1971-74; Senior Research Fellow, 1974-. (Kerckhoff Marine Lab.)

Stephen D. Smith, Ph.D., Bateman Research Instructor in Mathematics
S.B., Massachusetts Institute of Technology, 1967; Ph.D., Oxford University, 1973. California Institute, 1973-. (Sloan)

Wayne H. Smith, Ph.D., Research Fellow in Chemistry
B.S., University of Pittsburgh, 1971; Ph.D., University of Texas, 1974. California Institute, 1974-75.

William Ralph Smythe, Ph.D., Professor of Physics, Emeritus
B.A., Colorado College, 1916; A.M., Dartmouth College, 1919; Ph.D., University of Chicago, 1921. National Research Fellow, California Institute, 1923-26; Research Fellow, 1926-27; Assistant Professor, 1927-34; Associate Professor, 1934-40; Professor, 1940-64; Professor Emeritus, 1964-. (E. Bridge)

William Richard Snyder, Ph.D., Research Fellow in Chemistry
B.A., Hamline University, 1969; M.S., Northwestern University, 1970. California Institute, 1974-75.

Ann Sodja, Ph.D., Research Fellow in Chemistry
A.B., Ursuline College (Ohio), 1962; M.Sc., The Ohio State University, 1964; Ph.D., University of California (Davis), 1974. California Institute, 1974-75.

Rafael Sorkin, Ph.D., Research Fellow in Astronomy

Jack T. Spence, Ph.D., Visiting Associate in Chemistry
B.S., University of Utah, 1951; Ph.D., 1957. Professor, Utah State University, 1967-. California Institute, 1973-. (Noyes)

Edwin V. Spencer, Jr., B.S., Coach
B.S., North Carolina State University, 1964. California Institute, 1973-. (Gymnasium)

Roger Wolcott Sperry, Ph.D., D.Sc., Hixon Professor of Psychobiology
A.B., Oberlin College, 1935; A.M., 1937; Ph.D., University of Chicago, 1941. California Institute, 1974-75. (Alles)

Randolph N. Splittor, Ph.D., Assistant Professor of English
A.B., Hamilton College, 1968; Ph.D., University of California, 1974. California Institute, 1975-. (Baxter)

Joseph G. Stampfli, Ph.D., Sherman Fairchild Distinguished Scholar

Gordon James Stanley, Dipl., Research Associate in Radio Astronomy
Dipl., New South Wales University of Technology, 1946. Research Engineer, California Institute, 1955-58; Senior Research Fellow, 1958-62; Research Associate, 1962-; Director, Owens Valley Observatory, 1965-75. (Robinson)

Roger Fellows Stanton, Ph.D., Professor of English, Emeritus
B.S., Colgate University, 1920; M.A., Princeton University, 1924; Ph.D., 1931. Instructor, California Institute, 1925-31; Assistant Professor, 1931-47; Associate Professor, 1947-55; Professor, 1955-65; Director of Institute Libraries, 1949-63; Professor Emeritus, 1966.

Alfred Stern, Ph.D., Professor of Philosophy, Emeritus
Ph.D., University of Vienna, 1923. Instructor, California Institute, 1947-48; Lecturer, 1948-50; Assistant Professor, 1950-53; Associate Professor, 1953-60; Professor, 1960-68; Professor Emeritus, 1968.

Eli Sternberg, Ph.D., D.Sc., Professor of Mechanics
B.C.E., University of North Carolina, 1941; M.S., Illinois Institute of Technology, 1942; Ph.D., 1945. Professor of Applied Mechanics, California Institute, 1964-70; Professor of Mechanics, 1970-. (Thomas)

Paul R. Stevens, Ph.D., Senior Research Fellow in Physics
B.S., University of California (Los Angeles), 1965; M.S., 1966; Ph.D., 1969. Research Fellow, California Institute, 1972-74; Senior Research Fellow, 1975-. (Laursen)

Homer Joseph Stewart, Ph.D., Professor of Aeronautics
B.Aero.E., University of Minnesota, 1956; Ph.D., California Institute, 1940. Instructor, 1939-42; Assistant Professor, 1942-46; Associate Professor, 1946-49; Professor, 1949-. (Firestone)
John Stofko, Ph.D., Research Fellow in Chemistry

Adolph George Stoll, Ph.D., Research Fellow in Chemical Engineering

Edward Carroll Stone, Jr., Ph.D., Associate Professor of Physics
M.S., University of Chicago, 1957; Ph.D., 1963. Research Fellow, California Institute, 1964-66; Senior Research Fellow, 1967; Assistant Professor, 1967-71; Associate Professor, 1971-. (Downs)

Ellen Glowacki Strauss, Ph.D., Senior Research Fellow in Biology

James Henry Strauss, Jr., Ph.D., Associate Professor of Biology
B.S., Saint Mary's University, 1960; Ph.D., California Institute, 1967. Assistant Professor, 1969-75; Associate Professor, 1975-.

Thomas Foster Strong, M.S., Dean of Freshmen, Emeritus
B.S., University of Wisconsin, 1922; M.S., California Institute, 1937. Assistant Professor of Physics, 1944-65; Associate Professor, Assistant Professor of Physics, 1966-67; Dean of Freshmen, 1946-68; Dean Emeritus, 1969-.

Robert Michael Stroud, Ph.D., Associate Professor of Chemistry
B.A., University of Cambridge, 1964; M.A., 1967; Ph.D., London University, 1968. Research Fellow, California Institute, 1968-71; Noyes Research Instructor, 1971-73; Assistant Professor, 1973-75; Associate Professor, 1975-.

Felix Strumwasser, Ph.D., Professor of Biology
B.A., University of California (Los Angeles), 1953; Ph.D., 1957. Associate Professor, California Institute, 1964-69; Professor, 1969-.

Bradford Sturtevant, Ph.D., Professor of Aeronautics; Executive Officer for Aeronautics
B.E., Yale University, 1955; M.S., California Institute, 1956; Ph.D., 1960. Research Fellow, 1960-62; Assistant Professor, 1962-66; Associate Professor, 1966-71; Professor, 1971-; Executive Officer, 1972-.

Richard Paul Sutter, Ph.D., Visiting Associate in Biology
B.A., St. Joseph's College, 1959; M.Sc., The Ohio State University, 1961; Ph.D., Tufts University, 1966. Associate Professor of Biology, West Virginia University, 1970- California Institute, 1973-74; 1975.

Rosemarie Swanson, Ph.D., Research Fellow in Chemistry
S.B., University of Chicago, 1965; Ph.D., Stanford University, 1969. California Institute, 1970-.

Alan R. Sweezy, Ph.D., Professor of Economics
B.A., Harvard College, 1929; Ph.D., 1934. Visiting Professor, California Institute, 1949-50; Professor, 1950-.

Ernest Haywood Swift, Ph.D., LL.D., Professor of Analytical Chemistry, Emeritus
B.S., University of Virginia, 1918; M.S., California Institute, 1920; Ph.D., 1924. Instructor, California Institute, 1920-28; Assistant Professor, 1928-39; Associate Professor, 1939-43; Professor, 1943-67; Division Chairman, 1958-63; Professor Emeritus, 1967-.

Zygmunt Edward Switkowski, Ph.D., Senior Research Fellow in Physics
B.Sc., University of Melbourne, 1969; Ph.D., 1973. Research Fellow, California Institute, 1973-74; Senior Research Fellow, 1974-.

Aladar Szalay, D.Sc., Gosney Research Fellow in Biology
B.S., University of Szeged, 1968; D.Sc., Hungarian Academy of Sciences, 1971. Research Associate, Hungarian Academy of Sciences, California Institute, 1973-.

Katsuo Takahashi, Ph.D., Research Fellow in Chemistry
B.S., Gakushuin University (Japan), 1962; Ph.D., 1967. California Institute, 1974-.

Haruo Takizawa, D.Eng., Research Fellow in Earthquake Engineering

Johanna E. Tallman, Certificate in Librarianship, Director of Libraries
A.B., University of California, 1936; Certificate in Librarianship, 1937. California Institute, 1973-.

**Part-time
Katsuo Tanaka, Ph.D., Visiting Associate in Astrophysics

Hugh Pettingill Taylor, Jr., Ph.D., Professor of Geology
B.S., California Institute, 1954; A.M., Harvard University, 1955; Ph.D., California Institute, 1959. Assistant Professor, 1959-61; Research Fellow, 1961; Assistant Professor, 1962-64; Associate Professor, 1964-69; Professor, 1969-. (N. Mudd)

Keith Taylor, Ph.D., Research Fellow in Astronomy
B.Sc., University of Nottingham, 1969; M.Phil., 1970; Ph.D., University of Manchester, 1973. California Institute, 1973-75. (Robinson)

Alan Howard Tench, Ph.D., Research Fellow in Chemistry

Ta-Liang Teng, Ph.D., Visiting Associate in Geophysics
B.S., National Taiwan University, 1959; Ph.D., California Institute, 1966. Associate Professor, University of Southern California, 1970-. Research Fellow, California Institute, 1966-67; Visiting Associate, 1974-75.

Fouad Tera, Ph.D., Research Associate in Geochemistry
B.S., University of Cairo, 1957; Ph.D., University of Vienna, 1962. Research Fellow, California Institute, 1966-67; Senior Research Fellow, 1967-74; Research Associate, 1974-. (Arms)

Laura Franco Testa, Ph.D., Research Fellow in Biology

Massimo Testa, Ph.D., Research Fellow in Theoretical Physics
Ph.D., University of Rome, 1969. California Institute, 1974-75. (Lauritsen)

Klaus-Sten Thomson, Ph.D., Research Fellow in Biology
Dipl., University of Freiburg, 1971; Ph.D., California Institute, 1974-. (Church)

Bozena Henisz-Dostert Thompson, Ph.D., Research Associate in Linguistics
M.A., University of Warsaw, 1956; M.S., Georgetown University, 1961; Ph.D., 1965. Lecturer in English, California Institute, 1966; Senior Research Fellow, 1969-73; Research Associate, 1973-. (Baxter)

Frederick Burtis Thompson, Ph.D., Professor of Applied Science and Philosophy
A.B., University of California (Los Angeles), 1946; M.A., 1947; Ph.D., University of California, 1952. California Institute, 1965-. (Steele, Baxter)

James B. Thompson, Ph.D., Sherman Fairchild Distinguished Scholar
A.B., Dartmouth College, 1942; Ph.D., Massachusetts Institute of Technology, 1950. Professor of Geology, Harvard University, 1966- California Institute, 1976.

Peter Thompson, Ph.D., Visiting Associate in Geochemistry
B.Sc., Bradford University (England), 1965; Ph.D., McMaster University, 1973. Research Associate, University of Alberta, 1974-. Research Fellow, California Institute, 1973-74; Visiting Associate, 1974-75.

Kip Stephen Thorne, Ph.D., Professor of Theoretical Physics
B.S., California Institute, 1962; Ph.D., Princeton University, 1965. Research Fellow in Physics, California Institute, 1966-67; Associate Professor of Theoretical Physics, 1967-70; Professor, 1970-. (Bridge Annex)

Russell Timkovich, Ph.D., Research Fellow in Chemistry
B.S., Michigan State University, 1970; Ph.D., California Institute, 1974. Research Fellow, 1974-75.

John Todd, B.Sc., Professor of Mathematics
B.Sc., Queen's University, Ireland, 1931. California Institute, 1937-. (Sloan)

Olga Taussky Todd, Ph.D., Professor of Mathematics
Ph.D., University of Vienna, 1930; M.A., University of Cambridge, 1937; Research Associate, California Institute, 1937-71; Professor, 1971-. (Sloan)

Alvin Virgil Tollestrup, Ph.D., Professor of Physics
B.S., University of Utah, 1944; Ph.D., California Institute, 1950. Research Fellow, 1950-53; Assistant Professor, 1953-58; Associate Professor, 1958-62; Professor, 1962-. (Lauritsen)

**Part-time
***Leave of absence, 1975-76 academic year
Glenn Lewis Tolman, Ph.D., Research Fellow in Chemistry
B.S., Brigham Young University, 1970; Ph.D., University of Illinois, 1974. California Institute, 1974-75.

Thomas Anthony Tombrello, Jr., Ph.D., Professor of Physics
B.A., Rice University, 1958; M.A., 1960; Ph.D., 1961. Research Fellow, California Institute, 1961-62; 1964-65; Assistant Professor, 1965-67; Associate Professor, 1967-71; Professor, 1971-. (Kellogg)

Samuel Joseph Tremont, Ph.D., Research Fellow in Chemistry

Mihailo Dimitrije Trifunac, Ph.D., Assistant Professor of Applied Science
B.S., University of Belgrade, 1963; M.S., Princeton University, 1966; Ph.D., California Institute, 1969. Research Fellow, 1969-70; Assistant Professor, 1972-. (Thomas)

B. Andreas Troesch, Ph.D., Visiting Associate in Applied Mathematics
B.S., University of Bern, 1943; M.S., Swiss Federal Institute of Technology, 1947; Ph.D., 1952. Professor of Mathematics and Engineering, University of Southern California, 1966-. California Institute, 1974-75.

Benes Louis Trus, Ph.D., Research Fellow in Chemistry
B.S., Tulane University, 1968; Ph.D., California Institute, 1972. Research Fellow, 1972-. (Church)

Nicholas William Tschoegl, Ph.D., Professor of Chemical Engineering
B.Sc., New South Wales University of Technology, 1954; Ph.D., University of New South Wales, 1958. Associate Professor of Materials Science, California Institute, 1965-67; Professor of Chemical Engineering, 1967-. (Spalding)

Ole Carsten Ulfbeck, Magister, Visiting Associate in Physics

Bernard Manfred Ulrich, Ph.D., Research Fellow in Applied Physics

Mamoru Umemoto, Ph.D., Research Fellow in Biology
B.A., University of Tokyo, 1961; M.A., 1963; Ph.D., Kurume University, 1970. California Institute, 1972-. (Kerckhoff)

Ray Edward Untereiner, J.D., Ph.D., Professor of Economics, Emeritus
A.B., University of Redlands, 1920; M.A., Harvard University, 1921; J.D., Mayo College of Law, 1925; Ph.D., Northwestern University, 1932. Professor, California Institute, 1925-68; Professor Emeritus, 1968-.

Lynda Lou Uphouse, Ph.D., Research Fellow in Biology

Tadao Uyehara, Ph.D., Research Fellow in Chemistry
B.S., Tohoku University, 1966; M.Sc., 1968; Ph.D., 1971. California Institute, 1973-. (Crellin)

Jeff Vaaler, Ph.D., Bateman Research Instructor in Mathematics
B.S., Lawrence University, 1970; M.S., University of Illinois, 1971; Ph.D., 1974. California Institute, 1974-. (Sloan)

Richard L. Vandlen, Ph.D., Research Fellow in Chemistry
B.S., Michigan State University, 1969; Ph.D., 1972. California Institute, 1972-. (Church)

Antonie van Harreveld, Ph.D., M.D., Professor of Physiology, Emeritus
B.A., University of Amsterdam, 1925; M.A., 1928; Ph.D., 1931. Research Associate, California Institute, 1934-35; Instructor, 1935-40; Assistant Professor, 1940-42; Associate Professor, 1942-47; Professor, 1947-74; Professor Emeritus, 1974-. (Kerckhoff)

Vito August Vanoni, Ph.D., Professor of Hydraulics, Emeritus
B.S., California Institute, 1926; M.S., 1932; Ph.D., 1940. Assistant Professor, 1942-49; Associate Professor, 1949-55; Professor, 1955-74; Professor Emeritus, 1974-. (Keck)

Arthur Harris Vaughan, Jr., Ph.D., Staff Member, Hale Observatories
B.E., Cornell University, 1958; Ph.D., The University of Rochester, 1964. Research Fellow, California Institute, 1964-66; Staff Associate, Hale Observatories, 1966-67; Staff Member, 1967-. (Hale Office)

Robert Walton Vaughan, Ph.D., Associate Professor of Chemical Engineering
B.S., University of Oklahoma, 1963; M.S., University of Illinois, 1965; Ph.D., 1967. Lecturer, California Institute, 1968-69; Assistant Professor, 1969-74; Associate Professor, 1974-. (Spalding)

Alexander Jacob Vega, Ph.D., Research Fellow in Chemical Engineering
Giulio Vitale Venezian, Ph.D., Visiting Associate in Engineering Science

Jerome Vinograd, Ph.D., Professor of Chemistry and Biology
M.A., University of California (Los Angeles), 1937; Ph.D., Stanford University, 1939. Senior Research Fellow in Chemistry, California Institute, 1951-56; Research Associate, 1956-54; Research Associate in Chemistry and Biology, 1964-65; Professor, 1965-. (Church)

Natarajan Visvanathan, Ph.D., Visiting Associate in Astronomy
B.Sc., Madras University, 1952; Ph.D., The Australian National University, 1966. Research Fellow in Astronomy, California Institute, 1966-67; Visiting Associate, 1973-. (Hale Office)

Petr Vogel, Ph.D., Research Associate in Physics
Ph.D., Joint Institute of Nuclear Research (USSR), 1966. Senior Research Fellow in Physics, California Institute, 1970-75; Research Associate, 1975-. (W. Bridge)

Jurgen Vogt, Ph.D., Research Fellow in Chemistry

Rochus E. Vogt, Ph.D., Professor of Physics
S.M., University of Chicago, 1957; Ph.D., 1961. Assistant Professor, California Institute, 1962-65; Associate Professor, 1965-70; Professor, 1970-. (Downs)

Hans-Peter Vosberg, M.D., Senior Research Fellow in Biology
M.D., University of Heidelberg, 1967. California Institute, 1973-. (Church)

Thad Vreeland, Jr., Ph.D., Professor of Materials Science
B.S., California Institute, 1949; M.S., 1950; Ph.D., 1952. Research Fellow in Engineering, 1952-54; Assistant Professor of Mechanical Engineering, 1954-58; Associate Professor, 1958-63; Associate Professor of Materials Science, 1963-67; Professor, 1968-. (Keck)

David Bertram Wales, Ph.D., Associate Professor of Mathematics
B.S., University of British Columbia, 1961; M.A., 1962; Ph.D., Harvard University, 1967. Bateman Research Fellow, California Institute, 1967-68; Assistant Professor, 1968-71; Associate Professor, 1971-. (Sloan)

Jerry A. Walker, Ph.D., Research Fellow in Chemistry

Robert Lee Walker, Ph.D., Professor of Physics
B.S., University of Chicago, 1941; Ph.D., Cornell University, 1948. Assistant Professor, California Institute, 1949-53; Associate Professor, 1953-59; Professor, 1959-. (Laurensen)

William Virgil Walter, Ph.D., Research Fellow in Chemistry
B.S., The Ohio State University, 1962; M.S., 1965; Ph.D., University of Notre Dame, 1970. California Institute, 1974-75.

Run-Han Wang, Ph.D., Research Fellow in Physics
B.S., University of California (Los Angeles), 1968; M.S., California Institute, 1971; Ph.D., 1974. Research Fellow, 1974-. (Sloan)

Randle William Ware, Ph.D., Research Fellow in Biology
B.S., California Institute, 1963; M.S., 1964; Ph.D., Massachusetts Institute of Technology, 1971. California Institute, 1971-. (Beckman Labs.)

James Richard Wareing, Ph.D., Research Fellow in Chemistry
B.S., Lowell Technological Institute, 1970; Ph.D., Brandeis University, 1974. California Institute, 1974-75.

Robert Rodger Wark, Ph.D., Lecturer in Art
B.A., University of Alberta, 1944; M.A., 1946; M.A., Harvard University, 1949; Ph.D., 1952. Curator of Art, Huntington Library and Art Gallery, 1956-. California Institute, 1961-. (Baxter)

Gerald J. Wasserburg, Ph.D., Professor of Geology and Geophysics
B.S., University of Chicago, 1951; S.M., 1952; Ph.D., 1954. Assistant Professor of Geology, California Institute, 1955-59; Associate Professor, 1959-62; Professor, 1962-63; Professor of Geology and Geophysics, 1963-. (Arms)

Yoshimasa Watanabe, Ph.D., Visiting Associate in Environmental Engineering Science
B.A., Hokkaido University, 1967; M.Eng., 1969; Ph.D., 1972. Assistant Professor, Miyazaki University, 1972-. California Institute, 1975-76.

**Part-time
J. Harold Wayland, Ph.D., Professor of Engineering Science
B.S., University of Idaho, 1931; M.S., California Institute, 1935; Ph.D., 1937. Research Fellow in Applied Mechanics, 1938-41; Associate Professor, 1949-57; Professor, 1957-63; Professor of Engineering Science, 1963-. (Thomas)

Robert D. Wayne, M.A., Associate Professor of German
Ph.B., Dickinson College, 1939; M.A., Columbia University, 1940. Instructor, California Institute, 1952-62; Assistant Professor, 1962-69; Associate Professor, 1969-. (Baxter)

Michael J. Weaver, Ph.D., Research Fellow in Chemistry
B.Sc., London University, 1968; Ph.D., 1972. California Institute, 1972-. (Noyes)

Nicholas George Webb, Ph.D., Research Fellow in Chemistry
B.S., University of Manchester, 1968; Ph.D., University of London King's College, 1972. California Institute, 1973-. (Crellin)

H. Jürgen Weber, Dr rer nat., Research Fellow in Biology
Dr rer nat., Max Planck Institute, 1972. California Institute, 1973-. (Church)

William Henry Weinberg, Ph.D., Associate Professor of Chemical Engineering
B.S., University of South Carolina, 1966; Ph.D., University of California, 1969. Assistant Professor, California Institute, 1972-74; Associate Professor, 1974-. (Spalding)

Herbert F. Weisberg, Ph.D., Sherman Fairchild Distinguished Scholar
B.A., University of Minnesota, 1963; Ph.D., The University of Michigan, 1968. Associate Professor of Political Science, The Ohio State University, 1974-. California Institute, 1975-76.

David Franklin Welch, I.D., Associate Professor of Engineering Design
A.B., Stanford University, 1943; I.D., California Institute, 1943. Instructor in Engineering Graphics, 1943-51; Assistant Professor, 1951-61; Associate Professor of Engineering Design, 1961-. (Thomas)

Peter Wellauer, Ph.D., Research Fellow in Chemistry

Michael W. Werner, Ph.D., Assistant Professor of Physics
B.A., Haverford College, 1963; Ph.D., Cornell University, 1968. California Institute, 1972-. (Downs)

Philip William Westerman, Ph.D., Research Fellow in Chemistry
B.Sc., Sydney University (Australia), 1967; Ph.D., 1971. California Institute, 1974-75.

James Adolph Westphal, B.S., Associate Professor of Planetary Science
B.S., University of Tulsa, 1954. Senior Research Fellow, California Institute, 1966-71; Associate Professor, 1971-; Staff Associate, Hale Observatories, 1966-74; Staff Member, 1974-. (S. Mudd)

Ward Whaling, Ph.D., Professor of Physics
B.S., Rice University, 1944; M.A., 1947; Ph.D., 1949. Research Fellow, California Institute, 1949-52; Assistant Professor, 1952-58; Associate Professor, 1958-62; Professor, 1962-. (Kellogg)

James Hall Whitcomb, Ph.D., Senior Research Fellow in Geophysics
B.S., Colorado School of Mines, 1962; M.S., Oregon State University, 1965; Ph.D., California Institute, 1973. Senior Research Fellow, 1973-. (S. Mudd)

Benjamin Steven White, Ph.D., Instructor**, and Research Fellow in Applied Mathematics

Gerald Beresford Whitham, Ph.D., Professor of Applied Mathematics; Executive Officer for Applied Mathematics
B.Sc., University of Manchester, 1948; M.Sc., 1949; Ph.D., 1953. Visiting Professor of Applied Mechanics, California Institute, 1961-62; Professor of Aeronautics and Mathematics, 1962-67; Professor of Applied Mathematics, 1967-. Executive Officer, 1971-. (Firestone)

Ralph Allen Whitney, Ph.D., Research Fellow in Chemistry
B.S., University of British Columbia, 1972; Ph.D., University of Cambridge, 1975. California Institute, 1975-76.

Cornelis A. G. Wiersma, Ph.D., Professor of Biology
B.A., University of Leiden, 1926; M.A., University of Utrecht, 1929; Ph.D., 1933. Associate Professor, California Institute, 1933-47; Professor, 1947-. (Kerckhoff)

**Part-time
Peter Norman Wilkinson, Ph.D., Research Fellow in Radio Astronomy

Norma Patricia Williams, Ph.D., Research Fellow in Biology
B.S., Howard University, 1966; M.S., 1968; Ph.D., 1974. California Institute, 1974-. (Kerckhoff)

Christopher P. Wilson, Ph.D., Research Fellow in Astronomy
B.S., Harvey Mudd College, 1968; Ph.D., University of California, 1973. California Institute, 1973-. (Hale Office)

J. Tuzo Wilson, Ph.D., Sc.D., Sherman Fairchild Distinguished Scholar
B.A., University of Toronto, 1930; M.A., University of Cambridge, 1932; Ph.D., Princeton University, 1936. Professor of Geophysics, University of Toronto, 1946-; Director-General, Ontario Science Centre, Toronto, 1974-. California Institute, 1975.

Olin Chaddock Wilson, Ph.D., Staff Member, Hale Observatories
A.B., University of California, 1929; Ph.D., California Institute, 1934. Staff Member, Hale Observatories, 1931-. (Hale Office)

Charles Harold Wils, Ph.D., Professor of Electrical Engineering and Applied Physics
B.S., California Institute, 1940; M.S., 1941; Ph.D., 1948. Assistant Professor of Electrical Engineering, 1947-52; Associate Professor, 1952-57; Professor, 1957-74; Professor of Electrical Engineering and Applied Physics, 1974-; Executive Officer for Electrical Engineering, 1972-75. (Steele)

Hubert Christian Winkler, Ph.D., Visiting Associate in Physics
Ph.D., University of Zurich, 1954. Professor of Physics, California State University (Los Angeles), 1967-. Research Fellow, California Institute, 1962-64; Senior Research Fellow, 1965-67; Visiting Associate, 1969-71; 1975-76.

Ralph D. Winter, Ph.D., Visiting Professor of Religion
B.S., California Institute, 1945; M.A., Columbia University, 1951; Ph.D., Cornell University, 1953; B.D., Princeton Theological Seminary, 1956. Professor of the Historical Development of the Christian Movement, School of World Missions and Institute of Church Growth, Fuller Theological Seminary, 1966-. Visiting Professor, California Institute, 1975.

Andrew Wiseman, Ph.D., Research Fellow in Biology

Marc F. Wittmer, Ph.D., Research Fellow in Applied Physics

Hung Leung Wong, Ph.D., Research Fellow in Applied Science
B.S., University of Utah, 1972; M.S., California Institute, 1973; Ph.D., 1975. Research Fellow, 1975-76.

David Shotwell Wood, Ph.D., Professor of Materials Science
B.S., California Institute, 1941; M.S., 1946; Ph.D., 1949. Lecturer in Mechanical Engineering, 1949-50; Assistant Professor, 1950-55; Associate Professor, 1955-61; Professor, 1961-63; Professor of Materials Science, 1963-; Acting Associate Dean of Students, 1968-69; Associate Dean, 1969-74. (Keck)

William Barry Wood, Ph.D., Professor of Biology
A.B., Harvard College, 1959; Ph.D., Stanford University, 1963. Assistant Professor, California Institute, 1964-68; Associate Professor, 1968-70; Professor, 1970-. (Kerckhoff)

Dean Everett Wooldridge, Ph.D., Visiting Associate in Engineering
B.A., University of Oklahoma, 1932; M.S., 1933; Ph.D., California Institute, 1936. Director, Thompson Ramo Wooldridge, Inc., 1958-. Lecturer in Electrical Engineering, California Institute, 1947-49; Research Associate in Engineering, 1950-52; 1962-73; Visiting Associate, 1973-.

Dorothy Scholl Woolum, Ph.D., Visiting Associate in Geochemistry
B.A., Cornell University, 1964; Ph.D., Washington University, 1971. Research Fellow in Geology and Physics, California Institute, 1971-74; Visiting Associate, 1974-. (N. Mudd)

Stanford Earl Woosley, Ph.D., Research Fellow in Physics
B.A., Rice University, 1966; M.S., 1969; Ph.D., 1971. California Institute, 1973-. (Kellogg)

Melvyn C. H. Wright,** Ph.D., Visiting Associate in Radio Astronomy

Jung-Rung Wu, Ph.D., Senior Research Fellow in Biology
B.S., National Taiwan University, 1962; Ph.D., University of Texas (Austin), 1969. Research Fellow, California Institute, 1969-72; Senior Research Fellow, 1974-. (Kerckhoff)

**Part-time
Theodore Yao-Tsu Wu, Ph.D., Professor of Engineering Science
B.S., Chiayi-Tung University, 1946; M.S., Iowa State University, 1948; Ph.D., California Institute, 1952. Research Fellow in Hydrodynamics, 1952-55; Assistant Professor of Applied Mechanics, 1955-57; Associate Professor, 1957-61; Professor, 1961-66; Professor of Engineering Science, 1966-. (Thomas)

Oliver Reynolds Wulf, Ph.D., Senior Research Associate in Physical Chemistry, Emeritus
B.S., Worcester Polytechnic Institute, 1920; M.S., American University, 1922; Ph.D., California Institute, 1926. Research Associate, 1945-67; Research Associate Emeritus, 1967-74; Senior Research Associate Emeritus, 1974-. (Noyes)

Akifumi Yamada, Ph.D., Research Fellow in Chemistry
B.S., Tohoku University, 1963; M.S., 1965; Ph.D., 1968. California Institute, 1975-76.

Amnon Yariv, Ph.D., Professor of Electrical Engineering and Applied Physics
B.S., University of California, 1954; M.S., 1956; Ph.D., 1958. Associate Professor of Electrical Engineering, California Institute, 1964-66; Professor, 1966-74; Professor of Electrical Engineering and Applied Physics, 1974-. (Steele)

Syozo Yasui, Ph.D., Research Fellow in Applied Science

Hsueh-Wen Yeh, Ph.D., Research Fellow in Geochemistry
B.S.E., National Cheng Kung University (Taiwan), 1967; Ph.D., Case Western Reserve University, 1974. California Institute, 1975-76.

Pauline Hsiao Yen, Ph.D., Research Fellow in Chemistry
B.S., National Taiwan University, 1969; Ph.D., University of California, 1973. California Institute, 1975-76.

Don M. Yost, Ph.D., Professor of Inorganic Chemistry, Emeritus
B.S., University of California, 1923; Ph.D., California Institute, 1926. Instructor, 1927-29; Assistant Professor, 1929-35; Associate Professor, 1935-41; Professor, 1941-64; Professor Emeritus, 1964-. (Crellin)

Fredrik Zachariasen, Ph.D., Professor of Theoretical Physics
B.S., University of Chicago, 1951; Ph.D., California Institute, 1956. Assistant Professor, 1960-62; Associate Professor, 1962-66; Professor, 1966-. (Lauritsen)

Eran Zaidel, Ph.D., Research Fellow in Biology
A.B., Columbia College, 1967; M.S., California Institute, 1968; Ph.D., 1973. Research Fellow, 1973-. (Church)

Robert R. Zappala, Ph.D., Research Fellow in Astronomy
B.S., Case Institute of Technology, 1964; M.S., University of Chicago, 1967; Ph.D., University of California (Santa Cruz), 1971. California Institute, 1975-76. (Lauberts)

Valentina Zaydman, M.A., Lecturer in Russian
M.A., Moscow State University, 1971. California Institute, 1975-76. (Dabney)

Alex Franz Zehnder, Ph.D., Research Fellow in Physics
Dipl, Swiss Institute of Technology, 1971; Ph.D., 1974. California Institute, 1975-76. (W. Bridge)

Harold Zirin, Ph.D., Professor of Astrophysics; Chief Astronomer of Big Bear Solar Observatory
A.B., Harvard College, 1950; A.M., Harvard University, 1951; Ph.D., 1953. Visiting Associate, California Institute, 1963; Professor, 1964-; Staff Member, Hale Observatories, 1964-; Chief Astronomer, Big Bear Solar Observatory, 1970-. (W. Bridge, Big Bear Solar Observatory)

Edward Edom Zukoski, Ph.D., Professor of Jet Propulsion
B.S., Harvard College, 1950; M.S., California Institute, 1951; Ph.D., 1954. Research Engineer, Jet Propulsion Laboratory, 1950-57; Lecturer, California Institute, 1956-57; Assistant Professor, 1957-60; Associate Professor, 1960-66; Professor, 1966-. (Karman)

George Zweig, Ph.D., Professor of Theoretical Physics
B.S., University of Michigan, 1959; Ph.D., California Institute, 1964. Research Fellow in Physics, 1963; Assistant Professor, 1964-66; Associate Professor, 1966-67; Professor of Theoretical Physics, 1967-. (Lauritsen)

Anna Nikola Zytkow, Ph.D., Research Fellow in Physics
M.Sc., Warsaw University, 1965; Ph.D., 1972. California Institute, 1975-76. (Bridge Annex)

***Leave of Absence, Academic Year, 1975-76.
GENERAL INFORMATION

The California Institute of Technology is an independent, privately supported and privately controlled institution, officially classed as a university, carrying on undergraduate and graduate instruction and research, principally in the various fields of science and engineering. It is fully accredited by the Western Association of Schools and Colleges. Including its off-campus facilities, it is also one of the world's major research centers. According to World magazine: "In a number of countries today, there is at least one magnificently equipped scientific research institution that is proudly referred to as the nation's 'center of excellence.' Caltech, though, in the words of a senior Dutch astrophysicist, 'may well have become the center of scientific excellence for the entire world.'"

The Institute is organized into six divisions: Biology; Chemistry and Chemical Engineering; Engineering and Applied Science; Geological and Planetary Sciences; The Humanities and Social Sciences; and Physics, Mathematics and Astronomy.

The Undergraduate Program

The primary purpose of the undergraduate school of the California Institute of Technology, as stated by the Trustees, is "to provide a collegiate education which will best train the creative type of scientist or engineer so urgently needed in our educational, governmental, and industrial development." It is believed that this purpose is attained at the Institute because of the contacts of its relatively small group of students with the members of its relatively large research staff. Advancement in understanding is best acquired by intimate association with creative workers who are, through research and reflection, extending the boundaries of knowledge.

Caltech offers a four-year undergraduate course with options available in various fields of science, engineering, applied science, and certain humanities subjects, all leading to the degree of Bachelor of Science. The curricula are planned so that interchange between options is not too difficult to the end of the second year. During the first year, the work of all undergraduates is almost identical, but there is opportunity for some differentiation between the various options during the second year.

The undergraduate options are: applied mathematics, applied physics, astronomy, biology, chemical engineering, chemistry, economics, engineering and applied science, English, geochronology, geology, geophysics and planetary science, history, independent studies program, mathematics, physics, and social science.

The science courses afford an intensive training in physics, chemistry, and mathematics, with further specialization in a chosen field of science during the third and fourth years.

The courses in engineering and applied science are of a general fundamental character, with a minimum of specialization in the separate branches. There is an unusually thorough training in the basic sciences of physics, chemistry, and mathematics, as well as in the professional subjects common to all branches of engineering. The major concentration in a chosen field occurs during the fourth year.

Students electing a humanities or social science option will pursue the same curriculum as all other students during the freshman year, and will continue with the regular sophomore
courses in mathematics and physics. During the last two years, they specialize in a chosen field of humanities or social science but will continue substantial work in science and engineering subjects.

The undergraduate options in science, engineering, and applied science themselves contain a large proportion of humanistic and cultural studies — with 20 percent, or more, of the time during the entire four years being devoted to such subjects. The purpose of this requirement is to provide a combination of fundamental scientific training with a broad human outlook and to enlarge the student's mental horizon beyond the limits of his immediate professional interest.

Caltech also encourages a reasonable participation in extracurricular activities, largely managed by the students themselves. These include student publications, dramatics, music, and public affairs. All undergraduates are required to take three terms of physical education prior to graduation and may also participate in a program of intercollegiate and intramural sports.

In short, every effort is made to provide the undergraduate student with a well-rounded, integrated program which will not only give him sound training in his professional field, but which will also develop character, breadth of view, general culture, and physical well-being.
The Graduate Program

In the graduate school Caltech offers courses leading to the degree of Master of Science, which normally involves one year of graduate work; the Engineer's degree in certain branches of engineering, with a minimum of two years; and the degree of Doctor of Philosophy. In all the graduate work, research is strongly emphasized, not only because of its importance in contributing to the advancement of science and thus to the intellectual and material welfare of mankind, but also because research activities add vitality to the educational work of Caltech.

The graduate options are: aeronautics, applied mathematics, applied mechanics, applied physics, astronomy, biology, chemical engineering, chemistry, civil engineering, electrical engineering, engineering science, environmental engineering science, geological and planetary sciences, materials science, mathematics, mechanical engineering, physics, and social science.

Graduate students constitute a comparatively large portion (almost 50 percent) of the total student body. Engaged as they are in research problems of varying degrees of complexity, and taught by faculty members who are also actively engaged in research, they contribute materially to the general atmosphere of intellectual curiosity and creative activity which is engendered on the Institute campus.

High Standards

In order to utilize Caltech's resources most effectively, two general lines of procedure are followed. First, the Institute restricts the number of fields in engineering and science in which it offers undergraduate and graduate study, believing that it is better to provide thoroughly for a limited number of curricula than to risk diffusion of personnel, facilities, and funds in attempting to cover a wide variety of fields. Second, and in line with this policy of conservation of resources, the student body is strictly limited to that number which can be satisfactorily provided for. Admission is granted after a careful study of the merits of each applicant, including the results of entrance examinations, school records, and interviews by members of the Caltech staff. These procedures result, it is believed, in a body of students of exceptional ability. A high standard of scholarship is also maintained, as is appropriate for students of such competence.

HISTORICAL SKETCH

The California Institute of Technology, as it has been called since 1920, developed from a local school of arts and crafts, founded in Pasadena in 1891 by the Honorable Amos G. Throop and named, after him, Throop Polytechnic Institute. It enjoyed the loyal support of the citizens of Pasadena, and by 1908 the board of trustees had as members Dr. Norman Bridge, Arthur H. Fleming, Henry M. Robinson, J. A. Culbertson, C. W. Gates, and Dr. George Ellery Hale. It was the dedication, by these men, of their time, their brains, and their fortunes that transformed a modest vocational school into a university capable of attracting to its faculty some of the most eminent of the world's scholars and scientists.

George Ellery Hale, astronomer and first director of the Mount Wilson Observatory, foresaw the development in Pasadena of a distinguished institution of engineering and scientific research. Hale well knew that a prime necessity was modern well-equipped laboratories, but he stressed to his fellow trustees that the aim was not machines, but men. "We must not forget," he wrote in 1907, "that the greatest engineer is not the man who is trained merely to understand machines and apply formulas, but is the man who, while knowing these things, has not failed to develop his breadth of view and the highest qualities of his imagination. No creative work, whether in engineering or in art, in literature or in science, has been the work of a man devoid of the imaginative faculty."

The realization of these aims meant specializing, so the trustees decided in 1907 to separate the elementary department, the normal school, and the academy, leaving only a college of technology which conferred Bachelor of Science degrees in electrical, mechanical, and civil engineering.
In 1910 Throop Polytechnic Institute moved from its crowded quarters in the center of Pasadena to a new campus of twenty-two acres on the southeastern edge of town, the gift of Arthur H. Fleming and his daughter Marjorie. The president, Dr. James A. B. Scherer, and his faculty of 16 members, opened the doors to 31 students that September. When, on March 21, 1911, Theodore Roosevelt delivered an address at Throop Institute, he declared, "I want to see institutions like Throop turn out perhaps ninety-nine of every hundred students as men who are to do given pieces of industrial work better than any one else can do them; I want to see those men do the kind of work that is now being done on the Panama Canal and on the great irrigation projects in the interior of this country — and the one-hundredth man I want to see with cultural scientific training."

It would have surprised Roosevelt to know that within a decade the little Institute, known from 1913 as Throop College of Technology, would have again raised its sights, leaving to others the training of more efficient technicians and concentrating its own efforts on Roosevelt's "hundredth man." On November 29, 1921, the trustees declared it to be the express policy of the Institute to pursue scientific researches of the greatest importance and at the same time "to continue to conduct thorough courses in engineering and pure science, basing the work of these courses on exceptionally strong instruction in the fundamental sciences of mathematics, physics, and chemistry; broadening and enriching the curriculum by a liberal amount of instruction in such subjects as English, history, and economics; and vitalizing all the work of the Institute by the infusion in generous measure of the spirit of research."

Three men were responsible for the change in the Institute. George Ellery Hale still held to his dream. Arthur Amos Noyes, professor of physical chemistry and former acting president of the Massachusetts Institute of Technology, served part of each year as professor of general chemistry and research associate from 1913 to 1919, when he resigned from MIT to devote full time to Throop as director of chemical research. In a similar way Robert Andrews
Millikan began, in 1916-17, to spend a few months a year at Throop as director of physical research. In 1921, when Dr. Norman Bridge agreed to provide a research laboratory in physics, Dr. Millikan resigned from the University of Chicago and became administrative head of the Institute as well as director of the Norman Bridge Laboratory.

The great period of the Institute's life began, then, under the guidance of three men of vision—Hale, Noyes, and Millikan. They were distinguished research scientists, and they soon attracted graduate students. In 1920 the enrollment was 9 graduate students and 359 undergraduates under a faculty of 60; a decade later there were 138 graduate students, 510 undergraduates, and a faculty of 180. At the present time there are about 800 undergraduates, 700 graduate students, and 650 faculty (including postdoctoral fellows).

The Institute also attracted financial support from individuals, corporations, and foundations. In January 1920 the endowment had reached half a million dollars. In February of that year it was announced that $200,000 had been secured for research in chemistry and a like amount for research in physics. Other gifts followed from trustees and friends who could now feel pride in the Institute as well as hope for its future. The Southern California Edison Company provided a high-voltage laboratory, with the million-volt Sorensen transformer. Philanthropic foundations bearing the names of Carnegie, Rockefeller, and Guggenheim came forth with needed help when new departments or projects were organized.

In 1923 Millikan received the Nobel Prize in Physics. He had attracted to the Institute such men as Charles Galton Darwin, Paul Epstein, and Richard C. Tolman. In 1924 the Ph.D. degree was awarded to nine candidates.

It was inevitable that the Institute would enlarge its fields; it could not continue to be merely a research and instructional center in physics, chemistry, and engineering. But the trustees pursued a cautious and conservative policy, not undertaking to add new departments except when the work done in them would be at the same high level as that in physics and chemistry. In 1925 a gift of $25,000 from the Carnegie Corporation of New York made possible the opening of a department of instruction and research in geology. A seismological laboratory was constructed, and Professors John P. Buwalda and Chester Stock came from the University of California to lead the work in the new division.

In 1928 the California Institute began its program of research and instruction in biology. Thomas Hunt Morgan became the first chairman of the new Division of Biology and a member of Caltech's Executive Council. Under Morgan's direction the work in biology developed rapidly, especially in genetics and biochemistry. Morgan received the Nobel Prize in 1933.

The Guggenheim Graduate School of Aeronautics was founded at Caltech in the summer of 1926 and a laboratory was built in 1929, but courses in theoretical aerodynamics had been given at the Institute for many years by Professors Harry Bateman and P. S. Epstein. As early as 1917 Throop Institute had had a wind tunnel in which, the catalog proudly boasted, constant velocities of 4 to 40 miles an hour could be maintained, "the controls being very sensitive." The new program, under the leadership of Theodore von Kármán, included graduate study and research at the level of the other scientific work at the Institute, and GALCIT (Guggenheim Aeronautical Laboratory at the California Institute of Technology) was soon a world-famous research center in aeronautics.

In 1928 George Ellery Hale and his associates at the Mount Wilson Observatory developed a proposal for a 200-inch telescope and attracted the interest of the General Education Board in providing $6,000,000 for its construction. The Board proposed that the gift be made to the California Institute of Technology, and Caltech agreed to be responsible for the construction and operation. The huge instrument was erected on Palomar Mountain, and the Mount Wilson and Palomar Observatories are now operated jointly as the Hale Observatories through an agreement between Caltech and the Carnegie Institution of Washington. Teaching and research in astronomy and astrophysics thus became a part of the Caltech program.

Although the emphasis upon the humanities or liberal arts as an important part of the education of every scientist and engineer was traditional even in the Throop College days, a reiterated insistence upon this principle was made when Hale, Noyes, and Millikan created...
the modern Caltech. In 1924, when a five-year engineering course leading to the M.S. degree was offered, the humanities requirement was included. In 1925 William Bennett Munro, chairman of the Division of History, Government and Economics at Harvard, joined the Institute staff, and soon became a member of the Executive Council. Students were required to spend between 20 and 25 percent of their undergraduate years in the Division of Humanities — mainly in literature and history, with some economics. In the fifties the relation of science to society became increasingly important, and in 1966 the division changed its name to the Division of the Humanities and Social Sciences. Studies of modern society were aided by processes of formal analysis based on the social and political sciences. Undergraduate options in English, history, economics, and social science are now offered.

For the five years beginning with the summer of 1940, Caltech devoted an increasingly large part of its personnel and facilities to the furthering of the national defense and war effort. Caltech’s work during this period fell mainly into two categories: special instructional programs and research on the development of the instrumentalities of war. The research and development work was carried on for the most part under non-profit contracts with the Office of Scientific Research and Development. Rockets, jet propulsion, and antisubmarine warfare were the chief fields of endeavor. The Jet Propulsion Laboratory in the upper Arroyo Seco continues under Institute management to carry on a large-scale program of research for the National Aeronautics and Space Administration in the science and technology of unmanned space exploration. The Laboratory launched the first U.S. satellite, Explorer I, in 1958, and conducted the Ranger, Surveyor, Mariner, and Viking programs of lunar and planetary exploration for NASA. The Laboratory also operates the NASA worldwide deep-space tracking network and conducts a program of supporting research in space science and engineering.

In 1945 Robert A. Millikan retired as chairman of the executive council but served as vice chairman of the board of trustees until his death in 1953. Dr. Lee A. DuBridge became president of Caltech on September 1, 1946. Formerly chairman of the physics department and dean of the faculty at the University of Rochester, he came to the Institute after five years as wartime director of the MIT Radiation Laboratory — and remained 22 years.

DuBridge was also committed to the concept of a small, select institution offering excellence in education. Facts and figures are only part of the story, but the statistical record of change during the DuBridge administration indicates how he held to that concept. The 30-acre campus of 1946 grew to 90 acres; the $17 million endowment grew to over $100 million; the faculty of 260 became 550; the number of campus buildings increased from 20 to 64; and the budget went from something under $8 million to $30 million. But enrollment remained relatively constant. In 1946 the total number of students, graduate and undergraduate, was 1,391. In 1968, the year DuBridge left, it was 1,492.

Dr. Harold Brown came to Caltech as president in 1969. A physicist who received his Ph.D. from Columbia in 1949, he succeeded Dr. Edward Teller as director of the University of California’s Lawrence Radiation Laboratory in Livermore in 1960. President Lyndon Johnson named Brown Secretary of the Air Force in 1965, and he came to the Institute from that office.

As Caltech has developed in effectiveness and in prestige, it has attracted a steady flow of gifts for buildings, for endowment, and for current operations. The gifts invested in plant now total $116,000,000 and those invested in endowment about $160,000,000. Very substantial grants and contracts from the federal government support many research activities.

Today Caltech has about 13,000 alumni scattered all over the world, many eminent in their fields of engineering and science. Six of them have received Nobel Prizes: Carl D. Anderson (B.S. ’27, Ph.D. ’30), Edwin M. McMillan (B.S. ’28, M.S. ’29) Linus Pauling (Ph.D. ’25), William Shockley (B.S. ’32), Donald A. Glaser (Ph.D. ’50), and Charles H. Townes (Ph.D. ’39).
BUILDINGS AND FACILITIES

Gates and Crellin Laboratories of Chemistry: first unit, 1917; second unit, 1927; third unit, 1937. The first two units were the gift of Messrs. C. W. Gates and P. G. Gates of Pasadena; the third unit was the gift of Mr. and Mrs. E. W. Crellin of Pasadena. Gates has been retired and is empty because of damage sustained in the February 9, 1971, earthquake.

Norman Bridge Laboratory of Physics: first unit, 1922; second unit, 1924; third unit, 1925. The gift of Dr. Norman Bridge of Los Angeles, president of the Board of Trustees, 1896-1917.

High Voltage Research Laboratory, 1923. Built with funds provided by the Southern California Edison Company. Retired in 1959 with basic research completed and rebuilt in 1960 as the Alfred P. Sloan Laboratory of Mathematics and Physics.

Dabney Hall of the Humanities, 1928. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

Guggenheim Aeronautical Laboratory, 1929. Built with funds provided by the Daniel Guggenheim Fund for the Promotion of Aeronautics. A substantial addition was built in 1947.

William G. Kerckhoff Laboratories of the Biological Sciences: first unit, 1928; second unit, 1939; annex, 1948. The gift of Mr. and Mrs. William G. Kerckhoff of Los Angeles.

Athenaeum, 1930. A clubhouse for the teaching, research, and administrative staffs of the Institute, the Huntington Library and Art Gallery, and the Hale Observatories; for The Associates of the California Institute of Technology; and for others who have demonstrated their interest in advancing the objectives of the Institute. The gift of Mr. and Mrs. Allan C. Balch of Los Angeles. He was president of the Board of Trustees, 1933-1943.

Undergraduate Houses, 1931:

Blacker House. The gift of Mr. and Mrs. R. R. Blacker of Pasadena.

Dabney House. The gift of Mr. and Mrs. Joseph B. Dabney of Los Angeles.

Fleming House. Built with funds provided by some twenty donors and named in honor of Mr. Arthur H. Fleming of Pasadena, president of the Board of Trustees, 1917-1933.

Ricketts House. The gift of Dr. and Mrs. Louis D. Ricketts of Pasadena.

W. K. Kellogg Radiation Laboratory (Nuclear Physics), 1932. The gift of Mr. W. K. Kellogg of Battle Creek, Michigan.

Henry M. Robinson Laboratory of Astrophysics, 1932. Built with funds provided by the International Education Board and the General Education Board, and named in honor of Mr. Henry M. Robinson of Pasadena, member of the Board of Trustees, 1907-1937, and the Executive Council of the Institute.

Charles Arms Laboratory of the Geological Sciences, 1938. The gift of Mr. and Mrs. Henry M. Robinson of Pasadena, in memory of Mrs. Robinson's father, Mr. Charles Arms.

Seeley W. Mudd Laboratory of the Geological Sciences, 1938. The gift of Mrs. Seeley W. Mudd of Los Angeles, in memory of her husband.

Franklin Thomas Laboratory of Engineering: first unit, 1945; second unit, 1950. Funds for the first unit were allocated from the Eudora Hull Spalding Trust with the approval of Mr.

Scott Brown Gymnasium, 1954. Built with funds provided by the trust established by Mr. Scott Brown of Pasadena and Chicago, who was a member and director of the Caltech Associates.

Norman W. Church Laboratory for Chemical Biology, 1955. Built with funds provided through a gift and bequest by Mr. Norman W. Church of Los Angeles, who was a member of the Caltech Associates.

Eudora Hull Spalding Laboratory of Engineering, 1957. Built with funds allocated from the Eudora Hull Spalding Trust.

Archibald Young Health Center, 1957. The gift of Mrs. Archibald Young of Pasadena, in memory of her husband, who was a member and director of the Caltech Associates.

Physical Plant Building and Shops, 1959. Built with funds provided by many donors to a Caltech development program.

Gordon A. Alles Laboratory for Molecular Biology, 1960. Erected with the gift of Dr. Gordon A. Alles of Pasadena, research associate in biology at the Institute, an alumnus and a member of the Caltech Associates, 1947-1963; and with funds provided by the Health Research Facilities Branch of the National Institutes of Health.

Undergraduate Houses, 1960. Built with funds provided by the Lloyd Foundation and other donors to a Caltech development program.

- **Lloyd House**. Named in memory of Mr. Ralph B. Lloyd and his wife Mrs. Lulu Hull Lloyd of Beverly Hills. He was a member of the Board of Trustees, 1939-1952.

- **Page House**. Named in honor of Mr. James R. Page of Los Angeles, a member of the Board of Trustees, 1931-1962, and chairman, 1943-1954.

- **Ruddock House**. Named in honor of Mr. Albert B. Ruddock of Santa Barbara, a member of the Board of Trustees, 1938-1971, and chairman, 1954-1961.

Harry Chandler Dining Hall, 1960. The gift of the Chandler family, the Pfaffinger Foundation, and the Times Mirror Company of Los Angeles.

Graduate Houses, 1961:

- **Braun House**. Built with funds provided by the trustees of the Carl F. Braun Trust Estate in his memory.

- **Keck House**. The gift of Mr. William M. Keck, Jr., of Los Angeles.

- **Marks House**. The gift of Dr. David X. Marks of Los Angeles.

- **Mosher-Jorgensen House**. The gift of Mr. Samuel B. Mosher of Los Angeles and Mr. Earle M. Jorgensen of Los Angeles. Mr. Jorgensen is a member of the Board of Trustees.
Alfred P. Sloan Laboratory of Mathematics and Physics, 1960. Formerly High Voltage Research Laboratory, 1923. Rebuilt in 1960 with funds provided by the Alfred P. Sloan Foundation.

Firestone Flight Sciences Laboratory, 1962. The gift of the Firestone Tire and Rubber Company.

Winnett Student Center, 1962. The gift of Mr. P. G. Winnett of Los Angeles, a member of the Board of Trustees, 1939-1968.

Beckman Auditorium, 1964. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman, an alumnus, was a member of the Institute's faculty from 1928 to 1939, chairman of the Board of Trustees from 1964-1974, and is now chairman emeritus.

Harry G. Steele Laboratory of Electrical Sciences, 1965. Built with funds provided by the Harry G. Steele Foundation and the National Science Foundation.

Central Engineering Services Building, 1966.

Robert A. Millikan Memorial Library, 1967. Built with a gift from Dr. Seeley G. Mudd and named in honor of Dr. Robert Andrews Millikan, director of the Bridge Laboratory of Physics and chairman of the Executive Council of the Institute, 1921-1945.

Arthur A. Noyes Laboratory of Chemical Physics, 1967. Built with funds provided by the National Science Foundation and an anonymous donor, and named in honor of Arthur Amos Noyes, director of the Gates and Crellin Laboratories of Chemistry and chairman of the Division of Chemistry and Chemical Engineering, 1919-1936.

Central Plant, 1967.

George W. Downs Laboratory of Physics and Charles C. Lauritsen Laboratory of High Energy Physics, 1969. The Downs wing was built with funds provided by George W. Downs and the National Science Foundation. The Lauritsen wing was built with Atomic Energy Commission funds and named in honor of Dr. Charles C. Lauritsen, a member of the Institute faculty, 1930-1968.

Keith Spalding Building of Business Services, 1969.

Donald E. Baxter, M.D., Hall of the Humanities and Social Sciences, 1971. Built with funds provided by Mrs. Delia B. Baxter of Atherton and named in honor of her late husband, Donald E. Baxter, M.D. Additional funds were given by Dr. and Mrs. Simon Ramo and the U.S. Department of Health, Education and Welfare.

The Earle M. Jorgensen Laboratory of Information Science, 1971. Built with the gift of Mr. and Mrs. Earle M. Jorgensen, with additional funds provided by the Booth-Ferris Foundation and other private donors.
The Mabel and Arnold Beckman Laboratories of Behavioral Biology, 1974. The gift of Dr. and Mrs. Arnold O. Beckman of Corona del Mar. Dr. Beckman is chairman emeritus of the Board of Trustees.

Seeley G. Mudd Building of Geophysics and Planetary Science, 1974. Built with funds provided by Dr. Seeley G. Mudd, Mrs. Roland Lindhurst, Mr. and Mrs. Ross McCollum, Mr. and Mrs. Henry Salvatori, and the U.S. Department of Health, Education and Welfare.

Off-Campus Facilities

Kresge Building, Seismological Laboratory, 1928 (of the Division of Geological and Planetary Sciences), 220 North San Rafael Avenue, Pasadena. Named in recognition of a gift from The Kresge Foundation of Detroit, Michigan.

William G. Kerckhoff Marine Biological Laboratory, Corona del Mar, 1930. Rehabilitated with funds provided by the National Science Foundation in 1966.

Jet Propulsion Laboratory, 1944. 4800 Oak Grove Drive, Pasadena. Administered by the Institute; owned and supported by the National Aeronautics and Space Administration.

Palomar Observatory, San Diego County, 1948. Owned by the Institute and, with the Mount Wilson Observatory, operated jointly as the Hale Observatories by Caltech and the Carnegie Institution of Washington.

Owens Valley Radio Observatory, near Bishop, 1958.

Big Bear Solar Observatory, Big Bear Lake, 1969. Built with funds provided by the National Science Foundation and the Max C. Fleischmann Foundation of Nevada.
LIBRARIES

The Robert A. Millikan Memorial Library houses the general administrative activities of the Institute's library system as well as the following divisional collections: biology, chemistry, engineering, humanities and social sciences, mathematics, and physics.

Millikan Memorial, completed in 1967, is a nine-story building with 63,000 feet of floor space. It has an eventual capacity of 400,000 volumes and provides seats for about 250 students. Book collections have been distributed throughout the building in such a way that each major subject has its own area and retains its identity and its close relationship with its parent academic division. Library administrative services are concentrated on the second floor; here also are the catalog of campus libraries and general reference and information services. The first floor contains reserve book services and the rare books room. The various divisional collections are on floors four through nine. The basement contains reproduction equipment, the Institute archives, and mail and distribution facilities. A microform reading room and the government documents collection are located on the fifth floor. Millikan Memorial is open daily throughout the school year from 8 a.m. to 2 a.m. and during the summer from 8 a.m. to midnight.

In addition to this central library there are library collections elsewhere on campus in aeronautics, astrophysics, chemical engineering, electrical engineering, geology, hydraulics and environmental engineering, information and computer science, management, and public affairs. The libraries collectively subscribe to about 5,000 journals and serials and contain about 292,000 volumes.
THE INDUSTRIAL RELATIONS CENTER

The objectives of the Industrial Relations Center are to increase and disseminate a knowledge and an understanding of the philosophies, principles, policies, and procedures of employer-employee relations influencing the motivation, development, utilization, compensation, and supervision of rank-and-file, professional, and managerial personnel.

Representatives of many organizations in both the private and public sectors receive training in the field of management in general and in the specialized field of personnel administration. Special attention is given to programs for technical supervisors and managers who function in engineering and research laboratories. Other series are designed for the first- and second-line supervisors of non-exempt employees. The courses are presented on a number of bases: on-campus or off-campus; full-time or part-time; for representatives of a variety of companies or for representatives of a specific company. These courses do not carry academic credit.

The staff of the Center also participates in the education of undergraduate and graduate students of the California Institute of Technology, stressing the fundamentals of management and employer-employee relations.

The office, library, and conference rooms of the Center are located on campus at 383 South Hill Avenue. Detailed information about the specific services of the Center and the fees involved can be secured from the Director of the Industrial Relations Center.

THE WILLIS H. BOOTH COMPUTING CENTER

The Computing Center offers a comprehensive integrated set of facilities for the research and educational use of all divisions of the Institute.

These include an IBM 370/158 computer and a PDP-10 computer which, in addition to servicing batch processing functions, provides for a variety of user communication modes through 40 remote typewriter consoles at various locations on the campus.

POSTDOCTORAL APPOINTMENTS

It is frequently advantageous for individuals to continue their training programs for a limited period of time after receiving their doctoral degrees and before seeking regular employment. To this end, the Institute appoints each year a number of postdoctoral Research Fellows. The postdoctoral program consists, generally, of fundamental research in one of the Institute laboratories in close association with one or more regular faculty members. At the end of a period of postdoctoral training, a certificate of completion will be issued to the Fellow upon request. The California Institute of Technology is subject to the requirements of Executive Order 11246 and is an affirmative action employee. All interested persons are encouraged to apply.

SPECIAL PROGRAM

The Sherman Fairchild Distinguished Scholars Program

The Sherman Fairchild Distinguished Scholars Program at Caltech brings some of the world's great intellectual leaders to the campus from industry, government, and the academic community. Through this program, Caltech's faculty and student body have an opportunity to be influenced in both teaching and research by the wisdom and experience of eminent world leaders in various fields.

108
Study and Research

It is possible to have 15 to 20 Scholars in residence on the campus at any one time. They will not all be scientists and engineers, though they will all be people who have exhibited an interest in science and technology, and in applying knowledge from these fields to meeting human needs. Appointments are for one year, but may be lengthened or shortened to accommodate the needs of the Scholar and the Institute.

The emphasis in the program is to give faculty and students exposure to Fairchild Scholars in all academic Divisions — through teaching, seminars, and lectures — and to establish a new forum for the exchange of ideas among Fairchild Scholars, Caltech faculty, students, and industry about new directions and ideas in science and engineering.

STUDY AND RESEARCH

Aeronautics

The Guggenheim Aeronautical Laboratory, the Karman Laboratory of Fluid Mechanics and Jet Propulsion, and the Firestone Flight Sciences Laboratory form the Graduate Aeronautical Laboratories, widely known as GALCIT. In this complex are housed the Applied Mathematics group, the Jet Propulsion Center, and the Hydrodynamics Laboratory, as well as the various disciplines making up the broad field known as Aeronautics.

Areas of Study and Research

Aeronautics has evolved at Caltech from a field of basic research and engineering, as related to the development of the airplane, to a wide discipline encompassing a broad spectrum of basic as well as applied problems. Starting from a need to gain a better understanding of fluid dynamics and structural mechanics, research at GALCIT has traditionally been guided through a host of pioneering areas that, more often than not, have anticipated subsequent technological demands. Thus, for example, research in compressible fluid mechanics began before the advent of supersonic flight; in plasma dynamics before the importance of controlled fusion was recognized; in extracting energy from the wind before the advent of the energy crisis; in turbulent mixing before the appearance of the chemical laser and the need for optimizing combustion. Similarly, research in the use of shell structures began before their widespread use in aircraft, and in fracture mechanics of polymers before composite materials became an important component of aerospace structures. This tradition places a high premium on in-depth understanding of fields both closely and remotely related to the behavior of fluids and structures such as physics, applied mathematics, meteorology, materials science, electronics, and even astrophysics. As a consequence, GALCIT students are known and sought after for their broad yet intensive education with the knowledge that they will be capable of dealing with new and challenging problems.

The major areas of study and research currently pursued by the Aeronautics group at Caltech are briefly described below:

Physics of Fluids. Fluid dynamics as a discipline is as much a part of physics as of engineering. Physics of fluids refers to research in areas closer to applied physics than to direct technical applications. Present active research includes work on the flow properties of liquid helium II, in particular turbulence and shock wave propagation in the superfluid, the development of laser scattering diagnostic techniques for fluid-flow measurements, and work with gaseous discharges for laser applications.
Technical Fluid Mechanics. Research at GALCIT includes a long history of work on subsonic and supersonic turbulent boundary layers, shear flows and separated flows. These areas of investigation are related to a variety of modern technological problems and, in addition, to the traditional aeronautical problems of drag, wing stall, and jet mixing. Current areas of activity in addition to those just mentioned include the effects of winds on buildings; aerodynamics of automobiles and trucks; turbulent mixing in chemical lasers; turbulent combustion; fires in buildings (turbulent mixing and flow fields driven by fire-produced buoyancy); hydrodynamics and two-phase flows; supersonic diffusers.

Structural Mechanics at GALCIT includes studies on both the static and dynamic behavior of structures. Work on the buckling of imperfect shells includes theoretical and experimental studies. Nonlinear problems in steady-state vibrations of shell structures as well as wave propagation in continuous media are being investigated. Other fields include structural optimization and design, as well as aero- and hydro-elasticity.

Mechanics of Fracture. An active effort is being made to understand the mechanisms of fracture. Aspects which are studied include quasi-static and dynamic crack growth phenomena in brittle solids, polymers and advanced composites, fatigue and failure of adhesive bonds.

Aeronautical Engineering and Propulsion. Research work in the field of aeronautics includes studies of airplane trailing vortices, extraction of energy from the wind (windmills), control theory and space mission analysis. Research work in the propulsion area has centered on the fluid dynamic problems associated with gas turbine components (principally axial flow compressors and combustion chambers) and rocket engine combustion chambers, especially solid-propellant rocket instability.

Aero-Acoustics. A number of topics in the broad field of aero-acoustics are actively under study at GALCIT. They include jet noise, combustion noise, sonic boom, nonlinear acoustics and hydroacoustics.

The Daniel and Florence Guggenheim Jet Propulsion Center conducts a large portion of its instruction and research in close cooperation with the aeronautics group. The fields of study covered are described on page 134 under the separate heading of Jet Propulsion. Students in aeronautics are able to pursue studies and research leading to graduate degrees in aeronautics utilizing facilities, courses, and research supervision by the faculty of the Jet Propulsion Center.

Physical Facilities

The Graduate Aeronautical Laboratories contain a diversity of experimental facilities in support of the above programs. Low-speed wind tunnels include the Merrill Wind Tunnel, which can be operated by a single student, the GALCIT 10-ft. Wind Tunnel, and many special-purpose flow facilities. Both a High-Speed Water Tunnel (100 feet per second) and a Free-Surface Water Tunnel are housed in the Hydrodynamics Laboratory; they are used for studies of hydrofoils, cavitation, and acoustics. A smaller water channel for studies of wave motion and flow visualization is also available. For investigations of high-speed flows there is a hypersonic wind tunnel and a supersonic wind tunnel, each with two different working sections. Shock tubes, plasma tunnels, and other special facilities are available for the study of extreme temperatures, shock waves, acoustics, and cryogenic flow.

The solid mechanics laboratories contain standard as well as special testing machines for research in aircraft and spacecraft structures and materials under static and dynamic loads. Fatigue machines and photoelastic equipment are available. Special apparatus, including laser equipment and a line of high-speed cameras, offering recording at rates from still to 250,000 frames per second, is available for study of elastic waves, dynamic buckling, and the mechanics of static and dynamic fracture.

Electronic instrumentation up to the present state-of-the-art is being developed and used. A portable, computer-controlled data acquisition system is used extensively by the several research groups.

The facilities of the Jet Propulsion Laboratory, an off-campus laboratory owned and supported by NASA and administered by Caltech, may under special circumstances also be
used for research in aeronautics and jet propulsion. Among the experimental facilities are
space environment simulators, large supersonic and hypersonic wind tunnels and test cells
for rockets and thermal jets, as well as facilities for the study of refractory materials,
hydraulics, combustion, and other chemical processes.

Applied Mathematics

It is the broad aim of the applied mathematics program at Caltech to stimulate and explore
the interplay between mathematics and the various non-mathematical disciplines. On the
one hand there is an active group of pure mathematicians devoting themselves mainly to the
more abstract and foundational branches of mathematics, and on the other hand there is
wide diversity of research in physics, engineering, biology, chemistry, geophysics, and
economics. Ideas travel in both directions, bringing mathematical tools to bear for synthesis
and solution of practical problems in various fields and, of equal importance, generating
new mathematical ideas and points of view which arise from physical problems. The
research and educational program reflects this aim in its organization.

This program is a joint effort of the Division of Physics, Mathematics and Astronomy and
the Division of Engineering and Applied Science. Students majoring in applied mathematics
are enrolled in either division and the professors of applied mathematics are also in these
two divisions. Further, professors from other divisions take part supervising research and
offering courses of special interest. Close contact is maintained with experimental programs
in fluid and solid mechanics. The present graduate program is one leading mainly to the
Ph.D. degree. The curriculum consists of two types of courses: those which survey the
methods used in applied mathematics, and those which have a special applied mathematics
flavor and represent active research interests of the members of the faculty. Among the
latter have been wave motion, perturbation theory, fluid mechanics, stochastic processes,
linear programming, numerical analysis of partial differential equations, group theory
applied to physics, and advanced elasticity. By study outside of applied mathematics each
student is expected to become competent in some special physical or non-mathematical
field. In this way, subjects for research appear naturally, and a broad educational program is
provided. In addition to the connections mentioned above, special notice should be taken of
the existence of a computer and information science group at Caltech which provides the
chance for practical experience with the most modern computers and further fields of
research. Library facilities are excellent, comprising all the journals, a complete general
library, and a special research library in applied mathematics.

The present group primarily interested in applied mathematics consists of approximately
25 students and 8 professors. Also, each year many distinguished visitors come either to
present lectures or remain in residence for large parts of the academic year.

Areas of Research

Research is particularly strong in fluid mechanics, elasticity, dynamics, numerical
analysis, ordinary and partial differential equations, integral equations, linear and non-
linear wave propagation, bifurcation theory, perturbation and asymptotic methods, stability
theory, stochastic processes, variational methods, applications of group theory, and
other related branches of analysis.

Applied Mechanics

Areas of Research

Advanced instruction and research leading to degrees of Master of Science and Doctor of
Philosophy in Applied Mechanics are offered in such fields as elasticity, plasticity, wave
propagation in solid and fluid media, fluid mechanics, dynamics and mechanical vibrations,
stability and control, and certain areas in the fields of propulsion and heat transfer.
Research studies in these areas which illustrate current interests include: linear and nonlinear vibrations, structural dynamics and design for earthquake and blast loads, linear and nonlinear problems in static and dynamic elasticity, plasticity and viscoelasticity, wave propagation in elastic and viscoelastic media, diffraction of elastic waves by cavities and inclusions, boundary layer problems in plates and shells, stratified flow, unsteady cavity flow, oscillatory flow of blood in very small tubes, and the mechanical properties of biological tissues under large deformations.

Research Facilities

In addition to the regular facilities of the Division of Engineering and Applied Science, such as the extensive digital computing facilities of the Computing Center, and the special facilities for studies in solid and fluid mechanics of the Graduate Aeronautical Laboratories, certain special facilities have grown up in connection with applied mechanics activities. The Dynamics Laboratory is equipped with a good selection of modern laboratory apparatus and instrumentation for experimental research in shock and vibration, and the Earthquake Engineering Research Laboratory contains specialized equipment for the analysis of complex transient loading problems, and for the recording and analysis of strong-motion earthquakes. Other specialized laboratories include the Heat Transfer Laboratory which contains a forced convection heat transfer loop, and the Hemorheology Laboratory with equipment for quantitative study of blood flow in living microvessels and related model systems and of the mechanical properties of biological tissues.

Applied Physics

An interdivisional program in applied physics for both undergraduate and graduate study was initiated in 1970. Like applied mathematics, applied physics at Caltech is in a fortunate position: The comparatively small size of Caltech coupled with great strength in both the pure sciences and engineering make it possible to draw on a faculty having wide interest in the application of modern physics to technology, without losing close interaction with "pure subjects." At present, members of four divisions, Engineering and Applied Science, Physics, Mathematics and Astronomy, Chemistry and Chemical Engineering, and Geological and Planetary Sciences, participate in instruction and research in applied physics leading to a B.S. degree as well as to M.S. and Ph.D. degrees.

The program is designed for students who are deeply interested in physics but at the same time are fascinated by the interrelation of physical problems and technological development, i.e., students who like to work with problems in physics which originate from or result in applications. A sharp division between "pure" and "applied" physics or between applied physics and engineering cannot be drawn, and the option of applied physics should be considered a bridge rather than a divider. A student is expected to have a thorough background in physics, as well as a broad background in related fields of technology.

Members of the faculty involved with the educational and research activities in applied physics remain members of their respective divisions. Graduate students who choose the applied physics option similarly are admitted to one of the cooperating divisions.

In setting up the undergraduate curriculum every effort has been made to facilitate the transition into and out of the option. In general an undergraduate student in applied physics will devote somewhat more time on the study of matter in bulk than the "pure" physicist. Since it is expected that a comparatively large portion of the student body will be interested in experimental research, a special effort has been made to set up challenging laboratory courses.

For first-year graduate students and adventurous seniors, a set of basic courses covering broad areas in applied physics is available, supplemented by a set of more specialized courses often closely related to a specific research effort.
Areas of Research

Research activities cover a broad spectrum, ranging from cryogenics to plasmas, from rarefied gas flow to high pressures and shock waves in solids, from neutron transport to planetary science. There is research in progress in the physics of solids, including solid-state electronics, ferromagnetic materials, quantum electronics, and superconductivity; in the physics of fluids, including plasmas and magnetohydrodynamics, liquids and superfluids; and in the physics of electromagnetic radiation, including linear and nonlinear laser optics and electromagnetic theory.

Astronomy

The astronomical observatories at Palomar, Mount Wilson, Big Bear, and the Owens Valley Radio Observatory together constitute a unique and unprecedented concentration of scientific facilities in astronomy. Outstanding scientific talent is present in various fields of astronomy and in the related fields of physics. The California Institute of Technology recognized the advantages in the creation of a great astronomical center in which a scientific program could be pursued under favorable circumstances with a variety of instruments which would also draw young men and women of ability to graduate studies, where they might familiarize themselves with powerful tools of exploration. The joint scientific staff of astronomers at Caltech and at the Carnegie Institution of Washington comprise the Hale Observatories. Caltech owns the Palomar and Big Bear Solar Observatories, and the Carnegie Institution the Mount Wilson Observatory, but the equipment and facilities of both observatories are made available for the astronomical investigations of the combined staff.

The Synchotron Laboratory, where the 200-inch Hale telescope mirror was ground and polished, and where subsequently Caltech operated an electron synchotron for many years, is now being used by Dr. Robert Leighton to manufacture 10-meter antennas, of a novel modular design, for use at far-infrared wavelengths.
and students. The research program is paralleled by undergraduate and graduate training in astronomy and astrophysics by members of the Institute faculty and Hale Observatories, the Radio Observatory, and the Solar Observatory at Big Bear Lake.

The radio astronomy group works in close collaboration with the optical astronomers in Pasadena; the program of graduate study in the two fields is essentially the same, except for specialized advanced courses. Work in physics and geology is expanding in the field of astronomical research in space and in the ground-based study of the planetary system. There will be close cooperation between these groups and the students and astronomers interested in planetary physics and space science.

As a result of the cooperation possible over a broad range of astronomy, astrophysics, and radio astronomy, unsurpassed opportunities exist at the California Institute for advanced study and research. The instructional program is connected with a broad and thorough preparation in physics, mathematics, and other relevant subjects, as well as instruction in astronomy, solar physics, space and planetary physics, radio astronomy, astrophysics, and observations with large telescopes.

Areas of Research

Both observational and theoretical astrophysics are actively pursued at Caltech. Topics of current interest in optical astronomy include chemical abundances in normal and peculiar stars, spectroscopic and spectrophotometric studies of quasars, compact and Seyfert galaxies and related objects; studies of white dwarfs and other stars near the end-point of evolution; studies of the dynamics and composition of galaxies and clusters, nebulae and interstellar matter, statistical studies pertinent to the structure of the galaxy, and the physics of solar phenomena.

In addition, active research in infrared and planetary astronomy is done in cooperation with groups in physics and geology.

The research in radio astronomy covers the physical properties of galactic and extragalactic radio sources including quasars, radio galaxies, supernova remnants, pulsars, and the planets. The properties of the interstellar medium in our own and other nearby galaxies are investigated in spectroscopic studies of the 21-cm hydrogen line and various molecular spectral lines.

Theoretical astrophysics is pursued not only in the astronomy department, but in physics and geology as well, and at Caltech includes work on supernovae, pulsars, stellar structure and evolution, stellar atmospheres, interstellar and intergalactic matter, the physics of radio sources, nucleosynthesis, relativity, and cosmology.

Physical Facilities

The Rockefeller Boards provided in 1928 for the construction by the Institute of an astronomical observatory on Palomar Mountain, equipped with a 200-inch reflecting telescope, 48-inch and 18-inch Schmidt wide-angle telescopes, and other auxiliary instruments, together with an astrophysical laboratory on the Institute campus. This observatory is supplemented by the facilities of the Mount Wilson Observatory of the Carnegie Institution of Washington, which, while not a part of Caltech, is located even closer to Pasadena than is Palomar Mountain. Some graduate student thesis research is carried out at Mount Wilson. The increased light-collecting power of the 200-Inch telescope permits further studies of the size, structure, and motion of the galactic system; of the distance, motion, radiation, composition, and evolution of the stars; the interstellar gas; the distance, motion, and nature of remote galaxies and quasi-stellar radio sources; and of many phenomena bearing directly on the constitution of matter. The 48-inch Schmidt has made possible a complete survey of the sky, as well as an attack upon such problems as the structure of clusters of galaxies, the luminosity function of galaxies, extended gaseous nebulae, and the stellar content of the Milky Way. These two unique instruments at Palomar supplement each other as well as the telescopes on Mount Wilson; the one reaches as far as possible into space in a given direction, while the other photographs upon a single plate an entire cluster of distant galaxies, or a star cloud in our own galaxy.
A new multi-purpose solar equatorial telescope has been installed at a new observing station at Big Bear Lake. The work of this facility is coordinated with work with the two solar coelostats in Pasadena (20-inch and 36-inch apertures) and the 60-foot and 150-foot towers on Mount Wilson. The unique atmospheric conditions in this area make possible investigations of the fine structure of the solar atmosphere. Emphasis is on high-resolution spectroscopy, magnetography, and cinematography.

A new 60-inch telescope has been completed for photoelectric observations, image-tube spectroscopy and photography at Palomar. An astro-electronics laboratory is continuously developing sophisticated data-handling systems.

Special apparatus for the far infrared has been fitted to various telescopes to study very cool stars and planets.

Work in radio astronomy was begun at the Institute in 1956 with the founding of the Owens Valley Radio Observatory, near Big Pine, 250 miles north of Pasadena. Research instruments include a 32-foot paraboloid and a pair of very accurate 90-foot paraboloids. The two 90-foot radio telescopes are used together as a variable-spacing interferometer for studies of all aspects of discrete radio sources, including the planets, at centimeter and decimeter wavelengths. Construction of a 130-foot radio telescope has been completed; this instrument is the prototype unit for a three-element, variable-spacing interferometer array which has been proposed for construction at the radio observatory. The 130-foot telescope is used in interferometric combinations with the two 90-foot telescopes and by itself for high-resolution, pencil-beam studies at centimeter wavelengths. Very long baseline interferometric measurements have been made in combination with observers in Australia, Sweden, the U.S.S.R., and across the United States.

The Owens Valley Radio Observatory constitutes one of the most advanced facilities for research in this rapidly growing field. Sensitive receivers, maser amplifiers and sophisticated techniques for digital recording and analysis of data permit study of the positions, spatial distribution, polarization, and other physical properties of the most distant radio galaxies and quasi-stellar sources. Similar studies may be made of the radio emission from most of the planets. Multi-channel filter banks permit work on radio spectral lines — work which recently has been considerably expanded.

Biology

The recent, dramatic progress in our understanding of the nature of life has revolutionized the science of biology. Applications of the methods, concepts and approaches of modern mathematics, physics, chemistry, and information science are providing deep insight into basic biological problems such as the manner in which genes and viruses multiply themselves; the nature of enzyme action and of enzymatic pathways; the organization of cellular activity: the mechanisms of growth and development; and the nature and interactions of nerve activity, brain function, and behavior. Qualified experimental biologists will find opportunities for challenging work in basic research as well as in medicine, agriculture, and the chemical or pharmaceutical industries.

Because of the eminent position of the California Institute of Technology in both the physical and biological sciences and the current expansion of our programs in the study of behavior and experimental psychology, students at the Institute have an unusual opportunity to be introduced to modern biology.

Areas of Research

Research (and graduate work leading to the Ph.D. degree) is chiefly in the following fields: biochemistry, biophysics, cell biology, developmental biology, experimental psychology, genetics, immunology, neurobiology, neurophysiology, psychobiology, and virology. Most of these fields are approached at the molecular as well as higher levels of organization. The disciplines of biochemistry and biophysics encompass the area of molecular biology. There is extensive interaction with related programs in chemical biology within the Division of Chemistry and Chemical Engineering.
The programs in cell and developmental biology are based upon approaches derived from biochemistry, biophysics and genetics which offer new possibilities for expanded insight into long-standing problems.

Neurobiology, experimental psychology, and behavioral biology are receiving increasing emphasis within the Division. A comprehensive program of research instruction has been formulated to span the disciplines from neuron physiology to the study of animal and human behavior. Expansion and development of this program are in process. Related developments in the Divisions of Engineering and Applied Science and the Humanities and Social Sciences serve to fortify doctoral programs concerned with the study of brain and behavior.

Physical Facilities

The campus biological laboratories are housed in four buildings, the William G. Kerckhoff Laboratories of the Biological Sciences, the Gordon A. Alles Laboratory for Molecular Biology, the Norman W. Church Laboratory for Chemical Biology, and the Mabel and Arnold Beckman Laboratories of Behavioral Biology. They contain classrooms and undergraduate laboratories, facilities to house experimental animals, and numerous laboratories equipped for biological, biochemical, biophysical, physiological, and psychological research at the graduate and doctoral level. The constant-temperature equipment includes rooms for the culturing of the Institute’s valuable collection of mutant types of Drosophila and Neurospora and complete facilities for tissue culture.

Adjacent to these laboratories is the Campbell Plant Research Laboratory for botanical investigations.
About 50 miles from Pasadena, at Corona del Mar, is the William G. Kerckhoff Marine Laboratory. The building houses several laboratories for teaching and research in marine physiology and developmental biology. It is equipped with its own shop, has boats and tackle for collecting marine animals, and running seawater aquaria for keeping them. The proximity of the marine station to Pasadena makes it possible to supply the biological laboratories with living material for research and teaching. The fauna at Corona del Mar and at nearby Laguna Beach is exceptionally rich and varied, and is easily accessible. The laboratory has been extensively rehabilitated and re-equipped for work in modern biology.

The Biological Systems Laboratory in the Booth Computing Center houses the joint research program of the biology and engineering divisions dealing with data processing systems and systems theory as they relate to the nervous system and sensory perception.

Chemical Engineering

The research and teaching interest of the chemical engineering faculty are directed towards the study of the fundamentals of chemical and transport principles and their application to the analysis and synthesis of complex chemical systems. These interests lead the faculty and students into problems as diverse as the chemical processes occurring in various organs of the body, the chemistry of polluted atmospheres, the chemistry of coal conversion to synthetic fuels, and the behavior of materials under conditions of unusual temperature and pressure. There is strong emphasis on the fundamentals of heterogeneous catalysis and their applications in chemical and petrochemical processes and in the development of synthetic fuels.

Areas of Research

The chemical engineering program is well equipped for instruction and research leading to the degrees of Master of Science and Doctor of Philosophy in Chemical Engineering. Major areas in which graduate research is currently concentrated are:

1. Biomedical problems: transport in tissues, artificial organs, the cardiovascular system, and gas sterilization; pulmonary bioengineering. The biomedical engineering laboratory has a laser-Doppler unit for studies of concentration and velocity profiles in suspension flow. Recording equipment for sound measurements in the cardiovascular system is available.

2. Air pollution studies: simulation and control; atmospheric chemical reactions; atmospheric fluid mechanics; computer simulation of the urban atmosphere; application of tracer techniques to environmental problems; urban basin material balances; design of novel gas cleaning systems.

3. Air chemistry, chemistry and physics of aerosols, gas/particle conversion processes, relationship of particulate pollution to sources.

4. Theoretical and experimental fluid mechanics: rheology and transport properties of suspensions and emulsions; mechanics of non-Newtonian fluids; mass transfer from bubbles and drops; numerical simulation of fluid motion.

5. Liquid-state physics: studies of forces and configurations at the molecular level in simple systems; determination of structure by x-ray diffraction; other studies of local order by optical, magnetic, and ultrasonic experiments; statistical mechanics.

6. Mechanical and ultimate properties of polymers: filled elastomers and block copolymers; mechanical properties of dialysis membranes; behavior of elastomers under pressure; physics of elastomer networks.

8. Energy conversion and combustion studies: experimental and modeling studies of the kinetics of coal pyrolysis, gasification, liquefaction, and their application to the optimization of coal conversion processes; reaction kinetics of both homogeneous and catalytic combustion. Kinetics and mechanisms in desulfurization of fuel oil and coal by selective oxidation.

9. Heterogeneous catalysis and surface chemistry: adsorption and catalytic reactions on well-characterized surfaces utilizing low-energy-electron diffraction, Auger-electron spectroscopy, x-ray and UV-photoelectron spectroscopies, inelastic-electron-tunneling spectroscopy, and mass spectroscopy; theoretical modeling of solids, solid surfaces, and gas-surface interactions; kinetics of industrially important catalytic reactions, including studies of catalyst poisons and moderators.

10. Solid-state and surface chemistry: investigations using multiple-pulsed-nuclear-magnetic-resonance techniques; studies of effects of high pressure on chemical and electronic properties.

11. Optimal control and estimation theory with applications to chemical reactors and to petroleum reservoir engineering.

12. Chemistry and particulate mechanics in flowing water systems.

Physical Facilities

Chemical engineering is primarily housed in the Eudora Hull Spalding Laboratory of Engineering. The laboratories are well equipped both for instruction and for research and include the following major subdivisions:

The Kinetics Laboratory contains several research-scale chemical reactors, chiefly of the flow type, and appropriate equipment for the measurement of pressures, temperatures, and flow rates. Extensive use is made of gas chromatography for analysis.

The Liquid-State Physics Laboratory is equipped for x-ray diffraction measurements on cryogenic fluids at moderate pressures. Apparatus is also available for refractive index, ultrasonic velocity and absorption, light scattering, and magnetic experiments over a range of temperatures and pressures.

The Plasma Chemistry Laboratory includes equipment for the generation of various equilibrium and non-equilibrium plasmas. Associated diagnostic equipment includes spectrometers, microwave cavities, and Langmuir probes.

The Polymer Laboratory has extensive apparatus for the study of the mechanical behavior and the failure properties of polymeric materials under both uniaxial and multiaxial loads. Apparatus for polymer synthesis and characterization as well as molding and casting equipment for specimen preparation is also available.

The Solid-State Chemistry Laboratory is equipped to make both conventional and multiple-pulse-nuclear-magnetic-resonance measurements for the study of solid-state and surface chemistry. Facilities for making a variety of measurements involving solids as a function of pressure up to several million pounds per square inch are available and are directed toward obtaining a better understanding of the nature of chemical bonding, or electronic structure, in solids.

The Surface Chemistry and Catalysis Laboratory contains the facilities for studying the interaction of gases with well-characterized solid surfaces. Investigations are conducted which are aimed at elucidating both chemical adsorption and heterogeneously catalyzed surface reactions. The surface probes include low-energy electron diffraction, Auger-electron spectroscopy, x-ray and UV-photoelectron spectroscopies, inelastic-electron-tunneling spectroscopy, and mass spectrometry.

The Fluid Mechanics Laboratory contains facilities for investigations of fluid motion and heat or mass transfer, particularly for heterogeneous materials such as suspensions, or individual particles, bubbles or drops.
The Environmental Tracer Laboratory is equipped with several electron-capture gas chromatographs used in monitoring tracers in concentrations down to 1 part in 10^{12} parts of air, ozone detectors for measuring ozone in the range 0.1 to 10 ppm, carbon monoxide detectors for measuring carbon monoxide in the range 1 to 100 ppm, and various thermal conductivity and flame ionization gas chromatographs. Small and large scale field studies, aimed at understanding the transport and dispersion occurring within atmospheric and hydrologic systems, can be conducted with ease.

The Air Quality Laboratory, housed in the Keck Laboratory, is equipped with a wide variety of instruments for the measurement of gaseous and particulate atmospheric pollutants. These include chemiluminescent ozone and nitrogen oxide analyzers, a flame-photometric sulfur-dioxide analyzer, and gas chromatographic equipment for analysis of carbon-containing compounds. For the measurement of particulate pollutants, several types of optical particle counters are available; these are interfaced with a multichannel analyzer for sorting the pulse-height output of the phototube. Also available are several cascade impactors, condensation-nuclei counters, an integrating nephelometer, and many types of filter samplers. An electron microscope and associated equipment for sample preparation are used for particulate characterization. An atomic absorption spectrophotometer is available for chemical analysis.

Chemistry

Caltech's chemistry program offers exciting opportunities for study and research in many areas of chemical science. Eminent faculty and strong programs are available in structural chemistry, chemical dynamics and reaction mechanisms, synthesis, theoretical chemistry, and biochemical and biophysical chemistry. Active interaction exists between chemistry and other disciplines at Caltech, especially biology, chemical engineering, and geology. There is strong interest on the part of the faculty in both teaching and research, and the undergraduate and graduate programs are designed to encourage the greatest possible amount of freedom, creativity, and flexibility.

Areas of Research

Caltech has long had a reputation for excellence in chemistry in the areas of molecular structure and the nature of chemical bonding. This tradition is continuing. Work in structural chemistry ranges from x-ray crystallographic structural determinations of covalent compounds, transition metal complexes, intermetallic compounds, to investigations of the stereochemistry of organic molecules, conformation of oligopeptides and enzymes, and dynamical structures of lipid bilayers by nmr spectroscopy. Active programs in other areas of spectroscopy include laser Raman, electron impact and photoelectron spectroscopy, and mass spectroscopy.

Much of the current research in chemistry is directed at finding out how chemical reactions work, both in chemical and biological systems. Chemical physics programs in this area include studies of gas phase reactions and processes using ion cyclotron resonance and molecular beam techniques. In organic chemistry, dynamic research focuses primarily on the behavior of very reactive intermediates in both the gas phase and in solution. Catalysis by transition metals is receiving increasing emphasis among researchers in the inorganic and organometallic areas. Researches in progress include mechanisms of electrode surface chemistry and electrocatalysis, uses of transition metal complexes as homogeneous and heterogeneous catalysts, and nitrogen fixation. Micellar catalysis as well as reactions of molecules on active surfaces are also receiving attention. A number of biochemical projects are aimed at obtaining detailed information about biochemical reactions catalyzed by enzymes as well as systematic characterization of electron transfer reactions promoted by metalloproteins.
Experimental surface chemistry research in the laboratory of Professor W. Henry Weinberg.

A significant amount of synthetic chemistry is involved in many of the above projects, but in addition several groups have chemical synthesis as a primary goal of their research. These include projects aimed at the synthesis of natural products and of molecules required for the testing of structural theories, as well as efforts directed at the development of new, synthetically useful chemical reactions.

Research in biochemistry and molecular biology includes studies of the mechanisms of enzyme catalysis and allosteric transitions, interactions between proteins and nucleic acids, structural elucidations of nucleic acids, particularly circular DNA's and genes, as well as studies of membrane structure and function, protein-lipid interactions and mechanisms of ion and electron transport in biological membranes. Other areas now receiving increased emphasis include the chemistry of membrane proteins, glycoproteins and specific receptors for a variety of external stimuli and recognition processes, the fundamental process of photosynthesis, immunology and neurochemistry.

Our theoretical effort encompasses work on the applications of quantum mechanics to the study of electronic states of molecules and solids. The emphasis of the work here is on excited states and reactions of molecules. Theoretical techniques are being developed towards facilitating detailed understanding of reacting systems.

Physical Facilities

The laboratories of chemistry consist of four units providing space for about 225 graduate students and postdoctoral fellows. Crellin Laboratory and an adjoining annex house several research groups and the divisional administrative offices. The Norman W. Church Laboratory for Chemical Biology is shared with the Division of Biology. The Arthur Amos Noyes Laboratory of Chemical Physics is the largest of the chemistry laboratories. Undergraduate laboratory instruction is carried out in a one-story annex to the Noyes Laboratory.
Civil Engineering

Civil engineering includes the research, development, planning, design, and construction associated with urban development, water and energy supply, water treatment and disposal, and transportation. It deals with the function and safety of such public facilities as buildings, bridges, pipelines, dams, rivers, power plants, and harbors; and is concerned with the protection of the public against natural hazards of earthquakes, winds, floods, landslides, water waves, and fires.

Advances of recent years in technology and the escalation of urban problems have broadened the applications of civil engineering and increased the scope of research in that field. New problems have presented special challenges to the civil engineer well trained in the fundamentals of his profession. For this reason, in the advanced study of civil engineering at the Institute, emphasis is placed on the application of basic scientific principles and mathematics to the solution of engineering problems.

Areas of Research

Graduate work leading to advanced degrees is chiefly in the following fields: structural engineering and applied mechanics; earthquake engineering; soil mechanics and foundation engineering; hydraulics, which includes hydrodynamics, hydraulic engineering, hydrology and coastal engineering; and environmental engineering (see also Environmental Engineering Science). In recent years, graduate students and members of the staff have pursued a variety of research programs including analysis of structures subjected to earthquakes and other dynamic loadings; the use of digital computers for structural analysis; soil deformation under stress; lunar soils studies; permafrost; investigation of laws of sediment transportation and dispersion in bodies of water; turbulent mixing in density stratified flows; wave-induced harbor oscillations; tsunamis; design criteria for various hydraulic structures; aerosol filtration; radioactive waste disposal; water reclamation; and ocean outfalls for thermal discharges or sewage effluents.

Students whose interests are in environmental problems may enroll for graduate degrees in either civil engineering or environmental engineering science.

Physical Facilities

Civil engineering activities are housed in two buildings, the Franklin Thomas Laboratory which contains the soil mechanics laboratory, the earthquake engineering laboratory, and an analog computer laboratory, and the W. M. Keck Engineering Laboratories which contain the laboratory of hydraulics and water resources and the environmental engineering laboratory.

Excellent digital computing facilities are housed in the Booth Computing Center.

Electrical Engineering

Electrical engineering at the Institute comprises the dynamic field of physical electronics, electronic circuits, and communication. Closely allied with the applied physics option, it offers students the opportunity for study in the more technological aspects of a wide variety of subjects including plasma dynamics, electromagnetic radiation, quantum electronics, modern optics, new solid-state materials and devices, and information theory. This broad spectrum of subjects complementing the program in electronic circuits and circuit function design provides exceptional and challenging opportunities for both experimental and theoretical work.

Areas of Research and Physical Facilities

Laboratory facilities are available for a wide variety of research activities. At present electrical engineering activities are housed mainly in one building, the Harry G. Steele
Laboratory of Electrical Sciences. This is a modern, 55,000-square-foot laboratory building designed specifically for the research needs of the electrical engineering faculty and students.

Research in the Solid-State Electronics Laboratories extends over a variety of subjects. The transport of charge carriers in semiconductors is studied by experiments on single injection, double injection, Hall effect and noise, with particular attention given to very high purity germanium and silicon. Another field of study is the formation of contacts to semiconductors. When viewed by electron microscope and electron microprobe, contact formation can often be seen to involve solid-phase crystal growth and/or junction formation. Closely related to this effort are investigations on the metallurgy of thin evaporated layers, using conventional tools and experimentation as well as ion implantation and ion backscattering. The properties, limitations, and ranges of application of these two techniques are the subject of additional investigations performed in part at the 3 MeV van de Graaff accelerator in the Kellogg Radiation Laboratory.

The Quantum Electronics Laboratory is engaged in research in the area of generation and control of coherent radiation and in the study of related physical phenomena. Research projects now in progress include: super-radiance in extremely high gain lasers, generation and control of ultrashort pulses, tunable optical parametric oscillation, integrated optical circuits, injection lasers, nonlinear optics, infrared fluorescence applied to pollution monitoring, speckle, optical data processing, pattern recognition, and holography. Up-to-date facilities for carrying out these experiments are available.

Research in the Magnetics Laboratory involves studies of the dynamic processes in magnetic materials that are important to the modern digital computer devices. Imaging of the dynamic domain structures in "magnetic bubble" garnet material using high speed photographic methods pioneered in this laboratory have provided a new dimension to the understanding of bubble dynamics. Investigations of the transient shape of bubbles translating, expanding, and collapsing as well as their wall structure are performed using a laser illuminated sampling optical microscope. Ferromagnetic resonance and fast reversal studies in thin films of ferromagnetic metals and garnets are used to explore surface pinning and energy loss mechanisms.

The Plasma Laboratory is involved in studying wave phenomena in plasmas and methods of producing and heating laboratory plasmas, particularly where they may be applied to thermonuclear fusion. Facilities are available for the generation and diagnosis of a variety of plasmas. Current studies involve theoretical and experimental investigations of microwave heating of plasmas at the lower hybrid and cyclotron frequencies, echoes in plasmas, and wave propagation.

The Antenna Laboratory is a center for the study of electromagnetic theory and its application to antenna theory, radio wave propagation in turbulent media, magnetic levitation instabilities, non-linear shielding, gravitational phenomena, almost periodic structures, and processes in condensed media.

The Electronic Circuits Laboratory deals with modern problems in analysis, design, and synthesis of electronic circuits. Applications of new and current devices and analysis techniques for a better understanding of existing devices are emphasized. Facilities are available for experimental confirmation of theoretical results over a wide frequency range. Projects now in progress include analysis and design of multiple-loop feedback systems, and optimization of pulse-width controlled regulators.

The Computer Architecture Laboratory specializes in the design of unique and powerful organizations for special and general purpose computer systems, and their implementation in MOS large scale integrated circuits.

The Communication Laboratory conducts experimental and theoretical work in a wide range of communication problems, including communication systems, information theory, noise and modulation problems, data communication, optical communication, speech and hearing, and other areas.
Energy

Tomorrow's energy will be provided through engineering advances on many fronts. Caltech scientists and Caltech engineers — and their students — will be instrumental in many of them. Already underway are projects in better fuels, in cleaner, more efficient combustion, in low-drag cars and trucks, in geothermal energy, in improving air quality, in gas lasers and in fusion, in windmills, in solar cells that are affordable, in power plants and structures that are immune to earthquakes, and in environmental protection that is engineered — that leaves nothing to chance.

Courses of instruction and areas of research have developed traditionally within the Divisions of Engineering and Applied Science, Chemistry and Chemical Engineering, and Geological and Planetary Sciences, where the scientific and technological ingredients were most active. The problems of conventional and novel power stations, automotive engines, nuclear and fusion power are covered widely within the Division of Engineering and Applied Science where the fundamentals of fluid dynamics, combustion, heat transfer, materials science, and electromagnetism have been highly developed. The technology of coal gasification, fuel desulfurization, production of particulates, and trace pollutants is an active concern of the Division of Chemistry and Chemical Engineering, while the fundamentals of earth resources and geothermal energy are pursued in the Division of Geological and Planetary Sciences.

This broad academic and research activity offers the student an extensive selection of formal course work and access to a large number of growing and productive research centers.

Engineering Science

Advanced programs of study leading to the degree of Master of Science and Doctor of Philosophy in Engineering Science are offered by the Division of Engineering and Applied Science. The need for these programs has developed as the traditional barriers between engineering and what was once called "pure science" have disappeared. Engineers are quick to learn of new research in plasma dynamics or the kinetic theory of gases, while designers of nuclear reactors may find it worthwhile to look into the distribution of nuclear energy levels, the theory of dynamical stability, or the motion of charged particles in solids. In the past these subjects lay exclusively in the domain of university departments of physics and mathematics.

Areas of Research

The study program of the engineering science student at Caltech emphasizes physics, applied mathematics, and those scientific disciplines which underlie the current development of technology. Its scope contains a broad range of subjects. Fields of study may include such topics as fluid mechanics with applications to geophysical and biomechanical problems, physics of fluids, structure and properties of solids, dynamics of deformable solids, rheology of biological fluids, transport and exchange in biological systems, plasma physics, the physics underlying nuclear reactors, fission and fusion engineering, and information science.

Information Science

Areas of Research

Information science can be described as a number of scientific interests which are gathered around the study of information processing. These can be classified broadly as follows along lines reflecting the research and educational interests of the associated faculty:

Mathematical Linguistics
Theory of Information Processes
Information Systems Synthesis
Information Processing in Living Nervous Systems
Visual Pattern Recognition
Theory of Cognitive Processes
Theory of Algorithms
Computational Mathematics and Analysis of Data

Physical Facilities

In addition to the general Institute computing facilities operated by the Willis H. Booth Computing Center, the Information Science faculty has a substantial research facility of its own. This is based primarily on a group of DEC, PDP-11/45 computers and a special image processing system which serve both the research and educational needs of the discipline. Of particular importance is a specially equipped computer interactive classroom and student laboratory for both research on man-machine interactions and computer interactive education and for direct applications to education.

Biological Engineering Sciences

Graduate study and research in areas involving the application of the engineering sciences to problems of health and biology are of continually increasing importance at the California Institute of Technology.

Areas of Research and Physical Facilities

The primary areas of interest at present are in the fields of biosystems, environmental health engineering, transport processes, and circulatory dynamics and hydromechanics of exterior and interior flows involving protozoa and bacteria. Close cooperation exists among the different groups, and joint seminars are held frequently.

Environmental Health Engineering. The environmental health group is concerned with the protection and control of our air environment and water supplies, now under increasing strain because of population growth and industrial expansion. Several of the research projects under way in this program have significant biological components.

Biomedical Transport Processes. Research in this field in chemical engineering and environmental engineering science has application to the design of artificial organs and to other problems involving the handling of biological fluids, and to certain aspects of respiratory physiology. A recent study of gas exchange with flowing blood has immediate application to the design of membrane oxygenators (artificial lungs) employed in heart surgery. Other studies have been initiated on the development of mathematical models for the prediction of particle and gas transport in the lungs. A collaborative effort between the chemical engineering group and local medical institutions on some aspects of the design of the artificial kidney is also under way. Blood gas instruments are available as well as the other facilities of the Environmental Health Engineering Laboratory. Research in this field of engineering science includes quantitative measurement of macromolecular transport and exchange in living microcirculatory beds.

Biological Fluid Mechanics

Circulatory Dynamics. Studies on the effects of the rheological properties of blood and the vascular structures on flow, particularly in the microcirculation and the relationship of the flow pattern to the dynamics of gas and metabolite exchange, are being carried on in collaboration with the L. A. County Heart Association-University of Southern California Cardiovascular Research Laboratory. Research is in progress at Caltech on the flow of blood in tubes of diameters in the size range of interest in microcirculatory studies (5 to 200 micra) and in living microbeds in small animals.

The Hemorheology and Microcirculation Laboratory, located in the sub-basement of the Thomas Engineering Laboratories, is equipped with an unusually versatile precision animal
table and intravital microscope system for quantitative measurements in living microbeds of velocity, vessel dimensions, pressure drop and transmural exchange, particularly of the macromolecular components of blood plasma. Additional facilities for still and cine photomicrography permit the study of blood rheology in flow in small tubes. State-of-the-art image tube methods with quantitative digital photometric processing are being applied to the study of transvascular movement of fluorochrome-tagged macromolecules in living microbeds. Methods have also been developed for measuring the mechanical response of biological tissues and of small blood vessels.

Biophysical Fluid Mechanics. The basic research program in this area emphasizes the fundamental development of low-Reynolds-number fluid mechanics involving rigid or flexible bodies of arbitrary shape moving in a Newtonian or non-Newtonian fluid. Such general knowledge has a wide range of applications to flow problems in various biological systems as well as to rheology, aerosol physics, and flows in the natural environment. Successful applications have been made in particular to the locomotion of micro-organisms and bacteria, involving the two basic modes of flagellar and ciliary propulsion, geotaxis and phototaxis phenomena, bioconvections in cell suspensions, and other flow problems related to mammalian organs. New research studies are being actively developed in the subject of intracellular movements, such as protoplasmic and cytoplasmic streamings, diffusion of macromolecules, and flows between plant cells. These studies are pursued in collaboration with biologists and physiologists to achieve an effective understanding of the interdisciplinary nature of the problems.

Also included in this research program are fluid mechanical studies of unsteady flows involving lifting surfaces in arbitrary motion at relatively high Reynolds numbers. Applications have been made to the swimming of fish and cetaceans, flapping flights of birds and insects, dynamic soaring, and related control problems. Engineering applications of these research results are promising, such as to ship motions, sail boats and yachts, airplane dynamics, and propulsive devices.

The Biophysical Fluid Mechanics Laboratory, located in the Thomas Engineering Laboratories, is equipped with a microscope system (with a Nomarski interference contrast optics), a high-speed cine-photomicrographic facility, and an automatic image processing unit for quantitative measurements of flows about moving micro-organisms. It is also equipped with a versatile towing tank and flow measuring devices for investigating the swimming of fish and mechanical models.

Free Surface Flows

Graduate research and studies are being continued in the development of the fluid mechanics of various free surface flow phenomena. These studies include cavity and wake flows, free jets, bubble dynamics, cavitation erosion, hydrofoil applications, water waves, and ship hydrodynamics. Interest also includes a theoretical study of tsunamis, or the ocean waves generated by certain types of earthquakes; this study has been conducted in close collaboration with a Keck Laboratory group. Further geophysical interests in this area contain various studies of rotating and stratified flows.

Environmental Engineering Science

This interdisciplinary graduate program is concerned with the protection and control of man's environment; historically, it has grown from activities in air and water pollution control which have been in existence at Caltech for many years.

Research and education in the environmental field stress basic studies which can help answer such questions as: How can we improve the quality of the air in the great basin areas in which lie our urban and industrial centers? How can we insure the availability of water of adequate quality and quantity for population centers and industry? How can we protect our
offshore waters from pollution? How can the effects of thermal discharges from power plants be controlled? How does a polluted environment affect man's health? How does society make decisions about environmental control measures, and allocate the costs?

The academic disciplines of importance include the chemistry of natural waters and of the atmosphere; the physics and physical chemistry of dispersion systems; biological fluid mechanics; biomedical transport processes; marine biology and ecology; fluid mechanics of the natural environment; hydrology; sedimentation and erosion; the theory and design of complex environmental control systems; combustion; environmental modeling and information systems; and environmental economics. Courses in these fields are offered in the environmental engineering science program and in other departments of the Institute.

The majority of the faculty members in this interdisciplinary program are from the Division of Engineering and Applied Science. There is also participation from the Divisions of Chemistry and Chemical Engineering, the Humanities and Social Sciences, and Geological and Planetary Sciences.

Areas of Research

Examples of recent and current research are: the search for causes of urban basin hazes; the flow of trace pollutants through urban environments; chemical speciation of metals in wastewaters and ocean waters; sulfur dioxide to sulfate conversion processes; dispersion of contaminants in rivers and estuaries; mixing of buoyant jets in lakes and oceans; thermal pollution control; isotopic composition and distribution of organic carbon in marine sediments; effects of pollution on the ecology of coastal waters; restoration and propagation of marine algae; rates and mechanisms of sulfide oxidations by hydrogen peroxide; mechanisms of bacterial flocculation by cationic polyelectrolytes; and particle deposition models for the human lung.
Physical Facilities

The facilities in the W. M. Keck Laboratory of Environmental Health Engineering include the modern instrumentation used in air and water pollution analyses. The Air Quality Laboratory is a specially designed facility located on the roof of the Keck Laboratory, and is equipped with a wide variety of instruments for the measurement of gaseous and particulate atmospheric pollutants. These include chemiluminescent ozone and nitrogen oxide analyzers, a flame photometric sulfur dioxide analyzer, and gas chromatographic equipment for analysis of carbon containing compounds. For the measurement of particulate pollutants, several types of optical particle counters are available; these are interfaced with a multichannel analyzer for sorting the pulse height output of the phototube. Also available are an electrical aerosol analyzer, several cascade impactors, condensation nuclei counters, an integrating nephelometer, and many types of filter samplers. An electron microscope and associated equipment for sample preparation is used for particulate characterization. Meteorological variables including wind speed, relative humidity, and temperature can be measured with instruments on hand in the laboratory.

Experiments with atmospheric air can be carried out in a 2,700-cubic-foot Teflon bag moored to a wooden frame on the roof of the Keck Laboratory. The pollutants in the bag are monitored by instruments in a specially designed, air conditioned shed in the roof penthouse.

The Water Chemistry Laboratory is well-equipped with facilities for trace element studies including an atomic absorption spectrometer, total carbon analyzer, fluorometer, anodic stripping apparatus, a liquid scintillation portable water-quality monitor, and gas chromatographs. Also available is a Coulter particle-size analyzer and an ultracentrifuge. Facilities for the microbiological work include incubators, constant-temperature rooms, autoclave, microscopes, and accessory equipment. A Zeiss electron microscope with x-ray diffraction attachment and associated equipment for sample preparation is available for air and water pollution and microbiological studies. A clean room is available for trace metal analysis of environmental samples.

The W. M. Keck Laboratory of Hydraulics and Water Resources is well equipped for research into a wide variety of fluid flows which are important in environmental control. The facilities include large flumes for studies in diffusion, turbulence, sediment transport, and stratified flow; a wave tank and wave basin; a basin for modelling outfalls; a water tunnel; and specialized instrumentation, such as a laser-doppler velocimeter and a digital data-processing system to record experimental analog data directly on digital tapes for high-speed computing.

An excellent reference and research library for environmental health engineering and hydraulics and water resources is maintained in the Keck Laboratory.

The Kerckhoff Marine Laboratory, operated by the Division of Biology at Corona del Mar (50 miles from Pasadena), is the base for work in marine ecology. Running seawater with temperature control is available, as well as diving vessels, scuba gear, workshop, darkroom, aquarium, dry labs, and a small library and reference collection. The marine laboratory has four apartments for visiting researchers.

Except for the marine laboratory, the facilities described above are part of the Division of Engineering and Applied Science, which is the principal sponsor of the program. Students may also elect to do thesis research in appropriate laboratories in other divisions of the Institute or in the Environmental Quality Laboratory (see below), with professors who participate in this interdisciplinary program.
Environmental Quality Laboratory

The Environmental Quality Laboratory (EQL) is an interdisciplinary center for the study of policy questions of environmental protection and control. The organization consists of faculty, students, staff, and consultants from various disciplines in engineering, natural and social sciences, and law. Since EQL is an independent research unit, the faculty and students who participate in EQL activities are also associated with the appropriate academic divisions. EQL research projects are often closely related to individual research activities in the academic divisions, and seek to provide the framework for a comprehensive view of environmental control problems and alternative solutions.

Environmental policy questions frequently involve the tradeoffs among diverse impacts on all environmental media (air, water and land) and society's needs and resources. The siting of a power plant or a refinery is one example; another is the final disposal of residuals (such as sewage sludge). Furthermore, some pollutants, such as heavy metals, have pathways through several media, and cannot be understood or controlled without considering the environment as a whole. In order to understand these interactions, EQL works on a range of problems covering air, water and land resources.

Areas of current work include:
(a) Environmental impacts of energy systems (geothermal energy; alternative automobile engines; electric vehicles; energy conservation; freight traffic misallocation due to regulation.)
(b) Air pollution control strategies for the South Coast Air Basin of California (sulfates; oxidants; regulatory and legislative alternatives).
(c) Water resources management and water pollution control (sediment management for streams and coastlines in Southern California; uses of the Colorado River; regulation of thermal discharges from power plants).
(d) Regulation of hazardous materials (decision-making in the face of strong uncertainties; disposal of radioactive wastes).
(e) Options for residuals disposal and recycling.

Students who desire to work in EQL apply through an appropriate degree program, such as Environmental Engineering Science, Social Science, Chemical Engineering, or Geological Sciences.

Geological and Planetary Sciences

In the Division of Geological and Planetary Sciences, study of the earth and planets is pursued with the aim of understanding their origin, constitution, and development, and the impact of the resulting physical and chemical environments on the history of life, and on man. The approach to these problems is made with strong reliance on the basic sciences; close contact and interaction with the other divisions of the Institute is cultivated. Programs of study and research are pursued in geology, geobiology, geochemistry, geophysics, and planetary science.

The geographical position and geologic setting of the Institute are favorable for year-round field access to a wide variety of earth problems and materials. Current advances in understanding the dynamic motions of the earth's crust and the structure of the interior have opened up new opportunities for research into the processes responsible for the earth's development and activity. Seismic activity in the southern California area presents stimulus and research material for the study of earthquakes, which are of great practical concern and are intimately related to the earth's development on a global scale. Human records of seismic activity are put into long-term perspective by studies of surface and bedrock geology, which reveal the history of motion on fault systems. Major events in the chemical and physical evolution of the earth can be identified by studying the structure and chemistry of rocks formed or modified in these events, and their absolute chronology can be
established by measurements of radioactive isotopes. Stable isotopes can indicate the temperature conditions both of deep-seated events and of the habitat of ancient life, whose chemical and structural evolution responded to the changing environment provided by the developing earth. The earliest history of the earth can be approached via the history of the moon, which is being revealed by studies of lunar samples obtained in the Apollo missions. Further breadth in our understanding of the earth and its place in the cosmos is being gained by comparative study of the other planets — their atmospheres, surfaces, and internal structures.

Physical Facilities

The Arms and Mudd Laboratories are modern, five-story buildings specifically designed for instruction and laboratory research in geology and geochemistry. They also house the division library; paleontologic, rock, and mineral collections; spectrographic, x-ray diffraction and x-ray fluorescent equipment; wet chemical laboratories; and electron microprobe facility; and facilities for rock and mineral analysis, thin- and polished-section work, and other requirements for comprehensive studies in the earth sciences.

Conditions for field study and research in the earth sciences in southern California are excellent. A great variety of rock types, geologic structures, active geologic processes, physiographic forms, and geologic environments occur within convenient reach of the Institute. The relatively mild climate permits field studies throughout the entire year; consequently, year-round field training is an important part of the divisional program.

Extensive facilities are available for the application of techniques of nuclear chemistry to problems in the earth sciences. These facilities include chemical laboratories for trace-element studies and mass spectrometric and counting facilities for isotopic work. Available equipment includes mass spectrometers, emission counters, and extensive mineral separation facilities, in addition to the usual geological and chemical items.

Favorable opportunity for study of dynamic aspects of paleontology and evolution as revealed by morphology, ecology, and biogeochemistry is provided by the combination of personnel, reference collections, and modern geochemical tools and techniques. Biologic principles and processes, past and present, of significance to geology may be interpreted from experimentation and studies at the Kerckhoff Marine Laboratory at Corona del Mar, operated under the auspices of the Division of Biology.

The Seeley G. Mudd Building of Geophysics and Planetary Science has just been completed on the campus adjacent to the Arms and Mudd Laboratories. It provides research and teaching facilities for seismology, experimental geophysics, and planetary science. The Seismological Laboratory of the Institute, with excellent facilities including computers and extensive shops, is also located in the Seeley G. Mudd Building of Geophysics and Planetary Science. The Kresge Laboratory is located about three miles west of the campus on crystalline bedrock affording firm foundation for the instrument piers and tunnels. These laboratories, together with a dozen portable and seventeen permanent outlying auxiliary stations in southern California, which were built and are maintained with the aid of cooperative companies and organizations, constitute an outstanding center for education and research in seismology. In addition, special facilities are available at the Seismological Laboratory for the study of heat flow in geological materials and of the behavior of rocks and minerals in the pressure and temperature environments of planetary interiors. These facilities include laboratories for performing ultrasonic and Brillouin scattering measurements of elastic constants of rocks and minerals at high pressures and temperatures. Ultra-high-pressure equations of state and shock effects in minerals are being studied in a shock-wave laboratory.

Optical and infrared observations of the moon and planets are being carried out at the Hale Observatories; special, moderate-sized telescopes designed specifically for planetary work are available. A wealth of photographic information on the surface of Mars and Mercury is available from the Mariner missions. Radio and radar observations of the planets are made at the Owens Valley Radio Observatory and the JPL radar facility.
The Humanities and Social Sciences

Throughout its history the Institute has placed a strong emphasis upon the humanities as an important and necessary part of the education of scientists and engineers. In recent years increased attention has been paid to the social sciences. At the undergraduate level all students are required to devote a substantial portion (between one-fifth and one-fourth) of their curriculum to humanistic and social science studies. These studies are normally undertaken in regular courses, but a limited number of interested students may be permitted after their freshman year to enter a tutorial program involving instruction on a one-to-one basis. At the graduate level, the Division of the Humanities and Social Sciences offers a Ph.D. and M.S. program in social science. Humanities courses are required for the Master of Science degree in civil engineering and astronomy, and are recommended in other options. At the doctoral level, a Ph.D. minor may be taken in economics, philosophy, history, or English, with a Ph.D. major in any branch of science or engineering.

Since the academic year 1965-66, the Institute has offered undergraduate options in English, history, economics, and social science leading to the B.S. degree. Students electing one of these options will take the regular courses prescribed for all freshmen in their first year and the required courses in mathematics and physics in the sophomore year. In the last two years, students in these options will take further work in science, mathematics, or engineering courses as well as the advanced work in their humanities or social science option. The purpose of the humanities and social science options at Caltech is to produce a special kind of student — one who has an exceptionally strong background in science or engineering, yet who is well prepared for graduate work in humanities and social science, professional schools, business, or government service.

Stan Meisler talks with African specialist Professor Edwin S. Munger and interested Caltech students.
Dabney Hall of the Humanities was given to the Institute in 1928 by Mr. and Mrs. Joseph B. Dabney. At the same time a special fund of $400,000 for the support of instruction in humanistic fields was subscribed by several friends of the Institute. In 1937 Mr. Edward S. Harkness gave the Institute an additional endowment of $750,000 for the same purpose.

In April 1971, the division moved most of its activities to the Donald E. Baxter, M.D., Hall of the Humanities and Social Sciences, a gift of Mrs. Donald E. Baxter.

The proximity of the Henry E. Huntington Library and Art Gallery, one of the great research libraries in the world, offers rich opportunities for the humanities staff, especially in history and literature, and a close but informal relationship is maintained between the Institute and visiting scholars at the Library.

Independent Studies Program

An Independent Studies Program will be offered as an option during the 1975-76 academic year. The course is intended to accommodate individual programs of study or special research that fall outside ordinary course offerings.

(For complete description see page 194)

Materials Science

The field of materials science is concerned with the properties and behavior of materials of every kind. This field at the California Institute of Technology is largely restricted to metallic and polymer materials, essentially in the solid state. Faculty specifically in the field of materials science are concerned with the mechanical, physical, and chemical properties of solids. Some members of the faculty in electrical engineering are concerned with the behavior of electric and magnetic materials. Work in the general fields of polymers is carried on by faculty in chemical engineering and aeronautics.

Areas of Research

Current areas of research by the faculty and graduate students in materials science include:

A. Mechanical Properties
 1. Dislocation dynamics
 2. Theoretical and experimental deformation studies
 3. Behavior of metals under dynamic loading
 4. Fracture mechanics

B. Physical Properties
 1. Magnetic properties
 2. Electrical properties
 3. Electron transport properties
 4. Radiation effects

C. Chemical Properties
 1. Kinetics of phase transformations
 2. Diffusion in solids
 3. Metastable phases
 4. Catalysis on metal surfaces
 5. Corrosion

D. Structure
 1. Theoretical and experimental transmission electron microscopy and diffraction studies of crystal defects and alloy phases
 2. Direct crystal lattice resolution by transmission electron microscopy
 3. X-ray studies of crystal defects and alloy phases.
Physical Facilities

Research by the faculty and graduate students in materials science is conducted in the W. M. Keck Laboratory of Engineering Materials. Facilities are provided for crystal growth and alloy preparation, strain-free machining, annealing with atmosphere control, rapid quenching, optical metallography, x-ray diffraction, electron microscopy (including modifications for direct lattice resolution), and systems to control the application of stress (from load pulses of a few microseconds duration to static loading). Specialized equipment is available for measuring low- and high-temperature specific heat, thermoelectric power, superconductivity, and mechanical properties. Computing facilities are available in the Computing Center as well as by remote console in the laboratories.

Other facilities in the field of materials science are available in the Spalding Laboratory of Engineering, the Firestone Flight Sciences Laboratory, and the Steele Laboratory of Electrical Sciences.

Mathematics

"'Mathematics is Queen of the Sciences and Arithmetic the Queen of Mathematics. She often condescends to render service to astronomy and other natural sciences, but under all circumstances the first place is her due.'

'So said the master mathematician, astronomer, and physicist K. F. Gauss (1777-1855). Whether as history or prophecy, Gauss's declaration is far from an overstatement. Time after time in the nineteenth and twentieth centuries, major scientific theories have come into being only because the very ideas in terms of which the theories have meaning were created by mathematicians years, or decades, or even centuries before anyone foresaw possible applications to science.' (from Mathematics, Queen and Servant of Science by E. T. Bell)

The development of mathematics at the Institute has been significantly influenced by two outstanding mathematicians, Eric Temple Bell and Harry Bateman, who were appointed to the staff shortly after the institution became known as the California Institute of Technology. Both of these men made major contributions to their respective fields of interest: Bell to algebra and number theory, Bateman to analysis and applied mathematics; yet both had a profound and lasting interest in the development of mathematics as a whole and in the interplay between mathematics and the sciences. Through the years the mathematics program at Caltech has reflected the dual philosophies of these two mathematicians.

Today mathematics is a rapidly developing and expanding field whose range of application is continually extending into new areas of knowledge. Subject areas such as algebraic topology which were relatively unknown a few decades ago have become major research areas in mathematics. New developments, such as that of the modern computer, have given rise to new flourishing mathematical disciplines such as theory of algorithms, recursive function theory, and modern numerical analysis. Older areas of mathematics have been revitalized and significantly advanced through the use of concepts and techniques from more recent mathematical fields. One may say that most of the current research in mathematics is characterized by the development of powerful abstract methods which are applicable to broad areas of mathematics and its applications.

Areas of Research

Areas of current research interest of the mathematics faculty include the following: algebraic number fields; analytic number theory; approximation theory; combinatorial theory; complex function theory; finite group theory; fixed point and coincidence theory; harmonic analysis; universal algebra; lattice theory; matrix theory; measure and integration theory; interpolation theory; non-standard analysis and model theory; recursion theory; set theory; number theory in orders; numerical analysis; operator theory; Banach algebras; partial differential equations and pseudo-differential operators; ordinary differential equations on manifolds; mathematical statistics.
Physical Facilities

The mathematics department occupies three floors of the Sloan Laboratory of Mathematics and Physics. In addition to offices for the faculty and graduate students, there are classrooms, seminar rooms, a lecture hall, and a lounge for informal gatherings of the students and staff. Sloan Laboratory also houses a reference library in mathematics containing the books and periodicals most frequently consulted by the students and faculty. The main mathematics library with its outstanding collection of journals is housed nearby in the Robert A. Millikan Memorial Library.

The Willis H. Booth Computing Center central computing facility described on page 117 serves the entire campus. Students are encouraged to use the computer as a research tool; a remote console is located in Sloan Laboratory.

Mechanical Engineering

The way in which the term "mechanical engineering" is being used today embraces essentially all of those engineering aspects of a project which have to do with fluid flow, heat and mass transport, combustion, power, propulsion, structural integrity, mechanical design, optimization, and systems analysis. Projects in which mechanical engineers play a large role include the space missions, nuclear and fossil-fuel power plants, transportation systems, airplane propulsion engines, and low-pollution vehicles. At the Institute, many of the basic disciplines are offered which are required for applications such as the above. They are described in the following paragraphs under the headings of Design, Mechanics, Thermal and Fluids Engineering, Nuclear Energy, and Jet Propulsion.

Design

Engineering design is regarded as an interdisciplinary activity providing an opportunity for putting theory into practice and bringing together on a common ground some of the more specialized branches of engineering. It serves to emphasize the importance of a sound, broad, theoretical background and its relevance to actual engineering practice. Emphasis is placed on the imaginative practical approach in the solution of real problems involving various disciplines. The human, sociological and economic aspects as related to a particular design project are carefully considered in their proper perspective. System design in the broad sense, automatic control, problem modeling, and the appropriate use of analog and digital techniques in optimization are general areas of interest. Projects have included the design and development of apparatus for scientific investigation in different areas of research such as earthquake engineering, hydraulics, heat transfer, etc. Faculty members from other disciplines are invited to participate in the design activity offering specific design problems involved in their current investigations. A close relationship with those working in the design area at the Jet Propulsion Laboratory, as well as those in industry, is maintained through seminars, visits, and a free exchange of ideas on current design problems.

Mechanics

Studies in the broad field of mechanics may be undertaken in either the Applied Mechanics option or the Mechanical Engineering option. In general, work pursued within the Mechanical Engineering option will have a more physical orientation. The specific areas available for advanced study closely parallel the research interests of the faculty and presently include: linear and nonlinear problems in static and dynamic elasticity, plasticity and viscoelasticity, wave propagation in solids, load transfer problems, modeling of dynamic systems, linear and nonlinear vibrations, random vibrations, stability, structural dynamics, and design for earthquake loads.
Physical Facilities

The Dynamics and Vibrations Laboratories provide for the study of a wide range of problems relating to the dynamics of mechanical systems. These two laboratories contain a variety of specialized equipment including: electrodynamic shakers, shock generators, optical followers, and various electromechanical transducers.

The Analog Computer Laboratory is equipped with specially designed equipment for the direct simulation and analysis of both linear and nonlinear systems, with stochastic as well as deterministic excitation. Input-output systems are available for various types of signal analysis.

The Earthquake Engineering Research Laboratory contains specialized recording and data processing equipment for the study of complex transient loading problems. This equipment has been used extensively in the analysis of strong-motion earthquakes.

Thermal and Fluids Engineering

Instruction and research are offered in these fields of mechanical engineering. Typical areas of research include free and forced convection heat transfer, friction and heat transfer in dilute polymer solutions, granular media, fluids near the critical point and other unusual media, cavitation, fluid machines, and some related areas of hydrodynamics.

Physical Facilities

Several facilities are available for heat transfer studies, including free convection equipment, a forced convection loop, a blowdown facility for polymer solutions, and an apparatus for studying the heat transfer in flowing granular media. An internal combustion engine laboratory, containing a variable compression fuel research engine, together with a conventional automotive engine dynamometer, is also available. In addition, hydrodynamic research facilities of the division are available for work in this field. These include the low-speed flumes of the Keck Laboratory and the two water tunnels of the Karman Laboratory. The latter are particularly useful for studies of cavitation, ventilation, steady and nonsteady characteristics of hydrofoils, planing surfaces, and flow visualization.

Nuclear Energy

Opportunities for study and research in nuclear energy are available in mechanical engineering, engineering science, and applied physics. The central area of interest involves the solutions of those problems arising from the unique nature of nuclear energy. Thus, the program specializes in reactor physics — the study of the behavior of neutrons in nuclear reactors. It also includes courses in heat transfer, fluid flow, and structures, disciplines which are essential for the design of nuclear power plants. Undergraduate preparation should include a good background in mathematics and, if possible, a course in modern physics. Nuclear specialization at the undergraduate level is not required.

Jet Propulsion

The Daniel and Florence Guggenheim Jet Propulsion Center was established at the California Institute of Technology in 1948. This center was created specifically to provide facilities for postgraduate education and research in jet propulsion and rocket engineering, with particular emphasis on peacetime uses: to provide training in jet propulsion principles, to promote research and advanced thinking on rocket and jet propulsion problems, and to be a center for peacetime commercial and scientific uses of rockets and jet propulsion. The Guggenheim Jet Propulsion Center is a part of the Division of Engineering and Applied Science. All instruction in the Guggenheim Center is on the graduate level. Students wishing to pursue courses of study and research in jet propulsion take degrees in aeronautics or mechanical engineering.
The solution of the engineering problems in jet propulsion requires new techniques as well as drawing on the knowledge and practice of the older branches of engineering, in particular, mechanical engineering and aeronautics. Thus, it is appropriate that the program of instruction includes material from both of these engineering fields. In general, students entering the course work in jet propulsion will have had their undergraduate preparation in mechanical engineering or aeronautics, but the courses are also available to students whose preparation has been in applied mechanics, engineering science, or physics.

Areas of Research and Physical Facilities

The experimental facilities of the Jet Propulsion Center are located in a gasdynamics laboratory and a combustion laboratory, housed in the Karman Laboratory of Fluid Mechanics and Jet Propulsion, and an acoustics laboratory housed in the Guggenheim Aeronautical Laboratory. Specialized equipment includes special-purpose wind tunnels, a shock tube for reaction-rate studies, a convective-flow facility for fire research, and an acoustic-flow facility with an echoic chamber. Certain facilities of the Jet Propulsion Laboratory may also be utilized under special arrangement.

Some of the research topics currently under investigation are: the aerodynamics of turbomachine components in air-breathing engines, the combustion instability of rocket motors, the mechanics of multi-phase flow in propulsion systems, and acoustical problems and noise reduction of jet engines.

Physics

Areas of Research

Graduate students in physics will find opportunities for research in the following areas where members of the staff are currently active.

High-Energy Physics: The experimental high-energy physics group performs various types of elementary particle experiments at the major accelerator centers. At present three experimental programs are in progress at the Fermi National Accelerator Laboratory near Chicago: one to study neutrino interactions at high energies, another to measure pion charge-exchange scattering and other related reactions, and a third developing and using a multi-particle spectrometer to investigate quasi-two-body and multiparticle reactions. Other experiments are planned or under way at the Stanford Linear Accelerator Center, one a second multiparticle spectrometer program, and the other the preparation of a major detector for use in studying neutral particles emitted in e^+e^- reactions in the colliding beam storage ring SPEAR.

A phenomenology group is studying the systematics of elementary particle reactions and their theoretical interpretations. It also collaborates closely with the experimentalists in the above program.

Kellogg Radiation Laboratory: Three conventional Van de Graaff accelerators and a 12-MeV tandem accelerator are used to study nuclear structure and reactions with particular emphasis on nuclear phenomena of importance in astrophysics. The accelerators are also used for atomic studies with high-velocity atomic beams, for investigations of the solid state, for elemental abundance analysis of lunar and meteoritic samples, and for investigations of nuclear processes with potential application to controlled thermonuclear fusion.

Nuclear Structure at Intermediate Energies: This laboratory is engaged in the study of problems in nuclear and atomic structure. Tests of the space and time symmetries of the nuclear forces are conducted with the use of nuclear orientation at cryogenic temperatures. Experiments with muonic and pionic atoms are being conducted at the Los Alamos Meson Physics Facility.

Space Physics: There is an active observational program in infrared, x-ray, and gamma-ray astronomy. The astrophysical aspects of cosmic radiation are investigated with detectors.
flown in balloons and in spacecraft, and a variety of related theoretical problems are being studied. Observational and theoretical studies of magnetic fields, velocity fields, and active regions on the sun are carried out. Planetary and interplanetary magnetic fields are being studied with data from magnetometers carried by spacecraft.

Low Temperature: Cryogenic techniques form the basis for studies ranging from investigations of the fundamental nature of superfluidity and examinations of two-dimensional systems to the development of unique electronic systems from quantum superconductivity.

Radio Astronomy: One 40-meter and two 27-meter antennas are used either individually or in various interferometric combinations to investigate the properties of galactic and extragalactic radio sources, of the planets, and of gas clouds in the interstellar medium. Receiving equipment includes multiple narrow-band correlators for interferometric spectrometry, an autocorrelation spectrograph, and a recording terminal for very-long-baseline interferometry. A 10-meter antenna and receivers for millimeter waves are under construction.

Theoretical Physics: The principal areas under theoretical investigation are the nature of elementary particles and their high-energy interactions, various problems in the area of general relativity and cosmology, the physics of the interplanetary and interstellar media, the origin and transport of cosmic rays, problems of stellar structure and stellar evolution, the synthesis of elements in stars, and the nature of quasi-stellar radio sources and pulsars.

Physical Facilities

The physics department is housed in six buildings grouped together on the south side of the campus: Norman Bridge Laboratory, Alfred P. Sloan Laboratory of Mathematics and Physics, W. K. Kellogg Radiation Laboratory, George W. Downs Laboratory of Physics, C. C. Lauritsen Laboratory of High Energy Physics, and the Synchrotron Laboratory. Members of the staff also carry out research with the Mt. Wilson and Palomar Mountain facilities of the Hale Observatories, and at the Owens Valley Radio Observatory.

Undergraduate Research

Each division offers the opportunity for qualified students early in their careers to engage in research under the supervision of a faculty member. Most options offer undergraduate research courses in order to encourage participation in research, and students should consult listings and descriptions of research opportunities given by the various options. Students are encouraged to undertake research of such scope and caliber as to merit the preparation of a Bachelor's Thesis. In most cases, a minimum of 54 units, distributed over at least four terms, counting the summer months as a term, is required of students preparing a Bachelor's Thesis. With the approval of the faculty, graduation "with honor" may be granted a student on the basis of a meritorious Bachelor's Thesis or its equivalent.

STUDENT LIFE

Student Houses. The seven undergraduate student houses are situated on both sides of the Olive Walk near the eastern end of the campus. The original four — Blacker, Dabney, Fleming, and Ricketts — were built in 1931 from the plans of Mr. Gordon B. Kaufmann in the Mediterranean style to harmonize with the adjacent Athenaeum. The other three, designed by Smith, Powell and Morgridge, and generally consistent in appearance with the older group, were completed in 1960, and are named Lloyd, Page, and Ruddock. Each of the seven is a separate unit with its own dining room and lounge, providing accommodations for about seventy-five students.
Each house has its own elective officers, and has wide power to arrange its own social events and preserve its own traditions. The immediate supervision of the activities of each house is the responsibility of the house Resident Associate, generally a graduate student or younger faculty member. All houses are under the general supervision and control of a member of the faculty known as the Master of Student Houses.

Mail is delivered daily to the student houses except on Sunday. Students living in student houses should use their house name and mail code, California Institute of Technology, Pasadena, Calif. 91126, to facilitate the handling of their mail at the campus post office. Since the demand for rooms may exceed the supply, newly entering students are advised to file room applications with the Master of Student Houses immediately upon being notified by the Director of Admissions of admittance to the Institute.

Interhouse Activities. There is representation of each of the undergraduate houses on the Interhouse Committee, which determines matters of general policy for all seven houses. While each sponsors independent activities, there is at least one joint dance held each year. The program of intramural sports is also carried on jointly. At present it includes football, softball, swimming, basketball, tennis, track, and volleyball.

Interhouse Scholarship Trophy. A trophy for annual competition in scholarship among the seven student houses has been provided by an anonymous donor. With the approval of the donor the trophy has been designated as a memorial to the late Colonel E. Goldsworthy, who was Master of Student Houses, and it commemorates his interest and efforts in the field of undergraduate scholarship.
Faculty-Student Relations. Faculty-student coordination and cooperation with regard to campus affairs is secured through the presence of students on faculty committees and by means of other less formal mechanisms.

Freshman Advisers. Each member of the freshman class is assigned to a faculty adviser. The adviser interests himself in the freshman’s progress and provides advice on any questions or problems which the freshman may have.

Option Advisers. Each member of the three undergraduate upper classes is assigned to an option adviser, a faculty member in the option in which the student is enrolled. The adviser interests himself in the student’s selection of optional courses, progress toward his degree, and, eventually, in assisting the student toward satisfactory placement in industry, or in graduate school. Normally, the association between student and adviser, which is primarily professional, is established before the beginning of the sophomore year and continues through graduation.

Athletics. The California Institute maintains a well-rounded program of athletics and, as a member of the Southern California Intercollegiate Athletic Conference, schedules contests in nine sports with the other members of the Conference — Occidental, Pomona, Redlands, Whittier, and Claremont-Harvey Mudd — as well as many other neighboring colleges. In addition, the Caltech Sailing Club sails a fleet of Institute dinghies based at Los Angeles Harbor.
The California Institute Athletic Field of approximately 23 acres includes a football field, a standard track, a baseball field, and championship tennis courts. The Scott Brown Gymnasium and the Alumni Swimming Pool, completed in 1954, provide attractive modern facilities for intercollegiate, intramural, or recreational competition in badminton, basketball, volleyball, swimming, and water polo. Funds for the pool were contributed by the alumni of the California Institute; construction of the gymnasium was made possible through a bequest of Scott Brown.

The Institute sponsors an increasingly important program of intramural athletics. There is spirited competition among the seven houses for the possession of the three trophies. The Interhouse Trophy is awarded annually to the group securing the greatest number of points in intramural competition during the year. The Varsity and Freshman Rating Trophy is presented to the group having the greatest number of students participating in intercollegiate athletics. The third trophy, "Discobolus," is a bronze replica of Myron's famous statue of the discus thrower. It is a challenge trophy, subject to competition in any sport, and it remains in the possession of one group only so long as that group can defeat the challengers from other groups.

ASCIT. Despite the outward appearance on campus of political quiescence, the student body government (officially known as the "Associated Students of the California Institute of Technology, Inc.", or "ASCIT") plays a significant role in bringing change to campus life. Some of ASCIT's more notable and recent efforts brought about the student-directed (and smog-oriented) ASCIT Research Project, the student-run coffeehouse (which provides a respite from the pressures of Caltech), and student representation on faculty committees. It should be noted that few student governments are superior to ASCIT in their working relationship with faculty and administration.

A member of the corporation (i.e., a dues-paying student-body member) is entitled to participate fully in campus politics: to vote, to lobby, and to hold corporate office.

Graduate Student Council. The Graduate Student Council performs essentially the same functions for the graduate students as the Board of Directors of ASCIT does for the undergraduates.

Board of Control. The Honor System is the fundamental principle of conduct for all students. More than merely a code applying to conduct in examinations, it extends to all phases of campus life. It is the code of behavior governing all scholastic and many extracurricular activities, relations among students, and relations between students and faculty. The Honor System is the outstanding tradition of the student body, which accepts full responsibility for its operation. The Board of Control, which is composed of elected representatives from each of the seven houses, is charged with interpreting the Honor System for undergraduates, while the Graduate Review Board performs the same function for graduate students. If any violations should occur, the appropriate board investigates them and recommends disciplinary measures to the deans.

Student Body Publications. The publications of the student body include a weekly paper, the California Tech; an annual; a literary magazine; and a student handbook, which gives a survey of student activities and organizations and serves as a campus directory. These publications are staffed entirely by students. Through them ample opportunity is provided for any student who is interested in obtaining valuable experience not only in creative writing, photography, art work, and in the journalistic fields of reporting and editing, but in the fields of advertising and business management as well.

Musical Activities. The Institute provides qualified directors and facilities for a wind ensemble, several choral music groups including men's and women's glee clubs, and a chamber orchestra. A series of chamber music concerts is given on Sunday evenings in the lounge of Dabney Hall. There are other musical programs in Beckman and Ramo Auditoriums. The
Musicale is an organization which encourages interest in and appreciation for classical recordings. The extensive record library of the Institute provides opportunity for cultivation of this interest and for the presentation of public programs. The Winnett Center Record Library has over 200 popular albums which may be rented for a nominal charge.

Student Societies and Clubs. There is at the Institute a range of undergraduate societies and clubs wide enough to satisfy the most varied interests. The American Institute of Electrical Engineers, the American Society of Civil Engineers, and the American Society of Mechanical Engineers all maintain active student branches.

The Institute has a chapter (California Beta) of Tau Beta Pi, the national scholarship honor society of engineering colleges. Each year the Tau Beta Pi chapter elects to membership students from the highest ranking eighth of the junior class and the highest fifth of the senior class.

Special interests and hobbies are provided for by a broad and constantly changing spectrum of clubs, some informal but most formally recognized by either ASCIT or the Graduate Student Council.

Student Shop. The Student Shop is housed in the Winnett Student Center. It is equipped by the Institute, largely through donations, and is operated by the students under faculty supervision. It is a place where qualified students may work on private projects that require tools and equipment not otherwise available. All students are eligible to apply for membership in the Student Shop; applications are acted on by a governing committee of students. Members who are not proficient in power tools are limited to hand tools and bench work; however, instruction in power tools will be given as needed. Yearly dues are collected to provide for maintenance and replacement.
The Caltech Y. The Caltech Y is one of the major centers of campus activities. The range of programs planned by students and faculty through the Y includes discussion and action programs on social and political issues, educational programs on international problems, personal growth experiences, community services projects, and social events. These programs take the form of guest speakers, Olive Walk talks, retreats and conferences, student house discussions, courses and study groups, dinner in faculty homes, trips, workshops, and work projects. In addition, the Y provides several campus services including a used-book exchange, an emergency loan fund, a record library, and individual and group support services to students and student organizations.

Public Events. Beckman and Ramo Auditoriums serve as the home of the professional performing arts program on the Caltech campus. Each year, over 150 public events, ranging from the traditional Earnest C. Watson Caltech Lecture Series to dramatic, film, and concert attractions (featuring world renowned artists), are presented at Caltech. The auditoriums also serve as the stage for the annual Student Body Musical, the Caltech Glee Club Christmas and Spring Concerts, and the Caltech Wind Ensemble Hunter Mead Memorial Concert. Student tickets, often providing discounts of more than 50 percent, are available to Caltech students for all events in Beckman and Ramo Auditoriums. Located in the Office of Public Events are a Ticket Agency (handling tickets not only for Caltech events, but also for most southern California entertainment, sports, and cultural events) and the campus Audio-Visual Services Unit (where projectors, tape recorders, and video equipment may be obtained).

Bookstore. The student store serving students, faculty, and staff is located on the ground floor of the Winnett Student Center. The store, which is owned and operated by the Institute, carries a complete stock of required books and supplies, reference books, and such items as greeting cards, sweatshirts, and sundries. There is, on open shelves, an extensive collection of paperbacks and other books of general interest.
Section III

INFORMATION AND REGULATIONS FOR THE GUIDANCE OF UNDERGRADUATE STUDENTS

REQUIREMENTS FOR ADMISSION TO UNDERGRADUATE STANDING

The undergraduate school of the California Institute of Technology is coeducational; there is no set ratio of men to women. Undergraduates are admitted only once a year — in September. All undergraduates at the California Institute are expected to carry the regular program leading to the degree of Bachelor of Science in the option of their choice. Special students who wish to take only certain subjects and are not seeking a degree cannot be accepted.

Individuals are considered for admission to student status — and all student services, facilities, programs, and activities are administered — in a nondiscriminatory manner without regard to race, religion, color, sex, or national origin, and fully in accordance with all existing laws and regulations.

ADMISSION TO THE FRESHMAN CLASS

The freshman class of approximately 220 is selected on the basis of (a) high grades in certain required high school subjects, (b) results of College Entrance Examination Board tests, and (c) recommendations. The specific requirements in each of these groups are described below. A personal interview with an applicant and two or three of his teachers is held at his school whenever feasible. An application fee of $10 is due at the time an application for admission is submitted. No application will be considered until this fee is paid. The fee is not refundable whether or not the applicant is admitted or cancels his application, but it is applied on the first-term bills of those who are admitted and register in September.

Application for Admission

An application form may be obtained by writing to the Office of Admissions, California Institute of Technology, Pasadena, California 91125. It is to be returned directly to the Institute.

Completed admission application blanks and the $10 application fee must reach the Admissions Office not later than January 15. (Application to take entrance examinations
must be made directly to the College Board at an earlier date, for which see below.)

Transcripts of records covering three years of high school should be submitted as soon as possible following the application. Students should arrange for a supplementary transcript covering the first semester of the senior year, or the first quarter if they attend a school operating on the quarter system, to be sent as soon as such records are available, but not later than March 1.

High School Credits

Each applicant must be thoroughly prepared in at least fifteen units of preparatory work, each unit representing one year's work in a given subject in an approved high school at the rate of five periods weekly. Each applicant must offer all of the units in Group A and at least five units in Group B.

<table>
<thead>
<tr>
<th>Group A:</th>
<th>English</th>
<th>Chemistry</th>
<th>Mathematics</th>
<th>Physics</th>
<th>United States History and Government</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| Group B: | Foreign Language, Shop, additional English, Geology, Biology or other Laboratory Science, additional History, Drawing, Commercial subjects, etc. | 5 |

The three units of English are a minimum and four units are strongly recommended. The four-year program in mathematics should include the principal topics of algebra, geometry, analytic trigonometry, and the elementary concepts of analytic geometry and probability. The program should emphasize the principles of logical analysis and deductive reasoning and provide applications of mathematics to concrete problems.

Entrance Examinations

In addition to the above credentials, all applicants for admission to the freshman class are required to take the following College Entrance Examination Board examinations: the Scholastic Aptitude Test and the Level II Achievement Test in Mathematics, plus any two of the following achievement tests: Physics, Chemistry, Biology, English Composition. The Level II Mathematics Test is designed for students who are in their fourth year of a mathematics program of the type outlined above. The Level II test does not presuppose an advanced placement course in mathematics. Note that the Scholastic Aptitude and the Level II Mathematics Test must be taken, and that the choice lies only among Physics, Chemistry, Biology, and English — of which two must be taken. No substitution of other tests can be permitted.

The Scholastic Aptitude Test and achievement tests must be taken no later than the January College Board Series. *It is important to note that no applicant can be considered who has not taken the required tests by January, but tests taken on any prior date are acceptable.* No exception can be made to the rule that all applicants must take these tests.

Full information regarding the examinations of the College Entrance Examination Board is contained in the *Bulletin of Information* which may be obtained without charge at most high schools, or by writing to the appropriate address given below. The tests are given at a large number of centers, but if any applicant is located more than 75 miles from a test center, he can make special arrangements to take the tests nearer home.

Applicants who wish to take the examinations in the western United States or Canada, or in Mexico, Australia, or the Pacific Islands should address their inquiries by mail to College

Very occasionally the applications of those who have taken the Level I instead of the Level II Mathematics Test will be considered. It should be pointed out, however, that the Institute feels it can better judge the qualifications of an applicant who has taken the Level II test, and those who have not done so will be handicapped in the competition for admission.
Entrance Examination Board, P.O. Box 1025, Berkeley, California 94701. Check the Bulletin of Information for the exact dividing line.

Candidates applying for examination in other areas should write to College Entrance Examination Board, P.O. Box 592, Princeton, New Jersey 08540.

All applications to take examinations in the United States should reach the appropriate office of the Board at least four weeks in advance of the test date. Examinations to be taken abroad need to arrive at least six weeks in advance. Please note that requests to take the examinations and all questions referring exclusively to the examinations are to be sent to the College Entrance Examination Board at the appropriate address as given above and not to the California Institute.

Personal Interviews and Recommendation Forms

Accompanying the Institute's acknowledgment of receipt of the application form will be three recommendation forms which the applicant should distribute to three teachers at the applicant's high school who are best acquainted with the capabilities and preparation of the applicant with the request that they be filled out and returned directly to the California Institute. These recommendation forms provide valuable information on candidates. The College Board scores, the last of which will be received by about February 15, provide further important data. Since, however, there are many more applicants to the California Institute than our facilities can accommodate, as much information as possible is desired on each candidate for admission. Wherever preliminary information shows that an applicant has a chance of gaining admission, the Institute will attempt to hold a personal interview with him at the school he is attending. It is not possible to visit all of the schools involved; but if a personal interview cannot be held, this in no way prejudices an applicant's chances of admission. The applicant has no responsibility with regard to the personal interview unless and until he receives a notice giving the time and date when a representative will visit his school. These visits occur generally between March 1 and April 6.

Notification of Admission

Final selections will ordinarily be made and the applicants notified of their admission or rejection well before May 1. Most College Board member colleges have agreed that they will not require any candidate to give final notice of acceptance of admission or of a scholarship before this date. Upon receipt of a notice of admission an applicant should immediately send in the registration fee of $10. In the event he subsequently cancels his acceptance, the registration fee is not refundable. Places in the entering class will not be held after May 1, if the applicant could reasonably be expected to have received notice at least ten days before that date. Otherwise, places will be held not more than ten days after notification. When the registration fee has been received, each accepted applicant will be sent an acknowledgement, and he will be permitted to register, provided his physical examination is satisfactory. It is assumed that any academic work in progress will be completed in a satisfactory manner. Checks or money orders should be made payable to the California Institute of Technology.

Deferral of Entrance

The Institute will consider requests from newly admitted freshmen for a year's deferral of entrance for such purposes as studying abroad, working, or maturing. It is possible that not all requests will be granted: the seriousness and appropriateness of the purpose and the number of requests received will be determining factors.

Students who wish to request a year's deferral of entrance must (1) pay the registration fee by May 1 in the normal manner; (2) make a written request stating the purpose of postponement and the plans for using the extra year.
Early Decision Plan

The Institute will consider a few outstanding candidates who wish to make the California Institute their first choice under an early decision plan. Such candidates must have taken the required College Board tests by the end of their junior year or at the following June administration, must have an excellent school record, and must have the thorough backing of their high school.

An applicant for admission under the early decision plan must have his credentials on file by October 15 of his senior year. (If he is applying for a scholarship, his application should be filed with the College Scholarship Service (see p. 160) by the same date.) He will then be notified by December 1 whether he has been accepted. An accepted applicant is then expected to withdraw all applications to other colleges. An applicant who is not accepted under the early decision plan will be considered without prejudice for admission at the regular time in April, unless he receives final rejection in December.

Advanced Placement Program

A number of high schools and preparatory schools offer selected students the opportunity to accelerate and to take in the senior year one or more subjects which are taught at the college level and cover the material of a college course. The College Entrance Examination Board gives each year in May a set of Advanced Placement examinations covering this advanced work. The regulations governing Advanced Placement at the California Institute in the subjects concerned are as follows:

Chemistry. Students with a particularly strong background in chemistry may elect to take Chemistry 2, Advanced Placement in Chemistry, (or, in exceptional cases, Chemistry 41, Chemistry of Covalent Compounds) rather than Chemistry 1, General and Quantitative Chemistry. It is assumed that such students have reasonable competence in the following areas: 1) elementary theories of atomic structure and electronic theories of valence, 2) chemical stoichiometry, and 3) computations based upon equilibrium relationships. Admission to Chemistry 2 is based on an interview with the instructor.

Humanities and Social Sciences. Students will not be admitted to upperclass humanities and social sciences courses until or unless they have successfully completed three terms of freshman humanities and social sciences, been excused therefrom as a consequence of a high score on the appropriate advanced placement examination or by their instructor (through the divisional Freshman Requirements Committee), or obtained (from that committee) an exemption in a particular case.

Literature and History. Students who score high in advanced placement literature or history may be excused from freshman humanities if the Division of the Humanities and Social Sciences rules favorably upon their examination papers. Such students, if an excuse has been granted, may (if they wish) register immediately for upperclass humanities and/or social science courses.

Mathematics. Normally, an entering freshman will take Ma 1 abc, Freshman Mathematics. This course will cover the calculus of functions of one variable; an introduction to differential equations; vector algebra; analytic geometry in two and three dimensions; infinite series. The course will be divided into a lecture part, discussing primarily the mathematical notions of the calculus and the other topics listed above; and a recitation part, providing active practice in the applications of corresponding mathematical techniques.

During the summer, entering freshmen will be invited to outline their advanced training in mathematics and take a placement examination. The appropriate course and section for each student will be determined on the basis of this information. Those students whose preparation permits them to begin with Ma 2 a will receive credit for Ma 1 abc. Exceptionally well-prepared students may receive additional credit for Ma 2 abc.
Physics. The required freshman physics course, Ph 1 abc, is quite unlike most advanced placement work, and entering freshmen are encouraged to take Ph 1, whatever their high school preparation. However, students with unusually advanced backgrounds, wishing to receive credit for Ph 1, should take the College Board Advanced Placement Examination in Physics, Version C. Entering freshmen with scores of 4 or 5 on this examination will be considered for possible advanced placement.

NOTE: The Advanced Placement tests are in no way a substitute for the College Board Aptitude and Achievement Tests at the ordinary high school level required for admission. The latter are the only tests considered in granting freshman admission. After admission, those who offer advanced credits and examinations will be considered for credit and advanced placement in the subjects involved.

Medical Examination
Prior to final acceptance for admission, each applicant is required to submit a Report of Medical History and Physical Examination on a form which will be sent him at the time he is notified of admission. It is the applicant's responsibility to have this form filled out by a Doctor of Medicine (M.D.) of his own choosing. Admission is tentative pending such examination, and is subject to cancellation if the report indicates the existence of a condition that the Director of Health Services deems unsatisfactory.

Students who have been on leave of absence for two years or more must submit Medical History and Physical Examination reports under the same conditions as for new students.

Financial Aid: Grants and Loans
For information regarding financial aid for entering freshmen and deadline for application see pages 160-161. In computing need the California Institute includes tuition, board and lodging, books and supplies, incidental fees and dues, and about $500 for personal expenses. A travel allowance, which varies with the distance between Pasadena and the student's home but in no case exceeds $600, is added to this figure. The figure for the expenses of those who live at home or with relatives or friends to whom they pay nothing for board and lodging is approximately $500 less. Further information on tuition and other costs, and on loans and the deferred payment plan is given on pages 158-167.

New Student Orientation
All freshmen are required to attend the New Student Orientation as a part of the regular registration procedure. Upperclass transfer students are not required to attend but are welcome to do so if they wish.

The orientation takes place during three days immediately following freshman registration for the fall term. A large number of faculty members and upperclass student leaders participate to help introduce the new student to the Caltech community. The orientation period provides an opportunity for the new student to become acquainted with the campus, the Honor System governing personal conduct, and other aspects of life at Caltech. In addition, he can meet his classmates and a number of the upperclass students and faculty. Thus the new student can begin to feel at home at Caltech and share in the common agreement on intellectual and moral standards before the pressure of academic work begins.

ADMISSION TO UPPER CLASSES BY TRANSFER FROM OTHER INSTITUTIONS
The Institute admits to its sophomore or junior class a limited number of students who have made satisfactory records at other institutions of collegiate rank and who do satisfactorily on the transfer entrance examinations. Transfer students are not normally admitted to the
senior year. In general only students whose grades, especially those in mathematics and science, are above average are permitted to take the entrance examinations.

No application fee is charged in the case of transfer students, but only those whose records are good will be permitted to take the tests. Applicants should not come to the Institute expecting to be admitted to the examinations without first receiving definite permission to take them.

Students will be allowed to apply for transfer admission only if they have completed elsewhere essentially the equivalent of the courses required of students at the Institute. This means that applicants for transfer into the sophomore class must have completed at least one full year of calculus and one full year of physics at the college level. For transfer to the junior class, two years of each of these subjects is required, plus a one-year course in college chemistry. Those who have pursued college work elsewhere but have not had the substantial equivalent of the freshman courses in mathematics and physics — and in addition chemistry for those wishing to major in chemistry or chemical engineering — will be classified as freshmen and should apply according to the instructions on pages 143-146. They may, however, receive credit for pertinent subjects which have been completed in a satisfactory manner.

An applicant for admission as a transfer student must write to the Office of Admissions of the California Institute of Technology stating his desire to transfer, his choice of engineering or one of the options in science or humanities, and the number of years of calculus and of physics he will have completed by the date of transfer. At the same time he must present a transcript of his record to date, showing in detail the character of his previous training and the grades received both in high school and college. In his preliminary letter, the applicant must describe the content of the physics, mathematics, and chemistry courses he has completed thus far, and give course numbers, titles, and descriptions for all courses he will complete before transferring to the Institute which are not recorded on his college transcripts. After this letter has been received and the transcripts have been evaluated by the Admissions Office, an application blank will be sent, provided the grades and subjects on the transcripts meet the transfer requirements.

Please note that an application blank is not sent until the preliminary letter and transcripts have been received and evaluated. Transcripts are held in the files until such a letter is received.

Application blanks must be on file in the Admissions Office by April 1. Transcripts should, therefore, be sent no later than March 15. Applicants living in foreign countries must have applications and transcripts on file by March 1 at the latest; information with regard to acceptance or rejection for all candidates is sent before June 20. Candidates who are admitted to the Institute must send a second transcript of their work showing final grades received for any work in progress during the spring.

All transfer applicants must arrange to have sent in their scores on the Scholastic Aptitude Test (SAT) of the College Entrance Examination Board. If they have taken the SAT in previous years, these scores will be acceptable; but applicants must instruct the College Board (see addresses on pages 144-145) to send the scores to the Institute. If the SAT has not been taken previously, it must be taken by the April series at the latest. College Board Achievement Tests are not required of transfer applicants. Before their admission to the upper classes of the Institute, all students are required to take entrance examinations in mathematics and physics covering the work for which they desire credit. In addition, an examination in chemistry is required for those desiring to major in chemistry or chemical engineering.

Two examinations of a comprehensive character are offered in mathematics and physics. One examination in each subject covers the work of the first year; the other examination, that of the first and second years. Representative examination papers will be sent to approved applicants upon request. The Institute courses for which those admitted will receive credit will be determined by the Committee on Admission to Upper Classes and the
departments concerned, on the basis of the applicants' previous records and the result of their examinations.

It is not possible to give definite assurance that a transfer student entering the sophomore year will graduate in three years or that one entering as a junior will graduate in two years. Much depends on the amount and nature of the credit granted at the time a student registers in September and on the possibility of fitting deficiency make-ups into the regular schedule.

The first-year chemistry course at the California Institute differs from those given at many other colleges because of the inclusion of a substantial amount of quantitative analysis in the laboratory work. A transfer student who has had a one-year college course in inorganic chemistry and qualitative analysis will be considered to have met the first-year chemistry requirements, provided, of course, that his grades have been satisfactory. Those wishing to major in biology, chemistry, or geology will be required to take certain portions of freshman chemistry if they do not have the equivalent laboratory work elsewhere.

The transfer examination in chemistry is required only of those wishing to major in chemistry or chemical engineering. This examination is the same for both sophomore and junior standing and covers general chemistry. Transfer students entering the junior year in chemistry will be able to take the sophomore organic chemistry course during their first year at the Institute.

Examinations for admission to upper classes are given in the first two weeks in May. No other examinations for admission to upper classes will be given.

Applicants residing at a distance may take the examinations under the supervision of their local college authorities, provided definite arrangements are made well in advance.

Students whose native language is not English will be required to take the Test of English as a Foreign Language (TOEFL). This test is a College Entrance Examination Board test and is given all over the world, including the United States, four times a year. This test must be taken by the February series at the latest. Full information on how and where to take the test should be obtained from the College Board.

It is not possible to answer general questions regarding the acceptability of courses taken elsewhere. The nature of the work at the Institute is such as to demand that all courses offered for credit be scrutinized individually. In case the standard of the work taken elsewhere is uncertain, additional examinations may be required before the question of credit is finally determined.

The Institute has a program with 12 relatively local public junior colleges, whereby a student at one of the junior colleges may follow a certain pattern of courses, maintain specified grades and grade-point average, receive the recommendation of his science faculty, and be considered for admission to the junior year without the necessity of taking tests. Decisions on such applicants will be made on a rolling basis and will be earlier than decisions under the standard program. Full details can be obtained from the junior college counselors. The colleges are: El Camino College, Fullerton Junior College, Glendale College, Long Beach City College, Los Angeles City College, Los Angeles Pierce College, Los Angeles Valley College, Pasadena City College, Riverside City College, Santa Ana College, Santa Monica College, Ventura College.

Physical examinations are required for transfer students as in the case of students entering the freshman class (see page 147). Admission is conditional upon a satisfactory report on the physical examination.

Transfer students are required to pay a registration fee of $10 upon notification of admission to the Institute. In the event of subsequent cancellation of application, the registration fee is not refundable unless cancellation is initiated by the Institute.

Financial aid is awarded transfer students on the same basis as for freshmen. To apply for aid, a transfer student must file a special form which will be sent on request and must be completely filled out by the parent or guardian responsible for the applicant's support. This form should reach the Admissions Office prior to May 1.
The 3-2 Plan

The California Institute of Technology has an arrangement whereby students enrolled in certain liberal arts colleges may follow a prescribed course for the first three years and then transfer into the third year of the engineering option at the Institute without further formality, provided that they have the unqualified recommendation of the officials at the liberal arts college which they are attending. After two full years' residence at the Institute and after satisfactorily completing all the remaining work required for a bachelor's degree in engineering, they will be awarded a Bachelor of Arts degree by the college from which they transferred and a Bachelor of Science degree by the California Institute. Application for admission at the freshman level under this plan should be made to the liberal arts college.

The colleges with which these arrangements exist are:

- Bowdoin College, Brunswick, Maine
- Grinnell College, Grinnell, Iowa
- Occidental College, Los Angeles, California
- Ohio Wesleyan University, Delaware, Ohio
- Pomona College, Claremont, California
- Reed College, Portland, Oregon
- Wesleyan University, Middletown, Connecticut
- Whitman College, Walla Walla, Washington

Exchange Programs

Exchange programs exist with Occidental College and Scripps College permitting California Institute students to receive credit for courses taken at these two colleges. Occidental College students and Scripps College students also may receive credit for courses taken at the Institute. Tuition payments are not required but the student may have to pay any special fees. The student must obtain approval from the instructor of the exchange course. Exchange courses taken by Caltech students must have prior approval by the student's option, by the division providing courses most similar to the proposed course, and by the Registrar. Freshmen at the California Institute ordinarily cannot participate in this exchange.

In addition, through the office of the Dean of Students, informal exchange programs are conducted with several colleges and universities throughout the country. Under these programs, a student can visit another campus for a period ranging from one term to a full academic year, without the formalities of transfer proceedings or written applications. Any student interested in the informal program should check with the Dean of Students for details.

AIR FORCE ROTC

Arrangements have been made with the University of Southern California to provide two-, three-, and four-year Air Force Reserve Officers Training Corps programs to qualified Caltech students. Academic units earned in these programs will be counted as elective credits towards graduation, and successful completion of the AFROTC program will lead to a commission as a second lieutenant in the Air Force Reserve. Four-year scholarships will be available but must be applied for before December 31 in the calendar year prior to entering college. Three-and two-year scholarships will be available to those already in college. All scholarship recipients receive full tuition, required fees and books, and $100 a month. All pilot-qualified male students are to receive 36½ hours of flying training during their final year in the program. For additional information contact the office of the Dean of Students at Caltech.
REGISTRATION REGULATIONS

Procedures
Students must register in person on the dates specified in the academic calendar. Registration material is to be picked up at a location designated by the Registrar and is returned to the Office of the Registrar when completed. A student is not registered until he has both

a. turned in a signed registration card with his approved study list, and
b. made satisfactory arrangements with the Office of Student Accounts for the payment of all fees due the Institute.

Any student who has not completed both phases of registration within one week after registration day will be removed from the Institute rolls.

Changes of Registration
All changes in registration must be reported to the Registrar's Office by the student prior to the published deadlines. A grade of F will be given in any course for which a student registers and which he does not either complete satisfactorily or drop. A course is considered dropped when a drop card is completed and signed by the approving signatures and returned to the Registrar's Office. A student may not at any time withdraw from a course which is required for graduation in his option without permission of the Dean.

A student may not add a course after the last day for adding courses, or withdraw from a course after the last date for dropping courses without the approval of the Undergraduate Academic Standards and Honors Committee. Registration for added courses is complete when an add card has been filed in the Registrar's Office signed by the instructor and the student's adviser. No credit will be given for a course for which a student has not properly registered. The responsibility that drop cards and add cards are received in the Registrar's Office before the deadlines for dropping or adding courses each term rests entirely with the student. Failure to fulfill the responsibility because of oversight or ignorance is not sufficient grounds to petition for permission to drop or add courses after the deadline. It is the policy of the Undergraduate Academic Standards and Honors Committee that no petitions for the retroactive dropping or adding of courses will be considered except under very extenuating circumstances.

Summer Research
Qualified undergraduate students who are regular students in the Institute are permitted to engage in research during the summer, but in order to receive academic credit the student must have the approval of his division and must file a registration card for such summer work in the Office of the Registrar prior to June 1. Students who are registered for summer research will not be required to pay tuition for the research units.

Auditing of Courses
Persons not regularly enrolled in the Institute may audit courses, if they obtain the consent of the instructor in charge of the course and the chairman of the division concerned, for a fee of $40 per lecture hour, per term. Auditing fees for non-academic staff members may be covered by the Institute Tuition Support Plan. Auditing cards may be obtained in the Registrar's Office.

Regularly enrolled students and faculty members of the Institute staff are not charged for auditing. Auditing cards are not required, but the instructor's consent is necessary in all cases. No grades for auditors are reported to the Registrar's Office, and no official record is kept of the work done.
SCHOLASTIC REQUIREMENTS; GRADING

General Regulation

Every student is expected to satisfy the requirements in each of the courses he is registered for, as the instructor may determine.

Grades

All permanent grades recorded for freshmen will be either "P", indicating passed, or "F", indicating failed. The temporary grade of "I" may be used as it is for upperclassmen. The temporary grade of "E" may be given to freshmen as described below for upperclassmen. It may also be used in a continuing course if the performance of the freshman concerned is not significantly below the current passing level, and in addition the student is maintaining a steady and substantial improvement; an "E" given for this reason will be automatically changed to a "P" if the freshman earns a "P" for the following term, and will change to an "F" if the student receives an "F" for the following term. The grade may not be used in this way for two successive terms nor for the last term of the course.

If a freshman is enrolled in a course in which the instructor gives letter grades, the Registrar will record "P" for all passing grades. The grade of "H" is given for satisfactory completion of freshman honors work. No grades given to a freshman will be used in computing the cumulative grade-point average.

For students beyond the freshman year, letter grades will ordinarily be used to indicate the character of the student's work: "A" excellent, "B" good, "C" satisfactory, "D" poor, "E" conditioned, "F" failed, "I" incomplete. Exceptions are allowed only where the instructor uses the grade "P" instead of a passing letter grade for all students in the course, or where the student elects to take the course on a Pass-Fail basis as described on page 153. This rule regarding exceptions applies whether the student is repeating a course failed at an earlier time or taking the course for the first time. In addition, grades of A+ and A-, B+ and B-, C+ and C-, and D+ may be used for undergraduates only.

The grade "E" indicates deficiencies that may be made up without actually repeating the subject. If the course has been graded with letter grades, a grade of "0" is given when the work is completed; a grade of "P" is given if the student is a freshman, or if the course was taken on a Pass-Fail basis.

The grade "I" is given only in case of sickness or other emergency which justifies non-completion of the work at the usual time. An incomplete will be recorded only if the reasons for giving it are stated on the instructor's final grade report and only if, in the opinion of the appropriate committee (Undergraduate Academic Standards and Honors for undergraduates, and Graduate Study for graduate students), the reasons justify an incomplete. If, in the opinion of the committee, the incomplete is not justified, a condition will be recorded. The Undergraduate Academic Standards and Honors Committee has authorized the Dean of Students or the Associate Dean of Students to authorize the awarding of the grade "I."

An incomplete or a condition in any term's work must be removed during the next term in residence by the date fixed for the removal of conditions and incompletes. Each student receiving such grades should consult with his instructor at the beginning of his next term in residence. Any condition or incomplete not so removed becomes a failure automatically unless the instructor of the course recommends otherwise.

"Failed" means that no credit will be recorded for the course. The units, however, count in computing the student's grade-point average. He may register to repeat the subject in a subsequent term and receive credit without regard to his previous grade, the new grade and units being counted as for any other course. In special cases the Undergraduate Academic Standards and Honors Committee may, with the instructor's approval, authorize the completion of a failed course by three 3-hour examinations, the units and new grade being

152
Grading

recorded as in the case of repeating the subject. The original "F" and units for the course remain on the record and are counted in computing the grade-point average.

Each course in the Institute is assigned a number of units corresponding to the total number of hours per week devoted to that subject, including classwork, laboratory, and the normal outside preparation. The units used at the California Institute may be reduced to semester hours by multiplying the Institute units by the fraction 2/9. Credits are awarded as shown in the following table.

<table>
<thead>
<tr>
<th>No. of Units</th>
<th>A+</th>
<th>A-</th>
<th>B+</th>
<th>B-</th>
<th>C+</th>
<th>C-</th>
<th>D+</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>23</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>48</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>28</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>52</td>
<td>48</td>
<td>43</td>
<td>39</td>
<td>35</td>
<td>30</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>56</td>
<td>51</td>
<td>47</td>
<td>42</td>
<td>37</td>
<td>33</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

Grading on the basis of units is computed by dividing the total number of credits earned in a term or an academic year by the total number of units taken in the corresponding period. Units for which a grade of "F" has been received are counted, even though the course may have subsequently been repeated. Units and credits in military subjects taken by Air Force ROTC students are counted in computing grade-point average. Physical education units and credits, and grades of "P" are not included in computing grade-point average.

Pass-Fail Grading: Grades of "P" may be given for courses numbered 200 or greater, and for other courses which do not lend themselves to more specific grading. All courses which do not have a formal course structure (e.g., research and reading courses) must use Pass-Fail grades except where the option requests permission of the Faculty Board to give letter grades. All students in a given course are to be graded using the same system (either all P-F, or all letter grades), unless the instructor offers the course on a letter-graded basis and a student chooses to take it on a P-F basis by filing a Pass-Fail Course Selection Card.

Each term a sophomore, junior, or senior may select one elective course, not specifically required for graduation in his option to be graded on a Pass-Fail basis, subject to such requirements as may be imposed by his option. The following additional provisions apply:

(a) Any instructor may, at his discretion, specify prior to pre-registration that his course is not available on a Pass-Fail basis.

(b) Registration may be changed from Pass-Fail to regular grades and vice versa until the last day for dropping courses each term.

(c) The total number of Pass-Fail units in regularly scheduled courses (that is, courses other than research and reading courses) in the sophomore, junior, and senior years, which a student may offer for graduation, may not exceed 81.

To elect to take a course Pass-Fail, a student must submit a completely filled-out Pass-Fail Course Selection Card to the Office of the Registrar prior to the last day for dropping classes that term.
Scholastic Requirements

All undergraduates are required to meet certain scholastic standards as outlined below. Students who have been reinstated after having failed to make the required number of credits in the junior year are subject to these requirements in the senior year.

Ineligibility for Registration. Undergraduates who register for programs which make it appear that they are no longer candidates for a B.S. degree may be refused further registration by the Undergraduate Academic Standards and Honors Committee. Freshmen who receive no grades of "Fail," or "Condition" during the year are academically eligible to register for the sophomore year. Freshmen who have accumulated 42 units or more of "Fail" or "Condition" will automatically be evaluated by the Committee on Undergraduate Academic Standards and Honors at the end of any term. Other freshmen may, at the end of the year, be referred to the Committee by the Dean or the Associate Dean of Students and the student's adviser. If it is the opinion of the Committee on Undergraduate Academic Standards and Honors that any freshman referred to it is unprepared for the work of the sophomore year, he may be declared ineligible to register for academic reasons.

Freshmen whose records are to be reviewed at any meeting of the Committee will be notified in advance and invited to meet with the Committee to discuss their performance; freshmen so notified should also plan to submit a written statement to the Committee in advance of its meeting.

Any undergraduate student, except a freshman, is ineligible to register for another term:

(a) If he fails during any one term to obtain a grade-point average of at least 1.4.

(b) If he fails to obtain a grade-point average of at least 1.9 for the academic year. A student who has completed at least three full terms of residence at the Institute and has been registered for his senior year shall no longer be subject to the requirement that he make a grade-point average of at least 1.9 for the academic year. Seniors are subject to the requirement, however, that they must receive a grade-point average of at least 1.4 each term to be eligible for subsequent registration.

(c) Any undergraduate student, including a senior, who has been reinstated and who fails to make a grade-point average of at least 1.9 on a full load of at least 36 units for the following term is ineligible to register.

A student ineligible for registration because of failure to meet the requirements stated in the preceding paragraphs may submit a petition to the Undergraduate Academic Standards and Honors Committee for reinstatement, giving any reasons that may exist for his previous unsatisfactory work and stating any new conditions that may lead to better results. Each such petition will be considered on its merits. For the first such ineligibility, the petition will be acted upon by the appropriate dean, after consultation with the student and examination of his record. At the dean's discretion, such cases may be referred to the Undergraduate Academic Standards and Honors Committee for action. All subsequent reinstatements must be acted upon by the Committee. A reinstated student who again fails to fulfill the scholastic requirements for registration must petition the Undergraduate Academic Standards and Honors Committee, and action can only be taken by the Committee. In any case being considered by the Committee, the student may, if he wishes, appear before the Committee or, on request by the Committee, he may be required to appear. A second reinstatement will be granted only under exceptional conditions.

Departmental and Option Regulations. Any student whose grade-point average is less than 1.9 at the end of an academic year in a specific group of subjects designated by his department or option (see pages 170-201) may, at the discretion of his department, be refused permission to continue the work of that option. Such disbarment does not prevent the student from continuing in some other option, provided permission is obtained, or from repeating courses to raise his average in his original option. A student without an option will fall under the direct jurisdiction of the Dean of Students. Until he is readmitted to his option, a student may not take courses in that option beyond the level he had reached when he was refused permission to continue work. A student may remain without an option for no more than one year.
Scholastic Requirements

Term Examinations will be held in all subjects unless the instructor in charge of any subject shall arrange otherwise. No student will be exempt from these examinations. Permission to take a term examination at other than the scheduled time will be given only in the case of sickness or other emergency and upon the approval of the instructor in charge and of one of the deans. When conflicts exist in a student's examination schedule, it is the student's responsibility to report the conflict to the instructor in charge of one of the conflicting examinations and make arrangements to take the examination at another time.

Graduation Requirement. To qualify for graduation a student must complete the prescribed work in one of the options with a passing grade in each required subject and with a grade-point average of 1.9. A grade of "F" in an elective course need not be made up, provided the student has received passing grades in enough other accepted units to satisfy the minimum total requirements of his option.

Graduation in the Normally Prescribed Time. Any undergraduate student who fails to complete the requirements for graduation at the end of the normally prescribed time must petition the Undergraduate Academic Standards and Honors Committee for approval to register for further work.

Residence Requirement. All transfer students who are candidates for the Bachelor of Science degree must complete at least one full year of residence in the undergraduate school at the Institute immediately preceding the completion of the requirements for graduation. At least 90 of the units taken must be in subjects in professional courses. A full year of residence is interpreted as meaning the equivalent of registration for three terms of not less than 36 units each.

Requirement for a Second Bachelor of Science Degree. Students who wish to receive a second degree of Bachelor of Science in another option are required to have one additional year of residence (three terms of study involving at least 36 units per term) beyond the first Bachelor of Science degree.

Honor Standing. At the close of each academic year the Committee on Undergraduate Academic Standards and Honors awards Honor Standing to 20 to 30 students in the sophomore and junior classes, based on the scholastic records of the students.

Graduation with Honor. With the approval of the faculty, graduation with honor may be granted to a student who has achieved an overall grade-point average of 3.2, including such an average in the senior year. In addition, a student may be graduated with honor under joint recommendation of his division and the Committee on Undergraduate Academic Standards and Honors, with the approval of the faculty.

Excess or Fewer than Normal Units. (Overloads and Underloads). An undergraduate who wishes to register in any term for more than 58 units must obtain the recommendation of his option adviser and the approval of the Undergraduate Academic Standards and Honors Committee. Petitions to carry excess units will not be accepted later than the last day for adding classes in any term. Registration for fewer than 36 units must be approved by the Undergraduate Academic Standards and Honors Committee. Petitions to register for fewer than 36 units must be filed with the Registrar one week prior to the last day for adding classes in any term. A student may not drop a course or courses if this results in his being registered for fewer than 36 units, unless he obtains the prior approval of the Undergraduate Academic Standards and Honors Committee. Such approval will not be given to any students other than seniors except in extraordinary circumstances. It is the strict policy of the Committee that no student will be allowed to carry an underload for more than one term as an undergraduate. See page 205 for graduate students.
Selection of Option. At the beginning of the third term freshmen must notify the Registrar’s Office of their selection of an option in engineering, humanities, or science to be pursued in subsequent years. Upon the selection of an option, a freshman will be assigned an adviser in that option, whose approval must then be obtained for pre-registration for the following year.

An undergraduate may be allowed to major in two options, not in the same division, for the Bachelor of Science degree. In order to do so he must obtain the approval of the Curriculum Committee prior to the beginning of his senior year. He will then be assigned an adviser in each option.

Change of Option. Students wishing, or required, to change options must first obtain a Change of Option petition from the Registrar’s Office. The completed petition must be signed by the Option Representative for the new option who will assign a new adviser, and then the petition must be filed in the Registrar’s Office.

Leave of Absence. Leave of absence involving non-registration for one or more terms must be sought by written petition. A leave of up to one year can be granted by the appropriate dean for a student who is in good standing.* A petition for a medical leave of absence must carry the endorsement of the Director of Health Services or his representative and the appropriate dean. Other petitions should be addressed to the Undergraduate Academic Standards and Honors Committee, and the student must indicate the length of time and the reasons for which absence is requested. All leaves of absence will be reviewed by the Committee. In case of brief absences from any given class activity, arrangements must be made with the instructor in charge.

Candidacy for the Bachelor’s Degree. A student must file with the Registrar a declaration of his candidacy for the degree of Bachelor of Science on or before the first Monday of November preceding the date at which he expects to receive the degree. His record at the end of that term must show that he is not more than 21 units behind the requirement in the regular work of his course as of that date. All subjects required for graduation, with the exception of those for which the candidate is registered during the last term of his study, must be completed by the second Monday of May preceding commencement.

Transcripts of Records. A student, or former student, may request that official transcripts of his records be forwarded to designated institutions or individuals. Requests should be filed at the Registrar’s Office at least five days prior to the date on which the transcripts are to be mailed.

* A student in good standing is defined as a student who does not have to meet special grade-point requirements as a result of reinstatements.

PHYSICAL EDUCATION

Prior to graduation each undergraduate is required to successfully complete three terms of physical education. This requirement may be satisfied entirely or in part by participation in intercollegiate athletics, successful completion of a physical education class, or successful completion of a student-designed program of physical fitness. Further explanation of each aspect of the program appears below.

Participation as a bona fide member of an intercollegiate team for the period covered by a sport in a given term satisfies the requirement for that term. Students dropping from an intercollegiate team prior to the end of the term or the season must enroll in a physical education class immediately, if they wish to receive credit for physical education.

A broad program of instruction is provided each term. Enrollment in the classes is conducted in the gymnasium and pool on the day of General Registration. A swimming test is required of those planning to enroll in scuba diving or sailing. Standards for evaluation of
student performance will be clearly defined at the beginning of each class. Participation in intramural sports will count towards the successful completion of an instructional activity.

Student-designed programs of physical fitness are submitted in writing to the Department of Physical Education during the pre-registration period. These programs must provide for regular participation in vigorous physical activity at least three days per week. The programs may consist of individual or group participation and may include intramural sports participation. At the end of the term the student files a brief written report with the Department of Physical Education reviewing his accomplishment of stated objectives. It is assumed that students proposing their own program of physical fitness are competent in the activities proposed.

STUDENT HEALTH

Pre-Admission Medical Examination

Admission to both the graduate and undergraduate program is conditional until the Medical History and Physical Examination report is received and approved by the Director of Health Services (see page 147). Tetanus immunization and tuberculosis testing are required.

Student Health Services

The Archibald Young Health Center is located at 1239 Arden Road, south of California Boulevard. Facilities include a dispensary and an infirmary. The Health Center provides general office medical care, minor emergency surgery, and psychological counseling services.

The services of the Health Center are available to undergraduate and graduate students. They are available for faculty and staff on a limited basis, covering emergency care, on-the-job injuries and inoculations.

The staff of the Health Center consists of attending physicians, consultants, psychologists, nurses, and office personnel.

During the summer, a special health fee of $33.00 is charged to student trainees and to students who have not been enrolled during the preceding three school terms.

Student Health Plan

In addition to services available at the Health Center, year-around coverage under California Blue Cross is provided. This integrated two-part insurance plan covers basic hospital and surgical costs. In addition there is an extended benefits plan which co-insures all costs not covered by the basic plan. Details of coverage are contained in booklets available at the Health Center. All students are included, and benefits continue for twelve months, on campus and off campus, provided students remain enrolled through the school year.

At the Health Center students have available the following services:

1. Office consultation and treatment by a staff physician at prescribed hours;
2. Laboratory tests, consultations, and radiographs as prescribed or ordered by the staff physician;
3. Inoculations and treatments administered by nurses;
4. Routine medications;
5. Infirmary care;
6. Psychological counseling through the services of staff psychologists.

Coverage of Dependents

Besides the student coverage outlined above, a student’s spouse and all unmarried dependent children under 19 years of age are eligible for coverage under the California Blue Cross contract. In addition, student spouses may enroll, for an annual fee of $60, in a plan which
makes them eligible for all services offered at the Health Center. Health care for children is not administered at the Health Center.

Application for dependent's insurance must be made at the time of registration or within 31 days of registration for any one school term. Rates applicable to dependent coverage are available at the Health Center.

Responsibility of the Student

The responsibility for securing adequate medical attention in any contingency, whether emergency or not, is solely that of the student, whether the student is residing on or off campus. Apart from providing the opportunity for consultation and treatment at the student Health Center as described above, the Institute bears no responsibility for providing medical attention.

Any expenses incurred in securing advice and attention in any case are entirely the responsibility of the student, except as specified above. To secure payment from Blue Cross and substantiate a claim for services rendered away from the Institute, the student is required to retain bills for such services and present them with appropriate documentation when medical claims are made. The Health Center office staff will help in preparing claim forms.

UNDERGRADUATE EXPENSES

For freshmen applying for admission, there is a $10 Application Fee, not refundable, but applicable upon registration to the Tuition Fee.

For freshmen and transfer students, there is a $10 Registration Fee payable upon notification of admission, and not refundable if admission is cancelled by the applicant. Housing contracts, accompanied by a $50 deposit, must be submitted to the Master's Office by the date specified in the instructions accompanying the contract. The deposit will be applied to the first term room charge.

Expense Summary 1975-76

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Deposit</td>
<td>$25.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>$3,375.00</td>
</tr>
<tr>
<td>Student Body Dues, including The California Tech</td>
<td>$22.00</td>
</tr>
<tr>
<td>Assessment for Big T</td>
<td>$12.00</td>
</tr>
<tr>
<td></td>
<td>$3,434.00</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
<tr>
<td>Student House Living Expenses, including 10 meals per week while Institute is in session</td>
<td></td>
</tr>
<tr>
<td>(Room and Board rates are subject to change)</td>
<td></td>
</tr>
<tr>
<td>Room and Board</td>
<td>$1,224.00</td>
</tr>
<tr>
<td>Dues</td>
<td>45.00</td>
</tr>
<tr>
<td>Meals not covered by board contract are available at Chandler Dining Hall (approx.)</td>
<td>475.00</td>
</tr>
<tr>
<td>Books and Supplies (approx.)</td>
<td>175.00</td>
</tr>
<tr>
<td></td>
<td>$1,919.00</td>
</tr>
</tbody>
</table>

1 This charge is made only once during residence at the Institute (see page 159).
2 Fees subject to change by action of the Board of Directors of the Associated Students of the California Institute of Technology.
3 There are a few single rooms available which will rent for an additional $65 per year. Room contracts are on a term basis for all students.
The following is a list of undergraduate student expenses at the California Institute of Technology for the Academic Year 1975-76 together with the dates on which the various fees are due. Charges are subject to change at the discretion of the Institute.

<table>
<thead>
<tr>
<th>Date</th>
<th>First Term</th>
<th>Second Term</th>
<th>Third Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 24, 1975</td>
<td>General Deposit: $25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Freshmen)</td>
<td>Tuition: $1,125.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 29, 1975</td>
<td>Associated Student Body Dues: $8.00</td>
<td>Tuition: $1,125.00</td>
<td>Tuition: $1,125.00</td>
</tr>
<tr>
<td>(All Others)</td>
<td>Assessment for Big T: $4.00</td>
<td>Associated Student Body Dues: $7.00</td>
<td>Associated Student Body Dues: $7.00</td>
</tr>
<tr>
<td></td>
<td>Room and Board: $453.00</td>
<td>Assessment for Big T: $4.00</td>
<td>Assessment for Big T: $4.00</td>
</tr>
<tr>
<td></td>
<td>Student House Dues: $15.00</td>
<td>Room and Board: $396.00</td>
<td>Room and Board: $375.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Student House Dues: $15.00</td>
<td>Student House Dues: $15.00</td>
</tr>
</tbody>
</table>

Tuition Fees for fewer than normal number of units:

- Over 35 units: Full Tuition $1,125.00
- Per unit per term: $32.00
- Minimum tuition per term: $300.00
- Auditor's Fee (p. 151): $40.00 per unit per term

Refunds. Students withdrawing from the Institute or reducing their number of units during the first three weeks of a term for reasons deemed satisfactory to the Institute, are entitled to a refund of tuition less a pro rata charge. Computation of this charge is based on the period elapsed, from the beginning of the term to:

1. The date the request is made to the Dean of Students for Withdrawals.
2. The date the petition is presented to the Office of the Registrar for Leave of Absence.
3. The date that registration for the reduced units is approved by the Undergraduate Academic Standards and Honors Committee or the date that drop cards are filed in the Registrar's Office, whichever is later, for reduction in units.

Room contracts are charged on a term basis for all students. Premature termination of a room contract will be granted only with the approval of the Master of Student Houses.

Associated Student Body Dues. As a service to the Associated Students, ASCIT dues of $22 per year and an assessment of $12 for the college annual, the Big T, are collected by the Institute and turned over to ASCIT. A subscription to the student newspaper, The California Tech, is included in these dues and the balance is used in the support of student activities as deemed appropriate by the ASCIT Board of Directors. Students not wishing to join ASCIT or to purchase the Big T should so indicate at the time of registration.

General Deposit. Each new student is required at his first registration to make a general deposit of $25, to cover possible loss and/or damage of Institute property. Upon his graduation or withdrawal from the Institute, any remaining balance of the deposit will be refunded.
Fees for Late Registration. Registration is not complete until the student has personally turned in the necessary registration forms for a program approved by his adviser and has paid his tuition and other fees. A penalty fee of $10 is assessed for failure to register within five days of the scheduled dates.

Winnett Student Center. Winnett Student Center facilities are reserved for the use of Caltech students and their guests. A contribution of fifty cents a year is made by each member of the Associated Student Body ($1 by graduate students wishing to use the facilities) to help defray the expenses of the game room.

Student Houses. Students in the Houses must supply their own blankets. Bed linens and towels are furnished and laundered by the Institute.

Application for rooms in the Student Houses may be made by addressing the Master of Student Houses (see page 137).

Special Fees. Students taking the Summer Field Geology course (Ge 123) should consult with the division about travel and subsistence arrangements and costs.

Unpaid Bills. All bills owed the Institute must be paid when due. Any student whose bills are delinquent may be refused registration for the term following that in which the delinquency occurs. Students who have not made satisfactory arrangements regarding bills due and other indebtedness to the Institute by the date of graduation will be refused graduation. Transcripts cannot be released until all bills due have been paid or satisfactory arrangements are made with the business office for payment.

FINANCIAL AID

1. Scholarship Grants for Entering Students

Freshman grants are awarded by the Freshman Admissions Committee to candidates who have been admitted to the Institute and have submitted a Parents' Confidential Statement (see below). Grants to transfer students are awarded on the same basis by the Upperclass Admissions Committee. Financial aid is awarded to the extent of available funds where financial need is demonstrated.

Applications by entering students for financial aid must be made on a form called the Parents' Confidential Statement. This form may be obtained in nearly all cases at the school the applicant is attending. If his school does not have a supply, he should write to the College Scholarship Service at one of the College Entrance Examination Board offices, the addresses of which are given on pages 144-145. The form is published by the College Scholarship Service of the College Board and is to be returned directly to the appropriate office of the College Board and not to Caltech.

Parents' Confidential Statement forms must be sent to the appropriate College Board office not later than February 1 of the year in which admission is desired for freshman applicants, and by April 1 for transfer applicants. All applicants who have submitted this form by the above dates are considered for financial aid. It is not necessary to apply for any particular award by name.

State and National Financial Aid Awards

Candidates for freshman financial aid are urged to make exhaustive inquiry of their school advisers and to watch their school bulletin boards for announcements of scholarship contests. The State of California, for example, awards scholarships annually to residents of
the state who wish to attend a college within the state. Residents of the State of California who request financial aid will be penalized in consideration for Caltech grants if they do not apply for California State Scholarships, provided their test scores indicate that they would have won a State award had they applied. Among the nationwide awards are the National Merit Scholarships and the Westinghouse Talent Search Awards. Applicants in need of financial assistance should enter any such contest for which they are eligible, in addition to applying for California Institute Financial Aid. While duplicate awards will not be given beyond the actual extent of need, the more sources to which a candidate applies the greater are his chances of receiving financial assistance.

Regulations and Renewals

Recipients of financial aid are expected to maintain a satisfactory standing in their academic work. If the recipient fails to maintain such an academic standing, or if, in the opinion of the Scholarships and Financial Aid Committee, the recipient in any way fails to justify the confidence placed in him, the Committee may cancel the award. Recipients of grants which run for more than one year are expected to pass all courses in their freshman year and thereafter to maintain at least a 2.5 grade-point average. The amount of the award may be increased or decreased at the beginning of any year if the financial need has changed. Freshmen who receive awards for the freshman year only will be considered for aid in subsequent years on the basis of need according to the regulations in the following paragraph.

2. Upperclass Financial Aid Grants

Sophomores, juniors, and seniors are considered for financial aid if need is demonstrated and if they have completed the preceding academic year with a satisfactory academic record. When individual grants exceed full tuition and other expenses exclusive of room and board, the excess is given in the form of a credit against room and board in the Student Houses. A student who expects to finish the academic year satisfactorily and who wishes to apply for financial aid for the next year should obtain a form from the Admissions Office in March. This form is to be filled out by the student and his parents (or guardian) and returned to the Admissions Office by May 1. No one will be considered for financial aid unless a proper form completely filled out and signed by parents (or guardian) is submitted by the appropriate date. If an applicant feels that his parents should no longer be responsible for his support, he may attach an explanatory note to the form, but the form must be filled out.

It is expected that students to whom awards are made will carry a full academic load and will maintain a high standard of scholarship and conduct. Failure to do so at any time during the school year may result in the termination of the award.

3. Financial Aid Funds

Funds for freshman and upperclass financial aid are provided in large part from special financial aid funds named below. Where the amount of a grant is not specified, there is a certain total sum available each year to be distributed among several grant holders in any proportion. It is not necessary to apply for any particular financial aid award by name. Applicants for admission who have a Parents' Confidential Statement on file will be considered for the best award to which their relative need and academic standing entitle them.

Alcoa Scholarships: two scholarships given by the Alcoa Foundation of the Aluminum Company of America.

Ethel Hazen Allen Scholarship: financial assistance for needy Canadian undergraduates provided by Mrs. Ethel H. Allen.

Alumni Scholarships: full tuition scholarships for entering freshmen provided by the Caltech Alumni Association.

Roland L. Andreau Scholarship Fund
ARCS Foundation (Achievement Rewards for College Scientists) of Los Angeles: a fund for several undergraduate and graduate scholarships.

R. C. Baker Foundation Scholarship: scholarships in engineering provided by the R. C. Baker Foundation of Los Angeles.

Edward C. Barrett Scholarship: annual scholarship established by friends of Edward C. Barrett, who was Secretary of the Institute for 41 years.

Louis D. Beaumont Scholarship: given by the Louis D. Beaumont Foundation of Cleveland, Ohio, to provide gifted students the opportunity to complete their educations.

Edwin J. Beinecke, Sr., Memorial Scholarship: a four-year scholarship awarded to an entering freshman. Established by the S & H Foundation in memory of its late chief executive. Only one Beinecke Scholar is expected to be in residence at one time.

Meridan Hunt Bennett Scholarships and Fellowships: granted from the Meridan Hunt Bennett Fund, established by Mrs. Russell M. Bennett of Minneapolis as a memorial to her son. The recipients are known as Meridan Hunt Bennett Scholars.

Berry Holding Company Scholarship Fund: established by gifts from the Berry Holding Company.

Knowlton R. Birge Scholarship: supported by the income from a fund established by Knowlton R. Birge.

Blacker Scholarships: provided for by the Robert Roe Blacker and Nellie Canfield Blacker Scholarship and Research Endowment Fund, established by Mr. and Mrs. R. R. Blacker of Pasadena.

C F Braun & Co Scholarships: three scholarships of $1,000 each provided by C F Braun & Co of Alhambra. Preference is given to students enrolled in an engineering program.

California Scholarship Federation Scholarship: Awarded each year by Caltech to a CSF member who is also a sealbearer and who meets the Institute’s requirements for a freshman scholarship grant.

The Carnation Scholarship Fund: scholarships awarded to juniors and seniors based on grade point average and academic achievement, without consideration to family income.

Mary Huntington Carr Scholarship: provided by Mrs. Mary H. Carr of Pasadena.

Chisholm Scholarship: annual scholarship provided by Mr. William Duncan Chisholm.

Dorothy Hixon Clark Scholarships: supported by the income from a fund established by Dorothy Hixon Clark.

Class of 1927 Scholarship: provided by the class of 1927 through the Class of 1927 Scholarship Endowment Fund.

Matthew M. Corbett Scholarship Fund: provides scholarships, loans, or other assistance.

Crellin Scholarships: annual scholarships provided by Mrs. Amy H. Crellin.

Cyprus Mines Corporation Scholarship

Dabney Scholarships: provided by Mrs. Joseph Dabney. The recipients are designated Dabney Scholars.

Drake Scholarships: two annual scholarships provided for by the Alexander McClurg Drake and Florence W. Drake Fellowship and Scholarship Fund, established by Mr. and Mrs. A. M. Drake of Pasadena. Preference is given to a graduate of a St. Paul, Minnesota, high school and to a graduate of a Bend, Oregon, high school.

Robert S. and Nellie V. H. Dutton Scholarships: supported by a fund established by Mrs. Robert S. Dutton.

Educational Opportunity Grant: grants of $200 to $1,000 per year authorized by the Higher Education Act of 1965. Any undergraduate with exceptional financial need may qualify provided he is a U.S. citizen or permanent resident. The grants can represent no more than half the total scholarship and loan assistance a student receives.

L. L. Fentress Fund Scholarship

General Motors Corporation Scholarship: maintained by the General Motors Corporation and awarded to an entering freshman. The award ranges from $200 to $2,000, depending on need. Preference is given to engineering students who hope to enter business. An attempt is made to award General Motors Scholarships to minority students.
Robert C. Gillis Scholarship Fund

The Gnome Club Scholarship: established by the alumni of the Gnome Club and awarded to a student in the senior class.

Goodyear Scholarship: established by the Goodyear Tire and Rubber Co. fund of Akron, Ohio, and awarded to a junior or senior in engineering who may be interested in a career in business or industry.

Robert E. Gross-Lockheed Aircraft Corporation Scholarships: Part of an award program to perpetuate the memory of Robert E. Gross, who founded Lockheed and served as its principal officer until his death in 1961.

Florence A. Hampton Scholarship Fund: designated for undergraduate student aid support.

Harriet Harvey and Walter Humphry Scholarships: two scholarships provided by Miss Harriet Harvey and Mrs. Emily A. Humphry. For the Harvey scholarship preference is given to a candidate from the state of Wisconsin. For the Humphry Scholarship preference is given to a candidate from the state of Iowa.

Robert Haufe Memorial Scholarship: supported by a fund established by Mr. and Mrs. J. H. Haufe as a memorial to their son.

Gene B. Heywood Scholarship Fund

The Holly Scholarship: established by the Holly Manufacturing Company.

The Hollywood Canteen Foundation Scholarship: awarded to veterans of the U.S. armed forces by the Hollywood Canteen Foundation.

Albert Hall Hughey Scholarships: supported by income from the Albert Hall Hughey Scholarship Fund.

Earle M. Jorgensen Scholarships: two tuition scholarships awarded annually by Mr. Earle M. Jorgensen.

Clarence F. Kiech Scholarship: established by family and friends of Clarence F. Kiech, class of 1926.

Robert J. Kieckhefer Scholarships Fund: established by gifts from Robert J. Kieckhefer.

Fannie Kirshner Scholarship: annual $500 award given by Henry Kirshner. It was the donor's wish that this scholarship be considered as a loan; however, there is no legal obligation upon the recipient to repay the loan, it being the belief of the donor that the recipients will do so when they have become established in their professions and are financially able to make such payment.

John C. Lewis Memorial Student Aid Fund: established by Howard B. Lewis, in memory of his brother, to assist needy students who do not qualify for scholarship aid.

Lockheed Leadership Fund Scholarships: four tuition scholarships plus $500 per student provided by the Lockheed Leadership Fund to eligible U.S. citizens under 25 years of age majoring in engineering and science.

Peter Madsen Undergraduate Scholarship Fund

Management Club of California Institute of Technology Scholarship: two $2,000 scholarships awarded to students in any of the three upper classes.

Mayr Foundation Scholarships: granted to students residing in California by the George H. Mayr Foundation of Beverly Hills.

William C. McDuffie Scholarship: provided by a fund established by friends of William C. McDuffie, a Trustee of Caltech for many years.

Robert L. Minckler Scholarships: provided by gifts from the family and friends of Robert L. Minckler, chairman of Caltech's Board of Trustees from 1961 to 1963.

David Lindley Murray Educational Fund: established by the will of Mrs. Katherine Murray of Los Angeles to assist deserving students, particularly in engineering.

Frances W. Noble Scholarship: established from gifts made by Mrs. Frances W. Noble.

La Verne Noyes Scholarship: established by the will of La Verne Noyes of Chicago for deserving students, without regard to difference of race, religion or political party, but only for those who shall be citizens of the United States of America and either: first, shall themselves have served in the Army or Navy of the United States of America in the war into
which our country entered on the 6th of April, 1917, and were honorably discharged from
such service; or second, shall be descended by blood from someone who has served in the
Army or Navy of the United States in said war, and who either is still in said service or whose
service in the Army or Navy was terminated by death or an honorable discharge. The
recipients are designated La Verne Noyes Scholars.

Pasadena Optimist Club Scholarship Endowment Fund

Edgar H. Pflager Scholarship Fund: established by gift and bequest of Mr. Edgar H.
Pflager.

Phillips Foundation Scholarship: four-year scholarship, established by the Charlotte
Palmer Phillips Foundation of New York, awarded to an entering freshman with no
restriction as to major field of study.

Radio Corporation of America Scholarship: $800 scholarship provided by the Radio
Corporation of America.

Harry Leslie Remington Memorial Scholarship Fund

Elbert G. Richardson Scholarships and Fellowships

Riley Scholarship Fund: established by Mr. Beverly V. Riley.

Frederick Roeser Loan, Scholarship, and Research Fund: established to assist students
and fellows of promising intellect and good character who are unable to pay the cost of their
education. Designated for undergraduate student aid support.

William E. Ross Memorial Student Fund: financial aid for worthy graduate or under-
graduate students.

Frank Schaak Fund: scholarship in civil engineering or any other engineering field.

Scholarship Endowment Fund

Lois F. Spaulding Scholarships

Harold O. Springer Scholarship Fund: provides for a scholarship in the amount of the
yearly tuition fee and cost of books. It is limited to students maintaining a scholarship
position in the upper half of their class and who need to earn at least one-third of their
college and living expenses exclusive of such scholarship. Preference is given to students
who could not obtain a college education without such an award.

Standard Oil Company of California Scholarships: two scholarships for students major-
ing in chemical engineering and in geology provided by the Standard Oil Company of
California.

Elizabeth Thompson Stone Scholarship: established by the will of Miss Elizabeth
Thompson Stone of Pasadena.

William W. Stout Scholarship Endowment Fund: established by Mr. William W. Stout
for undergraduate scholarships.

Superior Oil Company Scholarship: a four-year scholarship covering tuition and certain
other expenses established by the Superior Oil Company of Los Angeles. Preference is
given to a student interested in geology, chemical engineering, or physics.

Timers Fund Scholarship Fund: established by gifts from the Aerospace Scholarship
Foundation.

The Waltmar Foundation of Garden Grove: established by a gift of $3,000 for the award of
undergraduate scholarships. Preference is given to residents of Orange County.

Claudia Wheat Scholarship Fund: established by Mr. A. C. Wheat of Alhambra. Prefer-
eence is given to graduates of Alhambra High School.

Alice Colby Wheeler Scholarship: support for undergraduates provided by the income
from a perpetual trust.

Brayton Wilbur-Thomas G. Franck Scholarship: provided by Mr. Brayton Wilbur and
Mr. Thomas G. Franck of Los Angeles through the Brayton Wilbur-Thomas G. Franck
Scholarship Fund.

In addition to the foregoing named scholarships, there is a Scholarship Endowment Fund
made up of gifts from various donors.
Of the scholarship donors listed above the following include with their scholarship gifts an unrestricted grant to the Institute’s general funds to help defray educational costs in excess of that portion covered by tuition.

Alcoa Foundation
The R. C. Baker Foundation
Cyprus Mines Corporation
General Motors Corporation
Goodyear Foundation, Inc.
Lockheed Leadership Fund
Radio Corporation of America
Southern California Edison Company

4. Student Aid Loan Funds

Loans. Loans are available to members of all undergraduate classes, including entering freshmen, who need such aid to continue their education. They are made upon application, subject to the approval of the Faculty Committee on Scholarships and Financial Aid and the extent of available funds. There are three sources of loan funds and the conditions governing each are described below.

1. California Institute loan funds are available in amounts not to exceed $1,000 in any one year and a maximum of $4,000 during undergraduate residence. No interest is charged and no repayment of principal is required during undergraduate residence as long as residence is continuous. (The term “residence” includes the usual vacation periods.) For those who do not go on to graduate school, repayment commences after graduation of their class and is at the rate of $65 per month including simple interest at 4 percent per annum on the unpaid balance. For those who go on to graduate school at Caltech or elsewhere not later than the fall following their class graduation, interest is charged at the rate of 3 percent per annum, but no principal is required until the final advanced degree is earned, provided that the borrower remains in continuous residence. After the final degree has been earned, repayment commences at the rate of $65 per month including interest at 4 percent on the unpaid balance. The interest rate increases to 5 percent starting three years after the final degree and to 7 percent starting five years after the final degree and continues at 7 percent until the loan has been repaid in full. If the borrower withdraws from undergraduate or graduate registration at any time before receiving the last degree for which he has been working, the total amount owed the Institute becomes due and repayable at once, unless the Faculty Committee on Scholarships and Financial Aid agrees to some exception to this rule.

It is advisable for foreign students from countries with seriously adverse rates of exchange to borrow more than they can repay from savings (after taxes) out of salaries earned in the United States. For practical purposes, this means that total indebtedness may not exceed $2,000.

To the extent of available funds, students who wish to borrow and who meet the stipulated requirements will be given their choice of loan sources.

Thanks to funds presented by a number of generous donors, the Institute is able to lend money through the specific loan funds listed below. Each fund is administered according to the specific wishes of the donor, but in general as outlined above. The Institute Loan Funds are named as follows:

ARCS Foundation Loan Fund
Gustavus A. Axelson Loan Fund
W. H. Bowen Memorial Loan Fund
The Mildred R. Brown and Leroy G. Brown Memorial Fund
Glenn L. Converse Memorial Loan Fund
Wilbur D. Crater Memorial Loan Fund
Olive Cleveland Fund
James D. Davis Student Loan Fund
George W. and Beatrice W. Downs Loan Fund
Hosea Lewis Dudey Loan Fund
The Dudley Foundation Student Loan Fund
Claire Dunlap Loan Fund
Roy O. Elmore Memorial Loan Fund in Engineering
Ford Foundation Loan Fund
Susan Baker Geddes Loan Fund
Thomas Lain Gordon Memorial Loan Fund
Roy W. Gray Fund
Raphael Herman Loan Fund
Vaino A. Hoover Student Aid Fund
Howard R. Hughes Student Loan Fund
Thomas Jackson Memorial Fund
Ruth Wydman Jarmie Loan Fund
Walter and Margaretta Kendall Loan Fund
The Cecil L. Killigore Student Loan Fund
Eugene Kirkeby Loan Fund
Gustav D. Koehler Loan Fund
Frank W. Lehan Loan Fund
John McMorris Memorial Loan Fund
James K. Nason Memorial Loan Fund
Noble Loan and Scholarship Fund
James R. Page Loan Fund
Richard W. Shoemaker Loan Fund
Albert H. Stone Educational Fund
Scholarship and Loan Fund — Sundry Donors
Neal Wilson Student Emergency Loan Fund

2. Federal loans under the National Direct Student Loan Program are available to undergraduate students who are citizens or permanent residents of the United States. The program, in conjunction with Institute practice, limits borrowing to $1,500 per year with a maximum of $2,500 for the first two years. After the initial two years are completed, the student may borrow $1,500 per year in the third and fourth years with a maximum of $5,000 while in undergraduate status. The borrower must demonstrate financial need and must submit an affidavit of educational purpose. No interest is charged on these loans nor is any repayment of principal required until nine months after the final degree has been earned. At that time repayment commences and interest is charged at the rate of 3 percent per annum on the unpaid balance.

For loans to graduate students under the National Direct Student Loan Program see page 259.

3. The Higher Education Act of 1965 also contains provisions for student assistance through loans insured by the federal government (Title IV, Part B). The maximum loan amount is $2,500 per academic year with an aggregate maximum of $7,500.

Deferred Payment Plan. In addition to loans there is available a bank plan under which any student in good standing may defer up to $1,500 of his college bills each year to a total of $6,000 and may pay the deferred portion in installments after the graduation of his class. Interest on the amount deferred is charged at 1% over the bank’s commercial prime rate at the time of inception of the plan, and is payable quarterly. The interest is the only payment made under this plan during the undergraduate years. On November 1 following his class’ graduation, the student begins repayment on the deferred portion at the rate of $85 a month including interest. For those who go on to graduate school more favorable repayment arrangements may be made for the duration of graduate work. If student status is discontinued, the repayment schedule of $85 per month will begin after a grace period of 120 days.
Loans and the Deferred Payment Plan may be used in combination, but the total that may be borrowed or deferred may not exceed $1,500 in any one year (maximum of $7,500).

Entirely aside from loans and the Deferred Payment Plan, the following organizations offer plans for scheduled payments of education expenses:

1. EFI-Fund Management Corporation, 36 South Wabash, Chicago, Illinois 60603. They offer a ten-month budget plan for annual cost of tuition, fees, room and board. Payment under this plan begins in June. Cost of this program is $15 participation fee per year.

2. The Insured Tuition Payment Plan, offered by the Richard C. Knight Insurance Agency, Inc., 53 Beacon Street, Boston, Massachusetts 02108, offers two payment programs. Both programs include insurance protection which covers the balance of the cost of the entire education program in the event of the death or disability of the insured parent. They offer a Prepayment Plan which begins before the first payment is due at the Institute and ends before graduation. Cost of this plan is a $25 initial fee plus a $.50 per month service charge and a monthly insurance premium charge. The second plan offered is an Extended Repayment Plan which finances the cost of education up to 72 months (six years). Cost of this plan is a $25 initial fee plus interest at 9 percent and a monthly insurance premium charge.

3. The Tuition Plan Inc., Concord, New Hampshire 03301, offers a monthly budget plan to cover tuition and fees over a period of one to four years. Life insurance is available to all insurable parents. Monthly payments begin as early as June 1, or as late as October 1. Cost of this program is for interest expense (which varies from 13% to 18%) and insurance premiums (if coverage is desired). The maximum number of months allowed for repayment is 72.

Student Employment

Students who desire part-time or summer employment will receive assistance from the Placement Office. The requirements of the course at the Institute are so exacting, however, that under ordinary circumstances, students who are entirely or largely self-supporting through employment should not expect to complete a regular course program in the usual time. It is highly inadvisable for freshman students to attempt to earn a major part of their expenses.

Placement Service

The Placement Office provides assistance to undergraduate students, graduate students, research fellows, and alumni for the procurement of employment. It arranges for interviews by prospective employers for candidates for degrees and research fellows. Students, both graduate and undergraduate, desiring part-time employment during the school year or during vacations, should register with the Placement Office. Assistance will be given whenever possible in securing employment for summer vacations. Alumni who are unemployed, or desire a change in position, should register with the Placement Office.

The Placement Service maintains a Student Information Center which provides information in the form of brochures, catalogs, and announcements concerned with employment opportunities, admissions to colleges and universities, and fellowships and scholarships offered by universities, foundations, and industry. The brochures show employment opportunities offered by all types of organizations. The Director of Placements is available for consultation and guidance on placement problems.

The Institute assumes no responsibility in obtaining employment for its graduates, although the Placement Office will make every effort to provide suggestions for employment for those who wish to make use of this service.
The Board of Trustees of the California Institute of Technology established the Frederic W. Hinrichs, Jr., Memorial Award in memory of the man who served for more than twenty years as dean and professor at the Institute. In remembrance of his honor, courage, and kindness, the award bearing his name is made annually to the senior who, in the judgment of the undergraduate deans, throughout his undergraduate years at the Institute has made the greatest contribution to the student body and whose qualities of character, leadership, and responsibility have been outstanding. At the discretion of the deans, more than one award or none may be made in any year. The award, presented at commencement without prior notification, consists of a cash award and a certificate.

The Mary A. Earle McKinney Prize in English
The Mary A. Earle McKinney Prize in English was established in 1946 by Samuel P. McKinney, M.D., of Los Angeles. Its purpose is to promote proficiency in writing. The terms under which it is given are decided each year by the English faculty. It may be awarded for essays submitted in connection with regular English classes, or awarded on the basis of a special essay contest. The prize consists of cash awards and valuable books.

The Don Shepard Award
Relatives and friends of Don Shepard, class of 1950, have provided an award in his memory. The award is presented to a student, the basic costs of whose education have already been met but who would find it difficult, without additional help, to engage in extracurricular activities and in the cultural opportunities afforded by the community. The recipients, upperclassmen, are selected on the basis of their capacity to take advantage of and to profit from these opportunities rather than on the basis of their scholastic standing.

The David Joseph Macpherson Prize in Engineering
The David Joseph Macpherson Prize in Engineering was established in 1957 by Margaret V. Macpherson in memory of her father, a graduate of Cornell University in civil engineering, class of 1878. A prize of $400 is awarded annually to the graduating senior in engineering who best exemplifies excellence in scholarship. The winning student is selected by a faculty committee of three, appointed annually by the chairman of the Division of Engineering and Applied Science.

The Eric Temple Bell Undergraduate Mathematics Research Prize
In 1963 the Department of Mathematics established an Undergraduate Mathematics Research Prize honoring the memory of Professor Eric Temple Bell and his long and illustrious career as a research mathematician, teacher, author, and scholar. His writings on the lives and achievements of the great mathematicians continue to inspire many hundreds of students at the California Institute and elsewhere. A prize of $150 is awarded annually to one or more juniors or seniors for outstanding original research in mathematics, the winners being selected by members of the mathematics faculty. The funds for this prize come from winnings accumulated over the years by Caltech undergraduate teams competing in the William Lowell Putnam Mathematics Contest, an annual nationwide competition.
The George W. Green Memorial Prize
The George W. Green Memorial Prize was established in 1963 based on contributions given in memory of George W. Green, who for fifteen years served on the staff of the Caltech business office and was from 1956-1962 Vice President for Business Affairs. The prize of $500 is awarded annually to an undergraduate student, in any class, selected by the division chairmen and the deans on the basis of original research, an original paper or essay in any field, or other evidence of creative scholarship beyond the normal requirements of specific courses.

The Donald S. Clark Alumni Awards
From funds contributed by the Caltech Alumni Association, annual awards may be made to a sophomore and a junior in recognition of service to the campus community and good academic performance. Preference is given to students in the Division of Engineering and Applied Science and to those in Chemical Engineering. The awards honor the work of Professor Clark, class of 1929, both in the field of engineering and in his service to the Alumni Association.

The Haren Lee Fisher Memorial Award in Junior Physics
Mr. and Mrs. Colman Fisher have established the Haren Lee Fisher Memorial Award in Junior Physics in memory of their son, who was killed in an automobile accident in May of 1967, in his junior year at Caltech. The General Electric Foundation also contributed to the fund under the matching plan of their Corporate Alumnus Program. A prize of $150 will be awarded annually to a junior physics major, to be selected by a physics faculty committee as demonstrating the greatest promise of future contributions to physics.

The Jack E. Froehlich Memorial Award
The family and friends of the late Jack E. Froehlich, who did his undergraduate and graduate work at the California Institute and was later the project manager for Explorer I for the Jet Propulsion Laboratory, have established a prize fund which will provide a gift of money to a junior in the upper five percent of his class who shows outstanding promise for a creative professional career.

The Sigma XI Award
In accordance with the aim of The Society of the Sigma XI to encourage original investigation in pure and applied science, the Institute Chapter of the Society annually awards a prize of $500, funded from membership dues, to a senior selected for an outstanding piece of original scientific research.
UNDERGRADUATE OPTIONS
AND COURSE SCHEDULES

To qualify for a Bachelor of Science degree at the California Institute of Technology, a student must obtain a passing grade in each of the required courses listed below, and he must satisfy the additional requirements listed under the undergraduate options. He must also register for programs so that he makes normal progress toward his B.S. degree (see Scholastic Requirements, Ineligibility for Registration).

A student must register for the Institute requirements below, in the year specified unless he has previous credit. If for some reason he is not able to complete the requirements at the proper time, he must register at the earliest possible opportunity. (The Curriculum Committee may in unusual cases excuse an undergraduate student from any of the following Institute or option requirements upon presentation of a petition.)

Institute Requirements, All Options

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Freshman Mathematics (Ma 1 abc)</td>
<td>27</td>
</tr>
<tr>
<td>2. Sophomore Mathematics (Ma 2 abc)</td>
<td>27</td>
</tr>
<tr>
<td>3. Freshman Physics (Ph 1 abc)</td>
<td>27</td>
</tr>
<tr>
<td>4. Sophomore Physics (Ph 2 abc)</td>
<td>27</td>
</tr>
<tr>
<td>5. Freshman Chemistry (Ch 1 abc)</td>
<td>18</td>
</tr>
<tr>
<td>6. Freshman Chemistry Laboratory (Ch 3 a)</td>
<td>6</td>
</tr>
<tr>
<td>7. Additional Freshman Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>8. Humanities Courses (Lit, H, Pl, Mu, Art, and Advanced Languages)</td>
<td>27</td>
</tr>
<tr>
<td>9. Social Sciences Courses (An, Ec, PS, Psy, SS)</td>
<td>27</td>
</tr>
<tr>
<td>10. Additional Humanities and Social Science Courses</td>
<td>54</td>
</tr>
<tr>
<td>11. Physical Education</td>
<td>9</td>
</tr>
</tbody>
</table>

Freshman Laboratory Requirement

All freshmen are required to take at least 15 units of laboratory work in experimental science including Ch 3 a (6 units). The additional 9 units of laboratory work must be chosen from APh 9 (6 units per term), Bi 1 (units as arranged), Bi 9 (3 units), Ch 3 bc (3 or 6 units per term), ChE 10 (3 units), E 5 (6 units), EE 10 (6 units), Ge 1 (3 units), Ph 3 (6 units), Ph 4 (6 units).

Humanities and Social Sciences Requirements

All students are required to complete satisfactorily 108 units in the humanities and social sciences, including 27 units in courses deemed "freshman humanities" (and numbered 10 or below in this catalog). Students may not take advanced humanities (i.e., courses numbered above 10) until they have completed satisfactorily the 27 units of freshman humanities or have been excused therefrom. They may be excused (though not from the 108-unit requirement) by doing exceptionally well on the essay portion of an English or history advanced placement test or by demonstrating outstanding ability in the first or second term of said freshman humanities. All courses listed under Humanities and Social Sciences (anthropology, art, business economics and management, history, language, literature, music, philosophy, political science, psychology, and social science) count toward the 108-unit requirement except reading courses (these may be granted credit by petition). Work done under the HSS Tutorial Program may also be counted toward this requirement. No more than 27 units of business economics and management (BEM) courses may be used toward the 54-unit requirement of additional humanities or social sciences.
First Year, All Options
Course Schedule

Differentiation into the various options begins in the second year.

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 1 abc</td>
<td>Freshman Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>Kinematics and Particle Mechanics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 1 abc</td>
<td>General and Quantitative Chemistry (3-0-3)</td>
<td>6 6 6</td>
</tr>
<tr>
<td>Ch 3 a</td>
<td>Experimental Chemical Science (0-6-0)</td>
<td>6 . .</td>
</tr>
<tr>
<td>HSS</td>
<td>Introductory courses in the humanities and social sciences. A wide choice of alternatives will be available to students; the Registrar will announce the offerings for each term</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Freshman Laboratory Courses¹</td>
<td></td>
<td>x x x</td>
</tr>
<tr>
<td>Additional Electives²</td>
<td></td>
<td>x x x</td>
</tr>
<tr>
<td>PE 1 abc</td>
<td>Physical Education²</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

¹The additional 9 units of laboratory work must be chosen from APh 9 — 6 units per term; Bi 1 — units as arranged; Bi 9 — 3 units; Ch 3 bc — 3 or 6 units per term; ChE 10 — 3 units; E 3 — 6 units; EE 10 — 6 units; Ge 1 — 3 units; Ph 3 — 6 units; Ph 4 — 6 units.
²A partial list of electives particularly recommended for freshmen includes the following: APh 3, APh 4, Ay 1, Bi 2, EE 4, EE 5, Env 1, Ge 1, Gr 1, IS 10 and Ph 10.
³Three terms (9 units) of PE are required for the B.S. degree. Students need not elect to take the required PE in the freshman year. It may be taken in any 3 terms prior to graduation.

x — Except for the minimum laboratory unit requirement, the number of units chosen here is optional. If the student chooses no electives except physical education and takes the minimum permissible laboratory courses, the total unit load will be 42 for two terms and 39 for one term. A total load including electives of more than 51 units per term is considered a heavy load. A load in excess of 58 units requires formal approval of a petition for overload (see page 155).

Applied Mathematics Option

The undergraduate option in applied mathematics is for those students who want to combine their basic studies in mathematics with considerable involvement in applications. The program is similar in general outline to the mathematics option, with additional requirements to ensure a balance between courses which develop mathematical concepts and courses which show the interplay of these concepts with a variety of applications. Complete programs will be worked out with faculty advisers.

Option Requirements

1. Ma 5 abc
2. AMa 95 abc or Ma 108 abc
3. AMa 101 abc
4. One of the following (or an approved combination): AMa 90 abc, AMa 151 abc, AMa 152 abc, AMa 153 abc, AMa 181 abc, or AMa 104 and AMa 105 ab
5. One of the following (or an approved combination): Ma 118 abc, Ma 120 abc, Ma 121 abc, Ma 125 abc, Ma 141 abc, or Ma 137 and Ma 143 ab
6. Passing grades must be obtained in a total of 483 units, including the courses listed above.
Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives1</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 95 abc or Ma 108 abc</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Introductory Methods of Applied Mathematics (4-0-8)</td>
<td></td>
</tr>
<tr>
<td>Advanced Calculus (4-0-8)</td>
<td></td>
</tr>
<tr>
<td>Humanities Electives1</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>27 27 27</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 101abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives1</td>
<td></td>
</tr>
<tr>
<td>Electives2</td>
<td>27 27 27</td>
</tr>
</tbody>
</table>

1See Institute Requirements for specific rules regarding humanities.
2See items 4 and 5 under Option Requirements.

Applied Physics Option

The applied physics option is designed to connect what is conventionally considered "engineering" and "pure physics." Research in applied physics is an effort to answer questions related to problems of technological concern. Since the interests of both engineering and pure physics cover a broad spectrum of fields which overlap, it is not possible to draw a definite dividing line between them. Realizing this, the applied physics option draws its faculty from the Divisions of Physics, Mathematics and Astronomy, Engineering and Applied Science, Chemistry and Chemical Engineering, and Geological and Planetary Sciences. This interdivisional aspect of the option allows a flexibility and range in curriculum, appropriate to the student's particular research interests, that may end up being a mixture of courses and research in different divisions.

Specific subject areas of interest in the program cover a broad spectrum of physics related to different fields of technology. Solid state physics includes work in superconductivity, ferromagnetism, and semiconducting solid state. Work on electromagnetic waves extends from antenna problems into lasers and nonlinear optics. Fluid physics includes magnetohydrodynamics, high temperature plasmas and superfluids. Transport phenomena in gases, liquids, and solids form another active area related to nuclear and chemical engineering.
The undergraduate curriculum attempts to reflect and maintain a close relationship with the various disciplines. This facilitates a transition to or from any of these, if at any time in the student's course of study and research this would be considered to his benefit.

Attention is called to the fact that any student who has a grade-point average less than 1.9 at the end of the academic year in the subjects listed under Applied Physics may be refused permission to continue work of this option. A fuller statement of this regulation will be found on page 154.

Option Requirements

1. Any three of the following: APh 24, Ph 3, Ph 5, Ph 6, Ph 7
2. APh 50 abc
3. AMa 95 abc
4. One term of APh 91
5. One term of one of the following: APh 91, APh 154, Ph 77, EE 91, Ch 26, ChE 126, MS 130, MS 131, MS 132
6. 54 additional units of APh courses numbered over 100, Ph 106, Ph 125, or Ch 125*
7. 27 additional units of science or engineering electives
8. Passing grades must be earned in a total of 516 units, including the courses listed above.

*None of these courses shall be elected by the student to be taken on a pass-fail basis. Note that APh 100 does not satisfy this requirement.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc Electromagnetism and Quantum Mechanics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ma 2 abc Sophomore Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Laboratory Electives</td>
<td>6 6 6</td>
</tr>
<tr>
<td>APh 17 abc Statistical Thermodynamics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Total</td>
<td>51 51 51</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 50 abc Applied Physics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 110 abc Topics in Applied Physics</td>
<td>2 2 2</td>
</tr>
<tr>
<td>AMa 95 abc Engineering Mathematics (4-0-8)</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ph 106 abc Topics in Classical Physics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Total</td>
<td>50 50 50</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 91 ab Projects Laboratory in Applied Physics</td>
<td>6 6</td>
</tr>
<tr>
<td>APh Electives</td>
<td>18 18 18</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Other Electives</td>
<td>18 18 18</td>
</tr>
<tr>
<td>Total</td>
<td>51 51 45</td>
</tr>
</tbody>
</table>

*See Institute Requirements for specific rules regarding humanities.
*See item 1 Option Requirements.
*See items 6 and 7, Option Requirements.
*Given first and second terms in 1975-76; open to seniors only.
Undergraduate Information

Suggested Electives

The student may elect any course that is offered in any term provided he has the necessary prerequisites for that course. The following subjects are suggested as being especially suitable for a well-rounded course of study. They need not be taken in the year suggested.

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 23</td>
<td>Ph 77 ab</td>
<td>APh 91 c</td>
</tr>
<tr>
<td>Ge 1</td>
<td>EE 91 abc</td>
<td>APh 100</td>
</tr>
<tr>
<td>Ge 2</td>
<td>EE 114 abc</td>
<td>Ael/Ph 101 abc</td>
</tr>
<tr>
<td>Bi 1</td>
<td>AMa 104</td>
<td>APh 105 abc</td>
</tr>
<tr>
<td>Ay 1</td>
<td>AMa 105 ab</td>
<td>APh 114 abc</td>
</tr>
<tr>
<td>ME 1 ab</td>
<td>Ch 26 ab</td>
<td>AMa 101 abc</td>
</tr>
<tr>
<td>ME 3</td>
<td>Ay 112 abc</td>
<td>AMa 104</td>
</tr>
<tr>
<td>EE 13 abc</td>
<td>Ay 113 abc</td>
<td>AMa 105 ab</td>
</tr>
<tr>
<td>EE 14 abc</td>
<td>Ay 10</td>
<td>Ch 125 abc</td>
</tr>
<tr>
<td>EE 90 abc</td>
<td>Ay 15</td>
<td>Ph 125 abc</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>Ge 154 abc</td>
<td>Ph 129 abc</td>
</tr>
<tr>
<td></td>
<td>APh 100</td>
<td>Ph 77 ab</td>
</tr>
</tbody>
</table>

More Specialized Courses

APh 140 abc	APh 156 abc
APh 141	APh 161 abc
APh 153 abc	APh 163
APh 154	Ch 113 abc
APh 181 abc	EE 91 abc
APh 185 abc	EE 155 abc
APh 190 abc	Ge 104 abc
APh 195 ab	Ge 166 a
AM 135 abc	Ge 166 b
ChE 103 abc	
ChE 105 abc	
ChE 126 abc	

1These courses are taught at irregular intervals depending upon demand; consult the pre-registration course listing.

Astronomy Option

The astronomy option is designed to give the student an understanding of the basic facts and concepts of astronomy, to stimulate his interest in research, and to provide a basis for graduate work in astronomy. The sophomore-junior sequence (Ay 20, 21, 22, 100, 101, 102) constitutes a solid introduction to modern astronomy. More advanced courses may be taken in the junior and senior years.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed in the Division of Physics, Mathematics and Astronomy may, at the discretion of his department, be refused permission to continue the work in this option. A fuller statement of this regulation will be found on page 154.
Option Requirements

1. Ay 20
2. Ay 21 or 102
3. Ay 101
4. 14 units of Ay electives excluding Ay 1
5. Ph 3, Ph 5 or 6, Ph 7
6. Ph 92 abc
7. Ph 106 abc
8. 54 additional units of Ay or Ph courses
9. 27 additional units of science or engineering electives of which 18 must be outside the Division of Physics, Mathematics and Astronomy
10. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Laboratory</td>
<td>0-6</td>
<td>0-6</td>
<td>6</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>0-9</td>
<td>3-6</td>
<td>12-15</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>44-47</td>
<td>45-48</td>
<td>45-48</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Physics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Topics in Classical Physics</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>The Physics of Stars</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma Astrophysics and the Interstellar Medium</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>18-24</td>
<td>9-12</td>
<td>9-15</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>45-51</td>
<td>47-50</td>
<td>45-51</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomy or Physics Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18-24</td>
<td>18-24</td>
<td>18-24</td>
</tr>
<tr>
<td>Suggested total number of units</td>
<td>45-51</td>
<td>45-51</td>
<td>45-51</td>
</tr>
</tbody>
</table>

Students are encouraged (but not required) to undertake research leading to a senior thesis; credit for this work is provided through Ay 42.

1Students are required to take (a) Ph 3 if not already taken, (b) Ph 5 or Ph 6, and (c) Ph 7.
2For rules governing humanities electives, see page 170.
3Sophomore electives include at least 27 units of science and engineering courses, of which at least 18 units shall be in subjects other than mathematics, physics, and astronomy. It is desirable for a student to acquire as broad as possible a background in other related fields of science and engineering.
Suggested Electives

The student may elect any course that is offered in any division in a given term, provided that he has the necessary prerequisites for that course. The following list contains courses useful to work in various fields of astronomy and astrophysics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 1</td>
<td>Introduction to Biology</td>
<td>9</td>
</tr>
<tr>
<td>EE 5</td>
<td>Introduction to Linear Electronics (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Ge 1</td>
<td>Physical Geology (3-3-3)</td>
<td>9</td>
</tr>
<tr>
<td>Ge 2</td>
<td>Geophysics (2-1-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>Introduction to Abstract Algebra (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>Introductory Methods of Applied Mathematics</td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ma 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td>11 11</td>
</tr>
<tr>
<td>Ma 112 ab</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 or 9</td>
</tr>
<tr>
<td>EE 13 abc</td>
<td>Linear Systems Theory (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 14 abc</td>
<td>Electronic Circuits (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 90 abc</td>
<td>Laboratory in Electronics (0-3-1)</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Ge 152</td>
<td>Radar Astronomy (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ge 155</td>
<td>Introduction to Planetary Science (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Ge 166 a</td>
<td>Physics of the Earth's Interior (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ge 166 b</td>
<td>Planetary Physics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ph 77 ab</td>
<td>Advanced Physics Laboratory</td>
<td>6 6</td>
</tr>
<tr>
<td>Ph 93 ab1</td>
<td>Topics in Contemporary Physics (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ph 125 abc1</td>
<td>Quantum Mechanics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ay 22</td>
<td>Solar System Astronomy (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 100</td>
<td>Astronomical Measurements and Instruments (3-3-6)</td>
<td>12</td>
</tr>
<tr>
<td>Ay 110</td>
<td>Senior Seminar in Astrophysics (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Ay 131</td>
<td>Stellar Atmospheres (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 132</td>
<td>Stellar Interiors (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ay 133 abc</td>
<td>Radio Astronomy (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ay 141</td>
<td>Research Conference in Astronomy (1-0-1)</td>
<td>2 2 2</td>
</tr>
</tbody>
</table>

1Students who plan to do graduate work in astronomy or radio astronomy should elect some of these courses during their third and fourth years, on consultation with their advisers.

Biology Option

The undergraduate option in biology is designed to give the student an understanding of the basic facts, techniques, and concepts of biological science as well as a solid foundation in physical science. Emphasis is placed on the more general and fundamental properties of living creatures, thus unifying the traditionally separate fields of the life sciences. Involvement of undergraduates in the research programs of the division is encouraged.

Flexibility to accommodate varied individual scientific interests, within the broad scope of biology, is achieved through the provision of numerous elective courses, through programs of individual research (Bi 22), and of tutorial instruction (Bi 23).

The undergraduate option serves as a basis for graduate study in any field of biology or for admission to the study of medicine.

Undergraduate Research. The division encourages undergraduate participation in its research programs; such research can frequently be of a depth and caliber so as to result in a research report or scientific publication. Research opportunities may be arranged with individual faculty members or guidance may be obtained from the Biology Undergraduate Student Adviser.
Premedical Program. The undergraduate course for premedical students is essentially the same as that for biology students and is intended as a basis for later careers in research as well as in the practice of medicine. It differs in some respects from premedical curricula of other schools; however, it has been quite generally accepted as satisfying admission requirements of medical schools. Slight modifications in the curriculum may be required for admission to certain medical schools, or in cases in which the student wishes to try to complete admission requirements in three years instead of four.

It is recommended that all students contemplating application to medical school consult with the premedical adviser, Professor Hood.

Marine Biology. In addition to the courses listed in this catalog, arrangements may be made to take courses in marine biology offered at the Santa Catalina Marine Biological Laboratory. Tutorial instruction in the biology of marine invertebrates may also be obtained in Bi 23.

Option Requirements

1. Bi 1
2. Bi 7
3. Bi 9
4. Bi/Ch 110 ab
5. Bi 111
6. Bi 122
7. Bi 151 a
8. Ch 41 abc
9. 58 additional units of Bi courses
10. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Electromagnetism and Quantum Mechanics (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Bi 1</td>
<td>Chemistry of Covalent Compounds (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Bi 9</td>
<td>Introduction to Biology (3-3-3)</td>
<td>.</td>
</tr>
<tr>
<td>Electives</td>
<td>Cell Biology (3-3-3)</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-51</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 46 ab</td>
<td>.</td>
<td>8</td>
</tr>
</tbody>
</table>

¹For rules governing humanities electives, see page 170.
Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 7</td>
<td>Organismic Biology (3-3-3)</td>
<td>9</td>
</tr>
<tr>
<td>Bi/Ch 110 ab</td>
<td>Biochemistry (4-0-8)</td>
<td>12</td>
</tr>
<tr>
<td>Bi 111</td>
<td>Biochemistry Laboratory (0-8-2)</td>
<td>10</td>
</tr>
<tr>
<td>Bi 122</td>
<td>Genetics (3-3-6)</td>
<td>12</td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
<td>15-21 14-20 24-30</td>
</tr>
</tbody>
</table>

| Total Credits | 45-51 |

Recommended Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 21 abc</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

*Electives must include sufficient units of work in Biology to complete the graduation requirement for 140 units of work in Biology.

**Ch 21 abc is strongly recommended for students interested in chemical biology, as many graduate programs expect entering students to have taken a course in physical chemistry.

Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 3</td>
<td>Biology and Social Problems (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Bi 22</td>
<td>Special Problems</td>
<td>x or x or x</td>
</tr>
<tr>
<td>Bi 23</td>
<td>Biology Tutorial (units up to 6 maximum)</td>
<td>x or x or x</td>
</tr>
<tr>
<td>Bi 27</td>
<td>Biology Scholar's Program</td>
<td>x or x or x</td>
</tr>
<tr>
<td>Bi 102</td>
<td>Vertebrate Biology (2-5-5)</td>
<td>12</td>
</tr>
<tr>
<td>Bi 106</td>
<td>Developmental Biology of Animals (2-3-4)</td>
<td>9</td>
</tr>
<tr>
<td>Bi 114</td>
<td>Immunology (4-0-5)</td>
<td>9</td>
</tr>
<tr>
<td>Bi 116</td>
<td>Immunology Laboratory (0-5-0)</td>
<td>5</td>
</tr>
<tr>
<td>Bi 119</td>
<td>Advanced Cell Biology (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Bi 134</td>
<td>Advanced Research Techniques in Molecular Biology (0-10-4)</td>
<td>14</td>
</tr>
<tr>
<td>Bi 135</td>
<td>Optical Methods in Biology (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Bi 136</td>
<td>Optical Methods in Biology Laboratory (0-6-2)</td>
<td>8</td>
</tr>
<tr>
<td>Bi 137</td>
<td>Multicellular Assemblies (2-2-4)</td>
<td>8</td>
</tr>
<tr>
<td>Bi 153</td>
<td>Brain Studies of Motivated Behavior (2-4-6)</td>
<td>12</td>
</tr>
<tr>
<td>Bi 155</td>
<td>Psychobiology (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Bi 156</td>
<td>Neurochemistry (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Physical Chemistry (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Env 144</td>
<td>Ecology (2-1-3)</td>
<td>6</td>
</tr>
<tr>
<td>L 1 abc</td>
<td>Elementary French (3-1-6)</td>
<td>10 10 10</td>
</tr>
<tr>
<td>L 32 abc</td>
<td>Elementary German (4-0-6)</td>
<td>10 10 10</td>
</tr>
<tr>
<td>L 50 abc</td>
<td>Elementary Russian (4-0-6)</td>
<td>10 10 10</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 151 a</td>
<td>Neurophysiology (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>27-33 36-42 36-42</td>
</tr>
</tbody>
</table>

| Total Credits | 45-51 |

1For rules governing humanities electives, see page 170.
Electives

In addition to those listed for the third year:

Bi 115 Virology (3-4-3) 10
Bi 129 Biophysics (2-0-4) .. . 6 .
BiCh 132 abc Biophysical Chemistry of Macromolecules (3-0-6). 9 9 9
BiCh 133 Biophysical Chemistry of Macromolecules Laboratory (0-10-4) .. . 14 14
Bi 141 Selected Topics in Evolution Theory (2-0-4) 6
Bi 152 Behavioral Biology (2-0-4) .. . 6 .
Bi 161 Neurophysiology Laboratory (0-5-1) ... 6 . .
Bi 208 Selected Topics in Neurobiology ... x or x
Bi 209 Psychobiology Seminar (units to be arranged) x or x or x
Bi 220 abc Developmental Biology of Animals (1-0-3) 4 4 4
Bi 241 Advanced Topics in Molecular Biology (2-0-4) 6
Bi 260 Advanced Physiology ... x or x or x
Ch 144 ab Advanced Organic Chemistry (3-0-6) 9 9 .
Ch 244 ab Molecular Biochemistry (3-0-3) .. 6 6 .
Env 145 a Environmental Biology (2-4-4) .. . 10 .
Env 145 b Environmental Biology (3-0-6) .. . 9 .
Ge 5 Geobiology (3-0-6) 9 .

Chemical Engineering Option

Chemical Engineering is one of the broader of the applied disciplines and involves intellectual development in the fundamental areas of mathematics, physics, and chemistry. In addition, it requires decision making in problem areas calling for judgment in economic and social matters. Study in this option leads, especially when followed by graduate work, to careers in teaching and research in colleges and universities or to careers in government and industrial concerns, including research, development, and management of broad classes of problems involving chemical systems.

Freshman and sophomore students normally take the fundamental courses in chemistry, physics and mathematics (Ch 1 abc, Ch 41 abc, Ph 1 abc, Ph 2 abc, Ma 1 abc, and Ma 2 abc). Students who show themselves to be qualified and have passed a departmental examination may, however, elect to take more advanced courses.

Students interested in an introduction to the breadth of chemical engineering are encouraged to take ChE 10. The open-ended projects in ChE 10 also offer an opportunity to become acquainted with some of the faculty in Chemical Engineering.

In the second year, students normally take a basic course in chemical engineering thermodynamics, ChE 63 abc. In addition, there are 27 units of elective courses.

Third-year students take the chemical engineering laboratory during the first term and may continue that laboratory or take the laboratory in physical chemistry. Students help plan and conduct both demonstration and open-ended experiments, analyze data taking into account uncertainty and errors, and present their results both orally and by means of a formal report. Juniors take courses in the physical description of chemical systems, and an introduction to the techniques of applied mathematics. Juniors also take a unified course in transport phenomena involving the study of transfer of momentum, energy, and materials in situations of practical interest. In addition, there are 36 units of elective courses.

Seniors take a course in applied chemical kinetics involving the basic study of chemical reactions combined with transport processes in systems of practical interest. That work is used along with other chemical engineering background in which both synthesis and analysis are applied in senior courses in the optimal design and simulation of chemical systems. There are at least 69 units of elective courses.

Undergraduate research is emphasized, and students are encouraged even in the freshman year to participate in research in association with staff members. Over the past year such research has resulted in a number of publications in scientific journals.
Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed under the Division of Chemistry and Chemical Engineering may at the discretion of the faculty in this division be refused permission to continue the work of this option. A full statement of this regulation will be found on page 154.

Option Requirements

1. Ch 41 abc
2. ChE 63 abc
3. ChE 126 a and either ChE 126 b or Ch 26 a
4. AMa 95 abc
5. Ch 21 abc
6. ChE 103 abc
7. ChE 101 ab
8. ChE 110 ab, ChE 111
9. Ec/SS 11*
10. 6 units of laboratory other than AMa and IS
11. 18 units of chemistry electives
12. 27 units of science and engineering electives**
13. Passing grades must be earned in a total of 516 units, including the courses listed below.

*These 9 units partially satisfy the Institute requirements in Humanities and Social Sciences.

**If research units (ChE 80) are to be used to fulfill elective requirements in the chemical engineering option, a written research report approved by the research director must be submitted in duplicate before May 10 of the year of graduation.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ChE 63 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChE 126 ab</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChE 101 ab</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ChE 110 abc</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ChE 111</td>
<td>18</td>
<td>18</td>
<td>33</td>
</tr>
</tbody>
</table>

| | 36 | 36 | 42 |
Chemistry Option

Study in the chemistry option leads, especially when followed by graduate work, to careers in teaching and research in colleges and universities, in research in government and industry, in operation and control of manufacturing processes, and in management and development positions in the chemical industry.

A first-year general chemistry course is taken by all freshman students. The emphasis is on fundamental principles and their use to systematize descriptive chemistry. Students who show themselves to be qualified and receive the instructor's consent may elect to take the Advanced Placement first-year chemistry course as described on page 146. The one-term required laboratory is essentially in quantitative analysis, but is designed to train the student to plan, execute, and critically interpret experiments involving quantitative measurements of various physical quantities. The laboratory in the second and third terms is optional and is designed to introduce the student to current experimental work in chemical synthesis, structure, and dynamics.

There are no formal chemistry course requirements in the chemistry option except for 2 units of Ch 90. Each student, in consultation with his adviser, selects a suitable course of study under the supervision of the division. Within the total period of undergraduate study there are Institute requirements for Ma 1 abc, Ph 1 abc, Ma 2 abc, Ph 2 abc, and 108 units of humanities and/or social science as well as 9 units of physical education.

The group of courses listed below would constitute a common core for many students in the option.

Any student of the chemistry option whose grade-point average is less than 1.9 will be admitted to the option for the following year only with the special permission of the Division of Chemistry and Chemical Engineering.

Option Requirements

1. Ch 90
2. Passing grades must be earned as required by the chemistry department, including the course listed above.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Chemistry of Covalent Compounds (3-0-6)</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electromagnetism and Quantum Mechanics (4-0-5)</td>
</tr>
<tr>
<td>Ch 46 ab</td>
<td>Experimental Methods of Covalent Chemistry (1-6-2)</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Physical Education (0-3-0)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Chemical Equilibrium and Analysis (2-0-4)</td>
</tr>
<tr>
<td>Ch 15</td>
<td>Chemical Equilibrium and Analysis Laboratory</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>The Physical Description of Chemical Systems (3-0-6)</td>
</tr>
<tr>
<td>Ch 90</td>
<td>Oral Presentation (1-0-1)</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This core program is not rigorously required for graduation in the option, nor is it in any sense a complete program. Students are expected to work out individual programs suitable for their interests and professional goals in consultation with their advisers. Several representative programs, including sets of possible electives, are shown below. These may well approximate choices by students who intend to do graduate work in conventional areas of chemistry.

Suggested Representative Courses of Study for Those Intending To Do Graduate Work in Particular Areas of Chemistry

<table>
<thead>
<tr>
<th>Inorganic Chemistry</th>
<th>Chemical Physics</th>
<th>Organic Chemistry</th>
<th>Chemical Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 41 abc</td>
<td>Ch 41 abc</td>
<td>Ch 41 abc</td>
<td>Ch 41 abc</td>
</tr>
<tr>
<td>Ch 46 ab</td>
<td>Ch 46 a</td>
<td>Ch 46 ab</td>
<td>Ch 46 ab</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Ph 2 abc</td>
<td>Ph 2 abc</td>
<td>Ph 2 abc</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>Ma 2 abc</td>
<td>Ma 2 abc</td>
<td>Ma 2 abc</td>
</tr>
<tr>
<td>PE 2 abc</td>
<td>PE 2 abc</td>
<td>PE 2 abc</td>
<td>PE 2 abc</td>
</tr>
<tr>
<td>Electives<sup>a,b</sup></td>
<td>Electives<sup>a,b</sup></td>
<td>Electives<sup>c</sup></td>
<td>Electives<sup>a</sup></td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>Ch 21 abc</td>
<td>Ch 21 abc</td>
<td>Ch 21 abc</td>
</tr>
<tr>
<td>Ch 14</td>
<td>Ch 14</td>
<td>Ch 14</td>
<td>Ch 14</td>
</tr>
<tr>
<td>Ch 15</td>
<td>Ch 15</td>
<td>Ch 15</td>
<td>Ch 15</td>
</tr>
<tr>
<td>Ch 90</td>
<td>Ch 26 ab</td>
<td>Ch 144 ab</td>
<td>Bi/Ch 110</td>
</tr>
<tr>
<td>Electives<sup>a,b</sup></td>
<td>Ch 90</td>
<td>Electives<sup>c</sup></td>
<td>Ch 90</td>
</tr>
<tr>
<td>AM 95 ab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

Ch 26 ab	Ch 26 ab	Ch 26 ab	Ch 26 ab
Ph 106 abc or	L 39^a	Ch 247 ab	Ch 144 ab
Ch 135	Electives^c		Bi 111
Ch 125 ab or	Electives^{a,b}		
Ch 120 abc or	Ch 227 ab		
Ch 135 or			
Ch 144 ab			

^aIt should be recognized that a major fraction of the existing chemical literature, especially of organic chemistry, is in German. Russian is an important language for chemistry but the leading Russian periodicals are translated and published in English. A reading knowledge of German is important for research at the doctoral level.

^bExperience in computer programming and use is now important to all areas of chemistry.

^cCourses in biology and biochemistry are recommended as part of these electives.
Suggested Elective Courses for the Chemistry Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 3 abc</td>
<td>Experimental Chemical Science</td>
<td></td>
<td>6 3-6 3-6</td>
</tr>
<tr>
<td>Ch 80</td>
<td>Chemical Research</td>
<td></td>
<td>Units to be arranged</td>
</tr>
<tr>
<td>Ch 81</td>
<td>Independent Reading in Chemistry</td>
<td></td>
<td>Units to be arranged</td>
</tr>
<tr>
<td>Bi/Ch 110 abc</td>
<td>Biochemistry (4-0-8) (Prerequisite Ch 41)</td>
<td></td>
<td>12 12</td>
</tr>
<tr>
<td>Ch 112 abc</td>
<td>Advanced Inorganic Chemistry (2-0-7)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 113 abc</td>
<td>Advanced Ligand Field Theory (1-0-11)</td>
<td></td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ch 117</td>
<td>Introduction to Electrochemistry (2-0-4)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ch 118 ab</td>
<td>Experimental Electrochemistry</td>
<td></td>
<td>Units to be arranged</td>
</tr>
<tr>
<td>Ch 120 ab</td>
<td>The Nature of the Chemical Bond (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>Ch 122 abc</td>
<td>Methods for the Determination of the Structure of Molecules (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ch 125 ab</td>
<td>The Elements of Quantum Chemistry (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>Ch 127 ab</td>
<td>Nuclear Chemistry (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>Ch 130</td>
<td>Fundamentals of Photochemistry and Photobiology (3-0-3)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Bi/Ch 132 abc</td>
<td>Physical Chemistry of Biological Macromolecules (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>Bi/Ch 133</td>
<td>Physical Chemistry of Biological Macromolecules Laboratory (0-10-4)</td>
<td></td>
<td>14 or 14</td>
</tr>
<tr>
<td>Ch 144 ab</td>
<td>Organic Chemistry (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>ChE 10</td>
<td>Chemical Engineering Systems (3-3-3)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ChE 63 abc</td>
<td>Chemical Engineering Thermodynamics (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 80</td>
<td>Undergraduate Research</td>
<td></td>
<td>Units to be arranged</td>
</tr>
<tr>
<td>ChE 101 ab</td>
<td>Applied Chemical Kinetics (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>Transport Phenomena (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 167 abc</td>
<td>Polymer Science (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 168</td>
<td>Polymer Science Laboratory (0-7-2)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ChE 172 abc</td>
<td>Optimal Control Theory (3-0-6)</td>
<td></td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 173 ab</td>
<td>Advanced Transport Phenomena (3-0-6)</td>
<td></td>
<td>9 9</td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>Introductory Methods of Applied Mathematics (4-0-8)</td>
<td></td>
<td>12 12 12</td>
</tr>
<tr>
<td>Ay 1</td>
<td>Introduction to Astronomy (3-1-5)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bi 1</td>
<td>Introduction to Biology (distribution of units to be arranged)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bi 9</td>
<td>Cell Biology (3-3-3)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bi 119</td>
<td>Advanced Cell Biology (3-0-6)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Bi 122</td>
<td>Genetics (3-3-6)</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>E 5</td>
<td>Laboratory Research Methods in Engineering and Applied Science (1-3-2)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ec/SS 11 a</td>
<td>Introduction to Microeconomics (3-0-6)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ec 15</td>
<td>Introduction to Macroeconomics: Principles and Problems (3-0-6)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>APh 3</td>
<td>Introduction to Solid-State Electronics (3-0-3)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>EE 5</td>
<td>Introduction to Linear Electronics (2-0-4)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>APh 9</td>
<td>Solid-State Electronics Laboratory (1-3-2)</td>
<td></td>
<td>6 6</td>
</tr>
<tr>
<td>EE 90 abc</td>
<td>Laboratory in Electronics (0-0-3)</td>
<td></td>
<td>3 3 3</td>
</tr>
</tbody>
</table>
The principal objectives of the economics option are to provide a useful, working knowledge of the economic system and its most important institutions and to present a rigorous curriculum in the conceptual basis and practical applications of modern economics. The upper division courses in microtheory, macrotheory and econometrics build upon the methods of analysis provided in the Institute freshman and sophomore science and mathematics requirement, offering students comprehensive, scientific development of the fundamentals of modern economic theory. The remaining courses apply the tools of economic analysis to particular areas of public concern where economics is most relevant. The program provides students with an excellent preparation for graduate study in economics, and for an economics oriented plan of study in a graduate professional school of business or law, as well as a deeper understanding of the economic system and related public affairs.

Option Requirements

1. Ec/SS 11 a
2. Ec 15
3. Ec 121 ab
4. Ec 122
5. Ec 126 ab
6. Ma 112 a, or IS/SS 142 a
7. 45 additional units of advanced Economics and Social Science courses (not including Business Economics and Management). Students may take AMA 181 abc in partial fulfillment of this requirement.
8. 45 units of science, mathematics, and engineering courses. This requirement cannot be satisfied by APh 3, APh 4, APh 9, Bi 2, Ch 3, ChE 10, E 5, EE 4, EE 5, EE 10, Gr 1, IS 10, MS 4, Ph 3, Ph 4, or Ph 10. These courses are excluded because either they are freshman laboratory courses or they are courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year. Note: AMA 181 abc may count towards either this requirement or the economics electives requirement, but not towards both.
9. Passing grades must be earned in a total of 516 units, including courses listed above.
Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Courses</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electromagnetism and Quantum Mechanics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ec/SS 11 a</td>
<td>Introduction to Microeconomics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ec 15</td>
<td>Introduction to Macroeconomics: Principles and Problems (3-0-6)</td>
<td>18 9 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Electives*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>45 45 45</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th></th>
<th>Courses</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ec 121 ab</td>
<td>Price Theory (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ec 122</td>
<td>Econometrics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ec 126 ab</td>
<td>Money, Income, and Growth (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ma 112 a or IS/SS 142 a</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Analysis (3-0-6)</td>
<td>Computer Modeling and Data Analysis (3-0-6)</td>
<td>9 18 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Electives*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>45 45 45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th></th>
<th>Courses</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electives*</td>
<td>45 45 45</td>
</tr>
</tbody>
</table>

*See requirements 8 and 9, page 184.

Engineering and Applied Science Option

The engineering and applied science option offers the opportunity for study in challenging areas of science and technology. In this option the student may undertake work in such diverse fields as environmental engineering science, solid state physics, the physics of fluids, applied mathematics, earthquake engineering, quantum electronics, aerodynamics, information and computer science, solid mechanics, the science of materials, soil mechanics, bio-engineering science, elasticity and plasticity, plasma physics, and the theory of waves and vibrations. For those students who, in later life, hope to apply the science they learn to the useful and productive solution of the problems now confronting society, the option in engineering and applied science offers an unusually broad curriculum which permits the student to tailor his course of study to his individual needs. The first year of the four-year course of study leading to a Bachelor of Science degree is common for all students of the Institute, although freshman elective subjects are available as an introduction to various aspects of engineering and applied science. At the end of the first year, a student who elects the engineering and applied science option is assigned an adviser in his general field of interest and, together, they develop a program of study for the next three years. Beyond the Institute-wide requirements of physics, mathematics, and humanities, this program requires one year of applied mathematics and a certain number of units selected from a wide variety of engineering and applied science courses as well as interdisciplinary options such as applied physics and applied mathematics courses, from which the
student and his adviser may choose to build a solid foundation for the kind of engineering and applied science activity which the student desires to learn.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of an academic year in the subjects listed under the Division of Engineering and Applied Science may, at the discretion of the faculty in this division, be refused permission to continue the work of that option. A fuller statement of this regulation will be found on page 154.

Option Requirements

1. E 10 ab.
2. AMa 95 abc or Ma 108 abc.
3. 99 additional units in courses in the following: AMa, APh, Ae, AM, ChE, E, EE, ES, Env, Gr, Hy, IS, JP, MS, or ME
 Note that the student cannot exercise his pass/fail option on any courses offered to meet this requirement.
4. 9 units\(^1\) of courses taken from the following list: Ae 105 abc, AM 155, AM 160, APh 91 abc, APh 163, EE 90 abc, EE 91 abc, APh 154, Env 116, Env 143, Hy 111, Hy 121, IS 140, JP 170, MS 11, MS 130, MS 131, MS 132, ME 126
5. 9 units\(^1\) of additional laboratory\(^2\) excluding those for which freshman credit is allowed.
6. 27 additional units of science and engineering electives.
7. Passing grades must be earned in a total of 516 units, including courses listed above.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Electives(^3)</td>
<td>9</td>
</tr>
<tr>
<td>Electives(^4)</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 95 abc or Ma 108 abc</td>
<td>12</td>
</tr>
<tr>
<td>Humanities Electives(^3)</td>
<td>9</td>
</tr>
<tr>
<td>Electives(^4)</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 10 ab</td>
<td>2</td>
</tr>
<tr>
<td>Humanities Electives(^3)</td>
<td>9</td>
</tr>
<tr>
<td>Electives(^4)</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
</tr>
</tbody>
</table>

\(^{1}\)These units will partially satisfy requirement 3 when in appropriate subjects.
\(^{2}\)These electives must be complete laboratory courses and not the laboratory portion of a course. They may be selected from the list in 4 above or from laboratory courses offered by other options.
\(^{3}\)See statement on page 170.
\(^{4}\)See items (3, 4, 5, 6), Option Requirements. The units listed are typical. Most programs will vary somewhat from these numbers of units, but the total number must be selected so as to meet the overall unit requirement indicated in item 7.
NOTES:
I. Suggested electives suitable for particular fields of interest are given below.
II. The programs formed with these suggested electives are only samples of typical pro­grams and are not meant to represent special option requirements.
III. These electives must be chosen so as to satisfy the laboratory requirements given in items 4 and 5 above.

<table>
<thead>
<tr>
<th>Suggested Electives</th>
<th>COMMUNICATIONS & CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERONAUTICS</td>
<td></td>
</tr>
<tr>
<td>Freshman Year</td>
<td></td>
</tr>
<tr>
<td>One course per term selected from ChE 10, E 5, EE 4, IS 10</td>
<td></td>
</tr>
<tr>
<td>Sophomore Year*</td>
<td></td>
</tr>
<tr>
<td>ME 17 abc or APh 17 abc; one course per term selected from: ME 1 ab, ME 3, Ay 1, EE 5, APh 3</td>
<td></td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
</tr>
<tr>
<td>AM 97 abc, ME 19 abc; one course per term selected from: APh 50 abc, AM 151 abc, EE 90 abc, ME 5 abc, MS 5 abc</td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>Ae 101 abc, or Hy 101 abc, or Ae/AM 102 abc, and three courses per term selected from: Ae 103 abc, Ae 105 abc, AM 101 abc, AM 160, Hy 111, ME 126, JP 121 abc, APh 101, MS 120, MS 121, MS 122</td>
<td></td>
</tr>
</tbody>
</table>

| **APPLIED MECHANICS** | |
| *Freshman Year* | |
| One course per term selected from: E 5, Ge 1, IS 10, EE 4, EE 10 |
| **Sophomore Year*** | |
| ME 17 abc; one course per term selected from: ME 3, Ge 1, Bi 1, Ma 31, humanities |
| **Junior Year** | |
| AM 97 abc or AM 151 abc, ME 19 abc; one course per term selected from: Ge 2, Ma 112 ab, EE 90 abc, APh 50 abc, MS 5 abc |
| **Senior Year** | |
| AM 151 abc or AM 97 abc, AM 155, AM 125 abc or AMa 101 abc; one or two courses per term selected from: ME 126, AM 135 abc, AM 141 abc, Hy 101 abc, Ph 106 abc, AMa 104, AMa 105 ab |

| **COMMUNICATIONS & CONTROL** |
| *Freshman Year* |
| One or two courses per term selected from: IS 10, EE 4, EE 5, EE 10, Ph 3 |
| **Sophomore Year*** |
| EE 14 abc; one course per term selected from: EE 13 abc, IS 110, Ma 112 ab |
| **Junior Year** |
| EE 160 abc, EE 90 ab, IS 137, IS 138, IS 139; one course per term selected from: ChE 103 abc, EE 151 abc, Ma 5 abc |
| **Senior Year** |
| AMa 104, AMa 153 abc, EE 161 abc, AE 172 abc, EE 91 ab, one course per term selected from: AMa 105 ab, ChE 173, Ma 144 ab |

| **COMPUTER SCIENCE** |
| *Freshman Year* |
| One or two courses per term selected from: IS 10, EE 4, EE 5, EE 10 |
| **Sophomore Year*** |
| IS 137, IS 138, IS 139, Ma 5 abc |
| **Junior Year** |
| IS 110 abc, Ma 116 abc; one course per term selected from: Ma 121 abc, Lin 101, Lin 102, Lin 103, IS 121 abc, IS 141 |
| **Senior Year** |
| IS 130, Ma 121 abc, AMa 104, AMa 105 ab, IS 140 ab |

*Satisfies laboratory requirement, no. 4 on page 186.

*Students who have completed Ma 2 or Ma 1.5 prior to their sophomore year are encouraged to take AMa 95 abc as sophomores. Courses suggested in the junior and senior years may then be taken correspondingly earlier.
ELECTRON DEVICE PHYSICS
Freshman Year
One or two courses per term selected from: APh 3, APh 9, EE 4, EE 5, EE 10, Ph 3

Sophomore Year*
EE 14 abc, APh 17 abc

Junior Year
APh 50 abc, EE 151 abc or Ph 106 abc, EE 90 ab; one course per term selected from: EE 13 abc, MS 5, MS 120, MS 121, MS 122

Senior Year
APh 114 abc, APh 181 abc, APh 91 ab; one course per term selected from: APh 105, APh 140, MS 125, MS 126 ab, Ph 125

ELECTRONIC CIRCUITS
Freshman Year
One or two courses per term selected from: APh 3, IS 10, EE 4, EE 5, EE 10

Sophomore Year*
EE 14 abc; one course per term selected from: APh 17 abc, IS 110 abc

Junior Year
EE 13 abc, EE 151 abc, EE 90 ab; one course per term selected from: APh 50 abc, IS 137, IS 138, IS 139, ME 19 abc

Senior Year
EE 114 abc, EE 172 abc, EE 91 ab; one course per term selected from: APh 105 ab, APh 181 abc, EE 160 abc.

ENVIRONMENTAL ENGINEERING SCIENCE
(Note: By suitable choice of electives, students may place special emphasis on air, water, or other aspects of the environment.)

Freshman Year
Env 1; one course per term selected from: Bi 1, Bi 9, ChE 10, Ch 3 bc, E 5, Ge 1, IS 10, Env 20

Sophomore Year
ME 17 abc or ChE 63 abc, Ec/SS 11; one course per term selected from: Ch 14, Ch 41 abc, EE 4, EE 10, Env 144, Ge 5, ME 3

Junior Year
ME 19 abc or ChE 103 abc, Ec 118; one course per term selected from: AM 97 abc, Ch 15, Ch 21 or 24, Hy 111, Ma 112 ab, ChE 90 (or other electives listed above)

Senior Year
AMa 104, AMa 105 ab, AMa 181 abc, CE 105, CE 115 ab, Env 112 abc, Env 116, Env 117, Env 142 ab, Env 145 ab, Env 146 abc, Env 170 ab, Ge 130, Hy 101 abc, Hy 113 ab, E 99, Env 103 ab, Env 120, Env 143, (or other electives listed above); also research, Env 90

NOTE: The following humanities and social science electives are of special interest for students in environmental engineering science:
An 1, An 123, Ec 115, Ec 119, Ec 128 abc, Ec 130 ab, PS/SS 122, PS 1 abc, PS 135 abc, SS 150 abc, SS 151

FLUIDS ENGINEERING AND JET PROPULSION
Freshman Year
One course per term selected from: Gr 1, E 5, IS 10

Sophomore Year*
ME 17 abc, APh 3, EE 4, EE 5

Junior Year
ME 19 abc, AM 97 abc; one course per term selected from: ME 5 abc, ME 1261, ES 102 ab

Senior Year
Hy 101 abc, AM 151 ab; one course per term selected from: AM 155, ME 118 abc, JP 121 abc, JP 1701, Hy 1111

HYDRAULICS AND WATER RESOURCES
Freshman Year
One course per term selected from: Gr 1, IS 10, E 5, Ge 1, Ge 2, Env 1

Sophomore Year*
ME 17 abc; one course per term selected from: Ph 32, Ph 42, EE 4, EE 10, ME 3, Gr 1

1Satisfies laboratory requirement, no. 4 on page 186.

*Students who have completed Ma 2 or Ma 1.5 prior to their sophomore year are encouraged to take AMa 95 abc as sophomores. Courses suggested in the junior and senior years may then be taken correspondingly earlier.
Junior Year

AM 97 abc, ME 19 abc, Ec/SS 11 a, Ec 11 b

Senior Year

CE 10 abc, CE 115 ab and CE 150, Hy 103 ab, Hy 111\(^1\) or ME 126\(^1\), Hy 113 ab, Env 112 abc, or Env 117 or Env 146 abc

MATERIALS SCIENCE

Freshman Year

One course per term selected from: E 5, IS 10, Gr 1, ChE 10, EE 4, APH 3, APH 9, MS 4

Sophomore Year\(^*\)

ME 17 abc or APH 17 abc; one course per term selected from: ME 1 ab, ME 3, EE 5

Junior Year

AM 97 abc, MS 5 abc, APH 50 abc, ChE 107 abc

Senior Year

MS 120, MS 121, MS 122, MS 125, MS 126 abc

MECHANICAL DESIGN

Freshman Year

One course per term selected from: Gr 1, E 5, EE 5

Sophomore Year\(^*\)

ME 1 ab, ME 3, ME 17 abc

Junior Year

ME 19 ab, AM 97 abc; one course per term selected from: ME 5 abc, ME 126\(^1\), MS 10, MS 11; IS 10, EE 90

Senior Year

AM 151 abc, MS 5 ab; two courses per term selected from; Ae 241 abc, AM 155\(^1\), EE 13 ab

STRUCTURAL AND SOIL MECHANICS

Freshman Year

One course per term selected from: Gr 1, IS 10, E 5, Ge 1, Ge 2

Sophomore Year\(^*\)

ME 17 abc; one course per term selected from: Ph 3\(^2\), Ph 4\(^2\), EE 4, EE 10, ME 3, Gr 1

Junior Year

AM 97 abc, ME 19 abc

Senior Year

CE 10 abc, CE 115 ab and CE 150, AM 151 abc, CE 180, CE 181, and CE 182 or Hy 113 ab and Hy 111\(^1\), Env 112 abc or Env 146

STRUCTURE AND PROPERTIES OF ALLOYS

Freshman Year

One course per term selected from: E 5, IS 10, Gr 1, ChE 10, EE 4, APH 3, APH 9\(^2\), MS 4

Sophomore Year\(^*\)

ME 17 abc or APH 17 abc; one course per term selected from: ME 1 ab, ME 3, EE 5

Junior Year

AM 97 abc, MS 5 abc, APH 105 abc, Ch 21 abc, APH 50 abc

Senior Year

APH 114 abc, MS 120, MS 121, MS 122, MS 125, MS 126 ab, Ph 125 abc, MS 130\(^1\), MS 131\(^1\), MS 132\(^1\)

Students who have completed Ma 2 or Ma 1.5 prior to their sophomore year are encouraged to take AMa 95 abc as sophomores. Courses suggested in the junior and senior years may then be taken correspondingly earlier.

1. Satisfies laboratory requirement, no. 4 on page 186.
2. Satisfies laboratory requirement, no. 5 on page 186.
Geology, Geochemistry, and Geophysics and Planetary Science Options

The aim of the undergraduate program in the geological sciences is to provide thorough training in basic geological disciplines and, wherever possible, to integrate the geological studies with and build upon the courses in mathematics, physics, chemistry, and biology taken during the earlier years at the Institute. Special emphasis is also placed on field work because it provides first-hand experience with geological phenomena that can never be satisfactorily grasped or understood solely from classroom or laboratory treatment. Options are offered in geology (including paleontology and paleoecology), geophysics and planetary science, and geochemistry. Sufficient flexibility in electives is provided to permit a student to follow lines of special interest in related scientific and engineering fields. Students who do well in the basic sciences and at the same time have a compelling curiosity about the earth and its natural features are likely to find their niche in the geological sciences, especially if they possess flexible minds that enable them to grapple with complex problems involving many variables. Most students majoring in the earth sciences now find further training at the graduate level necessary.

Undergraduate Research and Bachelor's Thesis. The division encourages undergraduate research, particularly of such scope and caliber as to merit the preparation of a Bachelor's Thesis. Guidance in seeking research opportunities and in drawing up a research plan leading to the Bachelor's Thesis is available from the divisional Undergraduate Research Counselor.

Attention is called to the fact that any student whose grade-point average in freshman and sophomore physics, chemistry, and mathematics is less than 1.9 at the end of an academic year may, at the discretion of the Division of Geological and Planetary Sciences, be refused permission to register in the geological sciences options. Furthermore, any student whose grade-point average is less than 1.9 in the subjects in the Division of Geological and Planetary Sciences for the academic year, may, at the discretion of the division, be refused permission to continue in the geological sciences options.

Geochemistry Option Requirements

1. Ge 102
2. Ge 104 abc
3. Ge 105 abc
4. Ge 114
5. Ge 115 ac
6. Ge 123
7. Ch 14
8. Ch 15
9. Ch 21 abc
10. 30 units of French, German, or Russian
(Note: these units may also satisfy the Institute humanities requirement where appropriate.)
11. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

<table>
<thead>
<tr>
<th>Institute Requirements</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 1 abc</td>
<td>Freshman Mathematics</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 1 abc</td>
<td>Kinematics, Particle Mechanics, and</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric Forces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 1 abc</td>
<td>General and Quantitative Chemistry</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geology and Planetary Sciences 191

Ch 3 a Experimental Chemical Science 6
Freshman Laboratory .. 9

HSS Humanities and Social Science
Electives .. 27 27 27 27

PE 1 abc Physical Education ... 9
Ma Freshman Electives .. 3
Ma 2 abc Sophomore Mathematics 27
Ph 2 abc Electromagnetism and Quantum Mechanics 27
Sophomore Science and Engineering
Electives* ... 27
Total required courses .. 126 108 27 27

Division Requirements
Ge 100 Geology Club recommended 1
Ge 102 Oral Presentation .. 2
Ge 104 abc Advanced General Geology 27
Ge 105 abc Geologic Field Training and Problems 18
Language Elective** ... 30
Total required courses .. 126 108 72 60

Geochemistry Option Requirements
Ge 114 Optical and X-ray Mineralogy 12
Ge 115 ac Petrology and Petrography 24
Ge 123 Summer Field Geology ... 30
Ch 21 abc Physical Chemistry .. 27
Ch 14 Chemical Equilibrium and Analysis 6
Ch 15 Chemical Equilibrium and Analysis Laboratory 10
Total required courses .. 126 108 99 30 112

* These 27 units of sophomore electives should be used to broaden the student's background in science and engineering and to help him select an option. None of the introductory courses in the division, including Ge 1, Ge 2, Ge 4, Ge 5, and Ge 155, is specifically required of majors, but the election of one or more of these is highly recommended in the second year. The division recommends that an additional 9 units taken of physics, chemistry and/or engineering laboratory courses be completed in the second year. The units may be selected from the first year physics, chemistry, and engineering courses Ph 1, Ph 2, Ph 3, and Ch 15.

** The division requires 30 units of French, German, or Russian for graduation. Students with a good knowledge of one of these languages may petition the Academic Officer for waiver of this requirement. These units may be used as part of the 108 units of humanities and social sciences. Two years of language are highly recommended for students planning to do graduate work.

Geology Option Requirements
1. Ge 102
2. Ge 104 abc
3. Ge 105 abc
4. Ge 114
5. Ge 115 ac
6. Ge 121 abc
7. Ge 123
8. Ch 21 abc
9. 30 units of French, German, or Russian
 (Note: these units may also satisfy the Institute humanities requirement where appropriate.)
10. 27 additional units of Ge courses
11. Passing grades must be earned in a total of 516 units, including the courses listed above.
Typical Course Schedule

Institute Requirements
(Same as Geochemistry; see above)

Division Requirements
(Same as Geochemistry; see above)

Geology Option Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge 114</td>
<td>12</td>
</tr>
<tr>
<td>Ge 115 ac</td>
<td>24</td>
</tr>
<tr>
<td>Ge 123</td>
<td>30</td>
</tr>
<tr>
<td>Ge 121 abc</td>
<td>36</td>
</tr>
<tr>
<td>Ch 21 abc</td>
<td>27</td>
</tr>
</tbody>
</table>

Total required courses: 126

*Ch 41 abc or other chemistry courses may be substituted with the prior consent of the adviser and option representative.

**These 27 units may include Ge electives taken in other years and are taken in the fourth year if French, German, or Russian is taken in the third year. The student should particularly note the opportunity for undergraduate research provided by Ge 40 and Ge 41.

Geophysics and Planetary Science Option Requirements

1. Ge 102
2. Ge 104 abc
3. Ge 105 abc
4. Ph 106 abc
5. AMa 95 abc
6. 30 units of French, German, or Russian
 (Note: these units may also satisfy the Institute humanities requirement where appropriate.)
7. 54 additional units of Ph, Ma, or geophysics and planetary science courses
8. Passing grades must be earned in a total of 516 units, including the courses listed above.

Typical Course Schedule

Institute Requirements
(Same as Geochemistry; see above)

Division Requirements
(Same as Geochemistry; see above)

Geophysics and Planetary Science Option Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 106 abc</td>
<td>27</td>
</tr>
<tr>
<td>AMa 95 abc</td>
<td>36</td>
</tr>
</tbody>
</table>

Total required courses: 126

*These courses may include most mathematics, science, engineering, geophysics, or planetary science courses pertinent to the student’s interest, but must be chosen with the advice and consent of the student’s adviser. Ge 2 is not included.
History Option

History majors must take not less than 99 units of H courses during their four years as undergraduates. Of these, not less than 45 must be in junior and senior tutorial (H 97 ab and H 99 abc), and another 18 may be in H 98 ab if a student wishes and his or her instructors agree.

The courses and tutorials in the history option cover four areas; medieval Europe to 1500, modern Europe, the United States, and Asia. Each history major will concentrate in one of these areas and write a research paper in it (see below); each student must also take at least 36 units of history in other areas as approved by the adviser or the history option.

A student considering the history option when he or she comes to Caltech will be well advised to take H 1, 2, 6 or 8. In the sophomore year the student should take middle or upper level history courses; but this is also a good time to pursue the study of literature or philosophy, to begin or continue a foreign language (particularly desirable if the area of concentration is to be Europe), and to do introductory work in the social sciences. A student will normally make a commitment to an area of concentration early in the junior year. He or she will explore this area through regular course work supplemented, the second and third terms, by tutorial study in H 97 ab. At the beginning of the senior year a history major will enroll in H 99 abc and be assigned to a faculty member in his or her chosen area. After a period of preparation that may consume part or all of the first term, a student will embark on serious research in a topic in that area, the end result of which will be a substantial research paper.

Since statistics can be a useful tool in historical analysis, the option recommends that two of the science and math courses which a history major takes beyond the sophomore year (to satisfy the 54-unit Institute requirement) be Ma 112 a and 112 b. Students who wish to write their senior research papers in the history of science are encouraged to use the rest of the 54 units to advance their understanding of one or two particular scientific disciplines.

Option Requirements

1. H 97 ab
2. H 99 abc
3. 54 additional units of H courses (including, if appropriate, H 98 ab), of which 36 must be in an area or areas other than the area of concentration.
4. 54 additional units of science and engineering courses. This requirement cannot be satisfied by APh 3, APh 4, APh 9, Bi 2, Ch 3, ChE 10, E 5, EE 4, EE 5, EE 10, Gr 1, IS 10, MS 4, Ph 3, Ph 4, or Ph 10. These courses are excluded because either they are freshman laboratory courses or they are courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year.

Typical Course Schedule

A suggested program follows. Requirements are underlined; courses in parentheses are recommended.

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2 abc</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Physics 2 abc</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Middle- or Upper-Level History,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Information

<table>
<thead>
<tr>
<th>Literature, Philosophy, or Language</th>
<th>9</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Social Science</td>
<td>9 (Ec/SS 11 a)</td>
<td>9 (Ec/SS 11 b)</td>
<td>9 (Ec/SS 11 c)</td>
</tr>
<tr>
<td>Electives</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>H 97 ab</th>
<th>9</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science or Math</td>
<td>9 (Ma 112a)</td>
<td>9 (Ma 112b)</td>
<td>9</td>
</tr>
<tr>
<td>History electives</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other electives</td>
<td>27</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>H 99 abc</th>
<th>9</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science or Math</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>History electives</td>
<td>9 (H98a*)</td>
<td>9 (H 98b*)</td>
<td>9</td>
</tr>
<tr>
<td>Other electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

*If appropriate.

Independent Studies Program

An Independent Studies Program will be offered as an option during the 1975-76 academic year. The Registrar's Office has the material needed for applying.

Administrative Procedures and Guidelines

1. A student applying for the program must formulate a written proposal describing his goals, reasons for applying, general plan of study while at Caltech, and a detailed plan for the next quarter. It is also the responsibility of the student to recruit three faculty members, representing at least two divisions of the Institute, who approve of his plans and agree to act as his advisory "committee of three."

2. The committees of three will form the heart of the program and will bear the chief responsibility for overseeing the progress of each student. One adviser will be designated chairman of the committee of three and must be on the professorial staff. Of the other two members of the committee of three, one must be on the professorial staff and the other may be any qualified individual who agrees to accept the responsibilities of being an adviser and is acceptable to the ISP committee. Postdoctoral fellows, graduate students or faculty of other institutions could be utilized when appropriate. A faculty member who agrees to serve on a committee of three will be accepting responsibility equal to that involved in offering a more conventional tutorial course. He will need to set aside adequate time for counseling the student and monitoring his progress in any unstructured academic pursuits. Any ISP courses taken by a student will be the joint responsibility of the course instructor and a member of the committee of three. A considered, written evaluation of each student's performance and progress each quarter will be required by the ISP Committee from each committee of three.
3. The ISP committee will consider each proposed program in consultation with the prospective members of the committee of three faculty advisers. If the program seems suitable, a three-party written contract will be drawn up among the ISP committee, the committee of three, and the student. This contract will include the agreed-upon content of the student's program and the methods for ascertaining satisfactory progress for those parts of the student's program which are not standard Institute courses. Copies of the student's contract, along with all ISP records for each student and his transcript, will be kept in permanent files in the Registrar's Office.

4. The progress of each student in the ISP will be monitored at least every quarter by consultation between the ISP committee and each committee of three. Standards for acceptable progress and satisfactory completion of the terms of the three-party contract will be the responsibility of the ISP committee. When the ISP committee is satisfied that the terms of his contract have been fulfilled by the student, he will be recommended for graduation by the committee to the faculty.

Independent Studies Program Course
A course for ISP students is intended to accommodate individual programs of study or special research that fall outside ordinary course offerings. Students signing up for the ISP course will prepare, with the help of their advisory committee, a description of the course of study, a syllabus delineating the work to be accomplished, and a time schedule for reports both on progress and for work completed. The units of credit and form of grading of this course are decided by mutual agreement between the ISP committee, the student, and his three-member advisory committee.

Literature Option
Option Requirements
1. 108 units of Lit electives beyond the freshman year. *
2. L 102 abc or L 130 abc or L 141 abc or the equivalent.
3. 54 units of science, mathematics, and engineering courses. This requirement cannot be satisfied by APh 3, APh 4, APh 9, Bi 2, Ch 3, ChE 10, E 5, EE 4, EE 5, EE 10, Gr 1, IS 10, MS 4, Ph 3, Ph 4, or Ph 10. These courses are excluded because either they are freshman laboratory courses or they are courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year.
4. Passing grades must be earned in a total of 516 units, including the courses listed above.

*81 of these units partially fulfill the Institute requirement in humanities and social science.

Typical Course Schedule
Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>24 24 24</td>
</tr>
<tr>
<td>Sophomore Mathematics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Electromagnetism and</td>
<td>24 24 24</td>
</tr>
<tr>
<td>Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>(4-0-5)</td>
<td></td>
</tr>
<tr>
<td>Electives*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42 42 42</td>
</tr>
</tbody>
</table>

*Ma 2 abc, Ph 2 abc, Sophomore Mathematics, Electromagnetism and Quantum Mechanics, and Electives are listed for the second year, with units per term as indicated.
Third Year

Electives ... 45 45 45

Fourth Year

Electives ... 45 45 45

Mathematics Option

The four-year undergraduate program in mathematics leads to the degree of Bachelor of Science. The purpose of the undergraduate option is to give the student an understanding of the broad outlines of modern mathematics, to stimulate his interest in research, and to prepare him for later work, either in pure mathematics or allied sciences. Unless a student has done exceptionally well in his freshman and sophomore years, he should not contemplate specializing in mathematics. An average of at least "B" in his mathematics courses is expected of a student to major in mathematics.

Since the more interesting academic and industrial positions open to mathematicians require training beyond a bachelor's degree, the student who expects to make mathematics his profession must normally plan to continue, either here or elsewhere, with graduate work leading to the degree of Doctor of Philosophy. The undergraduate should bear this in mind in choosing his course of study. In particular he is urged to include at least one year, and preferably two years, of language study in his program. Overloads in course work are strongly discouraged; students are advised instead to deepen and supplement their course work by independent reading. The mathematics library is housed on the seventh floor of the Robert A. Millikan Memorial Library. In addition, there is a reference library of duplicate books and periodicals located on the third floor of the Sloan Laboratory of Mathematics and Physics. Books that are not on reserve for special courses may be borrowed from the Millikan Library. Current periodicals may be consulted in either library.

Undergraduates who join the option at the beginning of the sophomore year are required to take course Ma 5 abc during the second year. Students transferring from another option at the end of the sophomore year who have not yet taken this course will take it as their selected course in mathematics during their junior year concurrently with Ma 108, and will also take two selected courses in mathematics during their senior year.

The schedule of courses in the undergraduate mathematics option is flexible. It enables each student to adapt his program to his needs and mathematical interests and gives him the opportunity of becoming familiar with creative mathematics early in his career. Each term during the junior and senior years students normally take 18 units of courses in mathematics or applied mathematics, including the required course Ma 108. Any course listed under applied mathematics is regarded as an elective in mathematics and not as an elective in science, engineering or humanities.

Attention is called to the fact that any student whose grade-point average is less than 1.9 at the end of the academic year in the subjects under mathematics and applied mathematics may, at the option of his department, be refused permission to continue the work of the mathematics option. A fuller statement of this regulation will be found on page 154.
Option Requirements

1. Ma 5 abc
2. Ma 108 abc
3. One of the following one-year courses: Ma 116 abc, Ma 118 abc, Ma 120 abc, Ma 121 abc, Ma 122 abc, Ma 125 abc, Ma 137 a followed by Ma 143 ab, Ma 137 a followed by Ma 144 ab, Ma 150 abc, Ma 151 abc, Ma 152 abc, Ma 160 abc
4. 27 additional units in Ma or AMa
5. 27 additional units outside of Ma and AMa
6. Passing grades must be earned in a total of 483 units, including the courses listed above.

Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ma 5 abc</td>
<td>9 9 9</td>
</tr>
</tbody>
</table>

Sophomore Mathematics (4-0-5).......................... 9 9 9
Electromagnetism and Quantum Mechanics (4-0-5).......................... 9 9 9
Introduction to Abstract Algebra (3-0-6)............ 9 9 9
Electives in Science, Engineering, or Humanities .. 9 9 9
Humanities Electives,¹ minimum for first two years: 45 units .. 0-9 0-9 0-9

36-45 36-45 36-45

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 108 abc</td>
<td>12 12 12</td>
</tr>
</tbody>
</table>
| Selected courses in Mathematics minimum 9 9 9
| Humanities Electives,¹ minimum for first three years: 81 units .. 9-18 9-18 9-18
| Electives in Science, Engineering, or Humanities minimum 9 9 9
| For each term the total number of units is required to fall within range 39-48 39-48 39-48

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
</table>
| Selected course in Mathematics 9 9 9
| Humanities Electives,¹ minimum for graduation: 108 units .. 9-18 9-18 9-18
| Electives in Mathematics, Science, Engineering, or Humanities .. 18 18 18
| For each term the total number of units is required to fall within range 36-45 36-45 36-45

¹For rules governing humanities electives, see page 170.
Normally a junior will elect 9 units each term, and a senior 18 units each term, in mathematics. Sophomores who have not taken Ma 5 must take this course as juniors, postponing the selected course in mathematics to the senior year. They are strongly advised to take one or preferably two full-year courses in languages.

Physics Option

The distinctive feature of the undergraduate work in physics at the California Institute is the creative atmosphere in which the student at once finds himself. This results from the combination of a large and very productive graduate school with a small and carefully selected undergraduate body.

In order to provide the thorough training in physics required by those who are going into scientific or engineering work, two full years of general physics are required of all students. This first course in physics introduces modern ideas at the beginning of the first year and develops these along with the principles of classical mechanics and electricity as they apply to the dynamics of particles. More complex problems including quantum mechanics, electromagnetic fields, and atomic structure will be treated in the second year. Those who want to major in physics take intensive courses during their junior and senior years that provide an unusually thorough preparation for graduate work. The curriculum provides for the teaching of classical and modern physics from the first year through the entire undergraduate course of study. Elective courses during the junior and senior years provide flexibility which enables the student to select a program to fit his individual requirements. Many of the undergraduate students who elect physics are also given an opportunity to participate in some of the thirty to sixty research projects which are always under way and the graduate seminars which are open to undergraduates at all times.

Attention is called to the fact that any student whose grade-point average for one academic year is less than 1.9 in the subjects listed under this division will normally be refused permission to continue in the physics option. A more complete statement of this regulation will be found on page 154.

Option Requirements

1. Ph 3 or Ph 4
2. Ph 5 or Ph 6
3. Ph 7
4. One of the following: Ph 92 abc, Ph 112 abc, or Ph 125 abc
5. Ph 106 abc
6. Ph 77 and/or APh 91 in any two-term combination or Ph 78 abc
7. 54 additional units of any of the following: Ph 79, Ph 93 abc, Ph 112 abc, Ph 125 abc, Ph 127 abc, Ph 129 abc, APh 105 abc, APh 114 abc, APh 140 abc, APh 156 abc, or any physics graduate course numbered 200 or greater.
 Note that the student cannot exercise his pass/fail option on any courses offered to meet this requirement.
8. 27 units of science and engineering courses outside of Ph, APh, Ma, or AMa
9. Passing grades must be earned in a total of 516 units, including courses listed above but with no more than 9 units per term of Ph 171, Ph 172, or Ph 173.
Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 2 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ma 2 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Elective 2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Physics Laboratory 3</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>12</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 92 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Humanities Elective 2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 77 ab</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Physics Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Humanities Elective 2</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>51</td>
<td>45</td>
</tr>
</tbody>
</table>

Physics Laboratory Requirements

Students choosing a major in physics must complete the following laboratory requirements by the end of the second year:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 3 or Ph 4</td>
<td>6</td>
</tr>
<tr>
<td>Ph 5 or Ph 6</td>
<td>6</td>
</tr>
<tr>
<td>Ph 7</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Laboratory (sophomores only)</td>
<td>6</td>
</tr>
<tr>
<td>(freshmen only)</td>
<td>6</td>
</tr>
<tr>
<td>Ph 4</td>
<td>6</td>
</tr>
<tr>
<td>Ph 5</td>
<td>6</td>
</tr>
<tr>
<td>Ph 6</td>
<td>6</td>
</tr>
<tr>
<td>Ph 7</td>
<td>6</td>
</tr>
</tbody>
</table>

1Several lower-division laboratory courses from other options (APh 24, EE 90, etc.) have considerable physics content, and students wishing to substitute such a course for the requirement of Ph 5 or Ph 6 may petition the Physics Undergraduate Committee to do so.
2See Institute Requirements for specific rules regarding humanities.
3See Option Requirements 1, 2 and 3.
Suggested Electives

Sophomore Year
- Ma 5 abc
- Ge 1
- Ge 4
- Bi 1
- Ay 20
- Ay 21

Junior Year
- Ph 77 ab
- Ph 125 abc
- Ph 171
- Ph 172
- AMa 95 abc
- Ma 108 abc

Senior Year
- Ph 78 abc
- Ph 79 abc
- Ph 93 abc
- Ph 112 abc

Social Science Option

The social science program is designed to provide undergraduates with a multidisciplinary training in social science. The program focuses on the processes of social, political and economic change and the analytical methods used by social scientists to describe and predict them. The program is designed to be sufficiently flexible to provide an excellent preparation for students intending to attend graduate school in any social science discipline, law or business.

Option Requirements

1. Ec/SS 11 a
2. Ec/SS 11 b
3. Ec 121 ab
4. Ma 112 a or IS/SS 142 a
5. Ec 122
6. PS 122
7. One of the following: An 101 a, An 123 a or Psy 13.
8. 45 additional units of science, mathematics, and engineering courses. This requirement cannot be satisfied by APh 3, APh 4, APh 9, Bi 2, Ch 3, ChE 10, E 5, EE 4, EE 5, EE 10, Gr 1, IS 10, MS 4, Ph 3, Ph 4, or Ph 10. These courses are excluded because either they are freshman laboratory courses or they are courses primarily for freshmen, graded on a pass/fail basis, and not serving as prerequisites for more advanced courses. The courses Ay 1, Bi 1, Env 1, and Ge 1 may be taken to satisfy this requirement only if taken after the freshman year. Note: AMa 181 abc may count towards either this requirement or the economics electives requirement, but not towards both.
9. 45 additional units in any of the following: anthropology, economics, political science, psychology and social science.
10. Passing grades must be earned in a total of 516 units, including courses listed below.
Typical Course Schedule

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 2 abc</td>
<td>Sophomore Mathematics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 2 abc</td>
<td>Electromagnetism and Quantum Mechanics (4-0-5)</td>
<td>9 9 9</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>24 24 24</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>42 42 42</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma 112 a or</td>
<td>Elementary Statistics (3-0-6)</td>
<td>9 . .</td>
</tr>
<tr>
<td>IS/SS 142 a</td>
<td>Computing Modeling and Data Analysis (3-0-6)</td>
<td>9 . .</td>
</tr>
<tr>
<td>Ec 121 ab</td>
<td>Microeconomic Theory I & II (3-0-6)</td>
<td>9 9 .</td>
</tr>
<tr>
<td>Ec 122</td>
<td>Econometrics (3-0-6)</td>
<td>. 9 .</td>
</tr>
<tr>
<td>PS 122</td>
<td>Analytical Political Science (3-0-6)</td>
<td>. . 9</td>
</tr>
<tr>
<td>An 101 a or</td>
<td>Selected Topics in Anthropology (3-0-6)</td>
<td>9 . .</td>
</tr>
<tr>
<td>An 123 a or</td>
<td>Anthropology of Development (3-0-6)</td>
<td>. 9 .</td>
</tr>
<tr>
<td>or Psy 13</td>
<td>Introduction to Social Psychology (3-0-6)</td>
<td>. . 9</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>9 18 27</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>45 45 45</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electives*</td>
<td></td>
<td>45 45 45</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>45 45 45</td>
</tr>
</tbody>
</table>

*Students may concentrate on research by taking 54 units of supervised research in their senior year.
Section IV

INFORMATION AND REGULATIONS FOR THE GUIDANCE OF GRADUATE STUDENTS

THE GRADUATE PROGRAM

The Institute offers graduate work leading to the degrees of Master of Science and Doctor of Philosophy. In addition, it offers the following intermediate degrees: Aeronautical Engineer, Civil Engineer, Electrical Engineer, Geological Engineer, Geophysical Engineer, and Mechanical Engineer.

The academic work of the Institute is organized in six divisions:

- Biology
- Chemistry and Chemical Engineering
- Engineering and Applied Science
- Geological and Planetary Sciences
- The Humanities and Social Sciences
- Physics, Mathematics and Astronomy

Graduate work at the Institute is further organized into graduate options. Each option is supervised by those professors whose interests and research are closely related to the area of the option, within the administrative jurisdiction of one or more of the divisions. The graduate student who is working for an advanced degree in one of the graduate options is associated with an informal group of those professors who govern the option, other faculty including research associates and fellows, and other graduate students working for similar degrees.

A faculty member from each area of graduate study is available for consultation on problems concerning academic programs, degree requirements, financial aid, etc. The representatives for 1975-76 are as follows:

Aeronautics: Prof. B. Sturtevant
Applied Mathematics: Prof. H. B. Keller
Applied Mechanics: Prof. F. S. Buffington
Applied Physics: Prof. R. W. Vaughan
Astronomy: Prof. J. E. Gunn
Biology: Prof. J. F. Bonner
Chemical Engineering: Prof. L. G. Leal
Chemistry: Prof. R. G. Bergman
Civil Engineering: Prof. F. S. Buffington
Electrical Engineering: Prof. R. V. Langmuir
Engineering Science: Prof. F. S. Buffington
Environmental Engineering: Prof. F. S. Buffington
Science: Geological and Planetary Sciences: Prof. A. L. Albee
Materials Science: Prof. F. S. Buffington
Mathematics: Prof. R. P. Dilworth
Mechanical Engineering: Prof. F. S. Buffington
Physics: Prof. S. C. Frautschi
Social Sciences: Prof. L. E. Davis
GENERAL REGULATIONS

Admission to Graduate Standing*

Application for admission to graduate standing should be made to the Dean of Graduate Studies, on a form obtained from his office. Admission to graduate standing will be granted only to a limited number of students of superior ability, and application should be made as early as possible. No application fee is required. In general, admission to graduate standing is effective for enrollment only at the beginning of the next academic year. The California Institute of Technology encourages applications from both men and women, including members of minority groups. Students wishing to apply for assistantships or fellowships may do so in the appropriate section of the application for admission. The completed application is due in the Graduate Office no later than February 15.

Although the application form permits the applicant to state his intended major field of study and special interests, the application may actually be considered by two or more divisions or interdisciplinary programs.

To be admitted to graduate standing an applicant must in general have received a bachelor's degree representing the completion of an undergraduate course in science or engineering substantially equivalent to one of the options offered by the Institute. He must, moreover, have attained such a scholastic record and present such recommendations as to indicate that he is fitted to pursue, with distinction, advanced study and research. In some cases examinations may be required. If the applicant's preliminary training has not been substantially that given by the four-year undergraduate options at the Institute, he may be admitted subject to satisfactory completion of such undergraduate subjects as may be assigned. Admission sometimes may have to be refused solely on the basis of limited facilities in the department concerned.

Prior to final acceptance for admission, each applicant is required to submit a Report of Medical History and Physical Examination on a form which will be sent him at the time he is notified of admission. It is the applicant's responsibility to have this form filled out by a Doctor of Medicine (M.D.) of his own choosing. Admission is tentative pending such examination, and is subject to cancellation if the report indicates the existence of a condition that the Director of Health Services deems unsatisfactory. A standard two-injection tetanus inoculation (or booster shot if appropriate) and tuberculosis testing are required. Students who have been on leave of absence for two years or more must submit Medical History and Physical Examination reports under the same conditions as for new students.

Admission to graduate standing does not of itself admit the student to candidacy for a degree. Application for admission to candidacy for the degree desired must be made as provided in the regulations governing work for the degree. The student himself is responsible for seeing that admission is secured at the proper time.

Students from non-English-speaking countries are expected to read, write, and speak English and comprehend the spoken language. Applicants whose first or native language is not English are required to take the Test of English as a Foreign Language (TOEFL) as part of their application procedure. This test is given at centers throughout the world on several dates each year. The testing schedule and registration information may be obtained by writing to TOEFL, Educational Testing Service, Princeton, New Jersey 08540. Results of the test should be sent to the Graduate Office. Special no-credit classes in English are available for those students who need to improve their command of the language or who wish to perfect it. Information regarding these classes can be obtained from the Chairman of the Faculty Committee on Foreign Students and Scholars or from the International Desk. It is strongly recommended, however, that students who achieve a low TOEFL score make arrangements for remedial work during the summer preceding their registration.

*Individuals are considered for admission to student status — and all student services, facilities, programs, and activities are administered — in a nondiscriminatory manner without regard to race, religion, color, sex, or national origin, and fully in accordance with the existing laws and regulations.
In exceptional cases, students who have already decided to pursue a graduate degree may be permitted to earn credits toward that degree during their undergraduate years by being admitted also to graduate studies at the Institute prior to receipt of their undergraduate degree, thus allowing their undergraduate and graduate studies to overlap. Application for admission to graduate studies should be made in the normal way.

Special students, not working for degrees, are admitted only under exceptional circumstances.

Graduate Residence

One term of residence shall consist of one term’s work of not fewer than 36 units of advanced work in which a passing grade is recorded. If fewer than 36 units are successfully carried, the residence will be regarded as shortened in the same ratio; but the completion of a large number of units in any one term will not be regarded as increasing the residence. The residency requirement for each degree will be found under the degree regulation. In general, the degree requirements are: Master of Science, after a minimum of one year of graduate work; Aeronautical Engineer, Civil Engineer, Electrical Engineer, Geological Engineer, Geophysical Engineer, and Mechanical Engineer, after a minimum of six terms (two years) of graduate work; and Doctor of Philosophy, after a minimum of nine terms (three years) of graduate work.

Advanced work is defined as study or research in courses whose designated course number is greater than or equal to 100.

Registration

Students are required to register and file a program card in the Registrar’s Office at the beginning of each term of residence, whether they are attending a regular course of study, carrying on research or independent reading only, writing a thesis or other dissertation, or utilizing any other academic service or campus facility.

Before registering, the student should consult with members of the department in which he is taking his major work to determine the studies which he can pursue to the best advantage.

The number of units allowed for a course is so chosen that one unit corresponds roughly to one hour of work throughout the term for a student of superior ability.

A student will not receive credit for a course unless he is properly registered. At the first meeting of each class he should furnish the instructor with a class admission card for the course, obtained on registration. The student himself is charged with the responsibility of making certain that all grades to which he is entitled have been recorded.

Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Except by specific action of the Committee on Graduate Study, graduate students will be required to register for at least 36 units during each of their first three terms of attendance at the Institute. Exceptions for part-time students are subject to regulations detailed in the following section on Part-Time Programs. A graduate student who is registered for 36 or more units is classed as a full-time student.

Graduate students will be required to maintain their admission status until all requirements for a degree are fulfilled, whether by continuity of registration or on the basis of approved leave of absence. In case of lapse in graduate standing, readmission must be sought before academic work may be resumed or requirements for the degree completed.

Graduate students are encouraged to continue their research during the whole or a part of the summer, but in order that such work may count in fulfillment of the residency requirements, the student must file a registration card for such summer work in the office of the Registrar on May 17. A minimum of 10 units must be taken. Incoming graduate students who begin their graduate program during the summer are charged a fee for health insurance, although there is no tuition charge for summer research units.

All changes in registration must be reported, on drop or add cards, to the Registrar’s
Office by the student. Such changes are governed by the last dates for adding or dropping courses as shown on the academic calendar on pages 4 and 5. A student may not withdraw from or add a course after the last date for dropping or adding courses without, in addition to his department's consent, the approval of the Dean of Graduate Studies. M.S. candidates must obtain the signature of the Dean of Graduate Studies on all drop or add cards.

In registering for research, students should indicate on their program card the name of the instructor in charge, and should consult with him to determine the number of units to which the proposed work corresponds. At the end of the term the instructor in charge may decrease the number of units for which credit is given in case he feels that the progress of research does not justify the full number originally registered for.

A graduate student who undertakes activities related to the Institute (studies, research, an assistantship, or other employment) aggregating more than 62 hours per week must receive approval from the Dean of Graduate Studies. Petition forms for this purpose may be obtained from the Graduate Office and must carry the recommendation of the student's major department option representative (see page 203) before submission to the Graduate Office.

Registration is required for the term or summer period in which the requirements for an advanced degree are completed, including either the final examination or submission of a thesis. Registration with minimum tuition will be allowed for, at most, one term, except for summer registration.

With the approval of the Committee on Graduate Study, any graduate student whose work is not satisfactory may be refused registration at the beginning of any term by the department in which the student is doing his major work.

The registration of a graduate student is not complete unless his photograph for the Registrar's record card is affixed thereto, or certification from the photographer is obtained to show that such photograph is in course of preparation on the date of registration. The Registrar provides the opportunity to have these photographs made, without cost to the student, on the registration days of the first and second terms of each year. Photographs taken for this purpose at other times are provided by the student at his own expense.

Part-Time Programs

Part-time graduate study programs at the Institute are subject to the following rules:

1. Applicants for the part-time program must submit a regular application form.
2. Any research work done for academic credit shall be supervised by a Caltech faculty member.
3. Students admitted to the part-time program are required to take at least 27 units of graduate course work or research work each term during the academic year. They may not commit themselves to work for more than 20 hours per week for the sponsoring organization.
4. Part-time studies, on the program, will be limited to the first two years of academic residence for each student. Beyond the initial period, students continuing their graduate work must do so on a full-time basis.
5. The program will, in each option, be restricted each year to at most 20 percent of the planned number of new graduate students, with the understanding that adjustments to this limit are permissible for small options.
6. Any option at the Institute retains the right not to participate in the program or accept it under more stringent conditions.

Caltech Graduate Students Working at Special Laboratories

1. Any student who desires to take advantage of the unique opportunities available at the Special Laboratories, e.g., JPL or EQL, for Ph.D. thesis work, should be allowed to do so, provided he maintains good contact with academic life on campus, and the Laboratories commit support for the duration of the thesis research, and provided that all Caltech graduate thesis research carried out at the Special Laboratories be under the supervision of Caltech faculty members.
2. A student's request to carry out thesis work at the Special Laboratories should be formally endorsed by the appropriate committee of his option and by an appropriate Special Laboratories group on a petition submitted through the option representative to the Dean of Graduate Studies. By such approval, the Special Laboratories would recognize its commitment of special equipment or any other resources required to the thesis work. Approval of the Special Laboratories should also indicate that the thesis topic is a sensible one from its point of view, but that the subject is not likely to be preempted from the student.

3. Special Laboratories support of Caltech students doing thesis research at the Special Laboratories should be provided, if possible, in the form of a traineeship or otherwise through a campus graduate research assistantship (GRA) under a suitable work order. In this way a student can also receive a tuition scholarship (almost always awarded in conjunction with a GRA) and be on the same basis as a campus thesis student.

4. Employment by the Special Laboratories of a graduate student for work not connected with his thesis should be regarded as equivalent to other outside employment. No fixed policy regarding payment of tuition should be adopted for these situations. A student request for a tuition grant should be considered on an individual basis.

Grades in Graduate Courses

Term examinations are held in all graduate courses unless the instructor, after consultation with the chairman of the division, shall arrange otherwise. No student taking a course for credit shall be exempt from these examinations.

Grades for all graduate work are reported to the Registrar's office at the close of each term. The following system of grades is used to indicate class standing in graduate courses: "A" excellent, "B" good, "C" satisfactory, "D" poor, "E" conditioned, "F" failed, "Inc" incomplete. In addition to these grades, which are to be interpreted as having the same significance as for undergraduate courses (see page 152), the grade of "P", which denotes passed, may be used at the discretion of the instructor, for all or some of the students, in the case of seminar or other work which does not lend itself to more specific grading. In graduate research, only the grades of "P" and "F" are given.

Exchange Program with Scripps Institution of Oceanography

An exchange program has been established with the Scripps Institution of Oceanography (SIO), University of California, San Diego, permitting Caltech graduate students to enroll in and receive credit for graduate courses offered by SIO. Arrangements should be made through the student's major department and the office of the Dean of Graduate Studies. The student must obtain the advance approval of the instructors of courses to be taken at SIO. In some cases, when it is in the best interests of the student, arrangements may be made for the student to be temporarily in full-time residence at SIO.

Thesis research work done partly at SIO may be arranged directly by the student's department and the staff of appropriate research laboratories at SIO, without the necessity of enrolling for SIO courses designated for research; in this case the student will continue to be under the supervision of his Caltech thesis adviser and enroll for Caltech research units.

DEGREE REGULATIONS

Degree of Master of Science

The Master of Science degree is a professional degree intended to prepare a student for teaching, for further graduate studies, or for more advanced work in industry. Detailed requirements are based primarily on professional studies, and the program should be planned in consultation with the faculty in the appropriate discipline.
Under normal circumstances, the requirements for the M.S. degree can be completed in one academic year, but students from other schools who do not have completely adequate preparation may require longer.

Special regulations for the Master’s Degree in each graduate option are on pages 211 through 253.

Residence and Units of Graduate Work Required
At least one academic year of residence at the Institute (as defined on page 205) and 135 units of graduate work subsequent to the baccalaureate degree are required for the master’s degree. Included in these are at least 27 units of free electives or of required studies in the humanities. Courses used to fulfill requirements for the bachelor’s degree may not be counted as graduate residence.

To qualify for a master’s degree, a student must complete the work indicated in the section on special regulations for his option with a grade-point average of at least 1.9, considering the grade of “P” as being equivalent to “C”, and excluding grades for research.

In special cases, with the approval of the instructor and the Dean of Graduate Studies, courses taken elsewhere prior to enrollment at the Institute may be offered for credit. An examination may be required to determine the acceptability of such courses. Course credit, if granted, shall not be construed as residence credit.

Admission to Candidacy. Before mid-term of the first term of the academic year in which the student expects to receive the degree, he must file in the Office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. On the candidacy form, the student will submit his proposed plan of study, which must have the approval of his department. This plan of study, if approved, shall then constitute the requirements for the degree, and changes in the schedule will not be recognized unless initialed by the proper authority.

All changes in registration must be reported on drop or add cards to the Registrar’s Office. M.S. candidates must obtain the signature of the Dean of Graduate Studies on all drop or add cards.

Engineer’s Degree
The work for an engineer’s degree must consist of advanced studies and research in the field appropriate to the degree desired. It must conform to the special requirements established for the degree desired and should be planned in consultation with the members of the faculty concerned. Advanced studies are defined on page 204. Regulations governing registration will be found on page 205. Students who have received the master’s degree and wish to pursue further studies leading toward either the engineer’s or the doctor’s degree must file a new petition to continue graduate work toward the desired degree. Students who have received an engineer’s degree will not in general be admitted for the doctor’s degree.

Residence. At least six terms of graduate residence (as defined on page 205) subsequent to a baccalaureate degree equivalent to that given by the California Institute are required for an engineer’s degree. Of these, at least the last three terms must be at the California Institute. It must be understood that these are minimum requirements, and students must often count on spending a somewhat longer time in graduate work.

To qualify for an engineer’s degree a student must complete the work prescribed by his supervising committee with a grade-point average of at least 1.9, considering the grade of “P” as being equivalent to “C” and excluding grades for research. Work upon research and the preparation of a thesis must constitute no fewer than 55 units. More than 55 units may be required by certain departments, and the student should determine the particular requirements of his department when establishing his program.

In the case of a student registered for work toward an engineer’s degree, and holding a position as graduate assistant or other Institute employee, the actual number of hours per week required by his teaching or research services shall be deducted from the total number
of units for which he might otherwise register. This number of units shall be determined by his department.

Admission to Candidacy. Before mid-term of the first term of the academic year in which the student expects to receive the degree he must file in the office of the Dean of Graduate Studies an application for admission to candidacy for the degree desired. Upon receipt of this application, the Dean, in consultation with the chairman of the appropriate division, will appoint a committee of three members of the faculty to supervise the student’s work and to certify to its satisfactory completion. One of the members of the committee must be in a field outside the student’s major field of study. The student should then consult with this committee in planning the details of this work. The schedule of his work as approved by the committee shall be entered on the application form and shall then constitute a requirement for the degree. Changes in the schedule will not be recognized unless initialed by the proper authority. No course which appears on the approved schedule and for which the applicant is registered may be removed after the last date for dropping courses as listed in the catalog.

The student will be admitted to candidacy for the degree when his supervising committee certifies: (a) that all the special requirements for the desired degree have been met, with the exception that certain courses of not more than two terms in length may be taken after admission to candidacy; (b) that the thesis research has been satisfactorily started and probably can be finished at the expected time.

Such admission to candidacy must be obtained by mid-term of the term in which the degree is to be granted.

Thesis. At least two weeks before the degree is to be conferred, each student is required to submit to the Dean of Graduate Studies two copies of his thesis in accordance with the regulations governing the preparation of doctoral dissertations, which may be obtained from the Graduate Office.

The use of “classified” research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the Dean of Graduate Studies before the research is undertaken.

Before submitting his thesis, the candidate must obtain written approval of it by the chairman of the division and the members of his supervising committee, on a form obtained from the office of the Dean of Graduate Studies.

Examination. At the option of the department representing the field in which the degree is desired, a final examination may be required. This examination would be conducted by a board to be appointed by the candidate’s supervising committee.

Degree of Doctor of Philosophy

The degree of Doctor of Philosophy is conferred by the Institute primarily in recognition of breadth of scientific attainment and of power to investigate scientific problems independently and efficiently, rather than for the completion of definite courses of study through a stated period of residence. The work for the degree must consist of scientific research and the preparation of a thesis describing it, and of systematic studies of an advanced character primarily in science or engineering. In addition, the candidate must have acquired the power of expressing himself clearly and forcefully both orally and in written language.

Subject to the general supervision of the Committee on Graduate Study, the student’s work for the degree of Doctor of Philosophy is specifically directed by the department in which he has chosen his major subject. Each student should consult his department concerning special divisional and departmental requirements. See pages 211-253.

Admission. With the approval of the Committee on Graduate Study, students are admitted to graduate standing by the department in which they choose their major work toward the doctor’s degree. In some cases, applicants for the doctor’s degree may be required to register for the master’s or engineer’s degree first. These degrees, however, are not general prerequisites for the doctor’s degree. Students who have received the master’s degree and wish to pursue further studies leading toward either the engineer’s or the doctor’s degree must file a request to continue graduate work toward the desired degree. Students who have
received an engineer's degree will not, in general, be admitted for the doctor's degree.

During the second or third term of work toward the engineer's degree, a student may apply for admission to work toward the doctor's degree. If this admission is granted, his admission for the engineer's degree will be cancelled.

Minor Programs of Study. The Institute has no required minor program for the degree of Doctor of Philosophy, but individual options may have minor requirements at their discretion and on the approval of the Graduate Study Committee. Those students enrolled in a doctoral program prior to October 1, 1974, will have the choice of completing their work under this new policy or under the minor policy in effect at the time they were first enrolled. For the earlier policy, reference may be made to copies of catalogs on file in the Graduate Office or in divisional offices.

Residence. At least nine terms (three academic years) of residence subsequent to a baccalaureate degree equivalent to that given by the Institute are required for the doctor's degree. Of this at least one year must be in residence at the Institute. It should be understood that these are minimum requirements, and students must usually count on spending a somewhat longer time in residence. However, no student will be allowed to continue work toward the doctor's degree for more than 15 terms of graduate residence, nor more than 18 registrations for full- or part-time academic work except by special action of the Committee on Graduate Study. In either case graduate study taken elsewhere will be counted when residence credit at the Institute has been allowed. (See page 206 regarding summer registration for research.)

A student whose undergraduate work has been insufficient in amount or too narrowly specialized, or whose preparation in his special field is inadequate, must count upon spending increased time in work for the degree.

Admission to Candidacy. On recommendation of the chairman of the division concerned, the Committee on Graduate Study will admit a student to candidacy for the degree of Doctor of Philosophy after he has been admitted to work toward the doctor's degree and has been in residence at least one term thereafter; has initiated a program of study approved by his major department and, if needed, by his minor department; has satisfied the several departments concerned by written or oral examination or otherwise that he has a comprehensive grasp of his major and minor subjects as well as of subjects fundamental to them; has fulfilled any necessary language requirements; has shown ability in carrying on research with a research subject approved by the chairman of the division concerned. For special departmental regulations concerning admission to candidacy, see pages 211-253. Members of the Institute staff of rank higher than that of assistant professor are not admitted to candidacy for a higher degree.

A standard form, to be obtained from the Dean of Graduate Studies, is provided for making application for admission to candidacy. Such admission to candidacy must be obtained before the close of the second term of the year in which the degree is to be conferred. The student himself is responsible for seeing that admission is secured at the proper time. A student not admitted to candidacy before the beginning of the fourth academic year of graduate work at the Institute must petition through his division to the Dean of Graduate Studies for permission to register for further work.

Foreign Languages. The Institute believes in the importance of the knowledge of foreign languages and encourages their study as early as possible and preferably before admission to graduate standing. Although there is no Institute-wide foreign language requirement for the degree of Doctor of Philosophy, graduate students should check for possible specific requirements set by their division or smaller academic unit.

To encourage the study of foreign languages, the Institute recognizes previous work and offers the possibility of further study as a graduate student. The Institute offers a two-year intensive program in French, German, and Russian.

Examination. During his course of study every doctoral candidate shall be examined broadly and orally on his major subject, the scope of his thesis and its significance in relation
to his major subject. The examination, subject to the approval of the Committee on Graduate Study, may be taken at such time after admission to candidacy as the candidate is prepared, except that it must take place at least two weeks before the degree is to be conferred.

The examination may be written in part, and may be subdivided into parts or given all at one time at the discretion of the departments concerned. The student must petition for this examination, on a form obtained from the Graduate Office, not less than two weeks prior to the date of the examination. The petition must be approved by the Dean of Graduate Studies on behalf of the Committee on Graduate Study, and the examination announcement must appear in the Institute's weekly calendar. Explicit schedules may be obtained in the Graduate Office. For special departmental regulations concerning candidacy and final examination, see pages 211-253.

Thesis. Two weeks before the degree is to be conferred, the candidate is required to submit to the Dean of Graduate Studies two copies of his thesis in accordance with the regulations governing the preparation of doctoral dissertations, obtainable from the Graduate Office. For special departmental regulations concerning theses, see pages 211-253.

With the approval of the department concerned, a portion of the thesis may consist of one or more articles published jointly by the candidate and members of the Institute staff or other co-authors. In any case, however, a substantial portion of the thesis must be the candidate's own exposition of his work.

The use of "classified" research as thesis material for any degree will not be permitted. Exceptions to this rule can be made only under special circumstances, and then only when approval is given by the Dean of Graduate Studies before the research is undertaken.

Regulations and directions for the preparation of theses may be obtained from the office of the Dean of Graduate Studies, and should be followed carefully by the candidate.

Before submitting his thesis to the Dean of Graduate Studies, the candidate must obtain approval of it by the chairman of his division and the members of his examining committee. This approval must be obtained in writing on a form which will be furnished at the office of the Dean. The candidate himself is responsible for allowing sufficient time, at least two weeks, for the members of his committee to examine his thesis.

SPECIAL REGULATIONS OF THE GRADUATE OPTIONS

Applied Mathematics

Aims and Scope of Graduate Study in Applied Mathematics

A program for graduate study in applied mathematics is organized jointly by the Division of Physics, Mathematics and Astronomy and the Division of Engineering and Applied Science. The course of study leads to the Ph.D. degree and requires three or four years. This program is aimed at those students with a background in mathematics, physics, or engineering who wish to obtain a thorough training and to develop their research ability in applied mathematics. Students will be admitted to one of the two divisions according to background and interests.

As the joint sponsorship by the two divisions indicates, several different groups in the Institute contribute to the teaching and supervision of research. Conversely, students in applied mathematics should combine their basic mathematical studies with deep involvement in some field of application. In accordance with this, basic general courses are listed specifically under applied mathematics; these are to be supplemented according to the student's interest from the courses offered under mathematics, and from the whole range of
Institute courses in specific areas of physics, engineering, etc. Further advanced courses will be added as this program develops.

There is also an applied mathematics colloquium in which visitors, faculty, and students discuss current research.

Admission

Each new graduate student admitted to work for the Ph.D. in applied mathematics will be given an informal interview on Thursday or Friday of the week preceding the beginning of instruction for the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him in mapping out a course of study. The work of the student during the first year will usually include some independent reading and/or research.

Categories of Courses

Courses which are expected to form a large part of the student's program are divided into three categories as follows:

- **Group A.** Courses in mathematics and mathematical methods. Examples of these would include:
 - AMa 101: Methods of Applied Mathematics I
 - AMa 201: Methods of Applied Mathematics II
 - AMa 104: Matrix Theory
 - AMa 105: Introduction to Numerical Analysis
 - Ma 109: Delta Functions and Generalized Functions
 - Ma 125: Analysis of Algorithms
 - Ma 137: Real Variable Theory
 - Ma 141: Ordinary Differential Equations
 - Ma 143: Introduction to Functional Analysis
 - Ma 144: Probability

- **Group B.** Courses of a general nature in which common mathematical concepts and techniques are applied to problems occurring in various scientific disciplines. Examples of these include:
 - AMa 110: Introduction to the Calculus of Variations
 - AMa 151: Perturbation Methods
 - AMa 152: Linear and Nonlinear Wave Propagation
 - AMa 153: Stochastic Processes
 - AMa 181: Mathematical Programming and Game Theory
 - AMa 251: Applications of Group Theory
 - AMa 260: Special Topics in Continuum Mechanics

- **Group C.** Courses dealing with special topics in the sciences. A complete list cannot be given here but examples are courses in elasticity, fluid mechanics, dynamics, quantum mechanics, electromagnetism, communication theory, etc.

Master's Degree in Applied Mathematics

Entering graduate students are admitted for the Ph.D. program. The master's degree may be awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units of advanced graduate work should be in applied mathematics.

Degree of Doctor of Philosophy in Applied Mathematics

The *Oral Candidacy Examination*. In order to be recommended for candidacy the student must, in addition to satisfying the general Institute requirements, pass an oral candidacy examination. This examination will normally be given during the first term of the second graduate year. It will be based upon one year's work in courses of the type described in
Group A above, and upon one year's work in courses of the type described in Groups B and C. The examination will also cover any independent study carried out by the student during his first graduate year.

Further Requirements. In order to be recommended for the Ph.D. in applied mathematics, the student must do satisfactory work in a program containing at least 45 units of work in courses of the type indicated in Group A, and at least 45 units of courses chosen from Groups B and C. This is intended to prevent undue specialization in either the more mathematical or the more engineering type of courses.

Submission of Thesis. On or before the first Monday in April of the year in which the degree is to be conferred, a candidate for the degree of Ph.D. in applied mathematics must deliver a typewritten or printed copy of his completed thesis to his research supervisor.

Final Examination. The final oral examination will be held as nearly as possible four weeks after the submission of the thesis. The examination will cover the thesis and related areas.

Subject Minor in Applied Mathematics

Students majoring in other fields may take a subject minor in applied mathematics provided the program consists of 45 units sufficiently far removed from their major program of study and is approved by the applied mathematics faculty.

Applied Physics

Aims and Scope of the Graduate Program in Applied Physics

A graduate student in applied physics may be admitted to work toward a master's degree or toward the Ph.D. degree.

A professional in the field should be able to cope with any physics problem that confronts him in a technological context. Graduate study in applied physics should therefore cover considerable ground with the least possible loss of depth. Independent and original research is essential, but not for the purpose of acquiring advanced knowledge in a narrow specialty. In the rapidly changing technology of today an applied physicist should not expect to remain precisely within the field of his thesis research; instead through his research he should have gained the confidence to be able to contribute actively and rapidly to any related field in physics.

Master's Degree in Applied Physics

APh 110 abc Topics in Applied Physics (2-0-0) .. 6 units

APh Electives* Minimum 54 units

Suggested Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APh 105 abc</td>
<td>States of Matter (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 114 abc</td>
<td>Solid-State Physics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae/APh101abc</td>
<td>Fluid Mechanics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 140 abc</td>
<td>Cryogenics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 141</td>
<td>Superconductivity and its Applications</td>
<td>. . 9</td>
</tr>
<tr>
<td>APh 153 abc</td>
<td>Modern Optics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 154</td>
<td>Modern Optics Laboratory (1-4-4)</td>
<td>9 or 9 .</td>
</tr>
<tr>
<td>APh 156 abc</td>
<td>Plasma Physics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>APh 161 ab</td>
<td>Nuclear Energy (3-0-6)</td>
<td>9 9</td>
</tr>
</tbody>
</table>

*Must be selected from APh 114, Ch 125 or Ph 125, APh 105, Ae/APh 101 or APh 156.

*As a result of consultation with his adviser a student may be required to take AM 113 abc, depending on his previous experience.
Degree of Doctor of Philosophy in Applied Physics

Candidacy. To be recommended for candidacy for the doctor's degree the applicant must satisfy the requirements listed below.

a. Competence must be demonstrated in the following subjects, at the levels indicated.

1. Classical Physics: Mechanics and Electromagnetism
 course level: Ph 106
2. Quantum Mechanics
 course level: Ph 125 or Ch 125
3. Mathematical Methods
 course level: AMa 101, AM 125, or Ph 129
4. Statistical Physics and Thermodynamics
 course level: APh 105
5. Solid-State Physics or Fluid Dynamics
 course level: APh 114, Ae/APh 101, or APh 156

Competence in three of the subjects, including number 3, Mathematical Methods, must be demonstrated by grades no lower than C in an appropriate Caltech course. In unusual cases, it will be possible for a student to be deemed competent in any of the subjects by showing evidence of having done well in an equivalent course offered elsewhere, by passing a suitable written examination. The examination must cover all of the specified course, and the student will not be permitted to take it in parts (e.g., term by term) or more than twice.

b. Oral examination. The two subjects which remain will be dealt with in the oral examination. The student will be permitted to repeat a failed oral only once, with or without change of subject. Demonstration of (subject) competence must be completed before the close of the student's second year of residence.

c. Competence in research must be demonstrated as follows: The student must have a doctoral thesis adviser and must have completed 18 units of thesis research with this adviser no later than the beginning of his third year of residence.

The minor. By its nature, Applied Physics spans a variety of disciplines and the major requirement reflects this. A minor is not required of students majoring in Applied Physics. They are, however, encouraged to take advanced courses appropriate to their particular interests.
Thesis and Final Examination. The candidate is required to take a final oral examination covering his doctoral thesis, its significance and relation to his major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Applied Physics. Graduate students electing a subject minor in Applied Physics must complete 54 units of graduate courses in Applied Physics. The group of courses shall differ markedly from the major subject of study or research and must be approved by the Applied Physics Faculty. Credit will not be given for APh 100, APh 110, or APh 200. Students must pass a separate oral examination.

Astronomy

Admission

All applicants, including those from foreign countries, for admission to graduate study in astronomy are required to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and the advanced test in physics.

Placement Examinations

Each student admitted to work for an advanced degree in astronomy is required to take the Placement Examinations in physics, (see Placement Examinations, page 250) covering material equivalent to Ph 92, Ph 106, and Ph 125. An oral examination by the staff covering material equivalent to Ay 20, Ay 21, Ay 101, and Ay 102 is given on the Friday preceding the beginning of instruction for the first term. These examinations will test whether the student's background of atomic and nuclear physics, mathematics, physics, and astronomy is sufficiently strong to permit advanced study in these subjects. If it is not, students will be required to pass the appropriate courses.

Master's Degree in Astronomy

The choice of astronomy and other science elective courses must be approved by the department. At least 36 units of the 135 units must be selected from Ay 131, Ay 132, Ay 133, Ay 134, Ay 136, Ay 138, Ay 139, Ay 201. The courses Ay 120, Ph 92, Ph 106, and Ph 125 may be required of those students whose previous training in some of these subjects proves to be insufficient. At least 27 units of advanced courses not in astronomy are required.

Degree of Doctor of Philosophy in Astronomy

Astronomy Program: The student's proposed overall program of study must be planned and approved by the department during the first year. Required courses for candidacy are Ay 131, Ay 132, Ay 133 ab, Ay 138, and Ay 139. The student should take these courses as soon as they are offered. Also required are research and reading projects, starting in the second term of the first academic year. Credit for this work will be given under courses Ay 142 and Ay 143. Written term papers dealing with the research or reading done will be required at the end of each term.

Physics Program: The student's program during the first two years of graduate study should include at least 36 units of physics courses, exclusive of Ph 92, Ph 106, and Ph 125. This requirement may be reduced on written approval of the department for students who take substantial numbers of units in Ph 92, Ph 106, and Ph 125. Students in radio astronomy should include Ph 209 in the required 36 units of physics; they may take the remaining units in an advanced course in electrical engineering or applied mechanics. Theoretical astrophysics students should include at least 54 units of physics courses in their program. Students in planetary physics may substitute appropriate advanced courses in geophysics and geochemistry. All the above courses must be passed with a grade of C or better.
The Minor: It is recommended that students take a subject minor in physics. Other fields in which subject minors are taken include geology or engineering, dependent on the student's field of specialization.

Language Requirement: To be admitted to candidacy for the Ph.D. degree in astronomy, the student must demonstrate a knowledge of Russian, German, or French sufficient for the reading of technical material in his field. Students will be required to take a special examination administered by the staff in fulfillment of this requirement.

Admission to Candidacy: To be recommended for candidacy for the Ph.D. degree in astronomy, a student must, in addition to general Institute requirements:

(a) complete satisfactorily 36 units of research Ay 142 or reading Ay 143;
(b) pass with a grade of C or better, or by special examination, Ay 131, Ay 132, Ay 133 ab, Ay 138, and Ay 139;
(c) pass an oral examination (see below);
(d) fulfill the language requirement (see above); and
(e) be accepted for thesis research by a staff member.

Students in radio astronomy may omit Ay 131. Theoretical astrophysics students may omit Ay 133 a; they are normally expected to take part in the theoretical seminar Ay 215. Students in planetary physics may omit Ay 138 and Ay 139, substituting a corresponding number of units from Ay 134, Ay 136, Ge 166, or Ge 220, after consultation with their advisers and the instructors.

The oral examination must be taken before the end of the second term of the second year. The candidacy examination will cover material from (1) the required astronomy courses, (2) the basic physics courses Ph 92, Ph 106, and Ph 125, and (3) the material submitted as term papers for courses Ay 142 (research) and Ay 143 (reading). Special permission will be required for further registration if the candidacy course requirements and the oral examination are not satisfactorily completed by the end of the second year of graduate work.

Final Examination: A final draft of the thesis must be submitted at least six weeks before the commencement at which the degree is to be conferred. At least two weeks after submission of the thesis, the student will be examined orally on the scope of his thesis and its relation to current research in astronomy.

Subject Minor in Astronomy

The program for a subject minor in astronomy must be approved by the department prior to admission to candidacy. In addition to general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in astronomy.

Biology

Aims and Scope of Graduate Study in Biology

Graduate students in biology come with very diverse undergraduate preparation — majors in physics, chemistry, and mathematics, or psychology, as well as in biology and its various branches. The aims of the graduate program are to provide, for each student, individual depth of experience and competence in his particular chosen major specialty; perception of the nature and logic of biology as a whole; sufficient strength in basic science to allow him to continue self-education after his formal training has been completed and thus to keep in the forefront of his changing field; and the motivation to serve his field productively through a long career. In accordance with these aims, the graduate study program in biology includes the following parts: (a) the major program which is to provide the student with early and intense original research experience in a discipline of biology of his own choice, supplemented with advanced course work and independent study in this discipline; (b) an optional minor program, usually designed to provide him with professional insight into a discipline outside his major one and consisting of specialized course work, or course
work and a special research program; and as a rule (c) a program of course work in advanced
subjects, designed to provide him with a well-rounded and integrated training in biology
and the appropriate basic sciences, and adjusted to his special interests and needs. (b) and
(c) may include supervised, independent study. An individual program will be recom-
mended to each student when he meets with his advisory committee (see below). A student
majoring in psychobiology or experimental psychology may arrange to do one or more
terms on another campus to obtain relevant course work in psychology and medicine not
offered at the Institute.

Admission

Applicants are expected to meet the following minimal requirements: mathematics
through calculus, general physics, organic chemistry, physical chemistry (or the equiva-
 lent), and elementary biology. Students with deficient preparation in one or more of these
categories may be admitted but required to remedy their deficiencies in the first years of
graduate training, no graduate credit being granted for such remedial study. This will
usually involve taking the courses in the categories in which the student has deficiencies. In
certain instances, however, deficiencies may be corrected by examinations following inde-
pendent or supervised study apart from formal courses. Furthermore, the program in
biology is diverse, and in particular fields such as psychobiology and experimental psychol-
yogy or in interdisciplinary programs such as neurophysiology-electrical engineering, other
kinds of undergraduate preparation may be substituted for the general requirements listed
above. Graduate Record Examinations (verbal, quantitative, and the advanced test in any
science) are required of applicants for graduate admission intending to major in biology.

Advisory Committee

During the week preceding registration for the first term, each entering student confers
with the divisional Graduate Advisory Committee. The committee consists of a chairman
and three other members of the faculty representing diverse fields of biology. The commit-
tee will advise the student of deficiencies in his training; will design a remedial study
program where necessary; and will recommend an individual study program of advanced
course work in accordance with item (c), above. The committee will also be available for
consultation and advice throughout his graduate study until the student is admitted to
candidacy (see below).

Teaching Requirements for Graduate Students

All students must acquire teaching experience.

Master's Degree in Biology

The Biology Division does not admit students for work toward the M.S. degree. In special
circumstances the M.S. degree may be awarded, provided Institute requirements are met.
In general the degree is not conferred until the end of the second year of residence. The
degree does not designate any of the disciplines of the division, but is an M.S. in Biology.

Degree of Doctor of Philosophy in Biology

Major Subjects of Specialization. A student may pursue major work leading to the doctorate
degree in any of the following disciplines:

- Biochemistry
- Biophysics
- Cell Biology
- Developmental Biology
- Experimental Psychology
- Genetics
- Immunology
- Neurobiology
- Neurophysiology
- Psychobiology
- Virology

At graduation, a student may choose if his degree is to be awarded in biology or in his
selected discipline. If the award is to be in biology, a minor will be designated only if it is
from another division of the Institute.
Minor Subjects. The Division of Biology does not have a requirement for a minor. It is the philosophy of the biology faculty, however, that a student should leave Caltech knowing more than merely the field associated with the subject of his thesis. It therefore recommends to the graduate student that he select from one of the options below:

1. The student may elect a minor in another division of the Institute. This will consist of 45 units of advanced course work or research.
2. The student may elect a minor in any of the biology disciplines listed above as major subjects of specialization, provided the subject matter of this discipline is not too closely related to that of his major field. Such a minor will consist of 45 units of advanced course work or research.

If the student elects a minor, his diploma designates the discipline of his major and minor (e.g., biophysics and chemistry; biochemistry and neurophysiology).

If the student does not elect a minor, it is strongly urged that he take two or more courses which broaden his knowledge of biology.

Admission to Candidacy. To be recommended by the Division of Biology for admission to candidacy for the doctor's degree, the student must have demonstrated his ability to carry out original research and have passed, with a grade of B or better, the candidacy examination in his major.

Thesis Committee. After admission to candidacy, a thesis committee is appointed for each student by the chairman of the division upon consultation with the student and his professor. This committee will consist of the student's major professor as chairman and four other appropriate members of the faculty including a member of the faculty of the minor (if any). The thesis committee will meet with the student soon after his admission to candidacy and at intervals thereafter to review the progress of his thesis program. This committee will, with the approval of the Dean of Graduate Studies, also serve as the thesis examination committee (see below).

Thesis and Final Examination. Two weeks after copies of the thesis are provided to the examination committee, the candidate collects the copies and comments for correction. At this time, the date for the final examination is set at the discretion of the major professor and the division chairman, to allow as necessary for such matters as publication of the examination in the Institute calendar, thesis correction, preparation of publications, and checking out and ordering of the student's laboratory space. The final oral examination covers principally the work of the thesis, and according to Institute regulation must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the graduate and are deposited in the Institute library. A third copy is retained in the division library.

Minor in Biology

A student majoring in another division of the Institute may, with the approval of the Biology Division, elect a subject minor in any of the disciplines listed above under major subjects of specialization. Requirements for such a minor are determined by the faculty committee designated for each discipline. A minor program in biology is also available to students of other divisions. Such a program shall consist of 45 units of upper division course work in the Biology Division, each course passed with a grade of "C" or better. Approval of each program must be obtained from the Biology Graduate Advisory Committee. A student majoring in another division who elects a subject minor in one of the disciplines of biology may if desired arrange to have his minor designated as biology, rather than with the name of his specific minor discipline.
Chemical Engineering

Aims and Scope of Graduate Study in Chemical Engineering

The Institute was one of the earliest schools to emphasize instruction on basic subjects rather than on specialized material relating primarily to particular industries or processes. The general objective of the graduate work in chemical engineering is to produce individuals who are exceptionally well trained to apply the principles of mathematics, the physical sciences, and engineering to new situations involving chemical reactions and the transport of momentum, energy, and material.

Admission

It is expected that each applicant for graduate study in the Division of Chemistry and Chemical Engineering will have studied mathematics and physics substantially to the extent that these subjects are covered in the required undergraduate courses at Caltech. In case the applicant's training is not equivalent to this, the division may prescribe additional work in these subjects before recommending him as a candidate.

Master's Degree in Chemical Engineering

The master's degree is intended for students who plan to pursue careers in design, process engineering, development, or management. The degree is normally obtained in one academic year.

Course Requirements. The requirements include ChE 126 abc, Chemical Engineering Laboratory, and ChE 191 which is required for one, two, or three terms at the discretion of the instructor. ChE 126 bc represents two terms of research under the supervision of a chemical engineering faculty member, or a two-term industrial research or development project performed with a member of the faculty in cooperation with professional staff at a local industrial laboratory. The student who has taken ChE 126 a or its equivalent as an undergraduate may substitute an equal amount of research, ChE 280. A student originally admitted to work toward the Ph.D. degree can substitute an equal amount of research, ChE 280, for all or part of this requirement but must also submit a research report in thesis form and have it accepted by the faculty in chemical engineering. A research report is required for the master's degree. In addition, there are electives, which may include humanities as well as graduate courses from other branches of science and engineering. A minimum of 18 units of these electives must be in advanced chemical engineering subjects; the remainder are to be chosen from other approved advanced subjects but may also include up to 30 units of freely elected graduate courses, which may be in humanities as well as in engineering and science subjects. In addition to 81 units of advanced professional subjects, AM 113 abc must be taken if the equivalent has not been studied previously.

Degree of Doctor of Philosophy in Chemical Engineering

The work leading to the Ph.D. degree prepares students for careers in universities and in the research laboratories of industry and government, although Ph.D. graduates are also well qualified for the areas listed for the master's degree. Usually the first year of graduate work is principally devoted to course work in chemical engineering and related subjects. ChE 191 is required for one, two, or three terms at the discretion of the instructor. Time is also devoted during this period to the choice of research project and to its initiation. During the second year the student is expected to spend at least half time on his research, and to complete his course work and candidacy requirements. Some time is available for elective courses. It is expected that the research project will occupy full time during the third and subsequent years. If summers are spent on research and other academic pursuits, the Ph.D. requirements may be completed in three calendar years.

Admission. During the Friday preceding General Registration for the first term of graduate study, students admitted to work for the Ph.D. degree are required to consult with the
professor in charge of the courses of engineering design, chemical thermodynamics, transport phenomena, and applied chemical kinetics. This informal consultation is aimed at planning course work for each student.

Course Requirements. Although there are no formal chemical engineering course requirements, except for ChE 191, all Ph.D. students must take a selected number of courses outside of chemical engineering to provide both a broadening experience and an opportunity for obtaining further depth in the general thesis area. This requirement may be satisfied by completion of a subject minor in another option, or by completion of an integrated program of study, which normally consists of a total of 54 units (the equivalent of two one-year courses), and must be approved in advance by the Graduate Study Committee in chemical engineering. Generally, AM 113 will not be allowed, nor will research units from other options. A grade of C or better is required in any course which is to be included in the program.

Candidacy Requirements. To be recommended for candidacy the student must demonstrate proficiency at a graduate level in chemical engineering. This will be done by way of chemical engineering courses, an oral subject examination which is to be taken at the end of the third term of the student's first year of graduate residence at the Institute, and a written progress report on his research to be submitted before the end of the second term of the student's second year of graduate residence. The oral examination will cover thermodynamics, applied chemical kinetics, transport phenomena, and design, with emphasis at the discretion of the committee. Approval of the research report constitutes the final step for admission to candidacy. A student who fails to satisfy the division's candidacy requirements by the end of the second term of his second year of graduate residence at the Institute will not be allowed to register in a subsequent academic year except by special permission of the Division of Chemistry and Chemical Engineering.

Proposition Requirements. Each student is required to submit one proposition for review and approval by the faculty. It may be submitted at any time during the period of graduate study, but in every case this requirement must be completed before the final oral examination can be scheduled. The proposition is intended to foster breadth, and to allow the student the opportunity to pursue, on his own, and in some depth, a subject of interest to him which is outside the immediate area of his thesis research. The proposition should be stated explicitly and the argument presented in writing with adequate documentation. Originality, technical content, and clarity of presentation will constitute the primary criteria in judging the acceptability of the proposition.

Thesis and Final Examination. The candidate must submit a copy of his thesis in final form to the chairman and to each member of his examining committee not less than two weeks prior to his final examination, which according to the Institute regulation must be held at least two weeks before the degree is conferred. After his examination two copies of the thesis are to be submitted to the office of the Dean of Graduate Studies to be proofread. In addition, one copy, corrected after proofreading by the Graduate Office, is to be submitted to the divisional graduate secretary for the divisional library. All reproduced copies may be either electrostatic or offset printed.

The final examination will be concerned with the candidate's oral presentation and defense of a brief resume of his research.

Subject Minor in Chemical Engineering

Graduate students electing a subject minor in chemical engineering must complete 45 units of graduate courses in chemical engineering which are approved by the chemical engineering faculty. In general, this program of courses should include ChE 173/174 or ChE 101/162 or ChE 164/165 or ChE 110/111. A grade of C or better is required for each course included in the program. In order to satisfy the requirements for a subject minor, the candidate must pass a short oral examination given by the department.
Chemistry

Aims and Scope of Graduate Study in Chemistry

The graduate program in chemistry emphasizes research. This emphasis reflects the Institute's traditional leadership in chemical research and the conviction that has permeated the Division of Chemistry and Chemical Engineering from its founding, that participation in original research is the best way to awaken, develop, and give direction to creativity.

As a new graduate student, soon after you arrive in the laboratories, you will attend a series of orienting seminars that introduce you to the active research interests of the staff. You then talk in detail with each of several staff members whose fields attract you, eventually settle upon the outlines of a research problem that interests you, and begin research upon it early in the first year. You can elect to do research which crosses the boundaries of traditionally separate areas of chemistry, for in this relatively compact division, a student is encouraged to go where his scientific curiosity drives him; he is not confined to a biochemical or physical or organic laboratory. A thesis that involves more than one adviser is common, and interdisciplinary programs with biology, physics, and geology are open and encouraged.

An extensive program of seminars will enable you to hear of and discuss notable work in your own and other areas. In the Divisional Research Conferences, members of the staff and distinguished visitors present accounts of research of broad interest. More specialized seminars are devoted to such subjects as chemical physics, organic chemistry, inorganic and electrochemistry, organometallic chemistry, and chemical biology. Graduate students are encouraged also to attend seminars in other divisions.

Placement Examination

During the week preceding General Registration for the first term of graduate study, graduate students admitted to work for advanced degrees will be required to take a written placement examination in the field of inorganic, analytical, organic, and physical chemistry. This examination will cover these respective subjects to the extent that they are treated in the undergraduate chemistry option offered at the Institute. In general, it will be designed to test whether you possess an understanding of general principles and a power to apply these to specific problems, rather than a detailed informational knowledge. You will be expected to demonstrate a proficiency in the above subjects not less than that acquired by able undergraduates. Students who have demonstrated this proficiency in early residence at the Institute may be excused from these examinations.

In the event that you fail to show satisfactory performance in any area of the placement examination, you will be required to register for a prescribed course, or courses, in order to correct the deficiency promptly. If your performance in the required course or courses is not satisfactory, you will not be allowed to continue graduate studies except by special action of the Division of Chemistry and Chemical Engineering on receipt of a petition to be allowed to continue.

Course Program

For an advanced degree, no graduate courses in your principal area of research are required. You should plan a program of advanced courses in consultation, at first with a representative of the divisional Committee on Graduate Study and later with your research adviser.

Master's Degree in Chemistry

Students are not ordinarily admitted to graduate work leading to an M.S. degree, but the master's program is available. All master's programs for the degree in chemistry must include at least 40 units of chemical research and at least 30 units of advanced courses in science. The remaining electives may be satisfied by advanced work in any area of mathematics, science, engineering, or humanities, or by chemical research. Two copies of a satisfactory thesis describing this research, including a one-page digest or summary of the
main results obtained, must be submitted to the divisional graduate secretary at least ten days before the degree is to be conferred. The copies of the thesis should be prepared according to the directions formulated by the Dean of Graduate Studies and should be accompanied by a statement approving the thesis, signed by the staff member directing the research and by the chairman of the Committee on Graduate Study of the division.

Candidates must satisfy the department of languages that they are able to read scientific articles in at least one of the following languages: German, French, or Russian.

Degree of Doctor of Philosophy in Chemistry

Candidacy. There is no formal coursework required in your major field of interest (for minor requirements, see below). However, to be recommended for candidacy for the doctor's degree in chemistry, in addition to demonstrating an understanding and knowledge of the fundamentals of chemistry, you must give satisfactory evidence of proficiency at a high level in your primary field of interest, as approved by the division. This is accomplished by an oral candidacy examination which must be held during or before your fifth term of graduate residence (excluding summer terms). At this examination you will be asked to demonstrate scientific and professional competence and promise by discussing a research report and propositions as described below.

The research report should describe your progress and accomplishments to date and plans for future research. Three propositions, or brief scientific theses, must accompany the report. These should reflect your breadth of reading, originality, and ability to see valid scientific problems. They should not all be in your own field of research. The research report and propositions must be in the hands of your examining committee one week prior to the examination.

The result of the candidacy examination may be either (a) pass, (b) fail, or (c) conditional. Conditional status is granted when the committee decides deficiencies in a student's research report, propositions, or overall progress can be remedied in a specific and relatively brief period of time. In order to change conditional to pass status, you will have to correct the indicated deficiencies or in some cases schedule a new examination the following term. You must be admitted to candidacy at least three terms before your final oral examination. You cannot continue in graduate work in chemistry (nor can financial assistance be continued) past the end of the sixth term of residence without being admitted to candidacy, except by petitioning the division for special permission. This permission, to be requested by a petition submitted to the divisional graduate studies committee stating a proposed timetable for correction of deficiencies, must be submitted prior to registration for each subsequent term (including the summer following the sixth term of residence) until admission to candidacy is achieved.

Language Requirements and Candidacy. Satisfactory completion of the language requirement and removal of placement examination requirements are also necessary before you can be admitted to candidacy. Ph.D. chemists must demonstrate proficiency in one language: French, German, or Russian. This demonstration can be by test, good performance in a course at Caltech, or by sufficient undergraduate course work in the language.

The Minor. In order to provide breadth in your graduate experience, you are required either to (a) complete a subject minor in another option (the requirements being set by that option) or (b) complete an approved program of coursework outside your principal area of research. This program consists of at least 36 units of coursework (the equivalent of approximately four standard one-term courses) outside the scientific area in which your dissertation research is performed (exclusive of courses taken in fulfillment of the chemistry language requirement). These courses may be either inside or outside the chemistry option. Courses for the minor shall be taken on a letter grade basis unless the course is offered with only a pass/fail option. A grade of C or better is required for credit toward the minor. Your adviser has the responsibility of determining which courses fulfill the requirement in your particular case, subject to final approval by the chemistry graduate studies committee.
Thesis and Final Examination. The final examination will consist in part of oral presentation and defense of a brief resume of your research and in part of the defense of a set of propositions prepared by you. Five propositions are required. In order to obtain diversity with respect to subject matter, not more than two shall be related to the immediate area of your thesis research. Each proposition shall be stated explicitly and the argument presented in writing with adequate documentation. Propositions of exceptional quality presented at the time of the candidacy examination may be included among the five submitted at the time of final examination.

The propositions should display originality, breadth of interest, and soundness of training; you will be judged on your selection and formulation of the propositions as well as on your defense of them. You should begin formulating a set of propositions early in the course of graduate study.

You must submit a copy of the thesis and propositions in final form to the chairman and to each member of the examining committee, and a copy of the propositions and an abstract of the propositions to the divisional graduate secretary, not less than two weeks prior to your final examination. One reproduced copy of the thesis, corrected after proofreading by the Graduate Office, is to be submitted to the divisional graduate secretary for the divisional library.

Subject Minor in Chemistry

Graduate students in other options taking chemistry as a subject minor will be assigned a faculty adviser in chemistry by the chemistry graduate studies committee. In consultation with this adviser, the student will work out an integrated program of courses, including at least 45 units of formal coursework at the 100 level or above. This program must be approved by the chemistry graduate studies committee, and a grade of C or better in each course in the approved program will be required.

Engineering and Applied Science

Aeronautics

Aims and Scope of Graduate Study in Aeronautics

The Institute offers graduate programs in aeronautics leading to the degrees of Master of Science, Aeronautical Engineer, or Doctor of Philosophy. The programs are designed to provide intense training in the foundations of the aeronautical sciences with emphasis on research and the experimental method. Entering graduate students should have a thorough background in undergraduate mathematics, physics, and engineering science. Applicants for graduate study should submit Graduate Record Examination scores with their applications.

In working for a degree in aeronautics a student may do major study in, for example, one of the following areas (cf. page 109):

- Physics of Fluids
- Technical Fluid Mechanics
- Structural Mechanics
- Mechanics of Fracture
- Aeronautical Engineering and Propulsion
- Aero Acoustics

While research and course work in aeronautics at the Institute cover a very broad range of subjects, a choice of one of the above major fields allows the student to specialize in his own interests while still taking advantage of the flexibility offered by the breadth of interests of the aeronautics group.

A student and his adviser may design a program of study in one of the above fields consisting of the fundamental courses prescribed in the regulations for the separate degrees
listed below and of electives selected from the list of aeronautics courses. Special attention is called to the list of one-term courses, numbered Ae 210 or higher, which are offered each year to interested students.

Degree of Master of Science in Aeronautics

Admission. Students with a baccalaureate degree equivalent to that given by the Institute are eligible for admission to work toward the Master's Degree in Aeronautics.

Course Requirements. Of the 135 units of graduate work required by Institute regulations, at least 108 units must be in the following subject areas:

- Fluid mechanics: 27 units
- Solid mechanics: 27 units
- Experimental technique and laboratory work: 27 units
- Mathematics or applied mathematics: 27 units

In addition, three units of Ae 150 are required. Each student must have his proposed program approved by his adviser prior to registration for the first term of work toward the degree.

Degree of Aeronautical Engineer

The degree of Aeronautical Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on academic research than is appropriate to the degree of Ph.D.

Admission. Students with a baccalaureate degree equivalent to that given by the Institute or with a Master of Science degree are eligible for admission to work for the Engineer's degree.

Program Requirements. The degree of Aeronautical Engineer is awarded after satisfactory completion of at least 135 units of graduate work equivalent to the Master of Science program described above, plus at least 135 additional units of advanced graduate work. This latter program of study and research must consist of:

- a. not less than 60 units of research in aeronautics or jet propulsion (Ae 200 or JP 280);
- b. three units of an advanced seminar such as Ae 208, Ae 209, or JP 290; and
- c. satisfactory completion (with a grade of C or better) of at least 27 units of aeronautics courses numbered Ae 200 or higher, excluding research and seminars.

A proposed program conforming to the above regulations must be approved by the student's adviser prior to registration for the first term of work toward the degree.

A thesis is required based on the research program and may consist of the results of a theoretical and/or experimental investigation or may be a comprehensive literature survey combined with a critical analysis of the state-of-the-art in a particular field.

No student will be allowed to continue to work toward the degree of Aeronautical Engineer for more than 6 terms of graduate residence beyond the baccalaureate degree (not counting summer registrations) except by permission after petition to the aeronautics faculty.

Degree of Doctor of Philosophy in Aeronautics

Admission. Students with a baccalaureate degree equivalent to that given by the Institute or with a Master of Science degree are eligible for admission to work for the Ph.D. degree.

Qualifying Exam. Before he has completed six terms of graduate residence after the baccalaureate degree (not counting summer registrations) and after he has completed at least 40 units of research in his chosen field, the student must satisfactorily pass a qualifying exam to determine whether he is qualified to pursue problems typical of Ph.D. work. Emphasis in the qualifying exam may be directed at a) establishing the student's ability to formulate research plans, b) determining the extent of the student's knowledge in his field of interest, c) determining the extent of the student's ability to use mathematical and
physical principles for original work in his chosen discipline.

Candidacy. To be recommended for candidacy for the Ph.D. in aeronautics the applicant must have satisfactorily completed at least 135 units of graduate work equivalent to the above Master of Science program and, in addition, must pass with a grade of C or better:
a. one of the following, or its equivalent:
 AMa 101 abc: Methods of Applied Mathematics
 AM 125 abc: Engineering Mathematical Principles
 Ma 108 abc: Advanced Calculus
 Ph 129 abc: Methods of Mathematical Physics
b. at least 45 units of aeronautics courses numbered Ae 200 or higher, excluding research and seminars
c. at least 54 units of courses outside of the applicant’s chosen discipline, approved by the aeronautics faculty.

If any of the above subjects were taken elsewhere than at the Institute, the candidate may be required to pass special examinations indicating an equivalent knowledge of the subject.

To be admitted to candidacy, the applicant must pass a candidacy examination at least one year before the degree is to be conferred.

Foreign Languages. The student is encouraged to discuss with his adviser the desirability of studying foreign languages.

Thesis and Final Examination. By the beginning of the third term of the year in which the degree is to be conferred, a candidate for the degree of Doctor of Philosophy must deliver rough drafts of the thesis to his supervising committee. Not less than two weeks after the submission of the thesis rough draft, the candidate is expected to give a seminar covering the results of his research, and this seminar will be followed by a thesis examination by his supervising committee. The seminar should be given as early as possible, but not later than two months before the degree is to be conferred.

Subject Minor in Aeronautics
A student majoring in a field other than aeronautics may, with the approval of the aeronautics faculty, elect aeronautics as a subject minor. A minimum of 54 units in subjects acceptable to the aeronautics faculty is required, and the student must be examined orally by a representative of the aeronautics faculty.

Applied Mathematics
(See page 211)

Applied Mechanics

Master's Degree in Applied Mechanics
Study for the degree of Master of Science in Applied Mechanics ordinarily will consist of three terms of course work totaling at least 135 units. AM 125 abc: Engineering Mathematical Principles, and E 150 abc: Engineering Seminar, are required. With faculty approval, AM 125 abc may be replaced by Ma 108 abc: Advanced Calculus, AMa 101 abc: Methods of Applied Mathematics, or other satisfactory substitute. A minimum of 54 units must be selected from the Elective Course List below; however, substitution for electives from this list may be made with the approval of the student’s adviser and the faculty in applied mechanics. Students are encouraged to consider a humanities elective as part of their free electives.
Elective Course List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 104</td>
<td>Matrix Theory</td>
<td>9</td>
</tr>
<tr>
<td>AMa 105 ab</td>
<td>Introduction to Numerical Analysis</td>
<td>11 11 11</td>
</tr>
<tr>
<td>AMa 151 abc</td>
<td>Perturbation Methods</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AMa 153 abc</td>
<td>Stochastic Processes</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae/AM 102 abc</td>
<td>Mechanics of Structures & Solids</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 135 abc</td>
<td>Mathematical Elasticity Theory</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 136 abc</td>
<td>Advanced Mathematical Elasticity Theory</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 140 abc</td>
<td>Plasticity</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 141 abc</td>
<td>Wave Propagation in Solids</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 151 abc</td>
<td>Dynamics and Vibrations</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 175 abc</td>
<td>Advanced Dynamics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae/APh 101 abc</td>
<td>Fluid Mechanics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ae 202 abc</td>
<td>Advanced Solid Mechanics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics</td>
<td>9 9 9</td>
</tr>
<tr>
<td>JP 121 abc</td>
<td>Jet Propulsion Systems and Trajectories</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>Topics in Classical Physics</td>
<td>9 9 9</td>
</tr>
</tbody>
</table>

Degree of Doctor of Philosophy in Applied Mechanics

The degree of Doctor of Philosophy in Applied Mechanics will ordinarily involve a second year of graduate work in advanced courses and research, plus at least one additional year on a comprehensive thesis research project. Such study and research programs are individually planned to fit the interests and background of the student.

Course Requirements.

To be recommended for candidacy for the Ph.D. degree in Applied Mechanics, the student must, in addition to the general Institute requirements:

- a. complete 12 units of research;
- b. complete at least 108 units of advanced courses arranged by the student in conference with his adviser and approved by the faculty in applied mechanics. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in applied mechanics;
- c. pass with a grade of at least C an advanced course in mathematics or applied mathematics such as AM 125 abc, Ph 129 abc or AMa 101 abc, acceptable to the faculty in applied mechanics. The requirement in mathematics shall be in addition to requirement (b) above and shall not be counted toward a minor;
- d. pass an oral examination on the major subject, and, if the student has a minor, examination on the subject of that program may be included at the request of the discipline offering the minor.

Language Requirements.

The student is encouraged to discuss with his adviser the desirability of taking foreign languages, which may be included in a minor with proper approvals. Foreign languages are not required.

Thesis and Final Examination.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his specialized field of research.

Subject Minor in Applied Mechanics

A student majoring in another branch of engineering, or another division of the Institute, may elect applied mechanics as a subject minor, with the approval of the faculty in applied
mechanics and the faculty in his major field. The group of courses shall differ markedly from the major subject of study or research, and shall consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student’s major.

Applied Physics
(See page 213)

Chemical Engineering
(See page 219)

Civil Engineering

Aims and Scope of Graduate Study in Civil Engineering

Students who have not specialized in civil engineering as undergraduates, as well as those who have, may be admitted for graduate study. As preparation for advanced study and research, a good four-year undergraduate program in mathematics and the sciences may be substituted for a four-year undergraduate engineering course with the approval of the faculty. The qualifications of each applicant will be considered individually, and, after being enrolled, the student will arrange his program in consultation with a member of the faculty. In some cases, the student may be required to make up deficiencies in engineering science courses at the undergraduate level. However, in every case the student will be urged to take some courses which will broaden his understanding of the overall field of civil engineering, as well as courses in his specialty. Most graduate students are also required to take further work in applied mathematics.

Master's Degree in Civil Engineering

Although the first year of graduate study involves specialized engineering subjects, the student working for the Master of Science degree is encouraged not to overspecialize in one particular field of civil engineering. For the M.S. degree a minimum of 138 units of academic credit is required. The program must include 3 units of CE 130 abc; 27 units of courses in humanities or social sciences; and 108 units (minimum) of courses from the five groups of electives listed below. Each student’s program should include selections from at least three of the five groups that are approved by his adviser. Students who have not had AM 95 abc or its equivalent will be required to include AM 113 abc as part of their elective units. Other courses not listed here may be elected if approved by the civil engineering faculty.

Electives in Structures

<table>
<thead>
<tr>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae/AM 102 abc</td>
<td>Mechanics of Structures & Solids (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 135 abc</td>
<td>Mathematical Elasticity Theory (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 151 abc</td>
<td>Dynamics and Vibrations (3-0-6)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AM 155</td>
<td>Dynamic Measurements Laboratory (1-6-2)</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>AM 160</td>
<td>Vibrations Laboratory (0-3-3)</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>CE 121</td>
<td>Analysis and Design of Structural Systems (0-9-0)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CE 124</td>
<td>Special Problems in Structures</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CE 180</td>
<td>Experimental Methods in Earthquake Engineering (1-5-3)</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Graduate Information

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 181</td>
<td>Principles of Earthquake Engineering (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>CE 182</td>
<td>Structural Dynamics of Earthquake Engineering (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>

Electives in Soil Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 105</td>
<td>Introduction to Soil Mechanics (2-3-4)</td>
<td>9</td>
</tr>
<tr>
<td>CE 115 ab</td>
<td>Soil Mechanics (3-0-6; 2-3-4)</td>
<td>9; 9</td>
</tr>
<tr>
<td>CE 150</td>
<td>Foundation Engineering (3-0-6)</td>
<td>9</td>
</tr>
</tbody>
</table>

Electives in Hydraulics and Water Resources

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
<tr>
<td>Hy 103 ab</td>
<td>Advanced Hydraulics and Hydraulic Structures (3-0-6)</td>
<td>9; 9</td>
</tr>
<tr>
<td>Hy 105</td>
<td>Analysis and Design of Hydraulic Projects</td>
<td></td>
</tr>
<tr>
<td>Hy 111</td>
<td>Fluid Mechanics Laboratory¹</td>
<td></td>
</tr>
<tr>
<td>Hy 113 ab</td>
<td>Coastal Engineering (3-0-6)</td>
<td>9; 9</td>
</tr>
<tr>
<td>Hy 213</td>
<td>Advanced Coastal Engineering (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Hy 121</td>
<td>Advanced Hydraulics Laboratory²</td>
<td></td>
</tr>
<tr>
<td>Env 112 abc</td>
<td>Hydrologic Transport Processes (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
</tbody>
</table>

Electives in Environmental Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env/Ge 103 ab</td>
<td>Introduction to Processes of the Atmosphere and Hydrosphere</td>
<td>9; 9</td>
</tr>
<tr>
<td>Env 116</td>
<td>Experimental Methods in Air Pollution (1-3-3)</td>
<td>7</td>
</tr>
<tr>
<td>ChE/Env 157</td>
<td>Fundamentals of Air Pollution Engineering (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Env 142 ab</td>
<td>Applied Chemistry of Natural Water Systems (2-3-4)</td>
<td>9; 9</td>
</tr>
<tr>
<td>Env 144</td>
<td>Ecology (2-1-3)</td>
<td>6</td>
</tr>
<tr>
<td>Env 145 ab</td>
<td>Environmental Biology (2-4-4; 2-3-4)</td>
<td>10; 9</td>
</tr>
<tr>
<td>Env 146 abc</td>
<td>Analysis and Design of Water and Wastewater Systems (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
<tr>
<td>Env 155</td>
<td>Special Problems in Waste Management (2-3-4)</td>
<td>9</td>
</tr>
<tr>
<td>Env 156</td>
<td>Industrial Wastes (3-0-6)</td>
<td></td>
</tr>
<tr>
<td>Env 170 ab</td>
<td>Principles of Particulate Pollution (3-0-6)</td>
<td>9; 9</td>
</tr>
<tr>
<td>Env 214 abc</td>
<td>Advanced Environmental Fluid Mechanics</td>
<td>9; 9; 9</td>
</tr>
</tbody>
</table>

Electives in Mathematics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 101 abc</td>
<td>Methods of Applied Mathematics I (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
<tr>
<td>AMa 104</td>
<td>Matrix Theory (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>AMa 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td>11; 11</td>
</tr>
<tr>
<td>AMa 181 abc</td>
<td>Mathematical Programming and Game Theory (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
<tr>
<td>AM 113 abc</td>
<td>Engineering Mathematics (4-0-8)</td>
<td>12; 12; 12</td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles (3-0-6)</td>
<td>9; 9; 9</td>
</tr>
<tr>
<td>Ma 112 ab</td>
<td>Statistics (3-0-6)</td>
<td>9 or 9; 9</td>
</tr>
</tbody>
</table>

¹Six to nine units as arranged, second or third term.
²Six or more units as arranged, any term.
Degree of Civil Engineer

Greater specialization is provided by work for the engineer's than for the master's degree. The candidate for this degree is allowed wide latitude in selecting his program of study, and is encouraged to elect related course work of advanced nature in the basic sciences. The degree of Civil Engineer is considered to be a terminal degree for the student who desires advanced training more highly specialized and with less emphasis on research than is appropriate to the degree of Doctor of Philosophy. However, research leading to a thesis is required for both degrees. The student should refer to Institute requirements for the engineer's degree.

Degree of Doctor of Philosophy in Civil Engineering

Upon admission to work toward the Ph.D. degree in civil engineering, a counseling committee of three members of the faculty is appointed to advise the student on his program. One member of the committee who is most closely related to the student's field of interest serves as interim chairman and adviser. The student's thesis adviser is chosen by the student and the advisory committee at a later time when the student's research interests are more clearly defined.

Major Subjects of Specialization. A student may pursue major work leading to the doctor's degree in civil engineering in any of the following disciplines: structural engineering and applied mechanics, earthquake engineering, soil mechanics, hydraulics, coastal engineering, and environmental engineering. Other disciplines may be selected with approval of the civil engineering faculty.

Course Requirements. A student must complete at least 108 units of advanced courses, arranged in conference with his adviser and approved by the faculty in civil engineering. Students are expected to take not less than 45 units of work in subjects, other than the required mathematics, not closely related to their thesis research. If a student elects to take a subject minor, the units so taken may be included in the total 108, and shall be subject to the approval of the faculty in civil engineering.

Subject Minor in Civil Engineering. A student majoring in another branch of engineering, or in another division of the Institute, may, with the approval of the faculty in civil engineering, elect civil engineering as a subject minor. At least 54 units of approved courses must be taken, and an oral examination must be passed.

Admission to Candidacy. To be recommended to candidacy for the Ph.D. degree in civil engineering the student must, in addition to the general Institute requirements:
(a) complete a program of advanced courses as arranged by him in consultation with his advisory committee, and approved by the faculty of civil engineering;
(b) pass at least 27 units of course work in advanced mathematics, such as AM 125, AMa 101, Ph 129, or a satisfactory substitute. For a student whose program is more closely related to the sciences of biology or chemistry than physics, AMa 104 and AMa 105 ab (or AMa 104 and AMa 181 ab) will be an acceptable substitute for the mathematics requirement;
(c) pass an oral candidacy examination on the major subject, and if the student has a subject minor, examination on the minor subject may be included at the request of the discipline offering the minor.

The oral candidacy examination must be taken before registration day of the fifth term of his residence as a post-M.S. student or equivalent and will comprise:
(a) a section where the student will be questioned on the content of courses taken during his graduate residence in which he will be expected to demonstrate an understanding of his major field of interest;
(b) a discussion of his research report describing accomplishments to date including reading, study, and plans for future research.

At least ten days before the examination the student must present to the examining committee a brief research report.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks prior to the examination. The date for the final oral examination is decided at the discretion of the major professor and the division chairman to allow as necessary for such matters as publication of the examination in the Institute Calendar. The oral examination covers principally the work of the thesis, and according to Institute regulations, must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the graduate, one of which is deposited in the Institute library and the other is deposited with University Microfilms. The examining committee will consist of such individuals as may be recommended by the chairman of the division and approved by the Dean of Graduate Studies.

Electrical Engineering

Aims and Scope of Graduate Study in Electrical Engineering

The Bachelor of Science degree may be followed by graduate study leading either to the Master of Science degree in Electrical Engineering, usually completed in one year, or the more advanced degrees of Electrical Engineer or Doctor of Philosophy, usually completed in three to five years. The doctoral candidate may first obtain the Master of Science degree or may enter directly into studies for the degree of Doctor of Philosophy. In judging admission for the Ph.D. degree, the EE faculty places particular emphasis on any evidence of future research potential. The graduate curriculum is sufficiently flexible to allow the student to select courses closely aligned with his particular field of interest. Students are encouraged to participate in graduate seminars and in research projects with the electrical engineering faculty.

Placement Examination

Students admitted to work toward any advanced degree in electrical engineering are required to take a placement examination in mathematics. This examination is given on the Friday of the week preceding registration, and will be concerned primarily with subject matter of the undergraduate course AMa 95 abc. The result of this examination has no bearing on a student's admission to graduate study, but in the event that preparation in this subject area is judged to be inadequate, the student will be required to enroll in AM 113 abc, for which graduate credit will be received. Notices of the placement examination are sent well in advance of the examination date.

Master's Degree in Electrical Engineering

Of the 135 units required for this degree, a minimum of 99 units are required from the following list of courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 112 abc Network Synthesis (2-0-7)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 114 abc Electronic Circuit Design (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 151 abc Electromagnetism (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 155 abc Electromagnetic Fields (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 161 abc Mathematical Theory of Information, Communication, and Coding (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AMa/EE163abc Introduction to Communication Theory (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>EE 194 Microwave Laboratory (1-4-4)</td>
<td>. . 9</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>EE 281 abc</td>
<td>Integrated Circuit Design (3-0-6)</td>
</tr>
<tr>
<td>EE 291</td>
<td>Advanced Work in Electrical Engineering</td>
</tr>
<tr>
<td>APh 105 abc</td>
<td>States of Matter (3-0-6)</td>
</tr>
<tr>
<td>APh 114 abc</td>
<td>Solid-State Physics (3-0-6)</td>
</tr>
<tr>
<td>APh 140 abc</td>
<td>Cryogenics (3-0-6)</td>
</tr>
<tr>
<td>APh 153 abc</td>
<td>Modern Optics (3-0-6)</td>
</tr>
<tr>
<td>APh 154</td>
<td>Modern Optics Laboratory (1-4-4)</td>
</tr>
<tr>
<td>APh 156 abc</td>
<td>Plasma Physics (3-0-6)</td>
</tr>
<tr>
<td>APh 181 abc</td>
<td>Physics of Semiconductors and Semiconductor Devices (3-0-6)</td>
</tr>
<tr>
<td>APh 185 abc</td>
<td>Ferromagnetism (3-0-6)</td>
</tr>
<tr>
<td>APh 190 abc</td>
<td>Quantum Electronics (3-0-6)</td>
</tr>
<tr>
<td>APh 214 abc</td>
<td>Advanced Solid-State Physics (3-0-6)</td>
</tr>
<tr>
<td>Ph 125 abc</td>
<td>Quantum Mechanics (3-0-6)</td>
</tr>
<tr>
<td>Ph 127 abc</td>
<td>Statistical Physics (3-0-6)</td>
</tr>
<tr>
<td>Ph 129 abc</td>
<td>Methods of Mathematical Physics (3-0-6)</td>
</tr>
<tr>
<td>Ph 209 abc</td>
<td>Electromagnetism and Electron Theory (3-0-6)</td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles (3-0-6)</td>
</tr>
<tr>
<td>IS 110 abc</td>
<td>Principles of Digital Information Processing</td>
</tr>
<tr>
<td>IS 137</td>
<td>Systematic Computer Programming (3-3-6)</td>
</tr>
<tr>
<td>IS 138</td>
<td>Data Structure & Algorithms (3-3-6)</td>
</tr>
<tr>
<td>IS 139</td>
<td>Multiprogramming and Resource Sharing (3-3-6)</td>
</tr>
<tr>
<td>IS 240 ab</td>
<td>Digital Processing (2-2-5)</td>
</tr>
<tr>
<td>AMA 101 abc</td>
<td>Methods of Applied Mathematics (3-0-6)</td>
</tr>
<tr>
<td>AMA 104</td>
<td>Matrix Theory (3-0-6)</td>
</tr>
<tr>
<td>AMA 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
</tr>
<tr>
<td>AMA 153 abc</td>
<td>Stochastic Processes (3-0-6)</td>
</tr>
<tr>
<td>AMA 181 abc</td>
<td>Mathematical Programming and Game Theory (3-0-6)</td>
</tr>
<tr>
<td>Ma 108 abc</td>
<td>Advanced Calculus (4-0-8)</td>
</tr>
<tr>
<td>Ch 125 ab</td>
<td>The Elements of Quantum Chemistry (3-0-6)</td>
</tr>
</tbody>
</table>

*Not more than 21 units may be used toward the total of 99 units.

Other electives may be substituted upon approval of the electrical engineering faculty. In addition, E 150 abc: Engineering Seminar, is also required. Students are urged to consider including a humanities course in the remaining free electives.

Degree of Electrical Engineer

To be recommended for the degree of Electrical Engineer the applicant must pass the same subject requirements as listed for the doctor's degree.

Degree of Doctor of Philosophy in Electrical Engineering

Admission. A student may apply for admission to work directly for the degree of Doctor of Philosophy, or he may first enroll in study for the Master of Science degree and at a later date apply for admission to study for the more advanced degree. In either case, his application for admission to the more advanced degree will be judged in part on the basis of his academic performance during B.S. or M.S. studies, but great weight will be given to his future research potential as evaluated by the EE faculty.
Candidacy. To be recommended for candidacy for the doctor's degree the applicant must satisfy the requirements listed below.

a. Complete 18 units of research in his field of interest.
b. Obtain approval of a course of study consisting of at least 189 units of advanced courses in electrical engineering or related subjects listed on page 230, except that units in research (e.g., EE 191 and 291) may not be counted in this total. The course taken to satisfy requirement (c) may be included in this total. Courses taken to fulfill the requirements for the Master of Science degree may be included also.
c. Pass one of the following subjects with no grade lower than C:
 - AMa 101 abc Methods of Applied Mathematics
 - AM 125 abc Engineering Mathematical Principles
 - Ma 108 abc Advanced Calculus
 - Ph 129 abc Methods of Mathematical Physics
 An applicant may also satisfy any of the above course requirements by taking an examination in the subject with the instructor in charge. Every examination of this type will cover the whole of the course specified, and the student will not be permitted to take it either in parts (e.g. term by term) or more than twice.
d. Pass a qualifying oral examination covering broadly his major field and minor program of study. This examination is normally taken near the end of the second year of graduate study.

Thesis and Final Examination. The candidate is required to take a final oral examination covering his doctoral thesis and its significance in and its relation to his major field. This final examination will be given not less than two weeks after the doctoral thesis has been presented in final form, and prior to its approval. This examination must be taken at least four weeks before the commencement at which the degree is to be granted.

Subject Minor in Electrical Engineering

A student majoring in another option at the Institute may elect a subject minor in electrical engineering. He must obtain approval from the electrical engineering faculty of a course of study containing at least 45 units of advanced courses with an EE listing (excluding EE 191 and 291). In addition, an oral examination is required, normally taken following completion of the course of study.

Engineering Science

Aims and Scope of Graduate Study in Engineering Science

The Engineering Science option at Caltech is designed for students of subjects which might be called classical, and semi-classical, physics and mathematics, or the subjects which form the core of the new "interdisciplinary" sciences. These branches of science provide the basis for modern technology. Students tend to choose physics and applied mathematics as their minor subjects and to choose a thesis adviser within the Division of Engineering and Applied Science. The possibilities of choice of research subject may be seen in the following thesis titles: "Multiple Scattering of Acoustic Waves," "Mechanical Properties of the Red Blood Cell," "Mechanism of Flagellar and Ciliary Propulsion," "Rayleigh-Taylor Instability as the Mechanism for Bioconvection with Swimming Micro-organisms," "Propagation of Tsunami Waves."

Students wishing to pursue graduate studies in nuclear engineering may apply for admission in this option. Students who wish to follow a program in the biological engineering sciences or in information science may do so in engineering science.

Master's Degree in Engineering Science

One of the following courses in mathematics is required:

- AMa 101 abc Methods in Applied Mathematics I
- AM 125 abc Engineering Mathematical Principles
- Ph 129 abc Methods of Mathematical Physics
A minimum of 54 units must be selected from the Elective Course List below; however, substitutions for electives in this list may be made with the approval of the student’s adviser and the faculty in engineering science.

Degree of Doctor of Philosophy in Engineering Science

Course Requirements. To be recommended for candidacy for the Ph.D. degree in engineering science, the student must, in addition to the general Institute requirements:

a. complete 12 units of research;

b. complete at least 50 units of advanced courses arranged by the student in conference with his adviser and approved by the faculty in engineering science;

c. pass with a grade of at least C an advanced course in mathematics or applied mathematics such as AM 125 abc, Ph 129 abc, or AMa 101 abc, acceptable to the faculty in engineering science. In place of AM 125 abc, Ph 129 abc, or AMa 101 abc, students in information science are required to take Ma 108 abc and at least 27 units of advanced mathematics such as Ma 116 abc, EE 162a, or AM 153 abc.

The requirement in mathematics shall be in addition to requirement (b) above, and shall not be counted toward the minor requirements.

Language Requirements. The student is encouraged to discuss with his adviser the desirability of taking foreign languages, which may be included in a general minor or as a subject minor with the proper approvals. Foreign languages are not required.

Thesis and Final Examination. A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate’s knowledge in his specialized field of research.

A subject minor is not required for the Ph.D. degree in engineering science; however, students majoring in other fields may take a subject minor in information and computer science provided the program consists of 45 units sufficiently far removed from their major program of study and is approved by the Information and Computer Science Committee.

Elective Course List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa 104</td>
<td>Matrix Theory</td>
<td>9</td>
</tr>
<tr>
<td>AMa 105 ab</td>
<td>Introduction to Numerical Analysis</td>
<td>11 11</td>
</tr>
<tr>
<td>AM 135 abc</td>
<td>Mathematical Elasticity Theory</td>
<td>9</td>
</tr>
<tr>
<td>APh 105 abc</td>
<td>States of Matter</td>
<td>9</td>
</tr>
<tr>
<td>APh 114 abc</td>
<td>Solid-State Physics</td>
<td>9</td>
</tr>
<tr>
<td>APh 153 abc</td>
<td>Modern Optics</td>
<td>9</td>
</tr>
<tr>
<td>APh 156 abc</td>
<td>Plasma Physics</td>
<td>9</td>
</tr>
<tr>
<td>APh 161 abc</td>
<td>Nuclear Energy</td>
<td>9</td>
</tr>
<tr>
<td>APh 163 abc</td>
<td>Nuclear Radiation Measurements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td>9</td>
</tr>
<tr>
<td>APh 185 abc</td>
<td>Ferromagnetism</td>
<td>9</td>
</tr>
<tr>
<td>APh 190 abc</td>
<td>Quantum Electronics</td>
<td>9</td>
</tr>
<tr>
<td>APh 261 abc</td>
<td>Theory of Particle Transport</td>
<td>9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>Transport Phenomena</td>
<td>9</td>
</tr>
<tr>
<td>Env 142 ab</td>
<td>Chemistry of Natural Water Systems</td>
<td>9</td>
</tr>
<tr>
<td>Env 160 b</td>
<td>Biological Fluid Flows: Hemorheology</td>
<td>6</td>
</tr>
<tr>
<td>ES 131 abc</td>
<td>Thermodynamics and Statistical Mechanics</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics</td>
<td>9</td>
</tr>
<tr>
<td>Hy 204 abc</td>
<td>Hydrodynamics of Free Surface Flows</td>
<td>9</td>
</tr>
<tr>
<td>IS 110 abc</td>
<td>Principles of Digital Information Processing</td>
<td>9</td>
</tr>
<tr>
<td>IS 130 abc</td>
<td>Language Systems</td>
<td>9</td>
</tr>
</tbody>
</table>

Units per term:

1st	2nd	3rd
Environmental Engineering Science

Aims and Scope of Graduate Study in Environmental Engineering Science

By their nature, environmental problems cut across many diverse disciplines. The graduate program in environmental engineering science attempts to emphasize the problem areas and to draw together work from whatever traditional disciplines are relevant. Close interactions among engineers, scientists, and social scientists are essential.

In selecting courses and research topics, each student is expected to plan for both breadth of study of the environment and depth of research on a particular subject. There are no fixed course requirements, and not all students are expected to study all subjects. Seminars offer an opportunity for all students to become acquainted with the full range of environmental research and engineering control procedures.

The curriculum has been planned primarily for the students pursuing the Ph.D. degree, although the M.S. degree is also offered. The purpose of the Ph.D. program is to prepare students for careers of specialized research, or advanced engineering and planning in various aspects of the environment. Although students are expected and encouraged to develop a broad awareness of the full range of environmental problems, the program is not designed to train environmental generalists.

Admission

Students with bachelor’s degrees in engineering science, mathematics, or economics may apply for admission to work for either the M.S. or Ph.D. degree. Programs of study are arranged individually by each student in consultation with his faculty adviser. In some instances students may need to take some additional undergraduate subjects in preparation for the graduate courses in this field.

Master’s Degree in Environmental Engineering Science

For the M.S. degree a minimum of 135 units of academic credit in advanced courses is required. Each student’s program should be well balanced with courses in several sub-disciplines to avoid over-specialization, and must be approved by the faculty adviser.

The program must have at least 63 units of electives chosen from Group A below, including 3 units of Env 150 abc, plus at least 45 units chosen from Group B. The remaining units are for free electives of any advanced courses at the Institute. Students who have not had AMa 95 abc or its equivalent are required to include AM 113 abc as part of their Group B elective units, or free elective units.

List of Electives

<table>
<thead>
<tr>
<th>Group A</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env/Ge103ab</td>
<td>Introduction to Processes of the Atmosphere and Hydrosphere (3-0-6)</td>
</tr>
<tr>
<td>Env 112 abc</td>
<td>Hydrologic Transport Processes (3-1-5; 3-0-6)</td>
</tr>
<tr>
<td>Env 116</td>
<td>Experimental Methods in Air Pollution (1-4-1)</td>
</tr>
<tr>
<td>Env 142 ab</td>
<td>Chemistry of Natural Water Systems (3-0-6)</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Env 143</td>
<td>Water Chemistry Laboratory (1-4-4)</td>
</tr>
<tr>
<td>Env 144</td>
<td>Ecology (2-1-3)</td>
</tr>
<tr>
<td>Env 145 ab</td>
<td>Environmental Biology (2-4-4; 3-0-6)</td>
</tr>
<tr>
<td>Env 146 abc</td>
<td>Analysis and Design of Water and Wastewater Systems (3-0-6)</td>
</tr>
<tr>
<td>Env 150 abc</td>
<td>Seminar in Environmental Engineering Science</td>
</tr>
<tr>
<td>Env 155</td>
<td>Special Problems in Waste Management (2-3-4)</td>
</tr>
<tr>
<td>Env 156</td>
<td>Industrial Wastes (3-0-6)</td>
</tr>
<tr>
<td>ChE/Env157</td>
<td>Fundamentals of Air Pollution Engineering (3-0-6)</td>
</tr>
<tr>
<td>Env 160</td>
<td>Biological Fluid Flows: Hemorheology (2-0-4)</td>
</tr>
<tr>
<td>Env 170 ab</td>
<td>Principles of Particulate Pollution (3-0-6)</td>
</tr>
</tbody>
</table>

Group B

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env 100</td>
<td>Special Topics in Environmental Engineering Science1</td>
<td></td>
</tr>
<tr>
<td>Env 200</td>
<td>Advanced Topics in Environmental Engineering Science2</td>
<td></td>
</tr>
<tr>
<td>Env 206 abc</td>
<td>Special Problems in Biological Engineering Science2</td>
<td></td>
</tr>
<tr>
<td>Env 214 abc</td>
<td>Advanced Environmental Fluid Mechanics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Env 250</td>
<td>Advanced Environmental Seminar (2-0-2)</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Env 300</td>
<td>Thesis Research2</td>
<td></td>
</tr>
<tr>
<td>AMa 101 abc</td>
<td>Methods of Applied Mathematics I (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>AMa 104</td>
<td>Matrix Theory (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>AMa 105 ab</td>
<td>Introduction to Numerical Analysis (3-2-6)</td>
<td>11 11</td>
</tr>
<tr>
<td>AMa 181 abc</td>
<td>Mathematical Programming and Game Theory</td>
<td>9 9 9</td>
</tr>
<tr>
<td>AM 113 abc</td>
<td>Engineering Mathematics (4-0-8)</td>
<td>12 12 12</td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Bi/Ch 110 ab</td>
<td>Biochemistry (4-0-8)</td>
<td>12 12</td>
</tr>
<tr>
<td>Bi 111</td>
<td>Biochemistry Laboratory (0-8-2)</td>
<td>10</td>
</tr>
<tr>
<td>ChE 101 ab</td>
<td>Applied Chemical Kinetics (2-0-7)</td>
<td>9 9</td>
</tr>
<tr>
<td>ChE 103 abc</td>
<td>Transport Phenomena (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 162</td>
<td>Catalysis and Surface Chemistry (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>ChE 164</td>
<td>Introduction to Statistical Thermodynamics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>ChE 165 ab</td>
<td>Applied Chemical Thermodynamics (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ae/ChE172abc</td>
<td>Optimum Control Theory (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>ChE 173 ab</td>
<td>Advanced Transport Phenomena (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>ChE 203 ab</td>
<td>Interfacial Phenomena (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>CE 115 ab</td>
<td>Soil Mechanics (3-0-6; 2-3-4)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ec 115</td>
<td>Population and Environment (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ec 118</td>
<td>Environmental Economics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Ec 122 ab</td>
<td>Econometrics (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ec 128 abc</td>
<td>New Technology and Economic Change (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Ge 111 ab</td>
<td>Invertebrate Paleontology (2-5-2)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ge 130</td>
<td>Introduction to Geochemistry (2-0-4)</td>
<td>6</td>
</tr>
<tr>
<td>Ge 137 ab</td>
<td>Laboratory Techniques in the Geological Sciences (1-4-4)</td>
<td>9 9</td>
</tr>
<tr>
<td>Ge 244 ab</td>
<td>Paleocology (Seminar)</td>
<td>5 5</td>
</tr>
<tr>
<td>Hy 101 ab</td>
<td>Fluid Mechanics (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Units</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Hy 103 ab</td>
<td>Advanced Hydraulics and Hydraulic Structures (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>Hy 111</td>
<td>Fluid Mechanics Laboratory(^3)</td>
<td>9 9</td>
</tr>
<tr>
<td>Hy 113 ab</td>
<td>Coastal Engineering (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>Hy 121</td>
<td>Advanced Hydraulics Laboratory (^1)</td>
<td></td>
</tr>
<tr>
<td>Hy 213</td>
<td>Advanced Coastal Engineering (3-0-6)</td>
<td></td>
</tr>
<tr>
<td>IS/SS 142 abc</td>
<td>Computer Modeling and Data Analysis (3-3-3)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>SS 130 abc</td>
<td>Law, Legal Processes and the Control of Technological and Economic Risk (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>SS 132</td>
<td>Government Regulation of Business (3-0-6)</td>
<td>9 9</td>
</tr>
<tr>
<td>SS 150 abc</td>
<td>Social Science Aspects of Technology (3-0-6)</td>
<td>9 9 9</td>
</tr>
<tr>
<td>SS 222 ab</td>
<td>Econometrics (3-0-6)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Six or more units as arranged, any term.
\(^2\)Units by arrangement, any term.
\(^3\)Six or nine units as arranged, second or third term.

Degree of Doctor of Philosophy in Environmental Engineering Science

Upon admission to work toward the Ph.D. degree in environmental engineering science, a counselling committee of three members of the faculty is appointed to advise the student on his program. One member of the committee who is most closely related to the student’s field of interest serves as interim chairman and adviser. The student chooses a permanent thesis adviser at a time when the student’s research interests become clearly defined.

Major Subjects of Specialization. Students may do major study including the doctoral thesis in any of the following general areas: air pollution control, aerosol physics and chemistry, water quality control (including treatment and disposal systems), aquatic chemistry, marine ecology, hydrology and water resources, hydraulic engineering, coastal engineering, environmental health engineering, bioengineering, environmental economics and systems analysis. Other subjects may be selected with approval of the faculty in environmental engineering science.

Thesis research may be arranged as an activity of the Environmental Quality Laboratory (see p. 128), provided it is done under the supervision of a professorial member of the environmental engineering science faculty.

Minor Requirements. The environmental engineering science faculty consider it essential that each student in the EES program have a minor program of study; the purpose of this minor program is to broaden the outlook of the student by acquainting him with subject matter outside his major field. The minor requirement is satisfied by the completion of advanced courses arranged by the student in consultation with his advisory committee, and approved by the faculty in environmental engineering science.

Students are expected to fulfill the minor requirement by taking a subject minor. A subject minor requires at least 45 units of advanced subjects in a discipline other than the candidate’s major field of work. The subjects must be approved by the minor option, and the student must also pass an examination arranged by that option. Under exceptional circumstances, in lieu of a subject minor, the EES faculty will approve an alternative program of 45 or more units comprising two or three closely related courses given by two divisions or options, provided that the program has rationale and coherence. The minor program (or alternative program) may not include the courses used to satisfy the mathematics requirement (including prerequisites).

Admission to Candidacy

To be recommended for admission to candidacy for the Ph.D. degree in environmental engineering science the student must, in addition to the general Institute requirements:

(a) complete most of his program of advanced courses as arranged by him in consultation with his advisory committee, and approved by the faculty of environmental engineering science, in accordance with guidelines established by that faculty;
(b) pass at least 27 units of course work in advanced mathematics, such as AM 125, AMa 101, Ph 129, or a satisfactory substitute. For a student whose program is more closely related to the sciences of biology or chemistry than physics, AMa 104 and AMa 105 ab (or AMa 181 abc) will be an acceptable substitute for the mathematics requirement;
(c) pass a candidacy examination on the major subject.

The candidacy examination will be in two parts. Part A must be passed before registration day of the spring quarter of the second year of graduate study, except that for students entering with an M.S. (or equivalent) the time limit is registration day of the spring quarter of the first year of their graduate study at Caltech. Part A of the examination will take the form of a review of the student’s scholastic record. The examination will consist of a comprehensive review of the candidate’s complete academic record by an examining committee. If the examination indicates that the academic record is marginal, or deficient, the committee may require the student to provide an oral defense of his or her preparation to be admitted to candidacy for the Ph.D.

Part B of the examination must be passed before registration day of the winter quarter of the third year of graduate study, except that for students entering with an M.S. (or equivalent), the time limit is registration day of the winter quarter of the second year of their graduate study at Caltech. The examination will comprise a discussion of a brief written research report provided by the student to the examining committee at least ten days prior to the examination. The report will describe accomplishments to date, including reading, study, and plans for future research.

Thesis and Final Examination. Copies of the completed thesis must be provided to the examining committee two weeks prior to the examination. The final oral examination covers principally the work of the thesis and, according to Institute regulations, must be held at least two weeks before the degree is conferred. Two copies of the thesis are required of the graduate, one of which is deposited in the Institute library and the other is deposited with University Microfilms. The examining committee will consist of such individuals as may be recommended by the Chairman of the Division of Engineering and Applied Science and approved by the Dean of Graduate Studies.

Subject Minor in Environmental Engineering Science

A doctoral student in another major field who wishes to take a subject minor in environmental engineering science should submit a proposed minor program to the option representative for approval. The proposed program must consist of 45 or more units in EES courses or in closely related courses of other options. Upon completion of these courses the student will be expected to pass a separate oral examination.

Materials Science

Master’s Degree in Materials Science

Study for the degree of Master of Science in Materials Science ordinarily will consist of three terms of course work totaling at least 135 units. Each student is assigned to a member of the faculty, who will serve as the student’s adviser and who will assist the student in planning his course of study. The program of study must be approved by the adviser, and any subsequent changes must also have the adviser’s approval.

The schedule of courses is given below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Units per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-0)</td>
<td>1 1 1</td>
</tr>
<tr>
<td>MS 120</td>
<td>Kinetics of Crystal Imperfections (3-0-6)</td>
<td>9 . .</td>
</tr>
<tr>
<td>MS 121</td>
<td>Solid-State Diffusion (3-0-6)</td>
<td>. 9 .</td>
</tr>
<tr>
<td>MS 122</td>
<td>Phase Transformations in Solids (3-0-6)</td>
<td>. . 9</td>
</tr>
</tbody>
</table>
MS 125 Crystal Structure and Properties of Metals and Alloys (3-0-6) 9 .
MS 126 ab Theory and Application of Image-Forming Systems in Materials Science (3-0-6) 9 9
MS 130 Metallography and Pyrometry (0-6-3) ... 9
MS 131 Crystal Defects (1-6-2) 9
MS 132 X-ray Metallurgy Laboratory (0-6-3) 9 9
Electives as below* ... Minimum 24 for year
Free Electives** ... Minimum 27 for year
Total .. Minimum 135 for year

Approved Electives

Ae/AM 102 abc Mechanics of Structures and Solids (3-0-6) .. 9 9 9
Ae 213 The Mechanics of Fractures (3-0-6) ... 9 .
Ae 221 Theory of Viscoelasticity .. Any term
AMa 101 abc Methods of Applied Mathematics (3-0-6) .. 9 9 9
AMa 105 ab Introduction to Numerical Analysis (3-2-6) .. . 11 11
AM 125 abc Engineering Mathematical Principles (3-0-6) .. 9 9 9
AM 140 abc Plasticity (3-0-6) ... 9 9 9
AM 141 abc Wave Propagation in Solids (3-0-6) .. 9 9 9
AM 151 abc Dynamics and Vibrations (3-0-6) ... 9 9 9
AM 155 Dynamic Measurements Laboratory (1-6-2) .. 9 .
APh 110 Topics in Applied Physics (2-0-4) ... 6 6 6
APh 105 abc States of Matter (3-0-6) ... 9 9 9
APh 114 abc Solid-State Physics (3-0-6) ... 9 9 9
APh 153 abc Modern Optics (3-0-6) .. 9 9 9
APh 161 abc Nuclear Energy (3-0-6) ... 9 9 9
APh 181 abc Physics of Semiconductors and Semiconductor Devices (3-0-6) 9 9 9
ChE 167 abc Polymer Science (3-0-6) .. 9 9 9
MS 105 Mechanical Behavior of Metals (3-0-6) .. . 9 .
MS 110 Special Topics in Physical Metallurgy (3-0-6) .. . 9 .
MS 205 ab Dislocation Mechanics (3-0-6) .. . 9 9
Ma 112 ab Statistics (3-0-6) ... 9 or 9 9
ME 101 abc Advanced Design (1-6-2) ... 9 9 9
ME 118 abc Advanced Thermodynamics and Energy Transfer (3-0-6) 9 9 9
Ph 106 abc Topics in Classical Physics (3-0-6) .. 9 9 9
Ph 125 abc Quantum Mechanics (4-0-5) ... 9 9 9
Ph 129 abc Methods of Mathematical Physics (3-0-6) .. 9 9 9

*Elective units may be divided among the three terms in any desired manner. Students who have not had the equivalent of AMa 95 abc are required to take AMa 113 abc, which must be included in the free electives and cannot be included in the nonfree electives. Substitution for electives given below may be made with the approval of the student's adviser and the faculty in Materials Science.

**Students are urged to consider including a humanities course in the free electives.

Degree of Doctor of Philosophy in Materials Science

Work toward the degree of Doctor of Philosophy in Materials Science requires a minimum of three years following completion of the bachelor's degree or the equivalent. Approximately two years of this time are devoted to research work leading to a doctoral thesis.

Upon admission to work toward the Ph.D. degree in Materials Science, a counseling committee of three members of the faculty is appointed to advise the student on his program. One member of the committee who is most closely related to the student's field of interest serves as the adviser and the chairman.
To be recommended for candidacy for the Ph.D. degree in Materials Science, the student must, in addition to the general Institute requirements:

a. complete 12 units of research;
b. complete at least 108 units of advanced courses arranged by the student in conference with his adviser and approved by his counseling committee and the faculty in materials science. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in materials science;
c. pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, or AMa 101 abc, acceptable to the student’s committee and the faculty in materials science. The requirement in mathematics shall be in addition to requirement (b) above, and shall not be counted toward a minor;
d. pass an oral examination on the major subject, and if the student has chosen a subject minor, examination on the subject of that program may be included at the request of the discipline offering that subject minor.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his specialized field of research.

Subject Minor in Materials Science

A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in materials science and the faculty in his major field, elect materials science as a subject minor. The group of courses shall differ markedly from the major subject of study or research, and consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student’s major.

Mechanical Engineering

Master's Degree in Mechanical Engineering

Study for the degree of Master of Science in Mechanical Engineering ordinarily will consist of three terms of course work totaling at least 135 units. Each student is assigned to a member of the faculty, who will serve as the student's adviser and who will assist the student in planning his course of study. The program of study must be approved by the adviser, and any subsequent changes must also have the adviser's approval.

The schedules of courses are given below:

General Mechanical Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc Seminar</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electives as below**</td>
<td>Minimum</td>
<td>75</td>
<td>27</td>
<td>135</td>
</tr>
<tr>
<td>Free electives **</td>
<td>Minimum</td>
<td>27</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Minimum</td>
<td>135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Elective units may be divided among the three terms in any desired manner. Students who have not had the equivalent of AMa 95 abc are required to take AM 113 abc, which must be included in the free electives and cannot be included in the nonfree electives. Substitution for electives given below may be made with the approval of the student’s adviser and the faculty in mechanical engineering.

**Students are urged to consider including a humanities course in the free electives.

Approved Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units per term</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae/APH 101 abc Fluid Mechanics</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ae/AM 102 abc Mechanics of Structures & Solids</td>
<td>9 9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AMa 104 Matrix Theory</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>AMa 105 ab Introduction to Numerical Analysis</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMa 101 abc Methods of Applied Mathematics</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 125 abc</td>
<td>Engineering Mathematical Principles (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 141 abc</td>
<td>Wave Propagation in Solids (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 151 abc</td>
<td>Dynamics and Vibrations (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM 155</td>
<td>Dynamic Measurements Laboratory (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APh 161 ab</td>
<td>Nuclear Energy (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APh 163</td>
<td>Nuclear Radiation Measurements Laboratory (1-4-4)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChE 107 abc</td>
<td>Polymer Science (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 172 abc</td>
<td>Control Systems Theory (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hy 121</td>
<td>Advanced Hydraulics Laboratory</td>
<td>9 or 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hy 201 abc</td>
<td>Turbomachines (2-0-4)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hy 203</td>
<td>Cavitation Phenomena (2-0-4)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 121 abc</td>
<td>Jet Propulsion Systems and Trajectories (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 170</td>
<td>Jet Propulsion Laboratory (0-9-0)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 105</td>
<td>Mechanical Behavior of Metals (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 120</td>
<td>Kinetics of Crystal Imperfections (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 121</td>
<td>Solid State Diffusion (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 122</td>
<td>Phase Transformations in Solids (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 130</td>
<td>Metallurgy and Pyrometry (0-6-3)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 131</td>
<td>Crystal Defects (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 132</td>
<td>X-Ray Metallurgy Laboratory (0-6-3)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma 112 ab</td>
<td>Statistics (3-0-6)</td>
<td>9 or 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 101 abc</td>
<td>Advanced Design (1-6-2)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 118 abc</td>
<td>Advanced Thermodynamics and Energy Transfer (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 126</td>
<td>Fluid Mechanics and Heat Transfer Laboratory (0-6-3)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 100</td>
<td>Advanced Work in Mechanical Engineering (for M.S.)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 200</td>
<td>Advanced Work in Mechanical Engineering</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 300</td>
<td>Thesis Research</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 106 abc</td>
<td>Topics in Classical Physics (3-0-6)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jet Propulsion

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 150 abc</td>
<td>Seminar (1-0-0)</td>
<td>1</td>
</tr>
<tr>
<td>JP 121 abc</td>
<td>Jet Propulsion Systems and Trajectories (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Electives as below*</td>
<td>Minimum 48 for year **</td>
<td>Minimum 27 for year **</td>
</tr>
</tbody>
</table>
| Free electives | Students are urged to consider including a humanities course in the free electives.

Approved Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae/AM 102 abc</td>
<td>Mechanics of Structures and Solids</td>
<td>9</td>
</tr>
<tr>
<td>Ae 105 abc</td>
<td>Experimental Methods (1-3-2)</td>
<td>6</td>
</tr>
<tr>
<td>AM 151 abc</td>
<td>Dynamics and Vibrations (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>AM 155</td>
<td>Dynamic Measurements Laboratory (1-6-2)</td>
<td>9</td>
</tr>
<tr>
<td>EE 172 abc</td>
<td>Control Systems Theory (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics (3-0-6)</td>
<td>9</td>
</tr>
<tr>
<td>JP 170</td>
<td>Jet Propulsion Laboratory (0-9-0)</td>
<td>9</td>
</tr>
</tbody>
</table>

*Elective units may be divided among the three terms in any desired manner. Students who have not had the equivalent of AM 95 abc are required to take AM 113 abc which must be included in the free electives and cannot be included in the nonfree electives. Substitution for electives given below may be made with the approval of the student's adviser and the faculty in mechanical engineering.

**Students are urged to consider including a humanities course in the free electives.
Degree of Mechanical Engineer

Work toward the degree of Mechanical Engineer requires a minimum of two years following completion of the bachelor's degree or the equivalent. Upon admission to work toward the M.E. degree, a committee of three members of the faculty is appointed to advise the student on his program. One member of the committee who is most closely related to the student's field of interest serves as the adviser and the chairman. The student shall meet with the committee before registration for the purpose of planning the student's work.

Not less than a total of 55 units of work shall be for research and thesis; the exact number shall be determined by the supervising committee, appointed by the Dean of Graduate Studies, which succeeds the counseling committee. The courses shall be closely related to mechanical engineering, and the specific courses to be taken and passed with a grade of C or better by the candidate shall be planned with the counseling committee and finally determined by the supervising committee. The courses must include an advanced course in mathematics or applied mathematics, such as AM 125 abc or Ph 129 abc, acceptable to the faculty in mechanical engineering. A list of possible courses from which a program of study may be organized is given below:

Suggested Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae 201 abc</td>
<td>Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>Ae 202 abc</td>
<td>Advanced Solid Mechanics</td>
</tr>
<tr>
<td>Ae 213</td>
<td>The Mechanics of Fractures</td>
</tr>
<tr>
<td>Ae 232 abc</td>
<td>Ionized Gas Theory</td>
</tr>
<tr>
<td>Ch 226 abc</td>
<td>Molecular Quantum Mechanics</td>
</tr>
<tr>
<td>Ch 229</td>
<td>X-Ray Diffraction Methods</td>
</tr>
<tr>
<td>ChE 163 ab</td>
<td>Introduction to Thermodynamics</td>
</tr>
<tr>
<td>ES 201 abc</td>
<td>Neutron Transport Theory</td>
</tr>
<tr>
<td>Hy 200</td>
<td>Advanced Work in Hydrodynamics or Hydraulic Engineering</td>
</tr>
<tr>
<td>Hy 201 abc</td>
<td>Turbomachines</td>
</tr>
<tr>
<td>Hy 203</td>
<td>Cavitation Phenomena</td>
</tr>
<tr>
<td>Hy 210 ab</td>
<td>Hydrodynamics of Sediment Transportation</td>
</tr>
<tr>
<td>Hy 300</td>
<td>Thesis</td>
</tr>
<tr>
<td>JP 250 abc</td>
<td>Turbomachines</td>
</tr>
<tr>
<td>JP 280 abc</td>
<td>Jet Propulsion Research (Thesis)</td>
</tr>
<tr>
<td>MS 120</td>
<td>Kinetics of Crystal Imperfections</td>
</tr>
<tr>
<td>MS 121</td>
<td>Solid State Diffusion</td>
</tr>
<tr>
<td>MS 122</td>
<td>Phase Transformations in Solids</td>
</tr>
<tr>
<td>MS 125</td>
<td>Crystal Structure and Properties of Metals and Alloys</td>
</tr>
<tr>
<td>MS 126 ab</td>
<td>Theory and Application of Image-Forming Systems in Materials Science</td>
</tr>
<tr>
<td>MS 130</td>
<td>Metallography and Pyrometry</td>
</tr>
<tr>
<td>MS 131</td>
<td>Crystal Defects</td>
</tr>
<tr>
<td>MS 132</td>
<td>X-Ray Metallography Laboratory</td>
</tr>
<tr>
<td>MS 205 ab</td>
<td>Dislocation Mechanics</td>
</tr>
<tr>
<td>ME 200</td>
<td>Advanced Work in Mechanical Engineering</td>
</tr>
<tr>
<td>ME 300</td>
<td>Thesis—Research</td>
</tr>
<tr>
<td>Ph 127 abc</td>
<td>Statistical Physics</td>
</tr>
<tr>
<td>Ph 205 abc</td>
<td>Advanced Quantum Mechanics</td>
</tr>
</tbody>
</table>
Degree of Doctor of Philosophy in Mechanical Engineering

Work toward the degree of Doctor of Philosophy in Mechanical Engineering requires a minimum of three years following completion of the bachelor's degree or the equivalent. Approximately two years of this time are devoted to research work leading to a doctoral thesis.

Upon admission to work toward the Ph.D. degree in Mechanical Engineering, a counseling committee of three members of the faculty is appointed to advise the student on his program. One member of the committee who is most closely related to the student's field of interest serves as the adviser and the chairman.

To be recommended for candidacy for the Ph.D. degree in Mechanical Engineering, the student must, in addition to the general Institute requirements:

a. complete 12 units of research;

b. complete at least 108 units of advanced courses arranged by the student in conference with his adviser and approved by his counseling committee and the faculty in mechanical engineering. If the student chooses to take a subject minor, the units thereof may be included in the total of 108, subject to the approval of the faculty in mechanical engineering;

c. pass with a grade of at least C an advanced course in mathematics or applied mathematics, such as AM 125 abc, Ph 129 abc, or AMa 101 abc, acceptable to the student's committee and the faculty in mechanical engineering. The requirement in mathematics shall be in addition to requirement (b) above, and shall not be counted toward a minor;

d. pass an oral examination on the major subject, and if the student has chosen a subject minor, examination on the subject of that program may be included at the request of the discipline offering that subject minor.

A final oral examination will be given after the thesis has been formally completed. This thesis examination will be a defense of the doctoral thesis and a test of the candidate's knowledge in his specialized field of research.

Subject Minor in Mechanical Engineering

A student majoring in another branch of engineering or another division of the Institute may, with the approval of the faculty in mechanical engineering and the faculty in his major field, elect mechanical engineering as a subject minor. The group of courses shall differ markedly from the major subject of study or research, and consist of at least 54 units of advanced work. The student shall be examined orally and separately from the examination in the student's major.

Geological and Planetary Sciences

Aims and Scope of Graduate Study

Graduate students in the Division of Geological and Planetary Sciences enter with very diverse undergraduate preparation — majors in physics, astronomy, chemistry, and mathematics, as well as in geology, geophysics, and geochemistry. Graduate study and research within the division is equally diverse and the graduate program aims to provide for each student a depth of competence and experience in his major field, sufficient strength in the basic sciences as to allow him to continue self-education after his formal training has been completed, and the motivation and training to keep him in the forefront of his field through a long and productive career.

Graduate Record Examination Test Scores

All North American applicants for admission to graduate study in the Division of Geological and Planetary Sciences are required to submit Graduate Record Examination test scores for verbal and quantitative aptitude tests and the advanced test in geology, or their field of
undergraduate specialty if other than geology. Non-North American applicants are strongly urged to submit Graduate Record Examination scores and TOEFL (Test of English as a Foreign Language) scores to assist in proper evaluation of the applications.

Placement Examinations

On Wednesday, Thursday, and Friday of the week preceding registration for his first term of graduate work, the student will be required to take placement examinations covering basic aspects of the earth sciences and including elementary physics, mathematics, chemistry, and biology. These examinations will be used to determine the student's understanding of basic scientific principles and his ability to apply these principles to specific problems. It is not expected that he possess detailed informational knowledge, but it is expected that he demonstrate a degree of proficiency not less than that attained by undergraduate students at the California Institute. A student who has demonstrated proficiency in earlier residence at the Institute may be excused from these examinations.

The student's past record and his performance in the placement examinations will be used to determine whether he should register for certain undergraduate courses. Any deficiencies must be corrected at the earliest possible date.

Adviser

Each member of the division faculty serves as an academic adviser to a small number of graduate students intending to major in his field. Each graduate student will be notified, prior to his arrival, who his adviser will be, and prior to registration day the student should seek the counsel of his adviser in planning his program for each term. A student can and should consult with other staff members concerning his program of study and research. It is the responsibility of the adviser to see that the student registers at the earliest possible time for the proper courses to provide background, fulfill requirements, and to constitute a sensible, integrated program. It is the responsibility of the student to seek and consider his adviser's advice. If a student elects to do a Ph.D. thesis under his academic adviser, another staff member will then be appointed as his academic adviser, as distinct from his thesis adviser.

Registration for Early Research

It is the wish of the division that its graduate students become productively research minded as early as possible. To that end it is strongly recommended that each student register for not less than 8 units of research in two out of the first three terms of residence. Each of these terms of research should be under the direction of different staff members. Guidance in arranging for research should be sought from the student's adviser and from individual members of the staff. The primary objective is to communicate to the students the excitement of discovery based on original investigations. An important by-product can be the formulation of propositions for the Ph.D. oral examination or an orientation toward Ph.D. thesis research.

Master's Degree in the Geological and Planetary Sciences

Master's degree students in geology, geochemistry, geophysics, or planetary science will be expected to have satisfied, either before arrival or in their initial work at the Institute, the basic requirements of the undergraduate curriculum (pages 190-192). Particular attention is called to requirements in petrology, field geology, chemistry, physics, and mathematics; competence in these subjects will be evaluated during the placement examination. Twenty-seven units of such course work may be counted toward the Institute requirement of 135 graduate units. In addition, students must take, in consultation with their advisers, 81 of the 135 units in courses numbered over 100 in geology or other science and engineering options that are not required in the geology, geochemistry, and geophysics undergraduate curriculum. Humanities work may be included in the remaining 27 units, which are free electives. For most students, two years will be required to meet the Master's degree requirements.
Degree of Doctor of Philosophy in the Geological and Planetary Sciences

Major Subject. The work for the doctorate in the Division of Geological and Planetary Sciences shall consist of advanced studies and of research in some discipline in the geological sciences which will be termed the "major subject" of the candidate. The division will accept as major subjects any of the disciplines listed herewith, provided that the number of students working under the staff members in that discipline does not exceed the limit of efficient supervision.

- Geology and Geobiology
- Geochemistry
- Geophysics
- Planetary Science

Admission to Candidacy. A student may be admitted to candidacy for the Ph.D. degree by vote of the division staff upon meeting the following requirements.

a. He must pass the qualifying examination.
b. He must satisfy minimum course requirements in his major and minor subjects.
c. He must satisfy the language and oral presentation requirements.
d. He must satisfy his academic and thesis advisers that his course work has prepared him to undertake research in his major subject.
e. He must be accepted for thesis research by a division staff member.

A student admitted to work for the Ph.D. degree must file with the division before the end of the ninth term of residence the regular form for admission to candidacy with evidence of having met these requirements. Subsequent to completion of the preliminary qualifying examination, the Ph.D. program of each student will be monitored by the faculty of one of the four discipline-oriented options within the division (geology and geobiology, geochemistry, geophysics, planetary science). Each student must choose one of these options during his second year. The faculty of each option will formally review each year the progress of the students in the option; students may be asked to present to the faculty their research work and other evidences of progress. The option representatives have the responsibility to organize these reviews and to make recommendations to the full division faculty, which may deny permission to continue in the Ph.D. program for any student showing inadequate progress. For a student who has passed the Ph.D. preliminary qualifying examination, permission to continue toward the Ph.D. degree may be withdrawn only upon action of the division as a whole.

Qualifying Examination. This examination will consist of the oral defense of three propositions prepared by the student, each supported by a succinct one-paragraph statement of the problem and of the candidate’s specific approach to it. The propositions offered must represent a knowledge and breadth of interest judged acceptable by the division in terms of the student’s maturity. The student has the privilege of consultation and discussion with various staff members concerning his ideas on propositions but the material submitted must represent the work of the student and not a distillation of comments and suggestions from the staff. Candidates should realize that propositions based on field investigations are just as acceptable as those arising from laboratory or theoretical work. In general, the examination is designed to evaluate a student’s background in the earth sciences and allied fields and to determine his capabilities in applying scientific principles to the solution of specific problems. The ideal candidate will display originality and imagination as well as scholarship.

Each first-year student by May 15 must submit to the Core Committee a preliminary status report on his choice of proposition topics. The statement should be as specific as possible, and should preferably give the specific title of propositions already formulated. The Core Committee will review the preliminary status report for the required breadth, scope, and substance and will make appropriate recommendations. Final propositions must be submitted to the division office at least one week before registration day of the 4th term of
residence, and the examination will be taken within the ensuing two-week period at a time and before a committee arranged by the division.

Graduate students are encouraged to register for as many as 15 units per term of advanced study (Ge 297) under appropriate staff members to gain experience and background for preparation of their propositions.

Minimum Course Requirements for Ph.D.

Basic Division Requirement: The solution of many problems in each of the subdisciplines or major subjects included within the division requires some basic understanding of the other subdisciplines. Therefore all graduate students are required to take at least 45 units within the division in subjects other than their own major subject. The courses are chosen in consultation with the student's adviser, and are subject to the approval of the staff at admission to candidacy. Ge 101 abc is specifically required and Ge 104 abc, Ge 105 abc, and Ge 160 are especially recommended as part of these courses. Students may be exempted from one or more quarters of Ge 101 by the instructor and the Academic Officer on the basis of previous work taken. Where appropriate these 45 units may be counted as part of a subject minor within the division. Students who take a subject minor in another division or who show evidence of similar course work elsewhere may, by petition to the Academic Officer, be excused from up to 27 units of such courses.

Geology and Geobiology: In addition to the general Institute and basic division requirements the candidate for the Ph.D. in geology or geobiology must successfully complete a minimum of 90 units of 100-200 level courses, including the 200-level courses most pertinent to his major field, but excluding languages, research and reading courses, and certain courses constituting basic preparation in his field as follows: Ma 1, Ma 2, Ph 1, Ph 2, Ch 1, Ge 104-105, Ge 114, Ge 115, Ge 121, Ge 123, Ch 21. At least 36 of the 90 units must be taken outside the geology division (with a grade of C or better) and may be used as part of the minor. For good work in most modern earth science fields a proficiency in mathematics equivalent to that represented by AM 113 (Engineering Mathematics) is essential. Summer study and research at a marine biology laboratory are required of most candidates in geobiology. Throughout his graduate work a student is expected to participate in departmental seminars and in seminar courses led by distinguished visitors.

Geochemistry: In addition to the general Institute and basic division requirements, the Ph.D. candidate in geochemistry must demonstrate a knowledge of both geology and chemistry equivalent to the average attained in the Caltech undergraduate curriculum in geochemistry. Beyond this, the candidate will be expected to take a minimum of 90 units of 100- and 200-level courses, at least 54 units of which should be outside the division. The same courses can be presented to satisfy the requirements for a minor. A proficiency in mathematics equivalent to AM 113 (Engineering Mathematics) is desirable.

Geophysics: In addition to the general Institute and basic division requirements, the Ph.D. candidate in Geophysics must successfully complete a minimum of 81 units of 100-200 level courses chosen from the three categories listed below. At least 18 units must be completed in each group.

Group A. Courses in mathematics and applied mathematics: Ph 129, AMa 101, AMa 110, AMa 151, AMa 201, AMa 204, Ma 142, Ma 143, Ma 205, AM 113, AM 141, EE 161, EE 255. A minimum proficiency in basic mathematical methods at the level of Ph 129 or AMa 101 and AMa 201 is required.

Group B. Courses in physics, applied physics, and chemical physics: Ph 106, Ph 125, APh 114, APh 214, Ph 127, Ph 205, Ph 236, MS 205, EE 133, Ch 125, Ch 226. Geophysics courses cannot be substituted for courses in this group.

Group C. Courses in geophysics: Ge 160, Ge 166, Ge 176, Ge 177, Ge 260, Ge 261, Ge 264, Ge 265.

The recommended courses in these three categories are representative of the required level, but the list is not exhaustive. Substitutions can be made upon consultation with the student's adviser. Students with an exceptionally strong background in one or more of the
areas represented by these groups may, upon petition to the option representative, be excused from up to 18 units of the overall 81 unit requirement. Research and reading courses cannot be used to satisfy these requirements but are highly recommended as preparation for the oral qualifying examination.

Planetary Science: In addition to general Institute and basic division requirements the candidate for a Ph.D. degree in planetary science shall acquire at least a minimum graduate background in each of three categories of course work: (1) The Earth Sciences, (2) Physics, Mathematics, Chemistry, and Astronomy, and (3) Planetary Science.

These requirements may be met by successful completion of at least 45 units of suitable course work at the 100 or higher level in each category. The requirements in the first category are coincident with the basic division requirement. Reading and research courses may not be used, although students are expected to take such courses and to devote each summer to research in planetary science. Planetary Science Seminar (Ge 225 abc) is required each year for all planetary science students.

The student shall demonstrate professional competence in a second scientific field distinct from his specialization within planetary science. This may be accomplished either by: (1) satisfactory completion of a subject minor or (2) submission of publications which demonstrate an equivalent competence. Courses used to satisfy this secondary requirement may also be used to satisfy the requirements in one of the 45-unit categories.

Four academic years should normally be adequate for completion of the Ph.D. in planetary science. Accordingly, the student is expected to meet the following schedule unless specific written waivers are obtained by him from the academic officer or planetary science option representative.

- **End of 2nd academic year:** 1) satisfactory completion of divisional oral examination; 2) tentative approval of courses in the major and secondary fields; 3) tentative thesis topic in planetary science.
- **End of 3rd academic year:** 1) satisfactory completion of major requirements; 2) satisfactory completion of secondary requirements; 3) satisfactory progress on thesis; 4) admission to candidacy.
- **End of 4th academic year:** completion of Ph.D. thesis.
- **Fifth academic year or beyond:** satisfactory thesis progress required each quarter.

Minor Requirement. A minor is required in the planetary science option, but not in geology and geobiology, geophysics, or geochemistry options. The purpose of a minor is to give diversification of training and a broadening of outlook. It should involve basic approaches, techniques, and knowledge distinct from those of the major field. A minor must be comprehensive enough to give the student a fundamental knowledge of the field, and his diploma and degree will indicate both the major and minor fields. The division prefers that students take a subject minor in other divisions of the Institute, but the student may take a subject minor in the geology division in a different field from his major.

If the student takes a minor in the division, then he must demonstrate a competency in the minor field markedly exceeding that normally expected by his major field and markedly exceeding the undergraduate requirements in the field. Such a minor will include at least 45 units, normally including one or more 200-level courses as well as the 100-level supporting courses. The oral examination requirement may be met through the choice of propositions or a special examination may be held.

A proposed minor program should be discussed with the adviser and the option representative and submitted to the staff for preliminary evaluation before the end of the 6th term of residence. Final approval will be given only after completion of all courses.

Language Requirement. Due to the diversity of fields within geological and planetary sciences, the division does not have a uniform language requirement. All entering graduate students are expected to have some knowledge of French, German, or Russian. (Other languages may be acceptable in particular cases.) A student who has not had either one year
of college study in one of these languages or the equivalent thereof will be expected to make up this deficiency in his first two years. In some fields of study, additional linguistic skills are important and may be required by a student’s thesis adviser in consultation with the student. However, the division strongly encourages the acquisition of additional language skills.

Oral presentation (Ge 102) is required of all candidates for degrees in the division. Thesis and Paper for Publication. The doctoral candidate must complete his thesis in his option and submit it in final form by May 10 of the year in which the degree is to be conferred. A first draft of the thesis must be submitted to the division chairman by March 1 of the year in which it is proposed to take the degree.

The candidate is expected to publish the major results of his thesis work. The manuscript should be reviewed by the member of the staff supervising the major research before being submitted for publication. The published paper should have a California Institute of Technology address and a Division of Geological and Planetary Sciences Contribution Number, and five reprints should be sent to the division.

Final Examination. The final oral examination for the doctorate will be scheduled following submission of the thesis and, in conformity with an Institute regulation, it must be scheduled at least two weeks before the degree is to be conferred.

Minor in Geological and Planetary Sciences
A student majoring in another division of the Institute may, with the approval of the Division of Geological and Planetary Sciences, elect a minor in any one of the major subjects listed above. Such a subject minor will include at least 45 units normally, including one or more 200-level courses as well as the 100-level supporting courses. The student should consult the division graduate representative on the choice of courses and on the scheduling of the required oral examination.

History
The program for a subject minor in history must be approved by the department prior to the admission to candidacy. In addition to general Institute requirements, the student must complete satisfactorily, with a grade of C or better, 45 units in advanced courses in history.

Mathematics
Aims and Scope of Graduate Study in Mathematics
The principal aim of the graduate program is to equip the student to do original research in mathematics. Independent and critical thinking are encouraged by participation in seminars and by direct contact with faculty members; an indication of the current research interests of the faculty is found on page 132. In order to enable each student to acquire a broad background in mathematics, individual programs of study and courses are mapped out in consultation with faculty advisers. The normal course of study leads to the Ph.D. degree.

Admission
Each new graduate student admitted to work for an advanced degree in mathematics will be given an interview on Thursday or Friday of the week preceding the beginning of instruction in the fall term. The purpose of this interview is to ascertain the preparation of the student and assist him in mapping out a course of study. The work of the student during the first year will include independent reading and/or research.

Course Program
The graduate courses which are offered are listed in Section V. They are divided in three categories. The courses numbered between 100 and 199 are basic graduate courses open to
all graduate students. The course Ma 108 is the fundamental course in analysis. It is a prerequisite to most courses, and its equivalent is expected to be part of the undergraduate curriculum of the entering graduate student. The basic course in algebra, Ma 120, presupposes an undergraduate introductory course in modern algebra similar to Ma 5 abc. Particular mention is made of Ma 190. It is a seminar required of all first-year graduate students and restricted to them. It is intended to stimulate independent work, to train students in the presentation of mathematical ideas, and to develop an independent critical attitude.

The courses in the second category are numbered between 200 and 290. They are taken normally by second-year and more advanced graduate students. They are usually given in alternate years. The 300 series includes the more special courses, the research courses, and the seminars. They are given on an irregular basis depending on demand and interest.

The first-year graduate program, in addition to the elementary seminar Ma 190, will consist as a rule of two or three 100-series courses.

Beginning with the second year, at the latest, the student will be expected to begin his independent research work and will be strongly encouraged to participate in seminars.

Master's Degree in Mathematics

Entering graduate students are normally admitted directly to the Ph.D. program, since the Institute does not offer a regular program in mathematics leading to the master's degree. This degree may be awarded in exceptional circumstances either as a terminal degree or as a degree preliminary to the Ph.D. degree. Sufficiently advanced undergraduates may be admitted to graduate standing to pursue a master's degree simultaneously with the bachelor's program.

The recipient of a master's degree will be expected to have acquired, in the course of his studies as an undergraduate or graduate student, a comprehensive knowledge of the main fields of mathematics comparable to 180 units of work in mathematics at the Institute with course numbers greater than 90.

The general Institute requirements specify that the recipient of a master's degree must have taken at least 135 units of graduate work as a graduate student at the Institute, including at least 81 units of advanced graduate work in mathematics. This advanced work is interpreted as work with a course number greater than 115 and may include a master's thesis.

Degree of Doctor of Philosophy in Mathematics

Candidacy Examination. Before being admitted to candidacy for the Ph.D. in mathematics the student is expected to acquire an understanding of the main fields of modern mathematics and to demonstrate ability to do competent research in a particular field. The purpose of the candidacy examination is to determine as early as possible the candidate's progress toward these objectives.

The first graduate year is usually spent in acquiring basic background knowledge in the several fields of mathematics. Comprehensive written examinations will be given toward the end of the third term of the first year of graduate study. These examinations will consist of two 3-hour papers, one covering the field of algebra, the other real and complex analysis. They will not be concerned with detailed technical results and the reproduction of proofs but will emphasize the ability to use the basic concepts and to relate various mathematical ideas. A syllabus is available to graduate students describing the topics on which the examinations are based.

During the summer following the first year of graduate work, each graduate student in mathematics is expected to plan a program of independent study and research work under the guidance of some member of the mathematics staff. This summer program should provide the student with an opportunity to acquire new mathematical knowledge and to generate new mathematical ideas. Shortly after the beginning of the fall term, the faculty will make an overall evaluation of the progress and research potential of these graduate students. This evaluation will be based upon the performance in course work during the
first year of study, the results of the comprehensive examinations, and a report on the
summer's independent work. The results of this evaluation will be reported to the student
and will be used in consultation with the student to plan his subsequent academic program.
At this time each student is expected to arrange with a member of the faculty to act as his
research adviser. A form to be filled out by the student and his adviser will be provided for
this purpose.

Language Requirement. The language requirement for mathematics may be satisfied by
demonstrating a good reading knowledge of at least two foreign languages or an extensive
knowledge of at least one foreign language, chosen among French, German, and Russian.
Credit will be given for previous language study.

Thesis and Final Examination. On or before the first Monday in April of the year in which the
degree is to be conferred, a candidate for the degree of Doctor of Philosophy must deliver a
typewritten or reproduced copy of his thesis to his supervisor. This copy must be complete
and in the exact form in which it will be presented to the members of the examining
committee. The candidate is also responsible for supplying the members of his examining
committee, at the same time or shortly thereafter, with reproduced copies of his thesis. The
department will assign to the candidate, immediately after the submission of his thesis, a
topic of study outside his field of specialization. During the next four weeks the candidate is
expected to assimilate the basic methods and the main results of the assigned topic with the
aim of recognizing the direction of further research in this field.

The final oral examination in mathematics will be held as closely as possible to four weeks
after the date the thesis has been handed in. It will cover the thesis and fields related to it and
the assigned topic of study.

Subject Minor in Mathematics. Students majoring in other fields may take a subject minor in
mathematics. Minor programs must include 54 units of advanced work approved by a
representative of the mathematics department who will insure that the work represents a
concentrated study in one or more of the main fields of mathematics. A special oral
examination in the subject minor shall be given soon after completion of the minor program.

Physics

Aims and Scope of Graduate Study in Physics

The physics department offers a program leading to the degree of Doctor of Philosophy in
Physics. This program seeks to prepare students for careers in scientific research, or
research combined with teaching, and independent research is an essential part of the
graduate program. Courses are offered which will help a beginning graduate student
prepare himself for research and provide a broad, sound knowledge of physics. These
courses are not required; each student takes only those courses that he needs. Instead of
formal course requirements, each student must pass a candidacy examination which seeks
to determine his readiness to undertake original research on his own, and his basic know-
ledge of physics.

To broaden the student's experience beyond the narrow limits of his own research
interest, each student is required to take 54 units (12 semester hours) of advanced physics
courses selected from a variety of topics in physics.

A Master of Science degree may be awarded upon the completion of a one-year program
of courses. A student is not normally admitted to work toward the M.S. degree in physics
unless he is also working for a Ph.D.

Admission

Application blanks for admission to graduate standing and for assistantships should be
obtained from the Dean of Graduate Studies, California Institute of Technology, Pasadena,
California 91125, and submitted as early as convenient. While late applications will be
considered, applications should whenever possible reach the Graduate Office by February
15, 1976. Special inquiries will be welcomed by Professor R. W. Kavanagh, Chairman, Physics Graduate Admissions Committee. It is strongly recommended that applicants take the Graduate Record Aptitude Test and Advanced Physics Test, by mid-December at the latest. Information may be obtained from the Educational Testing Service, 20 Nassau Street, Princeton, New Jersey 08540.

Placement Examinations

On the Thursday preceding the beginning of instruction for his first term of graduate study, a student admitted to work for an advanced degree in physics is required to take placement examinations to be used as a guide in selecting the proper course of study. These examinations will cover material in mechanics and electromagnetism, atomic and nuclear physics, quantum mechanics, and mathematical physics, approximately as covered in Ph 106, Ph 112, Ph 125, and Ph 129. In general, they will be designed to test whether the student possesses an understanding of general principles and the ability to apply these to concrete problems, rather than detailed informational knowledge. In cases in which there is a clear basis for ascertaining the status of the entering graduate student, the placement examinations may be waived.

Physics Course List

The following courses are referred to several times in the regulations below. These courses are described fully on pages 343-347.

Ph 127 Statistical Physics
Ph 129 Methods of Mathematical Physics
Ph 203 Nuclear Physics
Ph 205 Advanced Quantum Mechanics
Ph 209 Classical Electromagnetism
Ph 213 Nuclear Physics and Nuclear Astrophysics
Ph 221 Topics in Solid-State Physics
Ph 224 Space Physics
Ph 230 Elementary Particle Theory
Ph 231 High-Energy Physics
Ph 234 Topics in Theoretical Physics
Ph 236 Relativity
Ph 237 Theoretical Nuclear Physics
APh 140 Cryogenics
APh 156 Plasma Physics
APh 214 Advanced Solid-State Physics
Ay 131 Stellar Atmospheres
or
Ay 132 Stellar Interiors
Ay 133 Radio Astronomy
Ay 218 High-Energy Astrophysics

Master's Degree in Physics

A student is not normally admitted to work toward the M.S. degree in physics unless he is also working for a Ph.D.

A Master of Science degree in Physics will be awarded upon satisfactory completion of a program approved by the departmental representative that fulfills the following requirements:

Ph 125 abc.. 27 units
(If this course was taken as part of an undergraduate program or an equivalent course was taken elsewhere and a satisfactory score made on the placement examination, it may be replaced by 27 units of any graduate courses.)
Physics electives .. 81 units
These must be selected from Ph 127 abc, Ph 129 abc, Ph 203 ab, Ph 205 abc, Ph 209 abc, Ph 213 ab, Ph 221, Ph 224 abc, Ph 230 abc, Ph 231 abc, Ph 236 abc, Ph 237 abc.

Non-physics electives ... 27 units
These must be graduate courses from any option, including humanities, except physics.

With the approval of the department representative, a student who has the proper preparation may substitute other graduate courses in science or engineering for some of those listed above.

Doctor of Philosophy Degree in Physics

Requirements for the Ph.D. include passing a written candidacy examination, typically taken in the first or second year, covering basic material in physics; an oral candidacy exam in the area in which the student proposes to do research; 54 units (equivalent to 12 semester-hours) of advanced electives in physics; writing a thesis which describes the results of independent research, and passing a final oral examination based on this thesis and research.

Graduate students working toward the Ph.D. degree should complete the requirements for admission to candidacy for the doctor's degree as soon as possible. No courses are specifically required for candidacy, but the average student will profit from taking several of the basic graduate courses, such as Ph 129, Ph 205, and Ph 209.

Course Requirements. In order to be recommended for the Ph.D. degree, each candidate must, in addition to the requirements for candidacy and the general Institute requirements for a Ph.D. degree, pass satisfactorily a total of 54 units from the courses enumerated in the above Physics Course List. Ph 129, Ph 205 and Ph 209 are excluded from the list. These three courses will presumably be of use to the student in preparing for the written candidacy examination, but are not required, nor may they be counted toward course requirements. The purpose of course requirements is to broaden the student's knowledge of physics and acquaint him with material outside his own field of specialization; for this reason, no more than 18 units of any given course in the above list may be counted toward any requirements for these courses. In addition to these requirements, the student will normally take other advanced courses, particularly in his field of specialization. In general a student will find it desirable to continue his graduate study and research for two years after admission to candidacy.

The student is expected to obtain a grade of C or better in each of his courses. If he obtains grades below C in his courses, or an unsatisfactory grade on his written or oral candidacy examination, the Physics Graduate Committee will review the student's entire record, and if it is unsatisfactory will refuse permission for him to continue work for the Ph.D.

Candidacy Examinations. A written candidacy examination, in several parts and requiring a total of about twelve hours, is given each year in the third term. Each student must pass this examination before being permitted to register for his third year of graduate study. The examination covers that body of knowledge felt to be essential no matter what the candidate's ultimate field of specialization may be.

An oral candidacy examination is also required. This examination may be taken no sooner than one month after the written examination is passed, and is primarily a test of the candidate's suitability for research in his chosen field. The candidate must have passed at least 15 units of Ph 171, Ph 172, or Ph 173 before taking his oral candidacy examination. A student who is admitted to work toward the Ph.D. degree and who does not pass both these examinations before the end of the second term of his third year of graduate study at the Institute will not be permitted to register for a subsequent academic year.

The written and oral candidacy examinations are the only departmental requirements for admission to candidacy, beyond the general Institute requirements enumerated on page 210.
Research Requirements. There is no specific requirement but in general a substantial effort is required to master the research techniques in a given field and carry out a significant piece of original research. Each student is strongly advised to start research as soon as possible and carry it on in parallel with course work.

The Minor. A minor is not required, but a student may elect to pursue a minor in another option.

Language Requirements. There are no language requirements for a Ph.D. in physics, but mastery of one or more foreign languages will be highly advantageous.

Thesis and Final Examination. A final oral examination will be given not less than two weeks after the thesis has been presented in final form. This examination will cover the thesis topic and its relation to the general body of knowledge of physics. The candidate himself is responsible for completing his thesis early enough to allow the fulfillment of all division and Institute requirements, having due regard for possible conflicts in the scheduling of more than one final oral examination per day.

Subject Minor in Physics
A subject minor in physics (see page 210) will be approved by the minor division if it includes at least 18 units of physics courses, chosen from the courses in the Physics Course List, but excluding Ph 129, all Ay and APh courses, and any specific courses in physics required for the student's major program. Physics courses with numbers over 100 will be allowed for the subject minor, but, where reduced credit is given to physics graduate students, will count at the same reduced rate toward the required total of 45 units. The required oral examination in the subject minor will normally be a separate examination but may be part of one of the oral examinations in the major subject if sufficient time is made available. It is the responsibility of the candidate to make arrangements for this examination with the chairman of the Physics Graduate Committee.

Social Science
Aims and Scope of Graduate Study in Social Science
The Division of the Humanities and Social Sciences offers a program leading to the degree of Doctor of Philosophy in Social Science. The focus of the program is on social change, and it is highly analytical. The program is designed to prepare students to assume senior staff positions in policy-making organizations where they will be able to conceive and execute complicated research projects and to utilize the products of their research to provide the basis for actual policy decisions. It is also anticipated that over the next few years there will be an increasing demand in colleges and universities for people who are trained more broadly than in a single social science. Depending on their individual orientation, students graduating from the program will also be qualified to take positions in departments of economics or political science.

Admission
The only specific requirements for admission to the graduate program in social science are in the field of mathematics. Mathematical requirements consist of (1) courses in calculus at the levels of Ma 1 abc and Ma 2 abc; (2) a course in linear algebra and/or matrix algebra at the level of AMa 104; (3) courses in elementary mathematical statistics at the level of AMa 112 ab. The completion of courses in advanced calculus or applied mathematics is also recommended. Under certain circumstances, students may be permitted to complete some of the mathematical requirements after entering the program. Students will find that courses in abstract algebra, functional analysis, topology, and probability theory will be of significant help in their graduate work, and they will be expected to take whatever courses in mathematics are directly relevant to their research after entering the program.
Placement Examinations

Entering students will take placement examinations in social science and mathematics to determine their level of attainment. Required remedial work, if any, will be determined by the option committee in consultation with the student and will be based primarily on the results of the placement examinations and review of the student's undergraduate program. In cases where there is a clear basis for ascertaining the status of entering students, the placement examinations may be waived.

Course Program

No graduate courses in social science are specifically required for an advanced degree in social science. However, a student will, in consultation with the option committee and his research adviser, develop a program which will allow him to prove his competence in three major areas.

1. Theory: Since the basic commitment of the entire program will be the application of theory to applied problem areas, the central core of the course offerings is designed to provide the student with a substantial knowledge of existing theory that is relevant to those problems and to introduce him to the revisions that must be effected if he is to work across disciplines. The areas of competence must include microeconomics, analytical political science, and social psychology.

2. The Testing of Theory: Students must know how to test theory as they attempt to use it to predict or explain phenomena of the real world. Such tests involve the generation of relevant data, the manipulations that are required to compare the data with the predictions yielded by the theory, and the techniques needed to handle data efficiently. Here the areas of competence must include econometrics and computer modeling and data analysis.

3. Applications of Methodology to the Problems of Social Change: Neither the theory nor the problems of measurement are relevant unless they are related to actual problems of policy. Thus a substantial part of the Ph.D. program will be devoted to attempts at solutions of some of these problems. Opportunities for applied research will vary according to the work being carried on in various parts of the Institute and at the Jet Propulsion Laboratory. Of prime importance to this phase of the program will be the research seminar which all graduate students will be expected to attend.

Master's Degree in Social Science

Entering graduate students are admitted for the Ph.D. program. The M.S. degree is awarded in exceptional cases. Of the 135 units of graduate work required by Institute regulations, at least 81 units of advanced work should be in social science.

Degree of Doctor of Philosophy in Social Science

Requirements for the Ph.D. include passing a written and oral candidacy examination covering basic material in social science (to be taken before the close of the sixth quarter of residency), the writing of a thesis which describes the results of independent research, and the passing of a final oral examination based on the thesis and research. Students will be expected to have completed all requirements for the Ph.D. degree no later than the end of their fourth year of residency.

A minor is also required, the requirements for which are discussed on page 210.

Subject Minor in Social Science

Graduate students taking social science as a subject minor shall complete a program of no less than 45 units in social science approved by the option committee.
GRADUATE EXPENSES

The tuition charge for all students registering for graduate work is currently $3,375 per academic year, payable in three installments at the beginning of each term. Graduate students who cannot devote full time to their studies are allowed to register only under special circumstances. Students desiring permission to register for fewer than 36 units should therefore petition on a form obtained from the Registrar. If reduced registration is permitted, the tuition for each term is at the rate of $32 a unit for fewer than 36 units with a minimum of $320 a term. Adjustments of tuition charges may be arranged for changes in units if reported during the first three weeks of a term. Additional tuition will be charged to students registering for special courses made available to them which are not part of the normal educational facilities of the Institute.

The payment of tuition by graduate students is required (a) without reference to the character of the work by the student, which may consist of the performance of research, of independent reading, or of the writing of a thesis or other dissertation, as well as in attendance at regular classes; (b) without reference to the number of terms in which the student has already been in residence; and (c) without reference to the status of the student as an appointee of the Institute, except that members of the academic staff of rank of Instructor or higher are not required to pay tuition.

A summer fee of $33.00 must be paid by students who register for summer work, and who have not paid full tuition at the Institute during the preceding academic year.

Each graduate student is required to make a general deposit of $25 to cover loss of, or damage to, Institute property used in connection with his work in regular courses of study. Upon completion of his graduate work, or upon withdrawal from the Institute, any remaining balance of the deposit will be refunded.

Unpaid Bills: All bills owed the Institute must be paid when due. Any student whose bills are delinquent may be refused registration for the term following that in which the delinquency occurs. No degrees are awarded until all bills due the Institute have been paid. Transcripts cannot be released until all bills due the Institute have been paid or satisfactory arrangements have been made with the business office for repayment.

Information regarding fellowships, scholarships, and assistantships is discussed on pages 256-259 of the catalog. Students of high scholastic attainment may be awarded graduate scholarships covering all or a part of the tuition fee. Loans also may be arranged by making an application to the Faculty Committee on Scholarships and Financial Aid.

Expense Summary 1975-76

General:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Deposit</td>
<td>$25.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>$3,375.00</td>
</tr>
<tr>
<td>Graduate Student Council Dues</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Books and Supplies (approx.)</td>
</tr>
<tr>
<td>Graduate House Living Expenses (see page 255 for details)</td>
</tr>
<tr>
<td>Room—$630.00 to $693.00 per academic year²</td>
</tr>
<tr>
<td>Meals—Available at Chandler Dining Hall or the Athenaeum (members only)</td>
</tr>
</tbody>
</table>

1This charge is made only once during residence at the Institute (see page 159).
2Room rent is billed one month in advance and is payable upon receipt of the monthly statement.
The following is a list of graduate fees at the California Institute of Technology for the Academic Year 1975-76, together with the dates on which they are due. Charges are subject to change at the discretion of the Institute.

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 29, 1975</td>
<td>General Deposit</td>
<td>$25.00</td>
</tr>
<tr>
<td></td>
<td>Tuition</td>
<td>1,125.00</td>
</tr>
<tr>
<td></td>
<td>Graduate Student Council Dues</td>
<td>2.00</td>
</tr>
<tr>
<td>January 5, 1976</td>
<td>Tuition</td>
<td>1,125.00</td>
</tr>
<tr>
<td>March 29, 1976</td>
<td>Tuition</td>
<td>1,125.00</td>
</tr>
</tbody>
</table>

Tuition fees for fewer than normal number of units:
- Over 35 units: Full Tuition
- Per unit per term: 32.00
- Minimum per term: 320.00
- Auditor's Fee (p. 149): $40.00 per term per lecture hour.

Fees for Late Registration. Registration is not complete until the student has personally turned in the necessary registration forms for a program approved by his adviser and has paid his tuition and other fees. A penalty fee of $10 is assessed for failure to register within five days of the scheduled dates.

Associated Student Body Dues. Graduate students are eligible for membership in the Associated Students of Caltech, pursuant to by-laws thereof. Dues are $22 annually (see page 159).

Room Deposit. A $50 deposit must accompany each room application and will be refunded upon termination of the contract. (This deposit should not be confused with the General Deposit of $25.)

Winnett Student Center. A charge of $1 a year is made to each student who is provided a key to the Winnett Student Center game room, to help defray the expenses.

Graduate Student Council Dues. Annual dues of $2 are currently charged to each graduate student. The council uses the dues to support a program of social and athletic activities and of other activities it deems beneficial to graduate student life.

Refunds. Students withdrawing from the Institute or reducing their number of units during the first three weeks of a term, for reasons deemed satisfactory to the Institute, are entitled to a refund of tuition less a pro rata charge. Computation of this charge is based on the period elapsed, from the beginning of the term to:
- the date the request is made to the Dean of Students for Withdrawals;
- the date the petition is presented to the Office of the Registrar for Leave of Absence;
- the date that registration for the reduced units is approved by the Dean of Graduate Studies or the date that drop cards are filed in the Registrar's Office, whichever is later for Reduction in Units (there is a minimum charge for 10 units).

Living Accommodations for Graduate Students

Housing Facilities. The Institute has four residence houses providing single rooms for 167
graduate students. These handsome and comfortable residences, located on campus, were
donated by William M. Keck Jr., Samuel B. Mosher and Earle M. Jorgensen, David X. Marks
Foundations, and the family of Carl F Braun. The rates per academic year vary depending
upon the accommodations and services provided. During the summer only, rooms may be
rented on a month-to-month basis. Complete information may be obtained and reserva­
tions made by writing to the Office of Residence and Dining Halls, California Institute of
Technology.

The Institute owns three apartment buildings and a limited number of houses for exclu­
sive rental to married students and families.

The Off-Campus Housing Office also maintains a current file of available rooms, apart­
mments and houses in the Pasadena area. The Institute cannot make negotiations for indi­
vidual housing off campus but will be glad to furnish detailed information. Address:
California Institute of Technology, Off-Campus Housing Office 111-6.

Dining Facilities. Graduate students are privileged to join the Athenaeum (faculty club),
which affords the possibility of contact with fellow graduate students and with others using
the Athenaeum, including The Associates of the Institute, distinguished visitors, and
members of the professional staffs of the Hale Observatories, the Huntington Library, and
the California Institute.

The Chandler Dining Hall, located on the campus, is open Monday through Friday and
most weekends when the Institute is in session. Breakfast, lunch, dinner, and snacks are
served cafeteria style.

Health Services. The health services available to graduate students are explained in Section
III under Student Health (pages 157-158).

The International Desk. The International Desk is maintained to help foreign students and
visiting scholars with non-academic problems. They will find the services of the desk very
helpful, particularly when they first arrive on campus. The International Desk operates with
the advice of the Faculty Committee on Foreign Students and Scholars.

FINANCIAL ASSISTANCE

The Institute offers in each of its divisions a number of fellowships, scholarships, and
graduate assistantships. In general, scholarships carry full or partial tuition awards; assis­
tantships, cash stipends; and fellowships often provide both tuition awards and cash
grants. Graduate assistants are eligible to be considered for scholarship grants.

A request for financial assistance is included on the application for admission to graduate
standing. These applications should reach the Institute by February 15. Appointments to
fellowships, scholarships, and assistantships are for one year only; and a new application
must be filed with option representatives each year by all who desire appointments for the
following year, whether or not they are already holders of such appointments.

In addition, loans are available to graduate students who need such aid to continue their
education. They are made upon application, subject to the approval of the Scholarships and
Financial Aid Committee, and to the extent of the available funds. Loan forms are available
in the Graduate Office. In addition to loans, the Deferred Payment Plan is also available to
graduate students.

Graduate Assistantships

Graduate assistants devote, during the school year, not more than 20 hours a week to
teaching, laboratory assistance, or research of a character that affords them useful experi­
ence. This time includes that required in preparation and in marking notebooks and papers,
as well as that spent in classroom and laboratory. The usual assistantship assignment calls
for 20 hours per week at most and ordinarily permits the holder to carry a full graduate
residence schedule as well.
Graduate Scholarships, Fellowships, and Research Funds

The Institute offers a number of awards for tuition and/or stipend to graduate students of exceptional ability who wish to pursue advanced study and research.

Earle C. Anthony Fellowships—established by Mr. Earle C. Anthony for graduate fellowships. The recipients are designated Earle C. Anthony Fellows.

ARCS Foundation (Achievement Rewards for College Scientists) of Los Angeles—established by the Foundation for graduate and undergraduate fellowships.

Meridan Hunt Bennett Scholarships—granted from the Meridan Hunt Bennett Fund established by Mrs. Russell M. Bennett of Minneapolis as a memorial to her son.

Blacker Scholarships—research scholarships provided through The Robert Roe Blacker and Nellie Canfield Blacker Scholarship Endowment Fund, established by R. R. Blacker and Mrs. Blacker. The recipients are designated Blacker Scholars.

Bridge Fellowship—research fellowship in physics provided by Dr. Norman Bridge. The recipient is designated the Bridge Fellow.

Edith Newell Brown Scholarships—maintained by the income from the Edith Newell Brown Fund. The recipients are designated Edith Newell Brown Scholars.

Theodore S. Brown Scholarships—maintained by the Theodore S. Brown Fund. The recipients are designated Theodore S. Brown Scholars.

Lucy Mason Clark Fellowship—fellowship in plant physiology supported by a fund established by Miss Lucy Mason Clark.

Ray G. Coates Scholarship—scholarship in physics provided by Mrs. Alice Raymond Scudder Coates. The recipient is designated the Ray G. Coates Scholar.

Cole Fellowships—three annual scholarships (one in electrical engineering, one in mechanical engineering, and one in physics) supported by the Cole Trust, established by the will of Mary V. Cole in memory of her husband, Francis J. Cole. The recipients are designated Cole Fellows.

Caroline W. Dobbins Scholarships—provided by Mrs. Caroline W. Dobbins through the Caroline W. Dobbins Scholarship Fund. The recipients are designated Caroline W. Dobbins Scholars.

Donald Wills Douglas Prize Fellowship—a fellowship at the Graduate Aeronautical Laboratories provided by an endowment fund established in honor of Donald Wills Douglas by a group of his friends.

Drake Scholarships—maintained by the Drake Fund, provided by Mr. and Mrs. Alexander M. Drake. The recipients are designated Drake Scholars.

Richard P. Feynman Fellowships—fellowships in physics, with preference to theoretical physics, provided by the H. Dudley Wright Research Foundation. The recipients are designated Richard P. Feynman Fellows.

GALCIT Wind Tunnel Fellowships—fellowships open to students from any country, at any level of graduate study, and in any discipline acceptable as a thesis topic in aeronautics.

Daniel and Florence Guggenheim Fellowships—supported by the Guggenheim Jet Propulsion Center Fund.

Beno Gutenberg Fellowships—fellowships in geophysics supported by a fund provided by Mr. and Mrs. Louis E. Nohl. The recipients are designated Beno Gutenberg Fellows.

Robert H. Halpenny Memorial Scholarship—scholarship in electrical engineering supported by the income from the Robert H. Halpenny Memorial Scholarship Fund.

Clarence J. Hicks Memorial Fellowship in Industrial Relations—supported by a fund provided by Industrial Relations Counselors, Inc. and other contributors and granted to a student who undertakes some studies in industrial relations, as approved by the director of the Industrial Relations Center.

Albert Hall Hughey Scholarship—supported by income from the Albert Hall Hughey Scholarship Fund.

Saul Kaplun Scholarships—established by Mr. Morris J. Kaplun, in memory of his son, for fellowships in applied mathematics. The recipients are designated Saul Kaplun Fellows.
William N. Lacey Fellowship—fellowship in chemical engineering provided by income from gifts of the Union Oil Company Foundation.

Henry Laws Scholarships—scholarships for research in pure science, preferably physics, chemistry, and mathematics, provided through a fund given by Mr. Henry Laws. The recipients are designated Henry Laws Scholars.

Howard J. Lucas Fellowships—fellowships in organic chemistry provided by Howard J. Lucas through the Howard J. Lucas Fund.

Joseph F. Manildi Scholarships—contributed as a memorial to Dr. Joseph F. Manildi for graduate or undergraduate scholarships.

Clark B. Millikan Scholarships—provided by gifts made in memory of Clark B. Millikan. The recipients are designated Clark B. Millikan Scholars.

Greta B. Millikan Fellowship Fund—provided through a bequest of Greta B. Millikan for fellowships in physics. Recipients are designated Robert A. Millikan Fellows.

Li Ming Memorial Scholarship—contributed in memory of Mr. Li Ming for graduates or undergraduates of Chinese birth or descent.

Blanche A. Mowrer—a bequest from Blanche A. Mowrer for the benefit of postgraduate students in chemistry.

David Lindley Murray Scholarships—provided through the David Lindley Murray Educational Fund. The recipients are designated Murray Scholars.

May McManus Oberholtz Scholarship Endowment Fund.

Elbert G. Richardson Scholarship and Fellowship Fund.

Frederick Roeser Scholarship—granted from the Frederick Roeser Loan, Scholarship, and Research Fund. The recipient is designated the Roeser Scholar.

William E. Ross Memorial Scholarships—supported by income from the William E. Ross Memorial Fund, provided by William E. Ross.

Eben G. Rutherford Scholarship Fund.

Bruce H. Sage Fellowship—fellowship in chemical engineering provided by income from gifts of the Union Oil Company Foundation.

Evelyn Sharp Scholarship—scholarship in behavioral biology supported by the Evelyn Sharp Scholarship in Behavioral Biology Fund, a gift of Mrs. Evelyn Sharp.

Royal W. Sorenson Fellowship—a fellowship or scholarship in electrical engineering provided by a fund created to honor Royal W. Sorenson.

Keith Spalding Memorial Scholarship Fund—contributed in memory of Mr. Keith Spalding to provide either graduate or undergraduate scholarships.

Van Maanen Fellowships—one or more predoctoral or postdoctoral fellowships in astronomy provided by the Van Maanen Fund. The recipients are designated Van Maanen Fellows.

Laszlo Zechmeister Scholarships—scholarships in chemistry provided by gifts from Mrs. Laszlo Zechmeister through the Laszlo Zechmeister Fund.

Special Fellowships and Research Funds

In addition to the National Science Foundation, the Department of Health, Education, and Welfare, the Environmental Protection Agency, and the California State Graduate Fellowship program, the following corporations, foundations, and individuals contribute funds for the support of graduate fellowships:

African American Institute
R. C. Baker Foundation
Louis D. Beaumont Foundation
C F Braun & Co
California Foundation for Biochemical Research
California Institute Research Foundation
Corning Glass Works Foundation
Danforth Foundation
A number of governmental units, industrial organizations, educational foundations, and private individuals have contributed funds for the support of fundamental research related to their interests and activities. These funds offer financial assistance to selected graduate students in the form of graduate research assistantships.

Work-Study Programs

Limited opportunities are available for work-study programs in certain areas of interest. At the present time the sponsors of such programs are the Hughes Aircraft Company, Scientific Education Office, World Way, P.O. Box 90515, Los Angeles, California 90009, and the Jet Propulsion Laboratory of the California Institute of Technology. Potential students wishing to consider participation in the Hughes program may make inquiry to the address above or through the appropriate option at this Institute. Those wishing to be considered for the JPL program should inquire through their option. In general such programs require some part-time employment during the academic year, as well as full-time work during the summer.

Loans and Deferred Payments

There are two sources of loans available to graduate students: Federal loans under the National Direct Student Loan (NDSL) program and loans from special funds of the California Institute of Technology. The terms and conditions for these loans are the same as those outlined for undergraduate students on pages 165-167, except that the maximum amount which may be borrowed in one year under the NDSL by a qualified graduate student is $2,500. The total of loans made to such a student from this source for all years, including any loan made to him as an undergraduate, may not exceed $10,000. Loans from Institute funds for graduate students are limited to $1,000 per year and cannot exceed $9,000 during the student's undergraduate and graduate study; loans from these funds for graduate students will be subject to interest charges from the time the loan is made.

The Deferred Payment Plan is also available to graduate students and the conditions for this plan are outlined on page 166.

Loans and the deferred payment plan may also be used in combination, but the total amount from all sources may not exceed $2,500 in any one year of graduate study and cannot exceed $14,000 during the student's undergraduate and graduate study.
Section V

SUBJECTS OF INSTRUCTION

The school year is divided into three terms. The number of units assigned in any term to any subject represents the number of hours spent in class, laboratory, and preparation per week. In the following schedules, figures in parentheses denote hours in class (first figure), hours in laboratory (second figure), and hours of outside preparation (third figure).

AERONAUTICS
(See Engineering and Applied Science)

ANTHROPOLOGY

An 11. Race, Language and Culture. 9 units (3-0-6); first term. Human and cultural evolution. Descriptive analysis of hunting and gathering societies in the Old and New Worlds. The development of racial, linguistic and cultural diversity. The agricultural revolution and the rise of the pre-industrial city. Not offered in 1975-76. Instructor: Scudder.

An 101 abc. Selected Topics in Anthropology. 9 units (3-0-6). Collective action and collective decision-making. Not offered in 1975-76.

An 123 abo The Anthropology of Development. 9 units (3-0-6); second, third terms. Social change in contemporary tribal and peasant societies. Emphasis will be placed on the impact of modernization, especially through urbanization, industrialization and the intensification of agriculture, and of revitalization on the social organization of selected societies in Latin America, Europe, Africa and elsewhere over the past half century. Instructor: Scudder. Not offered in 1975-76.

APPLIED MATHEMATICS

Undergraduate Courses

AMa 90 abc. Topics in Applied Mathematics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 2 abc, Ph 2 abc, or equivalent. An introductory course, ranging over a variety of applications to show typical problems, concepts and methods of applied mathematics. Topics will be chosen from the areas of random processes, combinatorial analysis, numerical analysis, computer science, continuum mechanics and transport theory. The aim is to show the interplay between mathematics and applications on topics which do not require a large detailed background in either mathematical methods or in the particular subject area of the application. Not offered in 1975-76.

AMa 95 abc. Introductory Methods of Applied Mathematics. 12 units (4-0-8); first, second, third terms. Prerequisites: Ma 1 abc, Ma 2 abc or equivalent. A course in the mathematical treatment of problems arising in applied mathematics, engineering, and physics. The topics studied include: a basic introduction to analytic functions of complex variables; special
subjects of instruction

functions such as the Bessel functions and Legendre functions; series of orthogonal functions; partial differential equations and boundary value problems and an introduction to integral transforms. Instructor: Saffman.

Advanced Courses

AMa 101 abc. Methods of Applied Mathematics I. 9 units (3-0-6); first, second, third terms. **Prerequisite:** AMa 95 or Ma 108. Review of basic complex variable analysis; asymptotic expansions; ordinary linear differential equations; Sturm-Liouville theory; eigenfunction expansions; integral transforms; singular integral equations; introduction to partial differential equations; elementary theory of nonlinear differential equations. Instructor: Cohen.

AMa 104. Matrix Theory. 9 units (3-0-6); first term. **Prerequisite:** AMa 95 abc or equivalent. Matrices as linear transformations, theory of linear vector spaces, matrix operations. Eigenvalue-eigenvector theory, canonical forms, variational principles, inverses, pseudo-inverse. Matrix and vector norms, matrix calculus and applications to systems of ordinary differential equations. Introduction to computational linear algebra. Instructor: Keller.

AMa 105 ab. Introduction to Numerical Analysis. 11 units (3-2-6); second, third terms. **Prerequisites:** AMa 95 and AMa 104 or equivalent; ability to use digital computer by middle of first quarter. Solution of linear systems by direct and iterative methods; eigenvalue-eigenvector computation; iterative solution of nonlinear systems. Approximation theory, least squares, interpolation, splines, quadrature. Numerical methods for initial value and boundary value problems in ordinary differential equations. Introduction to methods for partial differential equations. Several large computing problems are assigned each quarter. Instructor: Keller.

AMa 110 abc. Introduction to the Calculus of Variations. 9 units (3-0-6); first, second, third terms. **Prerequisite:** AMa 101 or equivalent; may be taken concurrently. The first variation and Euler's equation for a variety of classes of variational problems from mathematical physics. Natural boundary conditions. Subsidiary conditions. The theory of extremal fields for single-variable variational problems. Conjugacy and the second variation. Hamilton-Jacobi theory. Introduction to the direct methods of Rayleigh, Ritz, and Tonelli and their application to equilibrium and eigenvalue problems. Some simple aspects of control problems. Not offered in 1975-76.

AMa 151 abc. Perturbation Methods. 9 units (3-0-6); first, second, third terms. **Prerequisite:** AMa 101 or equivalent; may be taken concurrently. The course discusses uniformly valid approximations in various physical problems. Generalized boundary layer technique. Coordinate straining techniques; Poincare's method. Problems with several time scales; averaging techniques; method of Krylov-Bogoliubov. Eigenvalue problems. Examples taken from linear and nonlinear vibrations, orbital problems, viscous flow, elasticity. Not offered in 1975-76.

AMa 152 abc. Linear and Nonlinear Wave Propagation. 9 units (3-0-6); first, second, third terms. **Prerequisite:** AMa 101 or equivalent; may be taken concurrently with instructor's permission. Mathematical formulation, hyperbolic equations, characteristics, shocks. Combined effect of nonlinearity and diffusion. Wave propagation with relaxation effects. Dispersive waves, group velocity, geometry of waves, nonlinear dispersive waves. Diffraction theory. The emphasis is on solving physical problems and the mathematical theory is developed through a wide variety of problems in gasdynamics, water waves, plasma physics, electromagnetism. Instructor: Whitham.

AMa 153 abc. Stochastic Processes. 9 units (3-0-6); first, second, third terms. **Prerequisite:** AMa 95 or Ma 108. An introductory course designed to proceed from an elementary and often heuristic discussion of a variety of stochastic processes to a unified mathematical treatment of the subject. Topics will include: Basic probability, random walks, concepts of power spectra and correlation functions and their use in problems like shot effect, Brownian motion, wave propagation in media with random inhomogeneities, turbulence, etc.

AMa/EE 161 abc. Mathematical Theory of Information, Communication, and Coding. 9 units (3-0-6); three terms. Prerequisites: some knowledge of probability and linear algebra. Shannon’s noisy channel coding theorem and its converse for a variety of channel models: binary symmetric, finite memoryless, discrete-time Gaussian, wideband Gaussian. Minimum redundancy source coding. Theory and implementation of practical error-control systems, e.g. BCH codes (with underlying theory of finite fields) and Viterbi decoding of convolutional codes. Application to actual communication systems. Instructor: McEliece.

AMa 190. Reading and Independent Study. Units by arrangement. Graded pass/fail only.

AMa 201 abc. Methods of Applied Mathematics II. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 101 or equivalent. First order partial differential equations; classification and theory of higher order partial differential equations; well-posed problems; fundamental solutions and Green’s functions; eigenfunction expansions and inverse scattering. Instructor: Lagerstrom.

AMa 204 abc. Numerical Solution of Differential and Integral Equations. 9 units (3-0-6). Prerequisites: AMa 101 and AMa 104 or some familiarity with elementary numerical methods, as in AMa 105 a, digital computing techniques, partial differential equations. A study of practical methods for “solving” various linear and nonlinear, ordinary and partial differential and integral equation problems with the aid of modern digital computers. The theory of stability, convergence and accuracy of methods will be stressed. Computations on some nontrivial problems from each student’s area of specialization will be undertaken. Complementary material is given in Ma 205. Instructor: Fornberg.

AMa 251 abc. Applications of Group Theory. 9 units (3-0-6). Prerequisite: some knowledge of linear algebra. Applications of group theory to differential equations and to physics, in particular quantum mechanics, will be discussed. Mathematical topics to be covered include: Basic concepts of group theory. Infinitesimal transformations and Lie algebras. General notions of group representations. Detailed discussion of classical groups (symmetric, orthogonal, unitary, Lorentz, etc.) and of their representations. Not offered in 1975-76.

AMa 253 ab. Topics in Applied Probability Theory. 9 units (3-0-6); first, second terms. Prerequisite: AMa 153 or equivalent. Stochastic differential and integral calculus, Wiener-Hermite analysis with applications, prediction and filtering, Markov fields, Boltzmann equation. Not offered in 1975-76.

AMa 260 abc. Special Topics in Continuum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Some knowledge of elasticity or fluid mechanics and instructor’s permission. A
Subjects of Instruction

course designed to reflect recent and current research interests of the staff and students working on mathematical problems in the areas of elasticity, fluid mechanics and related fields. Not offered in 1975-76.

AMa 290. Applied Mathematics Colloquium. Units by arrangement.

AMa 291. Seminar in Applied Mathematics. Units by arrangement.

AMa 300. Research in Applied Mathematics. Units by arrangement.

Other courses particularly suitable in making up a program in Applied Mathematics include:

- Ma 109: Delta Functions and Generalized Functions
- Ma 141: Ordinary Differential Equations
- Ma 143: Introduction to Functional Analysis
- Ma 144: Probability
- Ma 205: Advanced Numerical Analysis
- AM 135: Mathematical Elasticity Theory
- AM 136: Advanced Mathematical Elasticity Theory
- AM 175: Advanced Dynamics
- ES 131: Thermodynamics and Statistical Mechanics
- Ph 125: Quantum Mechanics
- Ph 209: Electromagnetism and Electron Theory
- Ph 227: Statistical Physics

APPLIED MECHANICS
(See Engineering and Applied Science)

APPLIED PHYSICS

Undergraduate Courses

APh 3. Introduction to Solid-State Electronics. 6 units (3-0-3); first term. An introduction to the significant concept of most modern electronic devices such as diodes, junction and field effect transistors, etc. Topics will include: electronic conduction in metals and semiconductor materials, energy barriers, junctions, carrier recombination and light emission, operating principles of transistors and transistor-like devices. Graded pass/fail. Instructor: Humphrey.

APh/MS 4. Introduction to Materials Science. 6 units (2-0-4); third term. Selected engineering systems, such as jet engines, superconducting transmission lines and nuclear reactors, are discussed in terms of the critical role played by materials in their construction and performance. Those material properties of greatest significance are explored to show how they are governed by the structure and basic physics and chemistry of the material. Graded pass/fail. Instructor: Wood.

APh 9. Solid-State Electronics Laboratory. 6 units (1-3-2); second term. Prerequisite: APh 3. Six units credit allowed toward freshman laboratory requirement. An introductory non-structured project laboratory designed to provide an opportunity for projects related to the course APh 3. All of the facilities used for demonstrations in APh 3 are available as well as general semiconductor device fabrications facilities. The student is expected to design and carry out his own project either as an extension of one of the APh 3 demonstrations or fabricating and characterizing a device. Typical devices possible with facilities available: junction transistor, junction FET, MOSFET, light-emitting diode, solar cell, tunnel diode. Graded pass/fail. Instructor: McCaldin.
APh/ME 17 abc. Thermodynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. An introduction to the laws governing the properties of matter in equilibrium and some aspects of non-equilibrium behavior. Definition and scales of temperature. The laws of classical thermodynamics. Thermodynamic potentials, Maxwell’s relations, calculation of thermal properties, and applications to various homogeneous systems. First-order changes of phase and the Clausius-Clapeyron equation. Analyses of energy conversion cycles. General conditions for thermodynamic equilibrium, extremum properties of the thermodynamic potentials, and the thermodynamic inequalities. Chemical potential, mixtures of gases and vapors, solutions, basic chemical thermodynamics. Elementary statistical mechanics, ensembles, and statistical thermodynamics. Introduction to non-equilibrium thermodynamics, thermoelectric effects, and problems of heat conduction in solids. Thermodynamics of fluid flow. Some aspects of the kinetic theory of gases, calculation of transport properties by mean-free path methods and simplified forms of the Boltzmann equation. Instructor: Liepmann.

APh 23. Demonstration Lectures in Optics. 6 units (2-0-4); first term. Prerequisites: Ma 1 abc and Ph 1 abc. Ten demonstration lectures covering the fundamentals of optics. Emphasis is placed on showing the breadth of modern optics with comprehensive explanations of many relatively new applications. These demonstrations include lasers, lenses and imaging systems; gratings and multilayers; optical resonators and mode locking; linewidths, coherence and interference; holograms; matched filtering, Fourier transforms and diffraction pattern sampling; modulators and integrated optics; dielectrics, dispersion and harmonic generation; synthetic aperture radar and optical processors; detection of signals in noise, line scan and lidar. Instructor: George.

APh 24. Introductory Modern Optics Laboratory. 6 units; second term. Prerequisite: APh 23. Laboratory experiments to acquaint students with the contemporary, yet basic, aspects of modern optical research and technology. Experiments encompass many of the topics and concepts covered in APh 23. Text: Notes and selected references. Instructor: George.

APh 50 abc. Applied Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc, Ma 2 abc, or equivalents. Application of quantum mechanics to problems of the three states of matter: solids, gases, and liquids. Starting point will be the free and bound particle, the one-electron atom, and quantum statistics. Additional topics will be selected from electron transport in solids, plasma physics, kinetic theory, and other topics in physics depending on the instructor and interests of the students. Instructors: Yariv, McGill.

APh 91 abc. Experimental Projects in Applied Physics. Units by arrangement. 6 units minimum each term. Prerequisite: Ph 7 or EE 90 abc or equivalent; open to seniors upon acceptance by the instructor of a suitable proposal. Offered first and second terms only in 1975-76. A non-structured project laboratory designed to give the student an opportunity to do original experiments in applied physics. Emphasis is placed upon the selection of significant projects, the formulation of the experimental approach and the interpretation of data as well as upon the use of modern laboratory techniques. Facilities are available for experiments in cryogenics, lasers, quantum electronics, ferromagnetism, optics, microwaves, plasma physics, and semiconducting solid state. Text: Literature references. Instructor: Humphrey.

Advanced Courses

APh 100. Advanced Work in Applied Physics. Special problems relating to applied physics will be arranged to meet the needs of students wishing to do advanced work. Primarily for undergraduates. Students should consult with their advisers before registering for this course. Graded pass/fail.
Ae/APh 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Definition and classification of fluids. Kinematics of fluid flow, vorticity. Stress tensor and heat flux vector. Equations of motion. Dynamics of ideal and real fluids, the limiting cases of small and large Reynolds number flows, boundary layer theory. Laminar stability turbulence. Gravity waves, acoustic waves, shock waves. Additional topics will be selected from subjects such as: heat flow and diffusion in gases; dynamics of rarefied gases; plasma flow and magnetohydrodynamics, super fluid flow; rotating fluids. Text: Fluid Mechanics. Instructor: Roshko.

APh 105 abc. States of Matter. 9 units (3-0-6); first, second, third terms. A survey of current ideas about the states of matter emphasizing unifying concepts, such as order parameters, scaling laws, quasi-particle excitations and correlation functions. Topics will include long-range ordered states such as crystals, superfluids and ferromagnets, phase transitions of first and higher orders, critical phenomena, band theory of solids, liquids, and ideal classical and degenerate gases. Instructor: Corngold.

APh 110. Topics in Applied Physics. 2 units (2-0-0); first, second, third terms. A course designed to acquaint first-year graduate students with the various research areas represented in the option. Lecture each week given by a different faculty member of the option. Graded pass/fail. Instructors: Staff.

APh 114 abc. Solid-State Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 50 or Ph 102 abc or equivalent. A lecture and problem course dealing at an introductory level with experimental and theoretical problems in solid-state physics. The topics to be discussed include: crystal structure, lattice vibrations, Fermi electron gas, semiconductors, superconductivity, magnetic resonance, ferroelectricity, linear and nonlinear optical phenomena in insulators. Instructors: McGill, Yariv.

APh 140 abc. Cryogenics. 9 units (3-0-6); first, second, third terms. An introductory course on the behavior of condensed matter at low temperatures. Topics include superfluidity, superconductivity, quantum phase coherence, liquid He\(^3\), ultralow temperature experiment, cryogenic techniques, and macroscopic quantum devices. Offered in alternate years; offered in 1975-76. Instructor: Mercereau.

APh 141. Superconductivity and Its Applications. 9 units (3-0-6); third term. Prerequisite: APh 114 abc. A course on the basic principles and the engineering applications of superconductivity. After a review of basic properties of superconductors, phenomenological treatment and microscopic theory of superconductivity, the topics covered include: magnetic properties of type II superconductors, proximity effect, superconducting compounds, alloys and composites, high field superconducting magnets, magnetic suspensions for high-speed transportation, superconductive power transmission and rotating machines. Not offered in 1975-76.

APh 153 abc. Modern Optics. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc. The analysis of optical systems based on electromagnetic theory. Mode theory and functions for optical resonators and transmission structures, image formation and spatial filtering with coherent light, partial coherence and partial polarization, theory of dielectrics, theory and applications of holography and selected topics of research importance. Text: Class notes and selected references. Instructor: George.

APh 154. Modern Optics Laboratory. 9 units (1-4-4); second term. Prerequisite: APh 153 or APh 190 (may be taken concurrently). Primarily for graduate students. Laboratory experiments to acquaint students with the contemporary, yet basic, aspects of modern optical research and technology. Experiments encompass holography and interferometry, single-mode and mode-locked lasers, nonlinear optics, acousto-optic interactions, coherence, diffraction, optical data processing, photosensitive materials, liquid crystals, and ferroelectric ceramics. Instructor: George.
APh 156 abc. Plasma Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc or equivalent. An introduction to the principles of plasma physics. Topics presented will include: orbits of charged particles in electric, magnetic, and gravitational fields; elementary processes in the production and decay of ionized gases; continuum magnetohydrodynamics and elementary stability theory; transport processes such as conductivity and diffusion; waves, oscillations, and radiation in plasmas. Examples from physics, engineering, and astrophysics will be discussed. Not offered in 1975-76.

APh 161 ab. Nuclear Energy. 9 units (3-0-6); first, second terms. Prerequisites: AMa 95 abc and Ph 106 abc or equivalent. Fission and fusion reactors, underlying nuclear physics, particle diffusion, static and dynamic phenomena, effects of radiation on matter, reactor types, economics of nuclear energy. Instructor: Plesset.

APh 163. Nuclear Radiation Measurements Laboratory. 9 units (1-4-4); second term. Prerequisite: Ph 2 abc. A one-term laboratory course designed to familiarize students with basic nuclear detecting and measuring techniques. The instruments are used to determine the properties of various types of radiation and to observe the nature of their interaction with matter. Not offered in 1975-76.

APh 181 abc. Physics of Semiconductors and Semiconductor Devices. 9 units (3-0-6); first, second, third terms. Introduction to the concepts of semiconductor devices based on underlying physical properties of semiconductors. Electronic and chemical equilibrium in the bulk semiconductor and near interfaces, e.g., p-n junctions, surfaces. Kinetics of carrier generation-recombination and transport to first order. Traditional and novel methods of device fabrication. Applications will be made to a wide variety of devices and attention given to feasible schemes for device construction. Instructor: Nicolet.

APh 185 abc. Ferromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisite: APh 50. Review of current theories of ferromagnetism. Phenomenological treatment of magnetization using the Landau-Lifshitz equation to treat flux reversal, spin wave resonance and micromagnetics. Relaxation mechanisms. Applications of magnetic materials in modern technology. Not offered in 1975-76.

APh 190 abc. Quantum Electronics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125, or equivalent. This course is concerned with generation, manipulations, propagation, and applications of coherent radiation. Starting with the basic theory of the interaction of electromagnetic radiation with resonant atomic transitions, the course takes up the subjects of laser oscillation, important laser media, Gaussian beam modes, the electro-optic effect, nonlinear-optics theory, second harmonic generation, parametric oscillation, stimulated Brillouin and Raman scattering. Other topics include: Light modulation, diffraction of light by sound and quantum noise theory. Text: Quantum Electronics by Yariv, class references and research literature. Offered in alternate years; not offered in 1975-76. Instructor: Yariv.

APh 195 ab. Molecular Gas Lasers. 9 units (3-0-6); first, second terms. An introduction to gas lasers based on transitions involving molecular degrees of freedom. Some acquaintance with fluid mechanics, and knowledge of electromagnetic theory and quantum mechanics at the advanced undergraduate level will be assumed. Background material on the interaction of radiation and matter, and optical resonators will be included, but the emphasis will be on processes particular to molecular lasers. Examples of electrical discharge, gas dynamic, and chemical lasers will be discussed. Offered in alternate years; offered in 1975-76. Instructor: Culick.

APh 200. Applied Physics Research. Units in accordance to work accomplished. Offered to Ph.D. candidates in applied physics for research leading directly towards a Ph.D. degree. Students should consult their adviser before registering for the course.
APh 214 abc. Advanced Solid-State Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: APh 114 abc and Ch 125 abc or Ph 125 abc. A course in experimental and theoretical solid-state physics. Topics include: phonons; electronic excitation in solids; electron-phonon interactions; optical transport, and magnetic properties; superconductivity; ferroelectricity. The emphasis will be mainly theoretical with frequent comparison between theoretical predictions and experimental results. Offered in alternate years; not offered 1975-76.

APh 250. Advanced Topics in Applied Physics (Seminar). Units, offering date, and duration by arrangement. Consideration of selected topics in applied physics. Instructors: Members of the staff and guest lecturers.

APh 261 abc. Theory of Particle Transport. 9 units (3-0-6). Prerequisite: instructor’s permission. The formulation and solution of the transport equation for neutrons, photons and simple gases, transport in dense fluids. Not offered in 1975-76.

APh 281 Advanced Theory of Semiconducting Solid State. 9 units (3-0-6); first, second, third terms. Selected areas in the theory of the solid state relevant to semiconductors will be developed in detail. Emphasis will be placed on areas of current research interest in the field. Topics include: electronic and vibrational spectra, optical properties, electron phonon interactions, transport phenomena, disordered semiconductors, impurities, defects, and interfaces. Offered in alternate years; offered in 1975-76. Instructor: Darryl Smith.

ART

Art 101. Topics in Art. 9 units (3-0-6). Instructors: Staff.

Art 102. Introduction to the Visual Arts. 9 units (3-0-6); first term. Concentrates upon the vocabularies of analysis for the study of painting, sculpture, and architecture; approaches to study of art history, and case studies of selected art forms. Instructor: Wark.

Art 103. Ancient Art. 9 units (3-0-6); second term. An introductory course to art of the Western tradition from ancient times to the year 800 A.D. Important works of architecture, sculpture, painting and allied arts (city planning, mosaics, book illumination) will be studied in the historical and cultural context in which they were produced: Paleolithic, Neolithic, Egyptian, Mesopotamian, Mediterranean, Greek, Roman, Early Christian, Byzantine and Early Medieval. Instructor: Price.

Art 104. Modern Art. 9 units (3-0-6); third term. An introductory course to late nineteenth- and twentieth-century European and American art (painting, sculpture, architecture), in which master works will be studied in terms of morphology, iconography, art movements, an individual’s œuvre, materials, and the cultural context which produced them. Instructor: Price.

ASTRONOMY

Undergraduate Courses *

Ay 1. Introduction to Astronomy. 9 units (3-1-5); third term. This course, primarily for freshmen, surveys astronomy, radio astronomy and astrophysics. Reading in an elementary text is supplemented by lectures on current topics, emphasizing the application of physics in astronomy. Instructor: Cohen.

*See also Ge 101 a
Ay 20. Basic Astronomy and the Galaxy. 11 units (3-2-6); first term. Prerequisites: Ma 1 abc, Ph 1 abc. Astronomical terminology. Stellar masses, distances and motions. Star clusters and their galactic distribution. Stellar spectra, magnitudes and colors. Structure and dynamics of the galaxy. Laboratory exercises including double star orbits and the use of an astrograph. Instructor: Greenstein.

Ay 30. Current Trends in Astronomy. 3 units (2-0-1); second term. Weekly seminar designed for sophomore astronomy majors; to be held, where possible, in faculty homes, in the evening. Purpose is to introduce the students to the faculty and their research. Graded pass/fail. Instructors: Zirin and staff.

Ay 42. Research in Astronomy, Radio Astronomy, and Astrophysics. Units in accordance with work accomplished. Properly qualified undergraduates may, in their senior year, undertake independent or guided research with the goal of preparing a senior thesis. Subject matter must be arranged with instructor before registering. Graded pass/fail. Instructors: Staff.

Ay 43. Reading in Astronomy, Radio Astronomy, and Astrophysics. Units in accordance with work accomplished. Student must have a definite reading plan and obtain permission of instructor before registering. Graded pass/fail. Instructors: Staff.

Advanced Courses

Ay 102. Plasma Astrophysics and the Interstellar Medium. 9 units (3-0-6); third term. Prerequisite: Ay 20. An introduction to fluid mechanics; sound waves and shock waves. The physics of ionized gases. Introduction to magnetohydrodynamics; Alfvén waves and plasma waves with applications to the interstellar medium. Supernova remnants. Magnetic

Ay 110. Senior Seminar in Astrophysics. 6 units (2-0-4); second term. Designed for Ay seniors. Seminar on astrophysical topics of current interest. The lectures will be given by the students. The emphasis will be on topics which require a synthesis of previous formal course work. Instructors: Münch, Zirin.

Ay 120. Basic Astronomy and Astrophysics from an Advanced Viewpoint. 9 units (1-0-8); first term. A lecture-reading course open to graduate students with deficient undergraduate background in astronomy and astrophysics. Content tailored to needs of students. Instructor: Munch.

Ay 131. Stellar Atmospheres. 9 units (3-0-6); first term. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) and Ph 92 abc or equivalents. General survey of the methods for studying the structure and composition of stellar atmospheres. Radiative transfer. Sources of opacity. Convection. The construction of models. The line spectrum of normal stars. Coarse and fine analysis of stellar spectra. Composition and nucleosynthesis theory. Instructors: Sargent, Münch.

Ay 132. Stellar Interiors. 9 units (3-0-6); first term. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) and Ph 92 abc or equivalents. Polytropes, opacity and energy generation. Stellar models and evolution. White dwarfs. Pulsating stars. Problems of stellar rotation, convection, and stability. Instructor: Thorne.

Ay 134. The Sun. 9 units (3-1-5); second term. The physical state of the sun as derived from observations from the ground and from space. The structure of the quiet sun, the corona and chromosphere. Development of solar magnetic fields and the sunspot cycle. Solar flares, x-rays and radio bursts; cosmic rays from flares. The solar wind and other solar-terrestrial effects. Students will have the opportunity to do a small research topic with materials from the Big Bear Solar Observatory. Given in alternate years. Offered in 1975-76. Instructor: Zirin.

Ay 136. Solar System Astrophysics. 9 units (3-0-6); third term. Prerequisites: Ay 22 or Ge 101 a. A seminar-type course designed to fit the interests of students specializing in planetary astronomy. Current research topics on the composition and evolution of solar system bodies will be discussed and related to the understanding of the processes which gave origin to the solar system as a whole. Given in alternate years. Not offered in 1975-76.

Ay 138. Interstellar Matter. 9 units (3-0-6); first term. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) or equivalents. The interstellar gas and dust. Reddening, absorption and polarization of light. Interstellar absorption lines. Ionized and neutral regions. Excitation of emission lines. The dynamics of gas clouds. Star formation. Given in alternate years. Not offered in 1975-76.

Ay 139. Stellar Dynamics and Galactic Structure. 9 units (3-0-6); third term. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) or equivalents. Dynamical and kinematical description of stellar motions. Galactic rotation and the density distribution. Dynamics of clusters;
relaxation times. Structure and mass of the galaxy and external systems. Given in alternate years. Offered in 1975-76. Instructors: Münch, Goldreich.

Ay 141 abc. Research Conference in Astronomy. 2 units (1-0-1); first, second, third terms. These conferences consist of reports on investigations in progress at the Hale Observatories and the Owens Valley Radio Observatory, and on other researches which are of current interest. Graded pass/fail.

Ay 142. Research in Astronomy, Radio Astronomy, and Astrophysics. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of research outlined with him. Approval of the instructor and the student's adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 143. Reading and Independent Study. Units in accordance with work accomplished. The student should consult a member of the department and have a definite program of reading and independent study outlined with him. Approval of the instructor and the student's adviser must be obtained before registering. 36 units of Ay 142 or Ay 143 required for candidacy. Graded pass/fail.

Ay 201 ab. Astronomical Instruments and Radiation Measurement. 9 units (3-1-5), (3-2-4); second, third terms. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) or equivalents. The use of the photographic plate as a scientific instrument; quantitative techniques in laboratory photography. Astronomical optics. Theory of reflectors, Schmidts and spectrographs. Photocell detectors, photometric systems and their applications. Given in alternate years. Not offered in 1975-76.

Ay 204. Advanced Spectroscopy. 9 units (2-2-5); third term. Prerequisite: Ay 131. Spectroscopy of normal and peculiar stars; identification problems; the effect of the stellar atmosphere on the spectrum observed; effective temperatures and surface gravity; coarse and fine analyses and deviations from local thermodynamic equilibrium; the compositions of stars and nucleosyntheses. The class will measure and analyze a stellar spectrum. Not offered in 1975-76.

Ay 207 abc. Galaxies and the Universe. 9 units (3-0-6); first, second, third terms. Prerequisites: Ay 20 (undergraduates), Ay 120 (graduates) or equivalents. Structure, stellar content, and evolution of normal galaxies. Galaxies of the Local Group. Mass determinations. The luminosity function. Seyfert and compact galaxies, QSO's, and other peculiar objects. Dynamics of galaxies, clusters and small groups. The second term, which may be taken independently, will cover topics in observational cosmology, including dynamics, the microwave, and x-ray background, and the formation of galaxies and clusters. Given in alternate years. Not offered in 1975-76.

Ay 208. Modern Observational Astronomy. 6 units (1-0-5); second term. Prerequisite: instructor's permission. An observational course for graduate students in astronomy in which modern astronomical techniques are used in conjunction with the various telescopes and auxiliary instruments on Mount Wilson and Palomar Mountain. Students will be permitted to register for only one term. Given in alternate years. Offered in 1975-76. Instructor: Oke.

Ay 215. Seminar in Theoretical Astrophysics. 9 units (3-0-6); third term. Prerequisite: instructor's permission. Seminar on recent developments for advanced students. The current theoretical literature will be discussed by the students. Given in alternate years. Not offered in 1975-76.

Ay 217. Theoretical Astrophysical Spectroscopy. 9 units (3-0-6); second term. Prerequisite: Ph 125, or equivalent. The analysis of radiation from astronomical sources not in thermodynamic equilibrium. Special attention to the formation of lines in atmospheres, and the calculation
of excitation and ionization equilibria as well as individual atomic processes. Emission of radiation in dynamic plasmas; radiation and transition processes. Given in alternate years. Not offered in 1975-76.

Ay 218 ab. High-Energy Astrophysics. 9 units (3-0-6); second, third terms. Prerequisites: Ph 106 and Ph 92 or Ph 112 or equivalent, including a solid understanding of electromagnetic theory, special relativity, and quantum mechanics. Equation of state and physical processes at high densities and at high temperatures. Hydrodynamics; shock waves, magnetohydrodynamics. Radiation processes (thermal, synchrotron, bremsstrahlung, inverse Compton, and coherent). Relativistic gravity. Applications to final stages of stellar evolution (white dwarfs, supernovae, neutron stars, pulsars, black holes); to massive objects (super-massive stars, galactic nuclei, quasars); and to sources of high-energy radiation (x-ray sources, gamma-ray sources, cosmic-ray sources, gravitational-wave sources). Given in alternate years. Offered in 1975-76. Instructors: Thorne, Goldreich.

Ay 234. Seminar in Radio Astronomy. 6 units (2-0-4); second term. Prerequisite: Ay 133 abc. Recent developments in radio astronomy for the advanced student. Current publications and research in progress will be discussed by students and staff. Given in alternate years. Not offered in 1975-76.

The following courses will be offered from time to time by members of the Institute and Observatories staffs:

- Ay 135. Topics in Modern Astronomy.
- Ay 137. Topics in Space Astronomy and Physics.
- Ay 152. Advanced Stellar Interiors.
- Ay 203. Cosmical Electrodynamics.
- Ay 213. Selected Topics in Observational Cosmology.
- Ay 214. Theoretical Cosmology.
- Ay 216. Dynamics and Formation of Galaxies and Clusters.

BIOLOGY

Undergraduate Courses

Bi 1. Introduction to Biology. 9 units (distribution to be arranged); second term. A course of lectures, discussion and laboratory opportunities designed to permit a relatively free exploration of biological topics. Individual arrangements are made to determine the number of laboratory units counting toward freshman laboratory requirements. Graded pass/fail. Instructors: Revel and staff.

Bi 2. Current Research in Biology. 6 units (2-0-4); first term. An elective course, open only to freshmen. Current research in biology will be discussed, on the basis of reading assigned to students in advance of the discussions, with members of the divisional faculty. Graded pass/fail. Instructors: Owen and staff.

Bi 3. Biology and Social Problems. 6 units (2-0-4); third term. The relation of biological knowledge to major social problems. Topics may include over-population, environmental pollution, distribution of limited medical resources, "genetic engineering," biological warfare, the ethics of human medical research, etc. Instructor: Sinsheimer.
Bi 7. Organismic Biology. 9 units (3-3-3); first term. Prerequisite: Bi 1. A survey of the principal kinds of organisms and the problems they have solved in adapting to various environments. Instructor: Brokaw.

Bi 9. Cell Biology. 9 units (3-3-3); third term. Studies of life at the cellular level; nature, functions, and integration of ultrastructural components; physical and chemical parameters; influences of external agents and internal regulation. Instructors: Bonner and staff.

Bi 22. Special Problems. Units to be arranged; first, second, third terms. Special problems involving independent research in fields represented in the undergraduate biology curriculum; to be arranged with instructors before registration. Graded pass/fail. Instructors: Staff.

Bi 23. Biology Tutorial. Units (up to 6 maximum) to be arranged; first, second, third terms. Study and discussion of special problems in biology involving regular tutorial sessions with instructors. To be arranged through the Undergraduate Adviser before registration. Graded pass/fail. Instructors: Strauss and staff.

Bi 27. Biology Scholars Program. Units to be arranged. A program providing, by arrangement, a flexible combination of course work and independent study in biology for selected students in the junior and senior years. Pass/fail grading may be permitted. Instructors: Strauss and staff.

Advanced Courses

(A) Subjects intended for graduate students but open to qualified undergraduates.

Bi 102. Vertebrate Biology. 12 units (2-5-5); second term. Recommended prerequisites: Bi 7 and Bi 9. A survey of structure, function, and development in vertebrates, with emphasis on physiology. Offered alternate years; offered in 1975-76. Instructors: Brokaw and staff.

Bi 106. Developmental Biology of Animals. 9 units (2-3-4); second term. Recommended prerequisite, Bi 9. A lecture and discussion course dealing with various aspects of embryological development. Areas to be covered include cytoplasmic localization and cell interaction in early development, gene function and oogenesis, the role of accessory cells, gene regulation, the evolution of developmental processes and patterns of macromolecular syntheses in early embryological life. Laboratory optional. Instructor: Davidson.

Bi/Ch 110 ab. Biochemistry. 12 units (4-0-8); first, second terms. Prerequisite: Ch 41 or instructor's permission. A lecture and discussion course on the molecular basis of biological structure and function. The first term emphasizes macromolecular structure and the metabolic processes involved in energy storage and utilization. The second term considers the storage, transmission and expression of genetic information in prokaryotes and eukaryotes, as well as other topics in the biochemistry of higher organisms, such as molecular regulatory mechanisms and the biochemistry of cell membranes. Instructors: Dreyer, Raftery, Richards, Strauss, and staff.

Bi 111. Biochemistry Laboratory. 10 units (0-8-2); second term. Open to students enrolled in Bi 110; others require consent of instructor. An introduction to current methods in biochemical research, through laboratory projects suggested by the lecture and seminar material of Bi/Ch 110. Instructors: Mitchell and staff.

Bi 114. Immunology. 9 units (4-0-5); first term. Prerequisite: Bi 122 or equivalent. A course on the principles and methods of immunology and their application to various biological problems. Instructor: Hood.

Bi 115. Virology. 10 units (3-4-3); third term. Prerequisite: Bi 110 or instructor's permission. An introduction to the chemistry and biology of bacterial, plant, and animal viruses. The subject
Subjects of Instruction

matter will include viral structure, the biochemistry and regulation of virus replication, viral genetics, and virus-induced changes in the host cell. Not offered in 1975-76.

Bi 116. Immunology Laboratory. 5 units (0-5-0); first term. Open to students enrolled in Bi 114; others require instructor’s permission. Laboratory research projects serve primarily as a means of acquiring experience with some of the methods and problems of immunology. Instructor: Owen.

Bi 119. Advanced Cell Biology. 9 units (3-0-6); third term. Prerequisites: Bi 9, Bi 110 or instructor’s permission. This course covers the principles of general microbiology and of the growth and differentiation of the cells of higher organisms. Regulatory circuits in nucleic acid and protein synthesis; mechanisms of control of enzyme activity; regulation of cell multiplication; surface properties of cells. Instructor: Attardi.

Bi/IS 121 abc. Biosystems Analysis. 6 units (2-0-4); first, second, third terms. Prerequisite: Bi 151 or instructor’s consent. This course presents a systematic consideration and application of the methods of systems analysis, information theory and computer logic to problems in neurobiology. The subjects to be considered include the mechanical properties of striated muscle, the analysis of neuronal integrative mechanisms and reflex behavior in terms of logical net theory. The course will seek to describe some aspects of human cortical activity in terms of information theory and conceptual modeling. The course will be conducted as a research seminar and the detailed subject matter will change from year to year. Instructor: Fender.

Bi 122. Genetics. 12 units (3-3-6); third term. Prerequisite: Bi lor Bi 9, or instructor’s permission.

A lecture, discussion, and laboratory course covering the basic principles of genetics. Instructors: Horowitz and staff.

Bi 129. Biophysics. 6 units (2-0-4); second term. The subject matter to be covered will be repeated approximately in a three-year cycle. The subject matter will be organized according to various biological functions, such as replication, contractility, sensory processes, endogenous rhythms, etc. Each function will be discussed in its various biophysical aspects. This course together with Bi/Ch 132 constitutes an integrated program covering the physical and physicochemical approaches to biology. Instructor: Delbrück.

Bi/Ch 132 abc. Biophysical Chemistry of Macromolecules. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 or equivalent. A study of the structure and properties of biological macromolecules. Emphasis is placed on both the methods of investigation and the results. The first term will cover topics in the physical chemistry of nucleic acids, and the study of biological macromolecules by ultracentrifugation methods and electron microscopy. The second term will emphasize the properties of proteins, structural chemistry of biological molecules in general, the biophysics of membrane and cell surface phenomena, and applications of magnetic resonance spectroscopy to biological problems. Instructors: Chan, Davidson, Stroud, Vinograd.

Bi/Ch 133. Biophysical Chemistry of Macromolecules Laboratory. 14 units (0-10-4); second, third terms. A laboratory course designed to provide an intensive training in the techniques for the characterization of biological macromolecules. Open to selected students. Instructor: Vinograd. Offered alternate years; offered in 1975-76.

Bi 134. Advanced Research Techniques in Molecular Biology. 14 units (0-10-4); first term. A laboratory course designed to provide research experience in utilizing important, new methods in molecular biology as they become available. Open to selected students. In charge: Dreyer and staff. Offered alternate years; not offered in 1975-76.

Bi 135. Optical Methods in Biology. 6 units (2-0-4); first term. Prerequisite: Ph 1 or instructor’s permission. The course will present principles and practice of the operation of various types of light and electron microscopes including phase contrast and interference microscopes as
well as transmission electron microscopes and scanning electron microscopes of various types. Specimen preparation will be discussed and the interpretation of electron micrographs analyzed. Offered in alternate years; not offered in 1975-76.

Bi 136. Optical Methods in Biology Laboratory. 8 units (0-6-2); first term. Laboratory accompanying Bi 135. Enrollment limited. Offered in alternate years; not offered in 1975-76.

Bi 137. Multicellular Assemblies. 8 units (2-2-4); third term. Prerequisite: Bi 1. The course will deal with the structural organization of tissues viewed as basic cellular assemblies common to all of the organs. Emphasis will be placed on correlation between morphology and function. Instructor: Revel.

Bi 141. Selected Topics in Evolution Theory. 6 units (2-0-4); third term. Prerequisite: BiCh 110 or Bi 122. Lectures and seminars on subjects of current interest, with emphasis on genetic and molecular processes in evolution. Topics to be treated include modern experiments on the origin of life, biological aspects of planetary exploration, the evolution of protein structure, and mathematical models of evolution. Instructors: Horowitz and staff.

Bi 151 ab. Neurophysiology. 9 units (3-0-6); first, second terms. This course presents the fundamentals required for advanced study in neurobiology. The first term treats cellular neurophysiology: the structure of neurons, receptor cells, and effector cells; the biophysics of excitable membranes; synaptic transmission; sensory transduction; neuropharmacology; muscular contraction, and simple reflexes. Instructor: Lester.

In the second term, knowledge of membrane and synaptic biophysics is used to show how complex nervous systems perform sensory information processing and patterning of motor behavior. A recurring theme will be the visuo-motor system of vertebrates, but parallels will be drawn with other modalities such as touch and hearing, and with other phyla, such as the Annelida and the Mollusca. Instructors: Pettigrew and staff.

Bi 152. Behavioral Biology. 6 units (2-0-4); second term. The behavior of organisms, including lower forms. Emphasis is placed on molecular, genetic, and developmental mechanisms. Instructor: Benzer.

Bi 153. Brain Studies of Motivated Behavior. 12 units (2-4-6); third term. Prerequisite: instructor's permission. A lecture and laboratory course concerned with the anatomical and physiological bases of drives, arousal, rewards, and learning. Emphasis is placed on the mammalian brain, particularly the midbrain, hypothalamus, and paleocortex with reference to the effects of lesions and electric stimulation upon physiological and behavioral activity. Instructor: Olds.

Bi 155. Psychobiology. 6 units (2-0-4); second term. An introduction to the study of neural mechanisms of behavior with emphasis on development, circuitry and the problem of correlating brain processes with psychological functions. Instructor: Sperry.

Bi 156. Neurochemistry. 9 units (3-0-6); third term. Prerequisite: Bi 151 or instructor's permission. A lecture and discussion course covering chemical aspects of synaptic transmission, impulse conduction, axonal transport, neuroendocrine control mechanisms, and control of nerve cell differentiation, growth, and systemic organization. Instructor: Russell.

Bi 157. Comparative Nervous Systems. 9 units (2-3-4); third term. This course will provide an introduction to the comparative study of the gross and microscopic structure of nervous systems. Although the main emphasis will be on the vertebrate nervous system, the highly developed central nervous systems found in arthropods and cephalopods will also be examined. Variations in nervous system structure will be correlated with function and with behavioral and ecological specializations. Comparative data for nervous systems of existing animals together with the evidence of the nervous systems of extinct animals preserved as fossils will be used to reconstruct the evolution of the vertebrate brain. Instructor: Allman.
Bi 161 ab. Neurophysiology Laboratory. 6 units (0-4-2); first, second terms. Open to students enrolled in Bi 151; others require instructor's permission. A laboratory course in neurophysiology to accompany Bi 151. The first term treats the principles of cellular physiology in one system, the frog nerve-muscle preparation. Students conduct all aspects of the experiments, including dissections, fabrication of microelectrodes, and intracellular stimulation and recording. Instructor: Lester.

In the second term, various preparations will be used, including invertebrate and frog nervous systems with some mammalian preparations as student numbers and availability of apparatus allow. Instructor: Pettigrew.

(B) Subjects primarily for graduate students.

Bi 201. General Biology Seminar. 1 unit; all terms. Meets weekly for reports on current research of general biological interest by members of the Institute staff and visiting scientists. In charge: Hood, Russell.

Bi 202. Biochemistry Seminar. 1 unit; all terms. A seminar on selected topics and on recent advances in the field. In charge: Mitchell.

Bi 204. Genetics Seminar. 2 units; all terms. Reports and discussion on special topics. In charge: Russell and staff.

Bi 207. Biophysics Seminar. 1 unit; all terms. A seminar on the application of physical concepts to biological problems. Reports and discussions. In charge: Delbrück.

Bi 208. Selected Topics in Neurobiology. Units to be arranged with the instructor; second, third terms. Lectures and seminars on neurophysiology, neurochemistry, and animal behavior. In charge: Strumwasser, Lester, Pettigrew, and invited lecturers.

Bi 209. Psychobiology Seminar. Units to be arranged; all terms. Prerequisite: instructor's permission. An advanced seminar course in brain mechanisms and behavior. In charge: Sperry.

Bi 220. Advanced Seminar in the Molecular Biology of Development. 4 units (1-0-3); all terms. Discussion of current papers on various pertinent topics including: nucleic acid renaturation and hybridization studies; transcription level regulation of gene function; evolutionary change in developmental processes; molecular aspects of differentiation in certain more intensively studied systems, etc. Primarily for graduate students. In charge: Davidson.

Bi 241. Advanced Topics in Molecular Biology. 6 units (2-0-4); third term. Prerequisite: instructor's permission. Reading and discussion of new areas in molecular biology. Instructor: Dreyer.

Bi 260. Advanced Physiology. Units to be arranged; second, third terms. A project laboratory using advanced techniques of physiology. Instructor: Lester.

Bi 270. Special Topics in Biology. Units to be arranged; first, second, third terms. Students may register with permission of the responsible faculty member.

Bi 280-291. Biological Research. Units to be arranged; first, second, third terms. Students may register for research in the following fields after consultation with those in charge: animal physiology (280), biochemistry (281), bio-organic chemistry (282), developmental biology (283), genetics (284), immunology (285), marine zoology (286), plant physiology (287), biophysics (288), psychobiology (289), cell biology (290), physiological psychology (291).
BUSINESS ECONOMICS AND MANAGEMENT

Advanced Courses

BEM 100 abc. Business Economics and Management. 9 units (3-0-6); first, second, third terms. Open to graduate students. This course endeavors to bridge the gap between engineering and business. It is primarily intended for technically trained students who wish, sooner or later, to take advantage of opportunities in industry beyond their strict technical fields. The broad assumptions in the course are that technical training is an excellent approach to positions of general responsibility in business and industry, and that technically trained men going into industry can make significant contributions to the improved functioning of the economy. The principal divisions of the subject matter of the course are: 1) managerial accounting and information flows; 2) business finance; 3) quantitative technique and business decisions; 4) economic applications to business; and 5) systems analysis. This treatment provides a description of the industrial economy about us and of the latest management techniques. The points of most frequent difficulty are given special study. Instructor: Morrisroe.

BEM 106 abc. Business Economics (Seminar). Units by arrangement; first, second, third terms. Prerequisite: instructor's permission. This seminar is intended to assist the occasional graduate student who wishes to do special work in some part of the field of business economics or industrial relations. Instructor: Gray. Graded pass/fail.

BEM 110. Personnel Problems of Management. 9 units (3-0-6); first, second, third terms. This course stresses the personnel functions and responsibilities of supervisors and managers in working with professional and technical employees. The roles of unions and government, including collective bargaining and labor legislation, are covered. The relationships of a supervisor or manager with his employer, his associates, and his superiors are analyzed, and the services which he may receive from the personnel department are discussed. The processes of decision-making and communication are applied to specific supervisory responsibilities such as interviewing and selection, appraisal of performance, salary administration, benefit plans and development of individuals. Instructor: Gray.

BEM 132. The Management of an Enterprise. 9 units (3-0-6); third term. The managerial aspects of supervision and the basic decision-making functions of management, excluding employee relations, will be covered. Specific topics include selection of plant location, plant layout, production and inventory controls, purchasing, and similar problems related to equipment and materials. The concepts of operations research and systems management are stressed. Instructor: Gray.

CHEMICAL ENGINEERING

Undergraduate Courses

ChE 10. Introduction to Chemical Engineering Systems. 9 units (3-3-3); third term. Basic concepts in transport phenomena and chemical kinetics are discussed with respect to problems of current interest to society. The relationships among engineering principles, chemistry, and economics and their application to the needs of society are emphasized. Topics are drawn from various areas of ecology, energy, air and water pollution, and bioengineering, as well as from more traditional chemical engineering. Modeling, dimensionless groups, along with characteristic times and distances, are used to develop rapid insight into complex problems. Students work in pairs on open-ended term projects, present their results during a technical session, and prepare a short formal report of their findings and recommendations. Instructor: Shair.
ChE 63 abc. Chemical Engineering Thermodynamics. 9 units (3-0-6); first, second, third terms. Basic thermodynamic laws and relations for one-component closed systems and for simple steady-flow systems; the treatment includes imperfect substances and frictional processes. In the third quarter chemical reaction equilibria and phase equilibria with practical applications. Instructors: Pings (ab), Gavalas (c).

ChE 80. Undergraduate Research. Units by arrangement. Research in chemical engineering and industrial chemistry offered as an elective in any term. If ChE 80 units are to be used to fulfill elective requirements in the chemical engineering option, a thesis approved by the research director must be submitted in duplicate before May 10 of the year of graduation. The thesis must contain a statement of the problem, appropriate background material, a description of the research work, a discussion of the results, conclusions, and an abstract. The thesis need describe only the significant portion of the research. Graded pass/fail.

ChE 81. Special Topics in Chemical Engineering. Units by arrangement. Occasional advanced work involving reading assignments and a report of special topics. Permission of the instructor is required. No more than 12 units in ChE 81 may be used to fulfill elective requirements in the chemical engineering option. Graded pass/fail.

ChE 90. Chemical Engineering Systems. 9 units (3-3-3); third term. (Not open to freshmen.) Same as ChE 10 but with projects selected to suit the needs and interests of upperclass students. Instructor: Shair.

Advanced Courses

ChE 103 abc. Transport Phenomena. 9 units (3-0-6); first, second, third terms. Prerequisites: AMa 95 or AM 113 ab, or concurrent registration in either. A study of transfer of momentum, energy, and material in situations of practical interest, particularly those involving chemical reaction and those involving staged and continuous unit operations. Derivation of applicable differential equations and their solution to determine distributions of velocity, pressure, temperature, and composition, and the fluxes of momentum, energy, and material in fluid systems. Brief treatment of the molecular theory of transport phenomena. Turbulent as well as laminar flow systems are considered. Instructors: Shair (a), Seinfeld (bc).

ChE 110 ab. Optimal Design of Chemical Systems. 9 units (3-0-6); first, second terms. Prerequisites: ChE 63 ab, ChE 103 abc or equivalent, or enrolled in ChE 103 concurrently. Applications of the principles of chemical engineering and general engineering to the study of systems involving chemical reactions. Topics of current interest will be drawn from the chemical and petroleum industries, the environment, and biomedicine. Techniques of numerical analysis and the digital computing facility will be used to simulate and optimize. Principles of transport phenomena, chemical kinetics, chemical equilibria, and economics along with the elements of applied mechanics, machine design, strength and properties of materials will be employed. Instructor: Corcoran.

ChE 111. Simulation and Design of Chemical Systems. 9 units (3-0-6); third term. Prerequisites: appropriate background in unit operations, reactor design, physical chemistry, and engineering
Chemical Engineering 279

Studies will be made of steady-state, liquid-vapor processes using FLOWTRAN, a proprietary program that includes real data for most organic and inorganic compounds of interest and blocks for unit operations, costing and sizing, control, and special purposes. Simulation and optimization of real processes will be possible, and effects of changes in pressures, temperatures, flow rates, and compositions will be investigated. Applications will be made to real systems in which chemical change occurs, such as manufacture of ethylene from ethane, water recovery from saline sources, and production of metals from ores. Emphasis will be placed upon the simulation and optimization characteristics of the FLOWTRAN system. Instructor: Corcoran.

ChE 126 abc. Chemical Engineering Laboratory. Units to be arranged; first, second, third terms. Juniors taking this course are introduced to some of the basic techniques of laboratory measurements. Several short projects, illustrative of problems in transport phenomena, unit operations, chemical kinetics, and reactor control, are performed. Master's degree students are introduced to advanced experimental techniques involving energy transport and reactor kinetics and control during the first term; during the second and third terms, each student works on an individual research project under the direction of a staff member.

Experiments in energy transport may be chosen from a rather wide list of possible experiments, including also some of the experiments offered under ME 126. These include solid-state and solar-energy conversion, conduction, free and forced convection, radiation, nucleate and stable film boiling, free surface and supersonic flows. Experiments in chemical systems include projects in heterogeneous catalysis using a microreactor, and projects in homogeneous liquid-phase kinetics and control using a stirred-tank reactor for the study of multiple steady states. Instructor: Vaughan.

Graduate and Advanced Undergraduate Courses

ChE/Env 157. Fundamentals of Air Pollution Engineering. 9 units (3-0-6); third term. Prerequisite: open to graduate students and seniors with instructor's permission. The course presents the basic concepts necessary for understanding the origins, atmospheric behavior, and control of air pollutants. Sources, quantities, and nature of pollutants; air pollution standards; aerosol physics; chemistry of pollutant gases; gas sampling; design of control technology; urban basin modeling and control, air environment monitoring systems. Instructors: Friedlander, Seinfeld.

ChE 162. Catalysis and Surface Chemistry. 9 units (3-0-6); third term. Prerequisite: Ch 21 abc or the equivalent. Thermodynamics of two-dimensional systems. Physical adsorption and the BET theory. Chemical adsorption and the Langmuir isotherm. Localized and nonlocalized adsorption. General theories of heterogeneous catalysis by metals, semiconductors and insulators. Instructor: Weinberg.

ChE 164. Introduction to Statistical Thermodynamics. 9 units (3-0-6); first term. Prerequisite: Ch 21 abc or the equivalent. Ensembles and a statistical mechanical formulation of the second and third laws of thermodynamics. Classical statistical mechanics and an introduction to quantum statistics. The ideal monatomic, diatomic and polyatomic gas-translational, rotational, vibrational and electronic partition functions. Chemical equilibria. Real gases. The ideal crystal lattices. Instructor: Weinberg.

ChE 165 ab. Applied Chemical Thermodynamics. 9 units (3-0-6); second, third terms. Prerequisite: ChE 63 abc or equivalent. The first part of the term involves a review of the basic concepts of thermodynamics applied to both open and closed systems. The rest of the term is spent applying these principles to problems involving chemical systems. They include ideal and real behavior of single and multicomponent systems and treatment of multiple phase equilibria both in the absence and in the presence of chemical reactions. Third term not offered in 1975-76. Instructor: Shair.
ChE 167 abc. Polymer Science. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 or equivalent. The first term covers polymer chemistry: the nature and classification of polymers, methods of synthesis, polymerization kinetics and molecular weight distribution, copolymerization, and cross-linking. During the second term attention is focused on the physical characterization of polymers by solution methods and by physical methods in bulk. A detailed treatment of polymer properties is the subject of the third term which includes a discussion of the principles of polymer technology. Throughout the course the emphasis is on an understanding of polymer properties in terms of polymer structure. Not offered in 1976-77. Instructors: Tschoegl, Rembaum.

ChE 168. Polymer Science Laboratory. 9 units (0-7-2); third term. Prerequisite: ChE 167 ab or equivalent. An introduction to some of the basic techniques employed in the polymerization and characterization of synthetic polymeric materials. The reaction kinetics of a free-radical polymerization are studied, and the reaction product is collected for characterization. The characterization experiments include the determination of number average and viscosity average molecular weights and the glass transition temperature. Mechanical properties are studied in tensile stress relaxation. Not offered in 1976-77. Instructors: Tschoegl and staff.

Ae/ChE 172 abc. Optimal Control Theory. 9 units (3-0-6); first, second, third terms. Linear feedback control systems; frequency and time domain analysis; stability, controllability, and observability; synthesis using bode plots, Nyquist diagrams, and root loci; optimization problems for dynamic systems with terminal and path constraints (calculus of variations); optimal feedback control (dynamic programming); terminal controllers and regulators; numerical methods for synthesizing optimal paths and optimal feedback controllers. Optimal control in the presence of noise; recursive filtering, smoothing, and interpolation for linear systems with additive Gaussian noise. Singular optimization problems and differential games. Instructor: Wood.

ChE 173 ab. Advanced Transport Phenomena. 9 units (3-0-6); first, second terms. Prerequisites: AM 113 or AMa 95, or concurrent registration in either, or instructor's permission. Foundations of transport phenomena as applied to the solution of problems in heat, mass and momentum transfer. Derivation of the governing differential equations; steady and time dependent unidirectional flows; laminar flow of incompressible fluids at high and low Reynolds number, including the motion of bubbles, drops and other small particles; forced and free convection heat and mass transfer, including the effects of simultaneous chemical reaction. In addition, topics will be selected from the following subjects: transport processes in suspensions, packed beds or porous media; and mixing processes, such as Taylor diffusion. Instructor: Leal.

ChE 174. Special Topics in Transport Phenomena. 9 units (3-0-6); third term. Prerequisite: AM 113 or AMa 95, or concurrent registration in either, or instructor's permission. Application of the principles of transport phenomena to advanced problems in heat, mass and momentum transfer. The course will focus on the fundamental aspects of topics relevant to the chemical processing industry. Included will be an introduction to the mechanics of non-Newtonian liquids; selected topics in hydrodynamic stability theory with emphasis on buoyancy and surface tension driven instabilities; and transport processes in turbulent flows. Other topics may occasionally be discussed, depending upon the needs and interests of the class. Instructor: Leal.

ChE 191 abc. Chemical Engineering Conference. 2 units (1-0-1); first, second, third terms. Oral presentations on problems of current interest in chemical engineering and industrial chemistry with emphasis on the techniques of effective oral communication with groups. Graded pass/fail for undergraduates. Instructors: Staff.

ChE 203 ab. Interfacial Phenomena. 9 units (3-0-6); second, third terms. Prerequisite: ChE 103 abc, or instructor's permission. Review of the theory of the Brownian motion and irreversible

ChE 207 abc. Mechanical Behavior and Ultimate Properties of Polymers. 9 units (3-0-6); first, second, third terms. Prerequisite: ChE 107 or equivalent. The course begins with an introduction to the theory of viscoelastic behavior. The discussion centers on material functions and their interconversion, model representation, time-temperature equivalence, and the molecular theories of polymer behavior. During the second term consideration is given to the mechanical behavior of various polymeric systems including amorphous, crystalline, and cross-linked polymers, copolymers, elastomers, filled and plasticized systems, blends and melts. The third term is devoted to a discussion of the phenomenology and the molecular and statistical theories of rupture in polymeric materials. Special attention is given to the controlling molecular parameters. Not offered in 1975-76. Instructor: Tschoegl.

ChE 280. Chemical Engineering Research. Offered to Ph.D. candidates in Chemical Engineering. The main lines of research now in progress are:

- Transport in biomedical systems, including heart, arteries, and artificial kidney.
- Air-pollution control and simulation, including atmospheric fluid mechanics and chemistry. Application of tracer techniques to environmental problems.
- Chemistry and physics of aerosols.
- Theoretical and experimental fluid mechanics. Rheology and flow of suspensions and emulsions, mechanics of non-Newtonian fluids.
- Liquid-state physics including studies of structure and intermolecular forces.
- Mechanical behavior and ultimate properties of polymers.
- Plasma chemistry and engineering.
- Kinetics and mechanism of homogeneous reactions, including pyrolysis, oxidation, and desulfurization of petroleum components.
- Adsorption and catalysis on well-characterized solid surfaces.
- Applied catalysis including studies of catalyst poisoning.
- Chemistry and physics of solids and solid surfaces.
- Coal conversion including coal pyrolysis, gasification, and liquefaction.

CHEMISTRY

Undergraduate Courses

Ch 1 abc. General and Quantitative Chemistry. 6 units (3-0-3); first, second, third terms. Lectures and recitation dealing with general principles of chemistry. Fundamental laws and theories of chemistry are discussed and illustrated by factual material. Text: Chemical Principles, Dickerson, Gray, and Haight. Graded pass/fail. Instructor: Dickerson.

Ch 2 abc. Advanced Placement in Chemistry. 9 units (3-0-6); first, second, third terms. Prerequisite: instructor's permission. Ch 2 will be taught at a more advanced level than Ch 1 and will assume that the student already has a strong background in science and mathematics. Attention will be focused on a detailed consideration of properties of atoms important in describing chemical bonding and hence molecular structure and properties, and the energetic changes associated with chemical reactions. Stress is placed on understanding current research involving chemical systems with emphasis on reactions of biological significance. Graded pass/fail. Instructors: Chan and staff.
Ch 3 abc. Experimental Chemical Science. First term, 6 units (0-6-0); second, third terms. 3 units (0-3-0); or 6 units (0-6-0). Either 3 or 6 units may be elected the second or third term or both terms. An introductory laboratory course in basic experimental chemistry with experiments involving quantitative and qualitative analysis, synthesis, chemical dynamics and the correlation of structure with physical properties. Many modern tools and techniques, such as digital computers, radioactive tracers, infrared, visible and ultraviolet spectrometry, gas chromatography, spectrophotometry and coulometry, are applied to the solution of chemical problems. Graded pass/fail. Instructor: Bercaw.

Ch 14. Chemical Equilibrium and Analysis. 6 units (2-0-4); first term. A systematic treatment of association equilibria, including ions and neutral ligands in solution. Illustrative examples relevant to biochemistry will be emphasized, including acid-base equilibria, solubility, complex ions and chelation, binding of ligands by macromolecules, cooperative binding equilibria, oxidation-reduction reactions and some aspects of reaction mechanisms. Instructor: Richards.

Ch 15. Chemical Equilibrium and Analysis Laboratory. 10 units (0-6-4); first term. Prerequisites: Ch 1 abc, Ch 14 (may be taken concurrently). A choice of laboratory experiments is offered to illustrate some of the modern instrumental techniques that are currently employed in industrial and academic research. Emphasis will center on determinations of chemical composition, measurement of equilibrium constants, and trace-metal analysis. Instructors: Anson, Gordon, Klopfenstein, Raftery.

Ch 21 abc. The Physical Description of Chemical Systems. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 abc, Ph 2 abc, Ma 2 abc. A lecture and recitation course. The main emphasis is on atomic and molecular theory, quantum mechanics, statistical mechanics, thermodynamics, and chemical kinetics. Instructors: Davidson, McKoy.

Ch 26 abo Physical Chemistry Laboratory. 10 units (0-6-4); second, third terms. Prerequisites: Ch 1 abc and Ch 21 a or equivalent. Laboratory exercises which provide illustrations of the principles of physical chemistry, an introduction to problems of current interest, and techniques of contemporary research. Instructors: Stroud and staff.

Ch 41 abc. Chemistry of Covalent Compounds. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 1 abc or instructor's permission. This course will cover the synthesis, structure and mechanisms of reactions of covalent compounds. Emphasis will be on the study of molecules formed from carbon and other first- and second-row elements. Instructors: Bergman, Ireland.

Ch 46 abo Experimental Methods of Covalent Chemistry. 9 units (1-6-2); second, third terms. Prerequisite: Ch 1 abc. Laboratory accompaniment to Ch 41 abc. Experiments stressing modern techniques for investigating the structures and dynamic behavior as well as synthesis, purification, and characterization of covalent compounds both organic and inorganic. Instructor: Roberts.

Ch 80. Chemical Research. Offered to B.S. candidates in chemistry. Prerequisite: consent of research supervisor. This course is intended to provide experimental and theoretical research experience in the Division of Chemistry and Chemical Engineering. No credit will be awarded for research work performed as Ch 80 without an appropriate written report prepared by the student and approved by the research supervisor. This report must contain a statement of the problem, appropriate background material, a description of the research work or a portion of the research work, a discussion of the results, conclusions, and an abstract. No more than 60 units of Ch 80 credit for undergraduate research may be accumulated as chemistry electives without special permission. Graded pass/fail.

Ch 81. Independent Reading in Chemistry. Units by arrangement. Prerequisite: instructor's permission. Occasional advanced work involving reading assignments and a report on
special topics. No more than 12 units in Ch 81 may be used as electives in the chemistry option. Graded pass/fail.

Ch 90. Oral Presentation. 2 units (1-0-1); first term. Training in the techniques of oral presentation of chemical topics. Practice in the effective organization and delivery of reports before groups. Instructor: Gagne.

Advanced Courses

Bi/Ch 110 ab. Biochemistry. 12 units (4-0-8); first, second terms. Prerequisite: Ch 41 or instructor's permission. A lecture and discussion course on the molecular basis of biological structure and function. The first term emphasizes macromolecular structure and the metabolic processes involved in energy storage and utilization. The second term considers the storage, transmission and expression of genetic information in prokaryotes and eukaryotes, as well as other topics in the biochemistry of higher organisms, such as molecular regulatory mechanisms and the biochemistry of cell membranes. Instructors: Dryer, Raftery, Richards, Strauss.

Ch 112 abc. Advanced Inorganic Chemistry. 9 units (2-0-7); first, second, third terms. Prerequisite: Ch 21 abc or concurrent registration. The course features a treatment of the structures and mechanisms of inorganic compounds with particular emphasis on transition metal complexes. The second term is devoted to structural, spectroscopic, and magnetic properties and includes some discussion of minerals, organometallic complexes, and bioinorganic problems. The third term takes up the mechanisms of inorganic reactions in detail. Instructors: Gordon, Gray.

Ch 113 abc. Advanced Ligand Field Theory. 12 units (1-0-11); first, second, third terms. Prerequisite: Ch 21 abc or concurrent registration. A tutorial course which involves problem solving in the more advanced aspects of ligand field theory. This course is recommended only for students interested in detailed theoretical work in the inorganic field. Instructors: Gray and staff.

Ch 117. Introduction to Electrochemistry. 6 units (2-0-4); second term. A discussion of the structure of the electrode-electrolyte interface, the mechanism by which charge is transferred across it, and of the experimental techniques used to study electrode reactions. The topics covered change from year to year but usually include diffusion currents, polarography, coulometry, irreversible electrode reactions, the electrical double layer, and the kinetics of electrode processes. Given in alternate years. Offered in 1975-76. Instructor: Anson.

Ch 118 ab. Experimental Electrochemistry. Units by arrangement; second, third terms. Laboratory practice in the use of selected electrochemical instruments and techniques. The student may pursue a set of expository experiments or elect to carry out a research project in electrochemistry. Instructor: Anson.

Ch 120 ab. The Nature of the Chemical Bond. 9 units (3-0-6); second, third terms. Prerequisite: Ch 21 a or an equivalent brief introduction to quantum mechanics. Modern ideas of chemical bonding will be discussed with the emphasis on the qualitative concepts and how they are used to predict: (a) Molecular geometries and the energy ordering of the excited states of molecules; (b) Electric and magnetic properties of ground and excited states of molecules; (c) Selection rules for chemical reactions. Heavy use will be made of the recent advances in understanding of the chemical bond resulting from the application of ab initio quantum mechanical techniques. However, the main objective of the course is to enable the student to build a conceptual understanding sufficient for him to reliably apply the ideas and make predictions on his own. As such, the main emphasis will be nonmathematical and will not require an extensive understanding of the esoterica of formal quantum mechanics.
The emphasis will be upon polyatomic molecules of various types (including transition metal compounds), but discussions will also include such topics as antiferromagnetism (origin of superexchange), impurity states in solids, and the bonding and reactions at surfaces of solids. Offered in 1975-76 but will not be offered in 1976-77. Instructor: Goddard.

Ch 122 abc. Methods for the Determination of the Structure of Molecules. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or instructor's permission. A discussion of modern methods used in the determination of the structure of molecules, including x-ray, electron, and neutron diffraction; mass spectrometry; optical, infrared, Raman, microwave, Mössbauer, nuclear magnetic, and electron spin resonance spectroscopy. Instructors: Chan, Marsh. First term only offered in 1975-76.

Ch 125 ab. The Elements of Quantum Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: Ch 21 abc or an equivalent brief introduction to quantum mechanics. A first course in molecular quantum mechanics consisting of a quantitative treatment of quantum mechanics with applications to systems of interest to chemists. The course includes:

1. Basic foundations of quantum mechanics, angular momentum, hydrogen atom, perturbation and variational methods, the interaction of matter with electromagnetic radiation.
2. Born-Oppenheimer approximation, rotational and vibrational states of diatomic and polyatomic molecules.
3. Basic elements of scattering theory.
4. Interaction of matter with electric and magnetic fields.

This course is designed to be a terminal course in molecular quantum mechanics for nonchemical physicists and an introductory course in quantum mechanics for chemical physicists. Instructors: Baldeschwieler, Kuppermann.

Ch 127 ab. Nuclear Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: instructor's permission. An introductory course on the properties of nuclei. In the first term the topics covered are: production and decay of radioactive nuclei; nuclear masses stability and binding energies; interaction of radiation with matter; ion implantation and radiation damage effects; systematics and simple theories of nuclear level structures; nuclear moments; nuclear reactions including fission. A major part of the second term is reserved for a more detailed study of specific nuclear applications. Topics covered depend on class interest. Previous topics have included: Thermoluminescence, Mössbauer spectroscopy, nucleo-synthesis and nuclear power reactors. Given in alternate years. Offered in 1975-76. Instructor: Burnett.

Ch 130. Fundamentals of Photochemistry and Photobiology. 6 units (3-0-3); third term. Prerequisite: Ch 21 ab or equivalent. A discussion of radiative and radiationless processes associated with problems in photochemistry and photobiology. Topics in photochemistry to be discussed are: chromophores, energy levels, absorption and emission of radiation. Forster transfer and other types of intermolecular excitation transfer, electronic and vibrational relaxation, time scales for competing processes, and excitonic phenomena in aggregate systems. About half the time will be devoted to discussions of the role that these photochemical events play in photosynthesis, animal vision, phototropism, and radiation biology. Instructor: Hochstrasser.

Bi/Ch 132 abc. Biophysical Chemistry of Macromolecules. 9 units (3-0-6); first, second, third terms. Prerequisite: Ch 21 abc or the equivalent. A study of the structure and properties of biological macromolecules. Emphasis is placed on both the methods of investigation and the results. The first half of the course will cover topics in the physical chemistry of nucleic acids, and the study of biological macromolecules by ultracentrifugation methods and electron microscopy. The second half of the course will emphasize the properties of proteins,
structural chemistry of biological molecules in general, the biophysics of membrane and cell surface phenomena, and applications of magnetic resonance spectroscopy to biological problems. Instructors: Chan, Davidson, Stroud, Vinograd.

Bi/Ch 133. Biophysical Chemistry of Macromolecules Laboratory. 14 units (0-10-4); second, third terms. A laboratory course designed to provide an intensive training in the techniques for the characterization of biological macromolecules. Open to selected students. Given in alternate years. Offered in 1975-76. Instructor: Vinograd.

Ch 135 ab. Chemical Dynamics. 9 units (3-0-6); second, third terms. Prerequisites: Ch 21 abc and Ch 41 abc or equivalent. A general introduction to the interrelation of rates, energetics and mechanisms of chemical reactions both in solution and the gas phase. Topics covered include general kinetic methods, theories of elementary reactions and their extensions to the treatment of complex processes, organic and inorganic reaction mechanisms, and enzyme kinetics. Given in alternate years. Offered in 1975-76. Instructor: Beauchamp.

Ch 140 abc. Special Topics in Chemistry. Units by arrangement; first, second, third terms. Prerequisite: Ch 41 abc or equivalent. Lectures on a series of subjects of current interest at the forefront of chemistry. Offered in 1975-76. Instructor: Klopfenstein.

Ch 144 ab. Advanced Organic Chemistry. 9 units (3-0-6); first, second terms. Prerequisite: Ch 41 abc or equivalent. Lectures and discussions of a number of basic unifying themes in organic chemistry. Problems in synthetic, theoretical, organometallic, and bio-organic chemistry with emphasis on stereochemistry. Text: Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, March. Instructor: Dervan.

Ch 154. Organometallic Chemistry. 6 units (2-0-4); third term. Prerequisite: Ch 41 abc or equivalent. A general discussion of the preparation, structure and bonding, reaction mechanisms, and synthetic and catalytic uses of transition metal organometallic compounds. Instructor: Bergman.

Ch 180. Chemical Research. Offered to M.S. candidates in chemistry. Graded pass/fail.

Ch 223 abc. Statistical Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 127 ab or an introductory course in statistical mechanics; or the consent of the instructor. Ph 127 ab is a course in fundamental aspects of statistical mechanics which is particularly appropriate for the chemistry student. The present course assumes knowledge of that material and will direct itself to applications of chemical interest such as statistical thermodynamics, transport phenomena, gases at high pressure, and liquids, polymers, and crystals. Not offered in 1975-76.

Ch 224 abc. Magnetic Resonance. 9 units (3-0-6); first, second, third terms. Prerequisite: background in elementary statistical and quantum mechanics, and some familiarity with elementary magnetic resonance. The principles of nuclear magnetic resonance and electron paramagnetic resonance will be discussed. The theoretical background behind the various types of magnetic resonance experiments will be developed. Methods for the analysis of spectra will be treated as well as the theory of interaction between nuclear spins, electron spins, nuclear-electronic coupling and the dynamic coupling of spins to lattice degrees of freedom. Applications of magnetic resonance to current research will be discussed with illustrations taken from problems in chemistry, physics, and biology. Not offered in 1975-76. Instructors: Chan, Vaughan.

Ch 227 ab. Advanced Topics in Chemical Physics. 9 units (3-0-6); second, third terms. Prerequisite: Ch 125 or equivalent. Experimental and theoretical aspects of molecular collisions will be discussed. These will include chemical reactions in crossed molecular beams, ion-molecule reactions, electron impact excitation, and photoionization. Applications to current research in elementary processes will be emphasized. Instructor: Kuppermann.
Ch 229 abc. X-Ray Diffraction Methods. 6 units (2-0-4); first, second, third terms. Prerequisite: Ch 129 abc or equivalent. An advanced discussion of the techniques of structure analysis by X-ray diffraction. Topics covered include protein crystallography, direct phase analysis methods, lattice vibrations, and refinement and assessment of accuracy of structure determination. Not offered in 1975-76. Instructors: Marsh, Samson.

Ch 242 ab. Chemical Synthesis. 4 units (2-0-2); second, third terms. Prerequisite: Ch 41 abc. The concepts of synthetic planning will be developed through the analysis of recorded syntheses. The methodology of the organization of a complex set of reactions so as to accomplish a chosen goal will be examined with the aid of examples of bio-organic, organic, and organometallic interest. Given in alternate years. Offered in 1975-76. Instructor: Evans.

Ch 247 ab. Organic Reaction Mechanisms. 6 units (2-0-4); second, third terms. Various tools for the study of organic reaction mechanisms will be discussed with major emphasis on kinetic methods. Given in alternate years. Not offered in 1975-76.

Ch 254. The Chemistry of Amino Acids, Peptides, and Proteins. 9 units (3-0-6); third term. Prerequisite: Ch 41 abc. A discussion of the chemical reactions, structures, and functions of amino acids, peptides, and proteins. Given in alternate years. Offered in 1975-76. Instructor: Schroeder.

Ch 280. Chemical Research. By arrangement with members of the faculty, properly qualified graduate students are directed in research in chemistry. Hours and units by arrangement.

CIVIL ENGINEERING

(See Engineering and Applied Science)

COMPUTERS AND MACHINE METHODS OF COMPUTATION

(See Engineering and Applied Science for courses listed under Information/Computer Science)

ECONOMICS

Undergraduate Courses

Ec/SS 11 a. Introduction to Microeconomics. 9 units (3-0-6); first, third terms. An introduction to the methodology of social science and the applications of that methodology to current social problems. This course emphasizes the role of wages, prices, and profits in a free enterprise economy and develops a theory of individual and firm decision making that can be used to analyze the behavior of business and public institutions. Subjects covered may also include financial markets, international trade, development, and alternative economic systems. Instructors: Staff.

Ec/SS 11 b. Social Principles and Problems. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 a. This course concentrates on non-market decisions. It focuses on committee and legislative decision-making as well as providing an introduction to recent work in the theory of voting and the political process. Instructors: Staff.
Ec/SS 11 c. Social Science Principles and Problems. 9 units (3-0-6); third term. Prerequisite: Ec/SS 11 b. This course is devoted to current social problems and is designed to show the student that the theoretical tools developed in the first two terms can be used as the basis for rational solutions to pressing social problems. Although the particular problems studied may vary from term to term, they might include housing, health delivery systems, the environment, public expenditures, and poverty. Instructors: Staff.

Ec 13. Reading in Economics. Units to be determined for the individual by the department. Not available for credit toward humanities-social science requirement. Graded pass/fail.

Ec 15. Introduction to Macroeconomics: Principles and Problems. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 a. Problems of inflation and depression and the tools of monetary and fiscal policy. The course stresses the analysis of money and expenditure in the income determination process as well as covering national income, economic growth and business fluctuations and international economic relations. Instructors: Staff.

Ec 98 abc. Senior Research and Thesis. Prerequisite: instructor's permission. Senior economics majors wishing to undertake a research project and to prepare a paper for presentation to interested faculty and fellow students may elect a variable number of units, not to exceed 12 in any one term, for such work under the direction of some member of the economics faculty.

HSS 99. See page 328 for description.

Advanced Courses

Ec 101. Selected Topics in Economics. 9 units (3-0-6). Instructors: Staff, visiting lecturers.

Ec 112. History of Economic Analysis. 9 units (3-0-6); first term. Prerequisite: Ec/SS 11 a. An examination of the traditions, schools of thought, and controversies which have helped shape modern economic analysis. Substantial reading in Adam Smith, Ricardo, Mill, Jevons, Marshall, Keynes and other major figures will be assigned. The manner in which precise theoretical reasoning has developed will be analyzed, as will the manner in which economic analysis has been influenced by events and policy concerns. Special attention will be paid to the manner in which one method of analysis supplants another. Instructor: Montgomery.

Ec 115. Population and Environment. 9 units (3-0-6); third term. This course will be concerned with (1) the causes of rapid population growth, both in the West in the 18th and 19th centuries and in the less developed countries today; (2) the relation between population growth and economic development; (3) environmental consequences of population growth and distribution; (4) the problem of reducing the rate of growth through control of fertility. Instructor: Sweezy.

Ec 116. Contemporary Socioeconomic Problems. 9 units (3-0-6); first term. Prerequisite: Ec/SS 11 a and Ec/SS 11 b. An analytical investigation of the economic aspects of certain current social issues. Topics to be discussed include the economics of education, medical care systems, urban affairs and the welfare system. Part of the instructional content of the course will be provided by field investigations and outside visitors. Instructors: Staff.

Ec 118. Environmental Economics. 9 units (3-0-6); third term. Prerequisite: Ec/SS 11 a. The methods of price and welfare theory are used to analyze the causes of air, water and other environmental pollution, to examine their impact on economic welfare, and to evaluate selected policy alternatives for managing our environment. Topics include (1) theory of externalities; (2) economic analysis of current and proposed regulatory policies to restrict pollution; (3) the application of economic planning tools such as capital budgeting, linear
programming, cost-benefit analysis to specific environmental management problems (such as water supply, solid-waste disposal, smog control devices, health effects of air pollution, etc.); and (4) comprehensive environmental planning for coordinated use of environmental resources and for rational allocation of funds for environment improvement. Instructor: Montgomery.

Ec 120. International Economic Theory. 9 units (3-0-6); third term. Prerequisites: Ec/SS 11 a and Ec/SS 11 b. An investigation of the factors affecting the exchange of goods and services and the flow of capital between markets. Major issues include the determination of international values, the gains from trade and their division among major trading areas, the theory of economic integration, and the problems of foreign-exchange-rate and balance-of-payments adjustments. Theory is stressed in this course. Instructor: Oliver.

Ec 121 ab. Price Theory and Industrial Organization. 9 units (3-0-6); first, second terms. Prerequisites: Ec/SS 11 a and Ec/SS 11 b or equivalent. A theoretical analysis of the price system, with special reference to the nature and problems of the U.S. economy. The course includes a study of consumer preference, the structure and conduct of markets, factor pricing, measures of economic efficiency, and the interdependence of markets in reaching a general equilibrium. The second term deals with questions of industrial organization such as economics of scale, elasticity of demand, and conditions of entry in a highly quantitative way. Instructors: Noll, Montgomery.

Ec 122 ab. Econometrics. 9 units (3-0-6); second, third terms. Prerequisite: Ma 112 a. The application of statistical techniques to the analysis of economic data. The first part of this course deals with the statistical theory and methods most useful to economists and to other social scientists. The second part is a survey of important empirical studies in the estimation of functional relationships derived from economic theory, such as supply and demand functions, the behavioral relationships determining investment and personal consumption expenditures, and relationships useful for forecasting future levels of economic activity. Instructor: Grether.

Ec 125 ab. The Economics of International Relations. 9 units (3-0-6); first, second terms. No prerequisite. An examination of the economic factors which influence relations among nations. Among the topics discussed are international banking and business, the pattern of international trade, payments and investments, economic warfare, the international gold standard, the International Monetary Fund, the World Bank, the European Common Market, the General Agreement on Tariffs and Trade, the Organization for Economic Cooperation and Development, the dollar crisis and the American Foreign Aid program. The foreign economic policy of the United States is analyzed in some detail. This course emphasizes economic theory less than does Ec 120. Instructor: Oliver.

Ec 126 ab. Money, Income, and Growth. 9 units (3-0-6); first, second terms. Prerequisites: Ec/SS 11 a and Ec/SS 11 b or instructor's permission. This course starts with an intensive study of Keynes' General Theory of Employment and then goes on to post-Keynesian developments in the theory of income, consumption, investment and growth. The course also covers the theory of wages and productivity and the relation of technical progress to increases in productivity and real income. It deals with economic policy as well as economic theory, especially the application of monetary, fiscal, and other policies to problems of inflation, depression, unemployment, automation, and growth. Instructor: Sweezy.

Ec 127. Problems in Economic Theory (Seminar). Units by arrangement; first, second, third terms. Prerequisite: Ec 126 or its equivalent. Consideration of selected topics in economic theory. Instructors: Staff and guest lecturers.

Ec 128 abc. New Technology and Economic Change. 9 units (3-0-6); first, second, third terms. Prerequisite: Ec/SS 11 a. At the macroeconomic level this course will be concerned with changes in productivity, changes in foreign trade, and the impact of environmental issues
upon energy questions. At the microeconomic level it will be concerned with entrepreneurial behavior. A theory will be developed to relate macro and micro behavior. Instructor: Klein.

Ec 129 ab. Economic History of the United States. 9 units (3-0-6); second, third terms. Prerequisite: Ec/SS 11 a. An examination of certain analytical and quantitative tools available to the economic historian and their application to a study of the process of American economic development. Instructor: Davis.

Ec 130 ab. Political Foundations of Economic Policy. 9 units (3-0-6); first, second terms. Mathematical theories of individual and social choice are introduced as an approach to the classic problems of welfare economics and economic policy. The design and construction at an abstract level of political-economic processes consistent with stipulated ethical postulates will be studied together with the related impossibility theorems. Instructor: Plott.

Ec 135. Marxist Economics. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 a. A critical survey of the economic theory of capitalism as developed in the writings of Marx, Engels and Lenin, with emphasis upon Marx's theory of labor value, the theory of crises, and the theory of imperialism. Extensive reading of Marx, his modern supporters, e.g., Sweezy, Dobb, and Lange, and his critics is required. The Marxist theory is analyzed in terms of its place in the history of economic thought, and is contrasted with the more recent analytical approach to the study of a capitalistic price system. Instructors: Montgomery, Quirk.

Ec 150. Independent Study on Population Problems. Units to be arranged. Prerequisite: Ec 115 or its equivalent. This course is designed to encourage study on a broad range of problems covering the technological, economic, demographic, sociological, political, and biological aspects of population growth, movement, and density. Instructors: Sweezy, H. Brown, Bonner, Scudder, Munger. Graded pass/fail.

ELECTRICAL ENGINEERING

(See Engineering and Applied Science)

ENGINEERING AND APPLIED SCIENCE

AERONAUTICS

Advanced Courses

Ae/APh 101 abc. Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Definition, classification and properties of fluids. Thermodynamics of fluid flow; compressibility, real gas effects. Acoustic waves, shock waves, gravity waves. Euler equations. Vorticity. Subsonic and supersonic flow fields. Nonstationary flows. Stress-strain relations. Viscosity and heat conduction effects at low and high Reynolds numbers. Boundary layers. Turbulent shear flows. Additional topics will be selected from subjects such as: heat flow and diffusion in gases; dynamics of rarefied gases; plasma flow and magnetohydrodynamics; super fluid flow; rotating fluids. Instructor: Roshko.

Ae/AM 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 97 abc or equivalent. Static and dynamic analysis of structural elements with applications in a variety of fields. The three dimensional theory of elastic solids under load as well as the technical theory of beams, plates and shells will be treated. Variational theorems and approximate solutions, including finite elements, are discussed. Special topics such as introduction to plasticity, time dependent materials, large displacement problems, elastic stability, waves in solids and special solution techniques may be included in the third term. Instructor: Knauss.
Ae 103 abc. Aerodynamics. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95. Vector, tensor and matrix analysis and the behavior of systems described by linear ordinary and partial differential equations. Review of analytical dynamics and fluid mechanics. Idealized and real flows around wings and bodies and through internal flow systems. The performance, stability and control of aircraft, airships, submarines, surface ships and sailing craft. The course work will be supplemented by guest lectures given by practicing engineers, and by demonstrations in the GALCIT wind tunnels and water tunnels. Instructor: Clauser.

Ae 105 abc. Experimental Methods. 9 units (3-0-6 first term; 1-3-5 second and third terms). Prerequisite: Ae/APh 101 abc (may be taken concurrently). First term: Properties of materials and of mechanical, electrical and electronic devices; design and use of instruments, with emphasis on digital methods. Examples of instrumentation (hot wire, strain gages, etc.) with demonstrations. Large experimental facilities, including GALCIT Hypersonic and 10 ft. Wind Tunnels and Water Tunnels. Second, third terms: Laboratory in solid and fluid mechanics. Emphasis on broad coverage of instrumentation and subject areas, particularly areas not ordinarily treated in analytical course work. Low-speed aerodynamics, turbulence, steady and non-steady gasdynamics, vibrations, flutter, photoelasticity. Instructors: Staff.

Ae 107. Case Histories in Aerospace Engineering. 9 units (3-0-6); first, second, third terms. The characteristic features of current large engineering developments in aeronautics and space will be treated by examining a case history of a project which has recently completed the primary engineering cycle. The information will be developed through a series of interlinked seminars, primarily presented by persons discussing their part of the project. The series will start with the economic, political and technological environment in which the concept originated, proceed to project initiation, detailed engineering, manufacturing and operations. Finally, a summary of project successes and difficulties and suggestions for future work will be presented. Instructors: Stewart, Sechler.

Ae 150 abc. Aeronautical Seminar. 1 unit (1-0-0); first, second, third terms. Speakers from campus and outside research and manufacturing organizations discuss current problems and advances in aeronautics. Graded pass/fail only. Instructor: Sturtevant.

Ae/ChE 172 abc. Optimal Control Theory. 9 units (3-0-6); first, second, third terms. Linear feedback control systems; frequency and time domain analysis; stability, controllability, and observability; synthesis using Bode plots, Nyquist diagrams, and root loci. Optimization problems for dynamic systems with terminal and path constraints (calculus of variations); optimal feedback control (dynamic programming); terminal controllers and regulators; numerical methods for synthesizing optimal paths and optimal feedback controllers. Optimal control in the presence of noise; recursive filtering, smoothing, and interpolation for linear systems with additive Gaussian noise; singular optimization problems and differential games.

Ae 200. Research in Aeronautics. Units to be arranged. Theoretical and experimental investigations in the following fields: aerodynamics, compressibility, fluid and solid mechanics, supersonic and hypersonic flow, aeroelasticity, structures, thermoelasticity, fatigue, photoelasticity. Instructors: Staff.

Ae 201 abc. Advanced Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh 101 or Hy 101; AM 125 or AMa 101 (may be taken concurrently). Foundations of the mechanics of real fluids. Basic concepts will be emphasized. Subjects covered (not necessarily in the order listed) include: physical properties of real gases; the equations of motion of viscous and inviscid fluids; the dynamical significance of vorticity; exact solutions; motion at high Reynolds number emphasizing boundary layer concepts and their mathematical treatment; inviscid compressible flow theory; shock waves; similarity for subsonic, transonic, supersonic and hypersonic flows. In addition, topics will be selected from the follow-
ing subjects: low Reynolds number approximate solutions; hypersonic aerodynamics; acoustics; flow of mixtures with chemical changes and energy transfer; stability and turbulence; rotating and stratified fluids. Offered in odd-numbered years. Instructor: Marble.

Ae 202 abc. Advanced Solid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ae/AM 102 or equivalent. Introduction to the large deformation of elastic solids and specialization to linearly elastic solids. Solution methods in linear elasticity. Displacement potentials and stress functions. Application of integral transform and complex variable methods. Introduction to wave mechanics. Variational methods: potential, complementary energy, Reissner’s and Hamilton’s principles. Application to the derivation of plate and shell equations, discrete element methods and structural dynamics and stability. Instructors: Babcock and staff.

Ae 203 abc. Applied Aerodynamics and Flight Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/AM 102, Ae 103, AM 113. Atmospheric flight mechanics, controlled motion of airplanes and rockets, atmospheric perturbation effects, gyroscopic coupling effects. Orbital flight mechanics, launching trajectories, space trajectories, orbital perturbations. Multi-stage rocket performance. Re-entry mechanics and aerodynamic heating. Special topics in wing theory, linearized incompressible and supersonic lifting surface theory and non-stationary wing theories. Reverse flow theorems and minimum drag theorems for incompressible and supersonic flow. Not offered in 1975-76.

Ae 204 abc. Technical Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ae/APh 101, Hy 101 or equivalent. The aim is to acquaint students with a class of problems frequently encountered in engineering but for which complete theoretical methods do not exist. Typically these include flows with turbulence, separation, instability, etc. Topics will include turbulent shear flows, separated flows, effects of laminar to turbulent transition, three-dimensional and nonstationary effects, and will be used to discuss such engineering problems as mixing devices, diffusers, stall, buffeting, aerodynamics of non-aeronautical shapes such as building structures and vehicles. Offered in even-numbered years.

Ae 208 abc. Fluid Mechanics Seminar. 1 unit (1-0-0); first, second, third terms. A seminar course in fluid mechanics. Weekly lectures on current developments are presented by staff members, graduate students, and visiting scientists and engineers. Instructor: Liepmann.

Ae 209 abc. Seminar in Solid Mechanics. 1 unit (1-0-0); first, second, third terms. A seminar for staff and students of all divisions whose interests lie in the general field of solid mechanics. Reports on current research by staff and students on the campus are intermixed with seminars given by invited lecturers from companies and other research institutions. Instructors: Staff.

Note: The following courses, with numbers greater than Ae 210, are one-term courses offered each year to interested students. Depending on conditions, some of the courses may be taught as tutorials or reading courses, while others may be conducted more formally.

Ae 212. Shell Theory. 9 units (3-0-6); second term. Prerequisite: instructor’s permission. General mathematical formulation of the theory of thin elastic shells. Membrane and bending stresses in shells. Elastic stability. Surveys of recent advances in the non-linear theories of stressing and buckling of shells. Instructor: Babcock.

Ae 213. The Mechanics of Fracture. 9 units (3-0-6); first term. Prerequisite: Ae 202 or equivalent and instructor’s permission. An advanced course stressing the analysis of fracture in metallic and non-metallic solids, designed to give the student an appreciation of the approximations made in analytically modeling the physics of the fracture process. Several fracture criteria as based on energy balance, cohesion modulus and crack opening displacement are discussed in the light of their applicability to brittle, ductile and viscoelastic solids for quasi-static and fast running cracks. Instructor: Knauss.

Ae 221. Theory of Viscoelasticity. 9 units (3-0-6); second term. Prerequisites: Ae 202 or equivalent and instructor's permission. Material characterization and thermodynamic foundation of the stress-strain laws. Correspondence rule for viscoelastic and associated elastic solutions and integral formulation for quasi-static boundary value problems. Treatment of time-varying boundary conditions such as moving boundaries and moving loads. Stress waves. Approximate methods of viscoelastic stress analysis. Instructor: Knauss.

Ae 225. Special Topics in Solid Mechanics. 9 units (3-0-6); first, second, third terms. Subject matter will change from term to term depending upon staff and student interest but may include such topics as structural dynamics; aeroelasticity; thermal stress; mechanics of inelastic materials; and non-linear problems.

Ae 231. Wing Theory. 9 units (3-0-6); third term. Prerequisites: Ae/APh 101, AM 113 and instructor's permission. Application of potential flow theories to flows around airfoils and wings. Topics are selected from: two-dimensional airfoil theories, thin airfoil theory, numerical methods for thick airfoils, ground effects, cascade of airfoils, airfoil with cavitation, nonstationary flow, compressibility effects; three-dimensional wings, lifting-line theory, slender-wing theory, lifting-surface theories, ground effects, wind-tunnel wall effects; supersonic-wing theories, conical-flow theory. Eddyard's integral solution. Not offered in 1975-76.

Ae 233. Gasdynamic Lasers and Molecular Energy Transfer. 9 units (3-0-6); third term. Prerequisites: Ae 101, AM 125, APh 50 or equivalent, and instructor's permission. High-temperature flow through supersonic nozzles, with emphasis on the conditions required to produce population inversion in vibrational/rotational states. Behavior of collections of harmonic and anharmonic oscillators with variable temperature and pressure. Transfer of molecular energy among the vibrational, rotational, and translational degrees of freedom. Elementary chemical kinetics and chemically reacting flows through nozzles. Some problems of fluid mechanics arising in gasdynamic lasers. Instructor: Culick.

Ae 234. Hypersonic Aerodynamics. 9 units (3-0-6); third term. Prerequisites: Ae/APh 101, AM 125 and instructor's permission. An advanced course dealing with aerodynamic problems of flight at hypersonic speeds. Topics are selected from: hypersonic small-disturbance theory, blunt body theory, boundary layers and shock waves in real gases, heat and mass transfer, testing facilities and experiment. Text: Hypersonic Flow Theory, Hayes and Probstin. Instructor: Kubota.

Ae 237. Non-Steady Gasdynamics. 9 units (3-0-6); first term. Prerequisites: AelAPh 101, AMa 95 or AM 113, and instructor's permission. Review of shock waves in moving coordinate systems, in real and perfect gases. Simple expansion waves. Basic shock-tube equation. Reflected shock waves. Wave interactions and geometrical effects. Shock tube applications; non-ideal behavior in shock tubes, diaphragm opening effects, boundary layer effects. Shock-tube techniques and measurements. Illustrations of shock-tube applications; shock-wave structure, shock-wave interactions, experiments on chemical and physical properties of gases, reaction rates, aerodynamic experiments, light gas guns, etc. Instructor: Sturtevant.

Ae 239. Turbulent Shear Flows. 9 units (3-0-6); second term. Prerequisites: AelAPh 101, AM 113 and instructor's permission. Mean and fluctuating values. Equations of mean motion; Reynolds stresses; turbulent energy balance. Similarity arguments for turbulent shear flows; free shear layers, wakes, jets, boundary layers. Separated flows. Effects of density nonuniformity. Discussion of the experimental literature. Engineering methods. Instructors: Roshko, Coles.

Ae 240 abc. Special Topics in Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Subject matter will change from term to term depending upon staff and student interest.

Ae 250. Special Topics in Flight Mechanics. 9 units (3-0-6); first, second, third terms. Subject matter may change from term to term and from year to year depending upon staff. It is planned to invite senior personnel from universities, research laboratories, and industry to give courses in such subjects as design, control systems, and systems engineering for both aircraft and spacecraft systems.

APPLIED MATHEMATICS

(See page 261)

APPLIED MECHANICS

Undergraduate Course

AM 97 abc. Analytical Mechanics of Deformable Bodies. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 1 abc and Ma 2 abc. Basic principles of stress and strain, displacements and strains in a continuum, stress-strain relations, strain energy methods, and stress failures. Equations of the Theory of Elasticity, uniqueness, and St. Venant's principle. Applications to beams, elastic instability, axially symmetrical problems, stress concentrations, torsion, plates and shells, wave propagation and plastic and inelastic behavior, stresses and strains as tensors, numerical methods and experimental methods in stress analysis, variational methods. Instructor: Housner.

Advanced Courses

Ae/AM 102 abc. Mechanics of Structures and Solids. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 97 abc or equivalent. Static and dynamic analysis of structural elements with applications in a variety of fields. The three dimensional theory of elastic solids under load as well as the technical theory of beams, plates, and shells will be treated. Variational theorems and approximate solutions, including finite elements, are discussed. Special topics such as introduction to plasticity, time dependent materials, large displacement problems, elastic stability, waves in solids, and special solution techniques may be included in the third term. Instructor: Knauss.
AM 113 abc. Engineering Mathematics. 12 units (4-0-8); first, second, third terms. For graduate students only. Prerequisite: Ma 1 abc, Ma 2 abc, or equivalent. A course for graduate students who have not had the equivalent of AMa 95 abc. Emphasis is placed on the setting up of problems as well as their mathematical solution. The topics studied include: vector analysis; analytic functions of a complex variable and applications; ordinary differential equations, emphasizing power series solutions; special functions such as the Bessel and Legendre functions; partial differential equations and boundary-value problems, with emphasis on applications of series of orthogonal functions; and an introduction to transform methods. Instructors: Sternberg, Miklowitz.

AM 125 abc. Engineering Mathematical Principles. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc or AM 113 abc, or Ma 108, or equivalent. Non-linear first-order ordinary differential equations; ordinary linear differential equations of second order, Sturm-Liouville theorems, Green's functions, asymptotic expansion and method of steepest descent; integral transform theory; partial differential equations of first and second order; applications to vibrations, elasticity, acoustic and electromagnetic wave propagation, kinetic theory, and fluid mechanics problems. Instructor: Iwan.

AM 136 abc. Advanced Mathematical Elasticity Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 135 abc or equivalent. Special topics in the advanced linear theory and the nonlinear theory of elasticity; specific content may vary from year to year. Representative topics include: theory of Green's functions, mean value theorems, and St. Venant's principle in the linear theory; linear thermoelasticity; integral transform and complex-variable methods in classical elasticity. Shell theory and problems of boundary-layer type in elasticity; elastic instability. Introduction to the nonlinear theory and applications. Not offered in 1975-1976.

AM 151 abc. Dynamics and Vibrations. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc, or instructor's permission. The mechanics of particles, groups of particles and rigid bodies is studied within the framework of Hamilton's principle and Newton's laws of motion. Topics considered include: conservation principles, Lagrange's and Euler's equations, central force field problems, resonant vibration theory, response of systems to periodic and transient excitation, random vibration theory, general normal mode theory,

AM 155. Dynamic Measurements Laboratory. 9 units (1-6-2); first term. Experimental studies of the behavior of dynamic systems. Theory and practice of dynamic instrumentation. Dynamic tests of mechanical systems including steady state and transient excitation. Analog techniques applied to random load problems. Not offered in 1975-76.

AM 160. Vibrations Laboratory. 6 units (0-3-3); second term. Prerequisite: AM 151 abc or instructor’s permission. Experimental analysis of typical problems in structural dynamics and mechanical vibrations. Measurement of strains, accelerations, frequencies, etc., in vibrating systems, and the interpretation of the results of such measurements. Consideration is given to the design, calibration, and operation of the various types of instruments used for the experimental study of dynamics problems. Not offered in 1975-76.

AM 175 abc. Advanced Dynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: AM 125 abc and AM 151 abc or equivalents. A lecture course dealing with the theory of dynamical systems. Topics considered will include linear and nonlinear vibrations of discrete and continuous systems, stability and control of dynamical systems, and stochastic processes with applications to random vibrations. Not offered in 1975-76.

AM 200. Special Problems in Advanced Mechanics. Dynamics of solid and deformable bodies, fluids, and gases; mathematical and applied elasticity. By arrangement with members of the staff, properly qualified graduate students are directed in independent studies. Hours and units by arrangement.

AM 250 abc. Research in Applied Mechanics. Research in the field of applied mechanics. By arrangement with members of the staff, properly qualified graduate students are directed in research. Hours and units by arrangement.

APPLIED PHYSICS

(See page 264)

CHEMICAL ENGINEERING

(See page 277)

CIVIL ENGINEERING

Undergraduate Courses

CE 10 abc. Structural Analysis and Design. 9 units (3-0-6); first, second, third terms. Prerequisite: AM 97 abc. Study and design of selected structures, such as reinforced concrete building, arch bridge, gravity dam, water transportation project, etc. Each project in the course is given broad consideration that covers the initial conception of the project, cost-benefit factors, and optimum design. Each project concludes with the actual design of a structure or portion of a structure. Instructor: Housner.

CE 17. Civil Engineering. 9 units (3-0-6); third term. Prerequisite: senior standing. Selected comprehensive problems of civil engineering systems involving a wide variety of interrelated factors. Instructors: Staff.

Advanced Courses

CE 105. Introduction to Soil Mechanics. 9 units (2-3-4); first term. Prerequisite: AM 97. A general introduction to the physical and engineering properties of soil, including origin, classification and identification methods, permeability, seepage, consolidation, settlement, slope stability, lateral pressures and bearing capacity of footings. Standard laboratory soil tests will be performed. Text: Principles of Soil Mechanics, Scott. Instructor: Scott.
CE 115 ab. Soil Mechanics. 9 units (3-0-6); first term. 9 units (2-3-4); second term. Prerequisite: CE 105, or equivalent, may be taken concurrently. A detailed study of the engineering behavior of soil through the examination of its chemical, physical and mechanical properties. Classification and identification of soils, surface chemistry of clays, inter-particle reactions, and their effect on sediment deposition and soil structure. Constitutive relations for soils, including steady state and transient water flow. Linearization and computational techniques and examples of stress and displacement analyses. In the second term, attention is given to non-linear soil behavior, theories of yielding, plasticity, and problems of plastic stability. Study is devoted to the mechanics of soil masses under load, including stress distributions and failure modes of footings, walls, and slopes. Laboratory tests of the shear strength of soils will be performed. Text: Principles of Soil Mechanics, Scott. Instructor: Scott.

CE 121. Analysis and Design of Structural Systems. 9 units (0-9-0); third term. Prerequisite: AM 112 ab. The analysis and design of complete structural systems. In general, students will work on a single problem for the entire term. The problem may be primarily one of analysis or one of design. Instructors: Staff.

CE 124. Special Problems in Structures. 9 units (3-0-6); any term. Selected topics in structural mechanics and advanced strength of materials to meet the needs of first-year graduate students. Instructors: Housner, Jennings.

CE 130 abc. Civil Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in Civil Engineering are required to attend a graduate seminar in any division each week of each term. Graded pass/fail. Instructor: Jennings.

CE 150. Foundation Engineering. 9 units (3-0-6); third term. Prerequisite: CE 115 ab. Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, cofferdams, and methods of underpinning. Instructor: Scott.

CE 180. Experimental Methods in Earthquake Engineering. 9 units (1-5-3); third term. Prerequisite: AM 151 abc or equivalent. Laboratory work involving design, calibration, and performance of basic transducer and recorder types suitable for the measurement of strong earthquake ground motion, and of structural response to such motion, including a consideration of data-processing techniques. Study of principal methods of dynamic tests of structures including generation of test forces and measurement of structural response. Instructors: Hudson, Trifunac.

CE 181. Principles of Earthquake Engineering. 9 units (3-0-6); first term. Characteristics of potentially destructive earthquakes from the engineering point of view. Includes a consideration of: determination of location and size of earthquakes; earthquake magnitude and intensity; frequency of occurrence of earthquakes; seismic risk maps, and techniques of seismic regionalization; engineering implications of geological earthquake phenomena, including earthquake mechanisms, faulting, fault slippage and the effects of local geology on earthquake ground motion, characteristics of ground motions; seismic sea waves and their damaging effects; socio-economic aspects of earthquakes such as cost factors in earthquake-resistant design, disaster planning; and the implications of earthquake prediction. Instructors: Hudson, Trifunac.

CE 182. Structural Dynamics of Earthquake Engineering. 9 units (3-0-6); second term. Prerequisite: AM 151 ab. Response of structures to earthquake ground motion; influence of physical parameters on the response; spectrum techniques; influence of plastic deformations; earthquake excitation as random process; nature of building code requirements and their relation to actual behavior of structures; observed effects of earthquakes on structures; earthquake behavior of special structures such as nuclear reactor containment structures, long-span suspension bridges, and fluids in tanks and reservoirs; earthquake design criteria. Instructors: Housner, Trifunac.
CE 200. Advanced Work in Civil Engineering. 6 or more units as arranged; any term. Members of the staff will arrange special courses on advanced topics in civil engineering for properly qualified graduate students. The following numbers may be used to indicate a particular area of study.

CE 201. Advanced Work in Structural Engineering.

CE 300. Civil Engineering Research.

For courses in Environmental Engineering Science and Hydraulics see separate sections.

ELECTRICAL ENGINEERING

Undergraduate Courses

EE 4. Introduction to Digital Electronics. 6 units (2-0-4); second term. An introduction to the significant concepts and techniques of modern digital integrated electronic circuitry. The formulation of logical equations and their realization in hardware. Binary arithmetic and its implementation with logical functions. The course concludes with the design and construction of a simple digital computer. Graded pass/fail. Instructor: Mead.

EE 5. Introduction to Linear Electronics. 6 units (2-0-4); third term. An introduction to the significant concepts of modern linear electronic circuitry. A.C. circuit analysis; networks and their characterization in frequency and time domain. Amplifier gain, frequency response. Power, dynamic range and the design of power amplifiers. The course concludes with the design and construction of a typical Hi-Fi amplifier. Graded pass/fail. Instructor: Wilts.

EE 10. Digital Electronics Laboratory. 6 units (0-3-3); third term. Prerequisites: EE 4 and approval of project proposal. 6 units credit allowed toward freshman laboratory requirement. An introductory nonstructured project laboratory designed to provide an opportunity for projects related to the course EE 4. The student is expected to design, build, and test his own digital system. Graded pass/fail. Instructor: Mead.

EE 13 abc. Linear System Theory. 9 units (3-0-6); three terms. Prerequisites: Ma 1 abc and Ph 1 abc. Introduction to the analysis of linear systems in both the time and frequency domain. Topics presented include loop and node equations, two terminal pair networks, Fourier and Laplace transforms, convolution, autocorrelation, feedback systems, flow graphs, noise, and distributed linear systems. An introductory treatment of synthesis and filter theory is presented. The last term treats AM, FM, sampling theory and information theory. Computer solution of problems is presented as needed. Instructors: Staff.

EE 14 abc. Electronic Circuits. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 abc. A course covering the general area of active devices and their circuit applications. Transistor and vacuum tube amplifiers, biasing, gain, frequency response, class A, B and C power output circuits and their limitations. Nonlinear electronics, diodes, rectifiers, mixers, switching circuits, saturation, power converters, etc. Text: Electronics: BJT's, FET's, and Microcircuits, Angelo. Instructor: Martel.

EE 90 abc. Laboratory in Electronics. Units by arrangement in multiples of 4 units (0-3-1); first, second, third terms. An introductory laboratory normally taken in the sophomore and/or junior year. Experiments are available that are designed to acquaint the student with the characteristics of linear and passive electronic circuits and devices as well as the behavior of simple linear and nonlinear active elements. Individual projects may be performed, depending upon the student's interests and abilities, involving the investigation of particular circuits and circuit elements or involving electronic measurement techniques. No more than 6
units may be used in satisfying the laboratory requirement of the Division of Engineering and Applied Science. Text: 'Electronics: BJT's, FET's, and Microcircuits,' Angelo; or 'Basic Electronics for Scientists,' Brophy. Graded pass/fail. Instructors: Staff.

EE 91 abc. Experimental Projects in Electronic Circuits. Units by arrangement; 6 units minimum each term. Prerequisites: EE 14 abc and EE 90 or equivalent. Recommended: EE 114 abc or IS 110 (may be taken concurrently). Open to seniors; others only with consent of instructor. A general laboratory program designed to give the student an opportunity to do original projects in electronics and electronic circuits. Emphasis is placed upon the selection of significant projects, the formulations of the engineering approach, and the demonstration of a finished product as well as the use of modern electronic techniques. The use of integrated circuit elements, digital and analogue, is encouraged. Printed circuit board facilities are available. Text: Literature references. Instructor: Humphrey.

Advanced Courses

EE 110. Digital Electronics Laboratory. 6 units (0-6-0); third term. Prerequisite: EE 10 or EE 90 and IS 110c concurrent. A non-structured project laboratory designed to provide an opportunity for projects related to the course IS 110. Facilities are provided for the hardware implementation of digital projects designed in IS 110. Instructors: Ray, Humphrey.

EE 112 abc. Network Synthesis. 9 units (2-0-7); first, second, third terms. Prerequisite: AM 95 abc. Passive network analysis and synthesis, feedback amplifiers, closed loop transfer functions, active filters. Sample data systems, digital/linear delay functions, digital filters, and digital signal processing. Second and third terms seminar format, requires extensive student participation. Not offered in 1975-76.

EE 114 abc. Electronic Circuit Design. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 14 abc or equivalent. Applications of solid-state electronic devices in circuits and systems. Emphasis on methods of engineering analysis and design. Instructor: Middlebrook.

EE 116. Topics in Modern Electronics. 6 units (2-0-4); Prerequisite: Ma 2 abc and Ph 2 abc. Selected topics in various fields of electronics will be covered utilizing guest lecturers from industry. The specific topics and scope will be announced prior to registration. A seminar format will be utilized for this course. Graded pass/fail. Offered as announced. Instructors: Staff.

EE 151 abc. Electromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc; AMa 95 abc. A course in theoretical electricity and magnetism, primarily for electrical engineering students. Topics covered include electrostatics, magnetostatics, Maxwell’s equations, waveguides, cavity resonators, and antennas. EE 151 c will include topics on propagation in the ionosphere, propagation over the earth’s surface, and modern microwave tubes. Instructor: Langmuir.

EE 155 abc. Electromagnetic Fields. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 151 abc or Ph 106 bc. An advanced course in classical electromagnetic theory and its application to guided waves, cavity resonators, antennas, artificial dielectrics, propagation in ionized media, propagation in anisotropic media, magnetohydrodynamics, and to other selected topics of research importance. Text: Course notes. Instructor: Papas.

EE 160 abc. Topics in Communications. 6 units (2-0-4); first, second, third terms. Prerequisite: Ma 2 abc. Selected topics relevant to all forms of terrestrial, satellite and space communication, including data, voice, and video. The approach is the presentation and discussion of important concepts such as signal spectra, noise, sampling, information rate, modulation, antennas, etc., with examples drawn from various communication systems and problems. Instructor: Pierce.

AMa/EE 161 abc. Mathematical Theory of Information, Communication, and Coding. 9 units (3-0-6); three terms. Prerequisites: some knowledge of probability and linear algebra.
Shannon's noisy channel coding theorem and its converse for a variety of channel models: binary symmetric, finite memoryless, discrete-time Gaussian, wideband Gaussian. Minimum redundancy source coding. Theory and implementation of practical error-control systems, e.g., BCH codes (with underlying theory of finite fields) and Viterbi decoding of convolutional codes. Application to actual communication systems. Instructor: McEliece.

EE 163 abc. Introduction to Communication Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc. The principles of communication theory are developed by analyzing optimum operation of the components of a communication system. Topics in probability theory such as conditional probability, random variables, density functions, and expectation values are presented. Random and noise waveforms are analyzed in terms of random processes, correlation functions, and power spectra. Optimum receiver principles are developed with emphasis on channels disturbed by Gaussian noise. The concept of channel capacity is introduced and applied to determining efficiency in signaling. Implementation of certain coded systems and important channel modes are discussed. Methods of waveform communication through modulation are treated. Instructor: McEliece.

EE 191. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering will be arranged to meet the needs of students wishing to do advanced work. Primarily for undergraduates. Students should consult with their advisers before registering for this course. Graded pass/fail.

EE 194. Microwave Laboratory. 9 units (1-4-4); third term. Prerequisite: EE 151 abc or Ph 106 abc, may be taken concurrently. Selected laboratory experiments and related theory on microwave generation and amplification; measurements of impedance, frequency and power; properties of microwave cavities, waveguides, junctions, and irises. Open to undergraduates. Instructor: Gould.

EE 243 abc. Quantum Electronics Seminar. 6 units (3-0-3); first, second, third terms. Advanced treatment of topics in the field of quantum electronics. Each weekly seminar consists of one lecture of a series on the elements of radiation theory, partial coherence, dispersion, nonlinear optics, laser media, and spectroscopy, followed by a discussion of a current research paper. Text: Class notes and selected references. Instructor: Yariv.

EE 255 abc. Boundary-Value Problems of Electromagnetic Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: EE 155 abc or equivalent. This course presents the mathematical techniques (Fourier-Lamé method, integral equation methods, variational principles) that are available for the solution of boundary-value problems arising from the study of antennas, waveguides, and wave propagation. Text: Randwertprobleme Der Mikrowellenphysik, Borginis and Papas; also class notes. Instructor: Papas.

EE 281 abc. Integrated Circuit Design. 9 units (3-0-6); first, second, third terms. Prerequisite: Proficiency in semiconductor device physics, circuit design, and logic design. An advanced graduate course in the physics, design, production, and use of large-scale integrated circuits. Emphasis is placed on the realization of system functions in large-scale integrated circuits. Instructor: Mead.

EE 291. Advanced Work in Electrical Engineering. Units to be arranged. Special problems relating to electrical engineering will be arranged to meet the needs of students wishing to do advanced work. Primarily for graduate students. Students should consult with their advisers before registering for this course.

ENGINEERING

E 5. Laboratory Research Methods in Engineering and Applied Science. 6 units (1-3-2); second term. 6 units credit allowed toward freshman laboratory requirement. An introduction to experimental methods and problems typical of a variety of engineering fields. Staff mem-
Subjects of Instruction

bers representing various areas of interest within engineering and applied science will supervise experiments related to their specialty. The experiments will be selected from such fields as fluid mechanics, elasticity and plasticity, dynamics and vibration, heat transfer, gasdynamics, combustion, materials science, environmental health, solid-state electronics, biomedical engineering, information science, chemical engineering, etc. The student is given some choice in selecting experiments of particular interest to him. Instructors: Sturtevant and staff.

E 10 ab. Technical Presentations. 2 units (1-0-1); first, second terms. A course concerned with oral presentations of technical material. Instructors: Staff.

E 99. Laboratory on Automotive Emissions. 6 units (1-3-2); second term. The problems of automotive exhaust emissions will be examined from both a theoretical and practical viewpoint. Students will measure emissions, fuel consumption, and power of an experimental vehicle to prepare a performance map for the vehicle. Using this map, the students will develop a tuning specification for the vehicle to meet an emission standard while trying to minimize fuel consumption. Instructors: Culick and staff.

E 105 abc. Transportation Technology Seminar. 4 units (2-0-2) minimum, additional units by arrangement; first, second, third terms. This seminar is intended to point out problem areas in transportation technology by bringing members abreast of current technology. Transportation devices, subsystems, and systems will be studied and evaluated for their impact on how transportation tradeoffs can be made. A typical "device" topic would involve reducing automobile energy consumption by aerodynamic design. A typical "subsystem" topic would involve reducing algorithms for scheduling dial-a-ride buses. A typical "system" topic would involve dynamic modeling for predicting the growth of public transportation. Members of the seminar deliver most of the lectures and conduct most of the discussions, but occasional participation by outside speakers or "advisers" is envisioned. For additional units, students will be expected to produce a comprehensive study report on the subject of their lectures to the seminar. Graded pass/fail. Instructors: Pierce, Posner.

E 150 abc. Engineering Seminar. 1 unit (1-0-0); each term. All candidates for the M.S. degree in Applied Mechanics, Electrical Engineering, Materials Science, and Mechanical Engineering are required to attend any graduate seminar in any division each week of each term. Graded pass/fail. Instructors: Staff.

ENGINEERING GRAPHICS

Gr 1. Basic Graphics. 3 units (1-2-0); first term. This course deals with the fundamental aspects of projective geometry and graphical techniques used by the scientist and engineer as an aid in spatial visualization, communication and in creative design. Emphasis is placed on the effective use of freehand sketching in perspective, orthographic projection and other useful forms of representation. The student's ability to visualize three-dimensional forms and spatial relationships is logically developed through a series of freehand problems followed by basic descriptive geometry solutions analyzing some of the general relationships which exist among points, lines, and planes. Accuracy, neatness, and clarity of presentation are encouraged throughout the course. Instructor: Welch.

Gr 7. Advanced Graphics. Maximum of 6 units; second and third terms. Prerequisite: Gr 1. Further study in the field of graphics as applied to engineering problem analysis and in design. Instructor: Welch.
ENGINEERING SCIENCE

Advanced Courses

ES 131 abc. Thermodynamics and Statistical Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 95 abc or equivalent. Thermodynamics; kinetic theory; classical statistical mechanics; quantum statistical mechanics; diffusion theory and transport theory. Not offered in 1975-76. Instructors: Plesset, Wu.

ES 200 abc. Topics in Bioengineering. 9 units (3-0-6); first, second, third terms. In 1975-76 this course will spend the first two terms on the foundation of low-Reynolds-number fluid physics, including the motion of a rigid or flexible body with or without electric charges, flows of suspensions, and transfer processes. The third term will be devoted to various applications to rheology, blood flow in living systems, chemical flow problems, motility of micro-organisms, and bioconvection. Instructors: Leal, Plesset, Wayland, Wu.

ES 250 abc. Research in Engineering Science. By arrangement with members of the staff, properly qualified graduate students are directed in research in Engineering Science. Hours and units by arrangement.

ENVIRONMENTAL ENGINEERING SCIENCE

Undergraduate Courses

Env 1. Engineering Problems of Man's Environment. 9 units (3-0-6); third term. Prerequisites: Ph 1 ab, Ch 1 ab, and Ma 1 ab. This course explores ways in which man is adversely changing his environment, ways in which these alterations are affecting him and other forms of life, and methods of engineering control. Typical problem areas are: air pollution, water pollution, solid and industrial wastes, harmful substances, impact of energy utilization, and land erosion. Instructors: List, Friedlander, Scudder, McKee, Brooks, Morgan, et al.

Env 20. Energy and the Environment. 9 units (3-0-6); first term. This course explores the flow of energy and examines the limitations of non-renewable resources such as fossil fuels. Present and possible future sources of energy are considered, with emphasis on the environmental aspects of extraction, transportation, and utilization. The effects of various energy alternatives on water resources are also examined. Instructor: Lees.

Env 90. Undergraduate Research in Environmental Engineering Science. Units by arrangement; any term. Approval of research supervisor required prior to registration. Independent research on current environmental problems; laboratory or field work is encouraged. A written report is required for each term of registration. Seniors may elect to prepare a thesis with approval of the Environmental Engineering Science faculty at the beginning of the senior year; in this case, registration should be for at least three consecutive terms. Graded pass/fail. Instructors: Staff.

Advanced Courses

Env 100. Special Topics in Environmental Engineering Science. 6 or more units as arranged. Prerequisite: instructor’s permission. Special courses of reading, problems, or research for graduate students working for the M.S. degree or qualified undergraduates. Graded pass/fail. Instructors: Staff.

Env/Ge 103 ab. Introduction to Processes of the Atmosphere and Hydrosphere. 9 units (3-0-6); second, third terms. Natural physical and chemical processes of the earth’s atmosphere and hydrosphere. Emphasis will be on developing an order of magnitude understanding of the atmosphere and oceans through analysis of observations and physical
reasoning. The emphasis in the second term will be on the hydrosphere, including such
topics as: chemical composition of the oceans, tides, waves and currents, precipitation,
runoff, floods, sediment transport, geochemical cycles. The emphasis in the third term will
be on the atmosphere, including such topics as: the global balance of energy, momentum
and mass, vertical atmospheric structure, radiative and convective heat exchange, circula-
tion systems, weather prediction, climatic change. More advanced, theoretical material is
covered in Env 214 abc. Instructor: Ingersoll.

Env 112 abc. Hydrologic Transport Processes. 9 units (3-1-5); first term; 9 units (3-0-6); second,
third terms. Prerequisites: AMa 95 abc or AM 113 abc (may be taken concurrently); ME 19 abc; and
some knowledge of elements of hydrology (may be satisfied by special reading assignments). A basic
study of the physical processes in freshwater bodies and the coastal waters. The hydrologic
cycle and its relation to man; statistical analysis and simulation of hydrologic data; dynamic
similitude in fluid mechanics; turbulent shear flow in rivers and estuaries; introduction to
stratified flow, turbulent plumes and buoyant jets; experimental techniques; hydraulic
models. Transport and dispersion of solutes, sediments and heat in rivers, lakes, estuaries
and coastal waters; heat transfer, evaporation and density stratification in natural waters.
Engineering of outfalls for safe disposal of wastewater and thermal discharges. Flow
through porous media, wells, ground-water recharge, and seawater intrusion in aquifers.
Introduction to river morphology and sediment transport. Instructor: Brooks.

Env 116. Experimental Methods in Air Pollution. 9 units (1-4-4); third term. Open to graduate
students and seniors with instructor's permission. This course covers the methods of sampling
and measurement of particulate and gaseous pollutants with applications to gas cleaning
equipment and smog formation. Experiments will include the use of on-line systems for
measuring complete aerosol size spectra, and simultaneous gas-phase chemical composi-
tion and aerosol measurements in photochemical smog. The application of data acquisition
and processing systems in air pollution will be treated in detail. Emphasis will be placed on
understanding the physical and chemical principles on which the measurements are
based. Instructors: Friedlander and staff.

Env 142 ab. Chemistry of Natural Water Systems. 9 units (3-0-6); first, second terms. Prerequi-
sites: Ch 1 abc, Ch 14, or equivalents. Equilibrium chemistry of electrolyte solutions,
thermodynamic processes, and redox reactions applied to a quantitative description of
natural waters, both fresh and marine, and water treatment processes. Topics include:
acid-base systems of natural waters; heterogeneous systems; metal-ion solubility controls;
metal-ion complexes in natural waters; roles of pH and pE (redox potential) as master
variables in natural water systems; chemical characteristics of lakes, streams, and seawater;
comparison of real systems with stoichiometric, equilibrium, and steady-state models;
properties of colloids in natural water systems; chemical aspects of coagulation-flocculation
processes; adsorption phenomena; computer simulation of natural water systems. Instructor: Morgan.

Env 143. Water Chemistry Laboratory. 9 units (1-4-4); third term. Prerequisite: Env 142 ab,
instructor's permission. Laboratory experiments and measurements of environmental sam-
ple dealing with the major and minor constituents of natural and polluted waters. Topics
include heterogeneous equilibrium systems, rates of precipitation, and redox processes,
adsorption, ion exchange, and particle coagulation. Measurement techniques to be treated
include electrometric methods, visible and UV spectrometry, chromatography, light scatter-
ing, and atomic absorption spectrophotometry. Instructor: Morgan.

Env 144. Ecology. 6 units (2-1-3); second term. Basic principles of ecology and ways in which
human activities can influence natural populations, including the marine environment as
affected by ocean waste disposal. Topics discussed include community structure, dynamics
of populations, geochemical cycles, limiting factors, and microbial ecology. (May be taught
in conjunction with parts of Env 145 a.) Instructor: North.
Env 145 ab. Environmental Biology. 10 units (2-4-4), second term; 9 units (3-0-6), third term. An exposition of basic biological principles concerning interrelations between organisms, particularly those directly affecting man and his environment. Emphasis is placed on the influences of micro-organisms as illustrative of the ways populations react on each other and condition the physical and chemical environment. Unique features of the terrestrial, freshwater, and marine environments are discussed and extensive reading is required, covering a broad scope of biological literature. Instructor: North.

Env 146 abc. Analysis and Design of Water and Wastewater Systems. 9 units (3-0-6); each term. Prerequisites: ME 17 abc, ME 19 abc, or equivalents. A series of selected problems in the application of basic science and engineering science to water supply and treatment for municipal, industrial, and irrigation use; removal, treatment, and disposal of liquid wastes; the theory of unit operations as applied to environmental systems; the designs of works; water rights; and economic aspects of projects. Instructor: McKee.

Env 150 abc. Seminar in Environmental Engineering Science. 1 unit (1-0-0); each term. Seminar on current developments and research within the field of environmental engineering science, with special consideration to work at the Institute. Graded pass/fail.

Env 155. Special Problems in Waste Management. 9 units (2-3-4); first term. Prerequisite: instructor's permission. Investigation of environmental pollution related to nuclear energy; the siting of steam-electric power plants; solid wastes from municipalities, industries, and agriculture; transportation and storage of hazardous materials, and similar special situations, including detailed case studies of specific problems. Field trips to illustrative examples in southern California. Instructor: McKee.

Env 156. Industrial Wastes. 9 units (3-0-6); third term. Prerequisite: Env 146 abc. A study of the industrial processes resulting in the production of liquid wastes; the characteristics of such wastes and their effects upon municipal sewage treatment plants, receiving streams, and ground waters; and the theory and methods of treating, eliminating, or reducing the wastes. Offered only in even-numbered years. Instructor: McKee.

ChE/Env 157. Fundamentals of Air Pollution Engineering. 9 units (3-0-6); third term. Open to graduate students and seniors with instructor's permission. Basic concepts necessary to understanding the origins, atmospheric behavior, and control of air pollutants. Sources, quantities, and nature of pollutants; aerosol physics, chemistry of pollutant gases; gas sampling; design of control technology; absorbers, filters, inertial separators, electrical precipitators; urban basin modeling and control, air environment monitoring systems. Instructors: Friedlander, Seinfeld.

Env 160. Biological Fluid Flows: Hemorheology. 6 units (2-0-4). Prerequisites: AMa 95 abc, Hy 101 abc or equivalent. The problems of measurement of bulk rheological properties of blood; the influence of the composition of the suspending medium on blood flow properties; the influence of the particulate nature of blood on its flow in narrow tubes and small blood vessels; the influence of cell deformation on flow through capillaries. See Env 206. Instructor: Wayland.

Env 170 ab. Principles of Particulate Pollution. 9 units (3-0-6); first, second terms. Prerequisites: ME 19 ab or Ch 21 abc, or equivalents. Studies of the behavior of particles in fluids with applications to gas cleaning, air chemistry, cloud physics, and water treatment. The first term is concerned primarily with the characterization and formation of particulate systems, Brownian diffusion, coagulation, and the dynamics of particulates in stack plumes. The second term deals with convective diffusion, turbulent deposition, impaction, filtration, methods of measurement and light scattering. Emphasis is on the application of fundamental principles to the understanding and control of pollution. Instructor: Friedlander.

Env 200. Advanced Topics in Environmental Engineering Science. Units by arrangement, any term. Courses to explore new approaches to environmental problems. The topics covered vary from year to year, depending on the interests of the students and staff. Visiting
professors may present portions of the course from time to time.

Env 206. Special Problems in Biological Engineering Science. Units by arrangement, any term. Prerequisite: AMa 95 abc. Special topics in the application of engineering principles to biological and medical problems can be explored on mutual agreement between advanced students and one or more of the participating faculty. Instructors: Friedlander, Leal, Wayland, Wu.

Env 214 abc. Advanced Environmental Fluid Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Hy 101 or Ae/APh 101, AMa 101 or AM 125. The first term will emphasize large-scale processes in the oceans and atmosphere for which the Coriolis force plays a dominant role. Theoretical concepts will be utilized throughout; more descriptive material is covered in Env/Ge 103 ab. The second and third terms will emphasize small- and intermediate-scale processes such as: the air-water interface, wind generation of waves, blocking, stratified withdrawal, jets and plumes, stratified flows in porous media, turbulent diffusion, mixing in the oceans and atmosphere, dispersion in rivers and estuaries, with applications to engineering problems of pollution control in air and water environments. Offered in 1975-76 and alternate years. Instructors: Ingersoll (first term); List (second, third terms).

Env 250. Advanced Environmental Seminar. 4 units (2-0-2); every term. Prerequisite: instructor's permission. A seminar course for advanced graduate students and staff to discuss current research and technical literature on environmental problems. As the subject matter changes from term to term, it may be taken any number of times. Instructors: Staff.

Env 300. Thesis Research.

Other closely related courses (listed elsewhere) are:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChE 103 abc</td>
<td>Transport Phenomena</td>
</tr>
<tr>
<td>ChE 172 abc</td>
<td>Optimal Control Theory</td>
</tr>
<tr>
<td>ChE 173 ab</td>
<td>Advanced Transport Phenomena</td>
</tr>
<tr>
<td>ChE 203 ab</td>
<td>Interfacial Phenomena</td>
</tr>
<tr>
<td>Hy 101 abc</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>Hy 111</td>
<td>Fluid Mechanics Laboratory</td>
</tr>
<tr>
<td>Hy 113 ab</td>
<td>Coastal Engineering</td>
</tr>
<tr>
<td>Hy 121</td>
<td>Advanced Hydraulics Laboratory</td>
</tr>
<tr>
<td>Hy 210 ab</td>
<td>Hydrodynamics of Sediment Transport</td>
</tr>
<tr>
<td>Hy 211</td>
<td>Advanced Hydraulics Seminar</td>
</tr>
<tr>
<td>Hy 213</td>
<td>Advanced Coastal Engineering</td>
</tr>
</tbody>
</table>

Graduate students may also enroll in graduate courses offered by Scripps Institution of Oceanography under an exchange program (see page 207). Graduate students majoring in environmental engineering science should consult Professor Brooks, academic officer, for more information.

HYDRAULICS

Advanced Courses

Hy 100. Hydraulics Problems. Units to be based upon work done, any term. Special problems or courses arranged to meet the needs of first-year graduate students or qualified undergraduate students. Graded pass/fail.

Hy 101 abc. Fluid Mechanics. 9 units; first, second, third terms. Prerequisites: ME 19 abc and Hy 111 or equivalent. General equations of fluid motion: two- and three-dimensional steady and
non-steady potential motion; cavity and wake flow; surface waves, linear and nonlinear shallow-water waves, flow in stratified fluids, stability; acoustic fields, sound radiation and scattering, acoustic energy transport; one-dimensional steady gasdynamics, expansion fans, shock waves; two- and three-dimensional flow fields; laminar flow, Stokes and Oseen problems, laminar boundary layer; laminar instability, turbulence shear flow; introduction to problems in heterogeneous flow, chemically reacting flow, sediment transport, flow through porous media. Instructor: Rannie or Marble.

Hy 103 ab. Advanced Hydraulics and Hydraulic Structures. 9 units (3-0-6); first, second terms. Prerequisites: ME 19 abc and Hy 111 or equivalent. Steady and unsteady flow in open channels; high-velocity flow in open channels; theory and design of some hydraulic structures such as chutes, energy dissipators, manifolds and canals; unsteady flow in closed systems, e.g., surge and waterhammer. Not offered every year. Instructor: Raichlen.

Hy 105. Analysis and Design of Hydraulic Projects. 6 or more units as arranged; any term. The detailed analysis or design of a complex hydraulic structure or water resources project emphasizing interrelationships of various components, with applications of fluid mechanics and/or hydrology. Students generally work on a single problem for the entire term, with frequent consultations with the instructor. Instructors: Staff.

Hy 111. Fluid Mechanics Laboratory. 6-9 units as arranged with instructor; second or third term. Prerequisite: ME 19 ab. A laboratory course illustrating the basic mechanics of incompressible fluid flow, and complementing the lecture course ME 19 abc. Students will usually select approximately three regular experiments, but with the permission of the instructor they may propose special investigations of brief research projects of their own in place of some of the regular experiments. Objectives also include giving students experience in making engineering reports. Although the course is primarily for seniors, it is also open to first-year graduate students who have not had an equivalent course. Instructor: Raichlen.

Hy 113 ab. Coastal Engineering. 9 units (3-0-6); first, second terms. Prerequisites: ME 19 abc and Hy 111 or equivalent; AMa 95 abc. Engineering applications of the theory of small and finite amplitude water waves; diffraction, reflection, refraction; wind-generated waves and wave prediction procedures; tides and their interaction with the coastline; effect of waves on coastal structures such as breakwaters and pile-supported structures; coastal processes. Instructor: Raichlen.

Hy 121. Advanced Hydraulics Laboratory. 6 or more units as arranged; any term. Prerequisite: instructor's permission. A laboratory course primarily for first-year graduate students dealing with flow in open channels, sedimentation, waves, hydraulic structures, hydraulic machinery, or other phases of hydraulics of special interest. Students may perform one comprehensive experiment or several shorter ones, depending on their needs and interests. Instructor: Raichlen.

Hy 200. Advanced Work in Hydrodynamics or Hydraulic Engineering. Units to be based upon work done; any term. Special course to meet the needs of advanced graduate students.

Hy 201 abc. Turbomachines. 6 units (2-0-4); first, second, third terms. Prerequisite: Hy 101 or instructor's permission. A study of the theory and operation of hydraulic fluid machines, principally pumps, and turbines. Recent two- and three-dimensional inviscid flow design theories will be studied. Special consideration will be given to the effects of cavitation in methods of design and behavior of large systems. Not offered every year. Instructor: Acosta or Rannie.

Hy 203. Cavitation Phenomena. 6 units (2-0-4); third term. Prerequisite: Graduate standing. A study of the occurrence and effects of cavitation on the flow past bodies, lifting surfaces, and through machines; material damage and acoustic noise caused by cavitation will also be covered. Not offered every year. Instructor: Acosta.

Hy 210 ab. Hydrodynamics of Sediment Transportation. 9 units (3-0-6); second, third terms. Prerequisites: Am 95 abc, Env 112 abc, and Hy 101 abc. A study of the mechanics of the entrainment, transportation, and deposition of solid particles by turbulent fluids. This will include discussion and interpretation of results of laboratory and field studies of alluvial streams, and wind erosion. Not offered every year. Instructor: Brooks.

Hy 211. Advanced Hydraulics Seminar. 4 units (2-0-2); every term. A seminar course for advanced graduate students to discuss and review the recent technical literature in hydraulics and fluid mechanics. Emphasis will be on topics related to civil and environmental engineering which are not already available in courses offered by the Division of Engineering and Applied Science. The subject matter will be variable depending upon the needs and interests of the students. It may be taken any number of times with permission of the instructor. Instructors: Staff.

Hy 213. Advanced Coastal Engineering. 9 units (3-0-6); third term. Prerequisites: Hy 101 abc and Hy 113 ab. Selected topics in coastal engineering such as: harbor resonance, mooring and berthing of ships, structural forces due to waves, tsunamis and other impulsive wave systems. Instructor: Raichlen.

Hy 300. Thesis Research.

INFORMATION/COMPUTER SCIENCE*

Undergraduate Courses

IS 10 a. Introduction to the Use of Computers. 6 units (1-2-3); one-term course offered second and third terms. Freshmen only or instructor's permission. The purpose of this course is to introduce to the students the use of computers for solving mathematical problems arising in engineering and science. By solving a variety of sample problems, the student will learn basic techniques of computational mathematics. Algebraic computer languages will be employed in batch processing and in conversational time-sharing. Graded pass/fail. Instructor: McCann.

IS 80 abc. Undergraduate Research in Information Science. Units in accordance with work accomplished. Consent of both research adviser and course supervisor required before registering. This course is intended to provide supervised research in information science by undergraduates. The topic of research must be approved by the supervisor and a formal final report must be presented at the completion of the research. Graded pass/fail. Instructors: Information science staff; Course Supervisor: McCann.

Advanced Courses

IS 110 abc. Principles of Digital Information Processing. 9 units (3-3-3); first, second, third terms. This course presents the principles and concepts of information processing systems

*For linguistics see page 331.
with emphasis on the design of stored program, synchronous computers. This includes Boolean Algebra, switching theory, arithmetic algorithms and their application to logical design. The organization of digital processors at the hardware level is covered together with a comprehensive review of modern digital technology. The laboratory includes exposure to modern computers at the hardware level, the development of a complete system design, and the opportunity to design and build digital devices. Instructor: Ray.

Bi/IS 121 abc. Biosystems Analysis. 6 units (2-0-4); three terms. Prerequisite: Bi 151 or instructor's permission. This course presents a systematic consideration and application of the methods of systems analysis, information theory and computer logic to problems in neurobiology. The subjects to be considered include the mechanical properties of striated muscle, the analysis of neuronal integrative mechanisms and reflex behavior in terms of logical net theory. The course will seek to describe some aspects of human cortical activity in terms of information theory and conceptual modeling. The course will be conducted as a research seminar and the detailed subject matter will change from year to year. Instructor: Fender.

IS 130 abc. Language Systems. 9 units (3-0-6). Prerequisite: IS 137 or equivalent. Issues involved in designing and using programming languages are considered in detail. Current languages (FORTRAN, ALGOL, LISP, PL/I, SIMULA, etc.) together with languages now being developed (ALGOL68, PPL, EII, PLANNER, etc.) are used to illustrate such issues. Selected topics in the theory of programming languages, such as formal models of syntax and semantics, program verification and automatic program synthesis will be examined. Not offered in 1975-76.

IS 137. Systematic Computer Programming. 12 units (3-3-6); first term. An informal introduction to computer programming in a well-structured, efficient programming language. The main goal is to enable the student to write small programs with a clearly defined purpose and structure and to test and document them systematically. The influence of computer properties on program efficiency is discussed and an overview of a simple compiler is given. Instructor: Brinch-Hansen.

IS 138. Data Structures and Algorithms. 12 units (3-3-6); second term. Prerequisite: IS 137 or equivalent. An introduction to the abstract properties and implementation techniques of computer programming languages. The main topic is the axioms and representation of data structures and algorithms. Exercises in language implementation are solved by small student teams. Instructor: Brinch-Hansen.

IS 139. Multiprogramming and Resource Sharing. 12 units (3-3-6); third term. Prerequisites: IS 137, IS 138 or equivalent. An introduction to the common principles of computer operating systems. The main topics are the abstract properties of concurrent processes and their implementation in terms of processor and store management, scheduling algorithms and resource protection techniques. The students will solve exercises in multiprogramming and study selected advanced topics. Instructor: Brinch-Hansen.

IS 140 ab. Programming Laboratory. 12 units (3-9-0); second, third terms. Prerequisites: IS 137, IS 138 or equivalent. The aim of this course is to allow students to gain experience in the design, documentation, implementation and testing of medium-size programming projects. Projects will be carried out by teams of two to four students. They will be realistic problems in the sense that they are loosely defined by the instructor. The students are expected to refine the problem definition, to define the internal structure of the program, to select an appropriate implementation language and to build the system. Each team is expected to distribute a written description of its work weekly. Classes will be dedicated to the critical evaluation of such reports by the instructor and the students.

IS 141. Formal Models of Computation. 9 units (3-0-6); first term. The aim of this course is to make students familiar with the main theoretical results of computer science, to point out to which extent these results are relevant to computer applications, and to facilitate further study of the literature. Models of effective computations: Turing machines, combinatorial
systems, lambda calculi, recursive functions, decidable and undecidable problems. Formal languages: their specification by phrase structure grammars, their generation and recognition by automata. Instructor: Thompson.

IS/SS 142 abc. Computer Modeling and Data Analysis. 9 units (3-3-3). The building of conceptual models as an expression of the patterns perceived in the analysis of data. Analysis of data through model fitting and the study of residuals. Mathematical, statistical, and simulation models will be studied. Real-life data bases from a variety of subject areas will be analyzed. The computer will be used extensively. Instructor: Thompson.

IS 150. Selected Topics in Artificial Intelligence. 9 units (3-0-6); first term. An introductory course focusing on major research areas of artificial intelligence showing its typical problems, concepts, methods, and programming languages. Topics will be chosen from the areas of problem solving, scene analysis, natural-language processing, and robotics. The aim is to show the interplay between the experimental programming approach to the study of intelligent processes, and its theoretical implications and practical applications. Not offered in 1975-76.

IS 203 ab. Identification and Estimation Procedures for Dynamic Systems. 9 units (3-3-3); second, third terms. Prerequisite: prior approval of instructor. Through new techniques employing the interactive computer concept, effective methods of modeling by estimation and identification theory have now become practical for a variety of systems that cannot be analyzed by traditional methods. Both time-domain and frequency-domain approaches are covered. Topics to be treated include: time series, response of systems to random inputs, correlation functions, spectral analysis, autoregressive processes (Markov), time-domain and frequency-domain identification of linear systems, least-square estimation, likelihood functions, Bayesian estimation, Wiener-Hopf equation, coherence functions, parameter estimation for nonlinear systems, effect of experimental variables such as noise, record length, etc. on the estimates. Examples will be taken from diverse fields, such as engineering, biological systems and economic models. This course will be presented in a newly developed computer interactive classroom and laboratory environment. Instructors: Marmarelis and McCann.

IS 220. Theories of Visual Nervous Systems. 9 units (3-0-6); third term. Prerequisites: Bils 121 abc and IS 203 ab. Strategies for the correlation of experimental techniques for studying nervous systems with computer-instrumented methods of examining experimental results by data analysis and modeling. Comparisons will be made between models based upon formal mathematics and new computer-instrumented strategies that provide more complete and detailed correlations with experimental results. Instructor: McCann.

IS 240 ab. Digital Processing. 9 units (2-2-5); first, second terms. The course presents an introduction to the techniques and uses of digital image processing, and the hardware required for sampling, digitizing, processing, and reconstructing images. Techniques for contrast manipulation, geometric manipulation and algebraic manipulation are covered along with 2-dimensional transformations and filtering. Algorithm development is included for the location, measurement and classification of "objects" in images and for binary image analysis. Processing techniques are presented for 3-dimensional images, multispectral analysis and texture analysis. The course describes the mathematical development of processing techniques, the implementation of these techniques as computer algorithms, and the application of these algorithms to imaging problems. Instructor: Castleman.

IS 250 abc. Mathematical Linguistics. 9 units (3-0-6); three terms. Prerequisite: Ma 116 abc. This course presents a systematic development of the syntactic and semantic properties of languages. This includes the natural languages as well as the formal languages of symbolic logic and information processing. The philosophical aspects of languages will be stressed together with the formalization of language structures suitable for computer simulation. Taught in alternate years. Not offered in 1975-76. Instructor: Thompson.
IS 280. Research in Information Science. Units in accordance with work accomplished. Approval of student's research adviser and his department adviser must be obtained before registering.

IS 282. Reading in Computer Science. 6 units or more by arrangement; first, second, third terms. Prerequisites: IS 137, IS 138 or equivalent. A seminar in which a small group of students and the instructor discuss and summarize the literature of a potential research area of computer science. Only qualified students will be admitted after consultation with the instructor. A written report will usually be required. Instructor: Brinch-Hansen.

The following courses cover related basic mathematics and applied mathematics:

A Ma 104. Matrix Theory. See Applied Mathematics Section.

A Ma 105 ab. Introduction to Numerical Analysis. See Applied Mathematics Section.

Ma 116 abc. Mathematical Logic and Axiomatic Set Theory. See Mathematics Section.

Ma 121 abc. Combinatorial Analysis. See Mathematics Section.

Ma 125 abc. Analysis of Algorithms. See Mathematics Section.

Ma 205 abc. Advanced Numerical Analysis. See Mathematics Section.

Ma 216 abc. Advanced Mathematical Logic. See Mathematics Section.

JET PROPULSION

Advanced Courses

JP 121 abc. Jet Propulsion Systems and Trajectories. 9 units (3-0-6); each term. Open to all graduate students and to seniors with permission of the instructor. Modern aspects of rocket, turbine, electrical, and nuclear propulsion systems and the principles of their application to lifting, ballistic, and space flight trajectories. Combustion thermodynamics, equilibrium and nonequilibrium nozzle flow, propellant evaluation. Combustion and burning characteristics of solid and liquid propellants, liquid propellant fuel systems, combustion instability. Subsonic and supersonic compressors and turbines, basic gas turbine propulsion cycle and its variations, inlets and diffusers. Ion and colloidal engines, plasma thrusters, crossed field and wave MHD propulsion systems. Nuclear rockets, nuclear air breathing cycles, radio-isotope propulsion. Instructors: Marble, Zukoski.

JP 170. Jet Propulsion Laboratory. 9 units (0-9-0); third term. Laboratory experiments related to propulsion problems. Instructor: Zukoski.

JP 201. Physical Mechanics. 9 units (3-0-6); any term. Prerequisite: ME 17 abc or equivalent. Introduction to quantum mechanical and statistical mechanical methods for calculating thermodynamic properties, in particular properties of materials at high temperatures; transport theory.

JP 213 abc. Gas Dynamics and Combustion in Propulsion Systems. 6 units (2-0-4); each term. Prerequisites: JP 120 abc, JP 121 abc, AelAPh 101 abc or Hy 101 abc, or equivalent. Topics from theory of real gases; gas dynamics of reacting mixtures; theory of combustion of solid, liquid, and gaseous fuels. Inlet diffusers for supersonic and hypersonic air-breathing engines; effects of real gases, rarefied gas and low Reynolds number flow; diffuser stability. Review of laminar and turbulent flame theory; combustion of solid and liquid propellants; combustion in boundary layers, wakes, and mixing regions; flame stability. Nozzle for rockets and air-breathing engines; one-dimensional and axially symmetric nozzle flow with chemical reactions, characteristic theory, integral methods, two-phase flow. Instructor: Marble.
Subjects of Instruction

JP 250 abc. Turbomachines. 6 units (2-0-4); first, second, third terms. A study of aerodynamic turbomachines including fans, compressors, turbines, propellers, windmills. Radial and axial cascade theory, axisymmetric flow and linearized perturbations of strong vorticity fields, transonic and supersonic blading; effect of distorted inlet flow and propagating stall; secondary flows and blade tip clearance flows. Not offered every year. Instructors: Rannie, Acosta.

JP 270. Special Topics in Propulsion. 6 units (2-0-4); each term. The topics covered will vary from year to year. Instructors: Staff.

JP 290 abc. Advanced Seminar in Jet Propulsion. 1 unit (1-0-0); each term. Seminar on current research problems in propulsion and related fields. Instructors: Staff.

MATERIALS SCIENCE

Undergraduate Courses

APhlMS 4. Introduction to Materials Science. 6 units (2-0-4); third term. Selected engineering systems, such as jet engines, superconducting transmission lines and nuclear reactors, are discussed in terms of the critical role played by materials in their construction and performance. Those material properties of greatest significance are explored to show how they are governed by the structure and basic physics and chemistry of the material. Graded pass/fail. Instructor: Wood.

MS 5 abc. Structure and Properties of Solids. 9 units (3-0-6); first, second, third terms. Prerequisites: Ch 1 abc, Ph 2 abc, AM 97 a. The purpose of this course is to acquaint the student with the principles underlying the properties of solid materials. The electronic structure of atoms, the types of bonds between atoms in molecules and crystals, crystal structure and its determination by X-ray diffraction, and the band theory of crystalline solids are discussed. Topics in the physical properties of solids include: electrical and thermal conductivity; the dielectric properties of insulators; diamagnetism, paramagnetism, ferromagnetism, and antiferromagnetism; specific heat; thermoelectric effects. An introduction to statistical thermodynamics is given. Rate processes such as diffusion and phase transformations in solids are discussed briefly. Elastic and plastic deformation of crystals, the concept of dislocations, properties, and interactions of dislocations are studied and applied to discussions of mechanical properties of polycrystalline aggregates, influence of grain size, alloying and phase dispersion, and high-temperature creep and fracture. Texts: The Physics of Engineering Solids, Hutchison and Baird (first and third terms); Solid State Physics, Dekker (second term). Instructors: Buffington (MS 5 b), Wood (MS 5 a, c).

MS 10. Engineering Physical Metallurgy. 9 units (3-0-6); first term. The principles of physical metallurgy basic to the selection, treatment, and use of engineering metals and alloys. Text: Physical Metallurgy for Engineers, Clark and Varney. Instructor: Buffington.

MS 11. Metallography Laboratory. 9 units (0-6-3); second term. Prerequisite: MS 10. The technique of metallographic laboratory practice including microscopy, preparation of specimens, etching reagents and their use, photomicrography. The study of the microstructure of ferrous and non-ferrous metals and alloys for different conditions of treatment. Text: Principles of Metallographic Laboratory Practice, Kehl.

MS 90. Materials Science Laboratory. 9 units (1-6-2); first term. An introductory laboratory designed to acquaint the student with relationships between structure and properties of crystalline solids. Experiments involve structure determination by X-ray diffraction,
mechanical property measurements, and crystal defect observation by chemical etching, X-ray topography, and transmission electron microscopy. Individual projects may be performed, depending upon the student’s interests and abilities. Instructor: Vreeland.

Advanced Courses

MS 100. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading.

MS 105. Mechanical Behavior of Metals. 9 units (3-0-6); second term. Prerequisites: AM 97 abc, MS 5 abc. A study of the mechanical behavior of metals for engineering applications. Elastic behavior of anisotropic materials and polycrystalline aggregates. Yielding, plastic flow, and strengthening mechanisms, the influence of temperature and rate of loading on plastic deformation. Fracture of metals by ductile flow, brittle cracking, fatigue, and creep. Behavior under impact loading. Instructor: Wood.

MS 110. Special Topics in Physical Metallurgy. 9 units (3-0-6); third term. Prerequisite: MS 10, MS 120, MS 121, MS 122. The emphasis is on recent developments, so topics will vary from year to year. Both metals and nonmetals are considered. Areas of interest include: the influence of special environments, such as nuclear reactors and high temperatures; the development of specific physical properties, such as magnetic and electrical properties; the study of special systems and procedures, such as transformations in titanium-base alloys, ultra-high-strength steels, and fiber reinforcement of metals. Instructor: Buffington.

MS 120. Kinetics of Crystal Imperfections. 9 units (3-0-6); first term. Treatment of crystal imperfections, their interactions, and their influence on some physical and mechanical properties; taught at the level of Friedel, Dislocations. Instructors: Lau, Vreeland.

MS 121. Solid State Diffusion. 9 units (3-0-6); second term. Fundamentals of diffusion in the solid state; taught at the level of Manning, Diffusion Kinetics for Atoms in Crystals, and Shewmon, Diffusion in Solids. Instructors: Buffington, Lau.

MS 122. Phase Transformations in Solids. 9 units (3-0-6); third term. Prerequisite: MS 121. Discussion of nucleation and growth and phase transformation in one- and two-component systems; taught at the level of Christian, The Theory of Transformations in Metals and Alloys. Instructors: Buffington, Lau.

MS 125. Crystal Structure and Properties of Metals and Alloys. 9 units (3-0-6); first term. Structure of crystals, symmetry operations, symmetry classes and space groups; reciprocal lattice and its use in interpreting the X-ray diffraction patterns obtained by the Laue, the rotating crystal, and the powder methods of crystal structure analysis; structure of the elements in relation to their electronic configuration; various types of alloys and phase diagrams; factors governing the formation of solid solutions and intermediate phases (Hume-Rothery rules); nature of amorphous alloys and their unusual properties. Text: Barrett and Massalski, Structure of Metals. Instructor: Duwez.

MS 126 ab. Theory and Application of Image-Forming Systems in Materials Science. 9 units (3-0-6); second, third terms. Theory and application of image-forming systems used to study defects and phases in crystalline solids; transmission electron microscopy, X-ray topography, scanning electron microscopy, and field ion microscopy; wave mechanical descriptions of these systems will be developed as an aid to fully understanding the associated image contrast; various diffraction techniques used to study defects and phases in crystalline solids; Kirchhoff theory of diffraction, transmission electron diffraction, low-energy electron diffraction, X-ray and electron small angle scattering; taught at the level of Amelinckx, et al. Ed., Modern Diffraction and Imaging Techniques in Material Science, and Born and Wolf, Principles of Optics. Not offered in 1975-76.
MS 130. Metallography and Pyrometry. 9 units (0-6-3); first term. Prerequisite: MS 10 or equivalent. Metallurgical studies of materials of current technological interest utilizing optical metallography and photomicrography, temperature measurements, and cooling curves to study phase transformations. Instructor: Wood.

MS 131. Crystal Defects. 9 units (1-6-2); second term. Prerequisite: MS 120. Techniques used in the study of crystal defects and their influence on physical and mechanical properties; relationship between crystal structure and properties studied in experiments which utilize optical microscopy, electron microscopy, and X-ray topography. Instructor: Vreeland.

MS 132. X-Ray Metallography Laboratory. 9 units (0-6-3); third term. Prerequisite: MS 125. Experiments on X-ray emission spectra and absorption edges. Determination of crystal structures by the Von Laue and Debye-Scherrer methods. Use of the X-ray spectrometer. Study of preferred orientation in cold worked metals. Application of X-ray diffraction methods to the study of phase diagrams. Instructor: Duwez.

MS 200. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of advanced graduate students.

MS 202. Advanced Electron Diffraction Theory. 9 units (3-0-6); first term. Prerequisites: MS 126 ab, APh 50 abc, or equivalent. Advanced topics in transmission electron microscopy and diffraction: noncolumn approximation dynamical theory, inelastic scattering, computer enhancement of electron micrographs, and advanced image and diffraction analysis techniques. Not offered in 1975-76.

MS 205 ab. Dislocation Mechanics. 9 units (3-0-6); second, third terms. Prerequisites: MS 120, MS 121, MS 122, MS 125, MS 126 ab. The theory of crystal dislocations in isotropic and anisotropic crystals. Applications of dislocation theory to physical and mechanical properties of crystals taught at the level of Hirth and Lothe, Theory of Dislocations. Instructors: Vreeland, Wood.

MS 250 abc. Advanced Topics in Materials Science. 6 units (2-0-4); first, second, third terms. The content of this course will vary from year to year. Topics of current interest will be chosen according to the interests of students and staff. Visiting professors may present portions of this course from time to time. Instructors: Staff.

MS 300. Thesis Research.

Other courses related to Materials Science include:

- Ae 202 abc Advanced Solid Mechanics (See Aeronautics Section)
- Ae 213 The Mechanics of Fracture (See Aeronautics Section)
- Ae 221 Theory of Viscoelasticity (See Aeronautics Section)
- AM 135 abc Mathematical Elasticity Theory (See Applied Mechanics Section)
- AM 140 abc Plasticity (See Applied Mechanics Section)
- AM 141 abc Wave Propagation in Solids (See Applied Mechanics Section)
- APh 105 abc States of Matter (See Applied Physics Section)
- APh 114 abc Solid-State Physics (See Applied Physics Section)
- APh 181 abc Physics of Semiconductors and Semiconductor Devices (See Applied Physics Section)
- APh 185 abc Ferromagnetism (See Applied Physics Section)
- APh 214 abc Advanced Solid-State Physics (See Applied Physics Section)
- ChE 167 abc Polymer Science (See Chemical Engineering Section)
- ChE 207 abc Mechanical Behavior and Ultimate Properties of Polymers (See Chemical Engineering Section)
The Physical Description of Chemical Systems
(See Chemistry Section)
Methods for the Determination of the Structure
of Molecules (See Chemistry Section)
Statistical Mechanics (See Chemistry Section)
Quantum Mechanics (See Physics Section)
Topics in Solid-State Physics (See Physics Section)

MECHANICAL ENGINEERING
Undergraduate Courses

ME 1 abc. Introduction to Design. 9 units (1-6-2); second, third terms. Prerequisites: Gr 1, ME 3, or instructor's permission. The student is introduced to the field of design in its broadest sense through a coordinated series of short design projects, seminars by practicing designers, and related field trips. Useful graphical and analytical techniques are developed as effective tools for rapid engineering approximations in preliminary layout and design. Elements of mechanisms and computer-aided design are treated along with other basic aspects of design such as selection of materials and standard components, manufacturing methods, functional, economic, and aesthetic considerations. At least one of the projects will involve some actual machine shop experience on the part of the student in connection with construction of a simple prototype or working model of his design. Instructor: Welch.

ME 3. Materials and Processes. 9 units (3-0-6); second term. Prerequisites: Ph 1 ab, Ch 1 abc. A study of the materials of engineering and of the processes by which these materials are made and fabricated. The fields of usefulness and the limitations of alloys and other engineering materials are studied, and also the fields of usefulness and limitations of the various methods of fabrication and of processing machines. The student is not only made acquainted with the technique of processes but with their relative importance industrially and with the competition for survival which these materials and processes continually undergo. Text: Engineering Materials and Processes, Clark. Instructor: Buffington

ME 5 abc. Design. 9 units (1-6-2); first, second, third terms. Prerequisites: ME 1 ab, ME 3, AMa 95 abc, or instructor's permission. The aim of this course is to develop creative ability and engineering judgment through actual project development work involving preliminary design, prototype modeling, engineering analysis, and utilizing in a professional manner the student's theoretical background along with relevant quantitative data and techniques obtained in other courses. This work will be done in conjunction with professional engineers from industry on appropriate nonproprietary or unclassified projects of current interest whenever feasible. Additional emphasis will be placed on broadening the student's individual background experience through the use of engineering case studies and personal working relationships with professional engineers and designers from industry. Instructor: Welch.

APh/ME 17 abc. Thermodynamics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ma 1 abc, Ph 1 ab. An introduction to the laws governing the properties of matter in equilibrium and some aspects of non-equilibrium behavior. Definition and scales of temperature. The laws of classical thermodynamics. Thermodynamic potentials, Maxwell's relations, calculation of thermal properties, and applications to various homogeneous systems. First-order changes of phase and the Clausius-Clapeyron equation. Analyses of energy conversion cycles. General conditions for thermodynamic equilibrium, extremum properties of the thermodynamic potentials, and the thermodynamic inequalities. Chemical potential, mixtures of gases and vapors, solutions, basic chemical thermodynamics. Elementary statistical mechanics, ensembles, and statistical thermodynamics. Introduction to non-equilibrium

ME 19 ab. Fluid Mechanics and Gasdynamics. 9 units (3-0-6); first, second terms. Prerequisites: Ma 2 abc, Ph 1 abc. Basic equations of fluid mechanics, theorems of energy, linear and angular momentum, potential flow, elements of airfoil theory. Flow of real fluids, similarity parameters, flow in closed ducts. Boundary layer theory in laminar and turbulent flow. Introduction to compressible flow. Flow and wave phenomena in open channels. Instructors: Acosta, Sabersky.

ME 19 c. Heat and Energy Transfer. 9 units (3-0-6); third term. Prerequisites: ME 19 ab desirable or with instructor's permission. An introductory course in energy and heat transfer. Energy conservation laws; introduction to flow machines. Basic differential equations of energy and mass transfer. Conduction of heat in solids, convection in moving fluids with application to heat exchange in thermal systems. Discussion of mechanical, chemical, nuclear and solar sources of energy and uses as time permits. Instructors: Sabersky, Acosta.

Advanced Courses

ME 100. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading.

ME 101 abc. Advanced Design. 9 units (1-6-2); first, second, third terms. Prerequisite: ME 5 abc or equivalent. Rational yet imaginative design approaches to machines and systems are developed at a more advanced level with the objective of a completed working model or prototype to be constructed for final testing. Suitable projects may be selected on a basis of individual student's interests or needs from a variety of fields, and may often be based on a specific future need for an apparatus or system in a current research project either within the division or elsewhere on campus. Numerical control, electrohydraulic systems, teleoperators, control systems and related hardware, computer graphics, etc., are all areas of current interest. Students will be encouraged to keep abreast with the state of the art in special areas of interest through personal contacts with research workers and professional engineers in these fields, and utilization of appropriate computer techniques where applicable in optimizing their designs. Instructor: Welch.

ME 118 abc. Advanced Thermodynamics and Energy Transfer. 9 units (3-0-6); first, second, third terms. Prerequisites: ME 17 abc, ME 19 abc, or equivalent. Review of basic equations of fluid motion, energy, and mass transfer. Heat conduction in stationary and moving solids, with change of phase; numerical and approximate methods. Analysis of laminar flows with heat and mass transfer in free and forced convection. Turbulent flows and application of Reynolds analogy to heat and mass transfer. Introduction to thermal radiation, characteristics of solids and gases. Radiative transfer in enclosures. Topics in two-phase flow, boiling heat transfer, condensation and application to technological and environmental problems will be taken up as time permits. Instructors: Acosta, Sabersky.

ME 126. Fluid Mechanics and Heat Transfer Laboratory. 9 units (0-6-3); third term. Prerequisites: ME 17 abc, ME 19 ab, or equivalent. Students with other background shall obtain instructor's permission prior to registration. Introduction to some of the basic measurement techniques and phenomena in the fields of heat transfer and fluid mechanics. The student may select several short projects from a rather wide list of possible experiments, including also some of the experiments offered under ChE 126. The selection will be based on the individual needs and interests of the student. The course is generally taken by first-year graduate students and seniors. Specific areas from which experiments may be selected include free and forced convection, boiling heat transfer, combustion, solid-state energy conversion, free surface flows, supersonic flows, and fluidic controls. Instructors: Staff.
ME 200. Advanced Work in Mechanical Engineering. The staff in mechanical engineering will arrange special courses on problems to meet the needs of advanced graduate students.

ME 300. Thesis Research.

Many advanced courses in the field of Mechanical Engineering may be found listed in other engineering options such as:
- Applied Mechanics
- Applied Physics
- Hydraulics
- Jet Propulsion
- Materials Science

ENGINEERING
(See Engineering and Applied Science)

ENGINEERING GRAPHICS
(See Engineering and Applied Science)

ENGINEERING SCIENCE
(See Engineering and Applied Science)

ENVIRONMENTAL ENGINEERING SCIENCE
(See Engineering and Applied Science)

FRENCH
(See Languages)

GEOLOGICAL AND PLANETARY SCIENCES
GEOLOGY, GEOBIOLOGY, GEOCHEMISTRY, GEOPHYSICS, PLANETARY SCIENCE

Undergraduate Courses

Ge 1. Introductory Geology. 9 units (3-3-3); first, third terms. This course aims to present a broad and up-to-date view of the earth by focusing upon major geological items currently of high interest, such as paleomagnetism, mid-oceanic rises, sea-floor spreading, plate tectonics, continental drift, evolution of continental plates, the earth's interior, and environmental geology. A reasonable degree of flexibility is purposely maintained, and the emphasis and topics of consideration will vary, within limits, with the individual instructor and with class interests. An acquaintance with classical geological topics such as rocks and minerals, fossils, crustal deformation, earthquakes, volcanism, geochronology, metamorphism, and processes and features of the earth's surface is obtained in association with treatment of the above listed topics, and through field trips. Classes are rigorously limited in size and individually handled by full-time faculty members. All registrants must be prepared to devote six weekend days to field trips. The course is planned specifically for freshmen. Instructors: Shoemaker, in charge, and staff.
Ge 2. **Geophysics.** 9 units (2-1-6); second term. Prerequisites: Ge 1, Ma 2 a, Ph 2 a. An introduction to the physics of the earth. Topics discussed include the figure of the earth, the gravity and magnetic fields of the earth and their variation in space and time, the propagation of seismic waves and the transport of heat within the earth. Recent developments in geodynamics, including the relation of the heat flux from the interior, major gravity anomalies, paleomagnetism, and earthquake mechanisms to convection in the mantle and the new global tectonics are emphasized. Three one-day field trips to sites of geophysical interest are an integral part of the course. Text: *Physics of the Earth*, Stacey. Instructor: Ahrens.

Ge 4. **Introduction to the Solar System.** 6 units (3-0-3); third term. An introductory survey course emphasizing recent developments on the properties of the constituent bodies in our solar system. The Sun and the meteorites are briefly discussed as sources of the average solar system chemical composition. The properties of interplanetary dust, asteroids, and comets are discussed in relation to the known types of meteorites. The post-Apollo view of the Moon is summarized and used as a basis for comparison with other small planets such as Mercury and the Jovian satellites. Venus and Mars are considered in the light of recent spacecraft experiments and our improved understanding of the Moon. Jupiter is discussed as an example of an outer planet. Instructor: Burnett.

Ge 5. **Geobiology.** 9 units (3-0-6); second term. Prerequisites: Ge 1, Ch 1, Bi 1, or consult instructor. An examination, chiefly in biological terms, of processes and environments governing the origin and differentiation of secondary materials in the crust throughout the span of earth history. Consideration is given to the environmental influence of the change from a reducing to an oxidizing atmosphere upon the evolution of life processes and to the subsequent progression of organisms and organic activity throughout the oxidizing era as recorded in the sedimentary rocks of the earth's crust. Special attention is devoted to organic progression and differentiation in time and space in terms of environment. Instructor: Lowenstam.

Ge 40. **Special Problems for Undergraduates.** Units to be arranged, any term. This course provides a mechanism for undergraduates, other than freshmen, to undertake honors-type work in geologic sciences. By arrangement with individual members of the staff. Graded pass/fail.

Ge 41 abc. **Undergraduate Research and Bachelor’s Thesis.** Units to be arranged. Undergraduates may undertake research in the geological and planetary sciences under the supervision of some member of the division faculty, with the aim of preparing a professional report on the accomplishments. Number of units to be arranged with the research supervisor, and is not to exceed 12 per term. Writing of a Bachelor’s Thesis based on the research is encouraged, and to obtain elective credit for more than 24 units of undergraduate research, a Bachelor’s Thesis accepted by the research supervisor is required. Guidance in seeking research opportunities and in formulating a research plan leading to preparation of a Bachelor’s Thesis is available from the Division Undergraduate Research Counselor, Professor Epstein. Graded pass/fail.

Advanced Courses

Courses given in alternate years are so indicated. Courses in which the enrollment is less than five may, at the discretion of the instructor, not be offered.

Ge 100. **Geology Club.** 1 unit (1-0-0); first, second, third terms. Presentation of papers on research in geological and planetary sciences by the students and staff of the division and by guest speakers. Graded pass/fail. Instructor: Albee.
Ge 101 abc. Introduction to the Earth and Planets at an Advanced Level. Prerequisites: Ma 2, Ph 2.

101 a. Introduction to Planetary Science. 9 units (3-0-6); first term. The planets: their probable composition, physical state, and dynamical behavior. Ground-based observations, spectroscopy, photometry, radio interferometry, radar mapping, observations from spacecraft. Theories of atmospheric structure, surface processes, internal history. Speculations on the origin and evolution of bodies in the solar system. Instructors: Ingersoll and staff.

101 b. Forms and Processes of the Earth's Surface. 9 units (3-3-3); second term. Primarily a course in advanced physical geology focusing upon processes active upon and within the earth's crust to produce the features seen upon its surface. Local one-day field trips. Instructor: Sharp.

101 c. Geophysics. 9 units (2-1-6); third term. An introduction to the physics of the earth. Topics covered include the present internal structure of the earth, theories of the origin and evolution of the earth, the earth's gravity and magnetic field, fundamentals of elasticity of earth materials and elastic body and surface wave propagation and free-oscillations. The relationship of igneous and metamorphic terranes to global tectonics and the contributions that heat flow, gravity, paleomagnetic, and earthquake mechanism data have made to our understanding of geodynamics are discussed. Four field trips involving the use of geophysical instruments or to local sites of geophysical interest are an integral part of the course. Text: Physics of the Earth, Stacey. Instructor: To be announced.

Ge 102. Oral Presentation. 2 units (1-0-V); first term. Training in the technique of oral presentation. Practice in the effective organization and delivery of reports before groups. Successful completion of this course is required of all candidates for degrees in the division. Instructors: To be announced.

Env/Ge 103 ab. Introduction to Processes of the Atmosphere and Hydrosphere. 9 units (3-0-6); second and third terms. Natural physical and chemical processes of the earth's atmosphere and hydrosphere. Emphasis will be on developing an order of magnitude understanding of the atmosphere and oceans through analysis of observations and physical reasoning. The emphasis in the second term will be on the hydrosphere, including such topics as: chemical composition of the oceans, tides, waves and currents, precipitation, runoff, floods, sediment transport, geochemical cycles. The emphasis in the third term will be on the atmosphere, including such topics as: the global balance of energy, momentum and mass, vertical atmospheric structure, radiative and convective heat exchange, circulation systems, weather prediction, climatic change. Instructor: Ingersoll.

Ge 104 abc. Advanced General Geology. 9 units (3-4-2). Prerequisites: Ch 1 or 2, Ma 1, Ph 1.

104 a. Minerals as Physical, Chemical, and Geological Systems. First term. Atomic architecture and physical properties of the solid state, with emphasis on the important naturally occurring minerals. Relations between bonding forces, structure, composition, properties, and conditions of formation of minerals. Phase stability, melting relations, and solid-state transformations in mineral systems as a function of temperature and pressure. The chemistry of mineral synthesis and breakdown in relation to chemical evolution and differentiation in the earth. Occurrence, significance, and properties of the major mineral groups that are important at the earth's surface and in the interior. Laboratory study of selected examples. Instructor: Rossman.

of the Phanerozoic history of the earth with emphasis on both faunal and physical history. Outlines and problems of the Precambrian history of the earth. Instructors: Silver, Lowenstam.

Ge 105 abc. Geological Field Training and Problems. 6 units (0-6-0); first, second, and third terms. Prerequisite: Ge 104 abc should be taken concurrently. Elementary field mapping techniques in stratigraphy and structural geology. Selected field problems designed to develop techniques and to establish an understanding of basic geologic relationships. Problems in structural geology are emphasized in first term. Instructors: Kamb, Shoemaker.

Ge 111 ab. Invertebrate Paleontology. 9 units (2-5-2); second, third terms. Morphology and geologic history of the common groups of the lower invertebrates, with emphasis on their evolution and adaptive modifications; consideration of the higher invertebrate groups; preparation of fossils and problems of invertebrate paleontology. Instructor: Lowenstam.

Ge 114. Optical and X-Ray Mineralogy. 12 units (3-6-3); first term. Prerequisite: Ge 104. Methods of optical crystallography. Measurement of optical constants with the polarizing microscope. X-ray determination of lattice parameters. Characterization and identification of minerals by optical and X-ray methods. Systematic application of these methods to the study of important mineral groups, including feldspars, and chain silicates. Instructor: Rossman.

Ge 115. Petrology and Petrography. Systematic study of rocks and rock-forming minerals with emphasis both upon the use of the petrographic microscope and megascopic identification; interpretation of mineral assemblages, textures, and structures; problems of genesis.

115 a. Igneous Petrology and Petrography. 12 units (3-6-3); second term. Prerequisites: Ge 104 ab, Ge 114, Ch 21a. The mineralogical and chemical composition, origin, occurrence, and classification of igneous rocks considered mainly in the light of chemical equilibrium and of experimental studies. Detailed consideration of the structures, phase relations, and identification of the feldspar, pyroxene, amphibole, olivine, and feldspathoid mineral groups. Instructor: Albee.

115 b. Sedimentary Petrology and Petrography. 12 units (3-6-3); third term. Prerequisite: Ge 115 a. The mineralogic and chemical composition, occurrence, and classification of sedimentary rocks; consideration of the chemical, physical, and biological processes involved in the origin, transport, and deposition of sediments and their subsequent diagenesis. Detailed consideration of structure, phase relations, composition and identification of clay minerals, carbonates, and Fe-Mn oxides. Laboratory study will include identification of clay minerals by X-ray diffraction. Not offered in 1975-76.

115 c. Metamorphic Petrology and Petrography. 12 units (3-6-3); third term. Prerequisite: Ge 115 a. The mineralogic and chemical composition, occurrence, and classification of metamorphic rocks; interpretation of mineral assemblages in light of chemical equilibrium and experimental studies. Detailed consideration of structure, phase relations, composition, and determination of the major metamorphic minerals. Instructor: Taylor.

Ge 121 abc. Advanced Field Geology. 12 units (0-9-3). Prerequisites: Ge 104 abc, Ge 105 abc. Interpretation of geologic features in the field, with emphasis on problems of the type encountered in professional geologic work. Advanced techniques of investigation are discussed. The student investigates limited but complex field problems in igneous, sedimentary, and metamorphic terranes. Individual initiative is developed, principles of research are acquired, and practice gained in field techniques, including the use of the plane table in geologic mapping. The student prepares reports interpreting the results of his investigations. Instructors: Allen, in charge, and staff.

Ge 122. Geophysical Field Studies. 10 units (3-5-2). Prerequisites: Ma 2 abc, Ge 105, and instructor's permission. This course is a field program in an area of particular geological interest, using seismic refraction, gravity, and magnetic field measurements. Students participate in all phases of the program, e.g., station surveying, geophysical equipment
operation, and interpretation of data. A final report, embodying calculations and interpreta-
tions, is required. Instructors: Allen in charge, and staff.

Ge 123. Summer Field Geology. 30 units (6 weeks). Prerequisites: Ge 104 abc, Ge 105 abc.
Intensive study of three field areas in the Rocky Mountains, Colorado Plateau, Basin and
Range Province, Sierra Nevada or Coast Ranges. The work in each area is supervised by a
separate staff member, and the selection of areas studied varies from year to year. Emphasis
is on stratigraphic and structural interpretation, involving a wide range of sedimentary,
plutonic, volcanic, and metamorphic rocks. For each area the student prepares a geologic
map, stratigraphic and structural sections, and geologic report. The course is designed to
complement the field training in southern California afforded by Ge 105 and Ge 121. It is
required at the end of the junior year for the bachelor's degree in the geology and
geochemistry options. The course begins immediately after commencement and runs for six
weeks. Instructors: Allen in charge, and staff.

Ge 124 ab. Magnetostratigraphy. Application of paleomagnetism to the solution of prob-
lems in stratigraphic correlation and to the construction of a high-precision geological time
scale. Offered in alternate years (1976-77). Instructor: Shoemaker.

124 a. 9 units (3-3-3); second term. Prerequisites: Ge 104 abc, Ge 105 ab. The principles of
rock magnetism and physical stratigraphy are reviewed; emphasis is on the detailed applica-
tion of paleomagnetic techniques to determination of the history of the geomagnetic field.
Present knowledge of this history is critically examined. Field and laboratory training are a
central feature of the course; students registered must be prepared to spend two weekends
in the field during the term.

124 b. 6 units (0-0-6); spring recess. Prerequisite: Ge 124 a. An eight-day field trip to the
Colorado Plateau to study the physical stratigraphy and magnetic zonation of the rocks in
this well-known region.

Ge 125. Engineering Geology. 6 units (2-4-0); first term. An introduction to the application of
geology to engineering problems. Topics discussed include: the role of the geologist in
engineering projects; investigations for dams and tunnels; subsurface exploration methods;
soil and rock mechanics in relation to geologic factors; landslides and slope stability; seismic
hazard evaluation; groundwater, subsidence, and waste disposal; urban building codes and
legal aspects of engineering geology. Case history illustrations. Field trips to construction
sites and examples of geologic hazards. Instructor: Proctor.

Ge 126. Geomorphology. 9 units (3-0-6); second term. Primarily a consideration of dynamic
processes acting on the surface of the earth, and the genesis of land-forms. Instructor: Sharp.
Not offered in 1975-76.

Ge 130. Introduction to Geochemistry. 6 units (2-0-4); first term. Prerequisites: Ch 1, Ma 2 abc,
Ph 2 abc. A lecture and problem course on the application of chemical principles to earth
problems, involving topics in stable isotopic geochemistry. Instructor: Epstein. Not of-
fered in 1975-76.

Ge 132. Chemistry of the Earth and Planets. 9 units (3-0-6); second term. Prerequisite:
instructor's permission. A critical evaluation of what is known about the chemical composition
of the planetary bodies in the solar system and the processes and time scales required for
evolution into their present states. Topics include: survey of mechanisms of nucleosyn-
thesis; solar system elemental abundances; formation times of planetary bodies; the chemi-
cal composition and evolution of the earth and moon; speculations on the compositions of
other planets; composition and origin of planetary atmospheres. Instructor: Burnett.
Offered in alternate years (1976-77).

Ge 135. Regional Geology of Southern California (Seminar). 6 units (3-0-3); second term.
Prerequisites: Ge 104 abc, Ge 105 abc or equivalent. Reading and discussion of selected topics in
the geology of southern California and adjacent areas, with emphasis on outlining the
important regional research problems. Instructor: Silver.
Ge 136. Regional Field Geology of Southwestern United States. 9 units (1-0-8); second or third term. Prerequisites: Ge 104 and Ge 105, or instructor's permission. At least nine days of weekend field trips into areas of southwestern United States displaying highly varied geology are involved. Each student is assigned the major responsibility of being the resident expert on a part of each area or for a category of geological phenomena therein on each trip. Instructor: Sharp.

Ge 137 ab. Laboratory Techniques in the Geological Sciences. 9 units (1-4-4); second and third terms. Prerequisite: instructor's permission. A series of laboratory experiments covering the important types of laboratory measurements made in modern geological and geochemical research. The emphasis will be placed on understanding the physical and chemical principles on which the measurements are based. X-ray, mass spectrometric, and counting techniques will be treated in detail. Instructors: Patterson, Burnett, Epstein. Offered in alternate years (1976-77).

Ge 150. The Nature and Evolution of the Earth. 6 units (3-0-3). Offered by announcement only. Discussions at an advanced level of problems of current interest in the earth sciences. The course is designed to give graduate students in the geological sciences and scientists from other fields a broad sampling of data and thought concerning current problems. Students may enroll for any or all terms of this course without regard to sequence. Instructors: The staff and visitors.

Ge 153. Planetary Radio Astronomy. 9 units (3-0-6); second term. Prerequisite: instructor's permission. The interpretation of radio astronomy observations of the Moon, Mercury, Venus, Mars, and Jupiter in terms of the planets' surface properties and atmospheric characteristics. Thermal and non-thermal emission mechanisms in planetary atmospheres and surfaces will be discussed with particular emphasis toward the construction of mathematical planetary models which can be tested by all possible observational techniques including radio interferometry, planetary occultation, and radar astronomy. Offered in alternate years (1975-76). Instructor: Muhleman.

Ge 154. Planetary Atmospheres. 9 units (3-0-6); third term. Prerequisites: junior-level courses in math and physics, with an introduction to stellar or planetary atmospheres highly desirable. Current problems suggested by recent ground-based and spacecraft-related data on the planets and their satellites. Possible topics may include: the high surface temperatures and rapid rotation of the Venus atmosphere, the polar heat balance and atmospheric pressure on Mars, the maintenance of Jupiter's belts and zones and of the Great Red Spot, satellite atmospheres and their history. Offered in alternate years (1976-77). Instructors: Goldreich and Ingersoll.

Ge 160. Introduction to Modern Geophysics. 4 units (2-0-2); first term. Seminar on current topics in geophysics with emphasis on active research programs within the department. The course is designed to acquaint new graduate students with outstanding problems in geophysics and with current methods of investigation. Instructors: Anderson and staff.

Ge 166. Physics of the Earth's Interior. 9 units (3-0-6); second term. Prerequisite: AMa 95 abc or AM 113 abc, or instructor's permission. A study of current knowledge concerning the interior of the earth using information from various earth-science disciplines. Interpretation of the fundamental data of seismology, gravity and heat flow using available high-pressure laboratory data and equations of state with the aim of understanding the structure, composition and phase of the earth's deep interior. Thermal history of the earth. Internal constitution of the terrestrial planets. Suitable for students in geology and as an elective in physics, astronomy and engineering. Instructor: Anderson.

Ge 167. Planetary Physics. 9 units (3-0-6); first term. Prerequisites: Ph 106 abc, AMa 95 abc or AM 113 abc. Solar system dynamics, with emphasis on slow changes in the orbit and rotation
rates of planets and satellites. Topics to be discussed include tidal friction, resonant orbits and rotation rates, gravitational fields of planets and satellites, dynamics of polar wandering and continental drift. Instructor: Goldreich. Offered in alternate years (1975-76).

Ge 176. Physics of Earthquakes. 9 units (3-0-6); first term. Prerequisites: AMa 95 abc or instructor's permission. Study of earth structure and earthquake phenomena by application of physical principles. The emphasis will be placed on understanding complex earthquake phenomena in the light of fundamental physical and mathematical concepts. Topics to be discussed include structure of the earth in relation to propagation of earthquake waves, static and dynamic models of earthquakes, interpretation of far- and near-field phenomena, significance of earthquakes in plate tectonics and problems pertaining to earthquake prediction. Instructor: Kanamori.

Ge 177. Seismotectonics. 9 units (3-3-3); third term. Relationship of seismicity to geologic structures and to tectonic processes: global seismicity patterns; active faults; problems of seismic zoning. Case studies of selected earthquakes with field trips to local areas of special interest. Instructor: Allen. Offered in alternate years (1975-76).

Ge 212 ab. Thermodynamics of Geological Systems. 9 units each term (3-0-6); first, second terms.

212 a. Prerequisite: Ch 21 abc, Ge 115 abc or equivalent. An advanced treatment of chemical thermodynamics, with emphasis on applications to geologic problems. Topics to be covered include heat flow and heat sources, high pressure phase transformations, silicate phase equilibria, solid solutions, the effect of H2O in silicate melts, and equilibrium in a gravitational field. Text: Chemical Thermodynamics, Prigogine and Defay. Offered in alternate years (1976-77). Instructor: Taylor.

212 b. Prerequisite: 212 a. Lectures and problems on the chemical and physical properties of aqueous solutions, with emphasis on the thermodynamic behavior of those electrolyte solutions important in nature. Topics to be covered include the effects of solution composition on mineral equilibria, Eh-pH diagrams, extension of thermodynamic data to high temperatures and pressures, non-ideality in mixed-gas systems, and reaction kinetics in systems involving water. Results will be applied to problems of low-temperature sedimentary processes, metamorphism, and diagenesis. Text: Solutions, Minerals, and Equilibria, Garrels and Christ. Offered in alternate years (1976-77). Instructor: Epstein.

Ge 213. Seminar on special topics and problems of current interest in the fields listed below. 5 units. Prerequisites dependent upon topics. Offered by announcement only.

Ge 213 a—Mineralogy Seminar.
Ge 213 b—Petrology Seminar.
Ge 213 c—Geochemistry Seminar.
Ge 213 d—Geochronology Seminar.

Ge 214. Advanced Mineralogy. 9 units (3-3-3); third term. Prerequisite: Ge 104 a, Ge 114, Ch 21 or instructor's permission. The origin of color, pleochroism, and luminescence in minerals, infrared absorption spectroscopy of mineral substances, the relationship of the various types of X-Ray and optical spectra, and the effects of site population upon optical properties. The laboratory will deal with the measurement of the optical and infrared spectra of selected minerals. Offered in alternate years (1976-77). Instructor: Rossman.

Ge 215 abc. Topics in Advanced Petrology. 12 units each term (3-6-3); first, second, third terms. Prerequisites: Ge 115, Ch 21.

215 a. Chemical Petrology. First term. Lectures, seminars, and laboratory studies of the chemical reactions that occur in rocks. Emphasis will be placed on rock-water interactions, mineral deposition, hydrothermal alteration, and the formation of ore deposits. The
nature and origin of the \(\text{H}_2\text{O}, \text{CO}_2, \) and other gases that take part in these reactions will be discussed, mainly utilizing studies of mineral equilibria and the techniques of stable isotope geochemistry. Offered in alternate years (1975-76). Instructor: Taylor.

215 b. Advanced Igneous Petrology. Second term. Lectures, seminars, and laboratory studies on igneous petrogenesis and rocks. Emphasis is placed on a particular group of rocks, such as basalts, andesites, meteorites, layered complexes, etc. Offered in alternate years (1975-76). Instructor: Silver.

215 c. Advanced Metamorphic Petrology. Third term. Lectures, seminars, and laboratory studies on metamorphic petrogenesis and rocks. Emphasis is placed on the construction, based on natural assemblages, of two-variable diagrams for multicomponent systems after the method of Schreinemakers and on an understanding of the partition of elements between coexisting phases. Offered in alternate years (1975-76). Instructor: Albee.

Ge 216. Nuclear Problems in Geology. 9 units (3-0-6); third term. Prerequisite: instructor's permission. This course will cover a variety of topical material relating to nuclear processes which are of geologic importance. Topics to be covered include introductory discussion of theories of nucleosynthesis, naturally occurring and extinct radio-activities and their daughter products, isotopic anomalies, heat generation in the earth, cosmic ray induced nuclides, methods of absolute age dating, age determinations on meteorites and rocks, the geologic time scale, element redistribution in radioactive parent-daughter systems, and residence times and mixing processes for some model systems. Offered in alternate years (1976-77). Instructor: Wasserburg.

Ge 221 ab. The Terrestrial Planets. 9 units (4-0-5); second, third terms. Intended for graduate and advanced undergraduate students in the earth and planetary sciences, but open to interested students in other disciplines with instructor's permission. A comparative study of the present state and past history of Earth, Moon, Mars, Venus, and Mercury. Topics include: (1) large-scale physical features, principal geological provinces, coordinate systems and maps; (2) environmental characteristics, surface processes; (3) vulcanism, tectonics, nature of interior; (4) atmospheric composition and surface interactions, planetary volatile cycles and budgets; (5) erosion and deposition, principal stratigraphic sequences on Earth and Mars; (6) polar caps, climatic changes, and ice ages of Earth and Mars; (7) impact sequence and probable flux history application to relative age determination; absolute age calibration from the Moon; (8) comparative surface history record and end of accretion and loss of primitive atmosphere, planetary genealogy; (9) biological evolution and geological context, probability of similar planetary systems elsewhere; communication with extraterrestrial intelligence. Offered alternate years (1976-77). Instructor: Murray.

225 a. Student/Faculty Research Conference. 1 unit (1-0-0); first term. One hour per week informal review of current research by staff and students. Instructor: Ingersoll.

225 b. Selected Topics in Planetary Science. 1 unit (1-0-0); second term. Review of current research in selected areas of chemistry, physics, or geology of Moon, planets, or meteorites. Instructor: Muhleman.

225 c. Planetary Research with Spacecraft. 1 unit (1-0-0); third term. Review of potential or recently completed scientific exploration of the moon or planets by means of spacecraft. Instructor: Westphal.

Ge 226. Observational Planetary Astronomy. 9 units (3-0-6); first term. Observational papers in the planetary astronomy literature will be critically analysed to introduce the use of telescopes and other optical instruments for measurement of the physical and chemical properties of the solar system. The nature of optical and infrared radiation detectors, spectrometers, polarimeters, and photometers will be discussed in the context of the observational study of the planets. Other topics will include the design of observational
programs and the assessment of the reliability of data. Offered in alternate years (1976-77). Instructor: Westphal.

Ge 229. Glaciology. 9 units (3-0-6); second term. Origin and behavior of the North American ice sheet, physical conditions and structures of existing glaciers, glacier flow, erosional and depositional processes and products. Offered in alternate years (1976-77). Instructors: Kamb, Sharp.

Ge 230. Geomorphology (Seminar). 5 units; third term. Review and critical analysis of current research and literature in geomorphology. On occasion, activities are devoted wholly to field excursions within the southwestern U.S. Instructor: Sharp.

Ge 244 ab. Paleoeocology (Seminar). 5 units; second, third terms. Critical review of classic investigations and current research in paleoecology and biogeochemistry. Instructor: Lowenstam.

Ge 247. Tectonics. 9 units (3-0-6); third term. Prerequisites: Ge 104 abc, Ge 105 abc. Structure and geophysical features of continents, ocean basins, geosynclines, mountain ranges, and island arcs. Structural histories of selected mountain systems in relation to theories of orogenesis. Offered in alternate years (1976-77). Instructors: Allen, Kamb.

Ge 260. Solid-State Geophysics. 9 units (3-2-4); third term. Prerequisite: familiarity with basic concepts of thermodynamics and mineralogy. This course deals with the application of high-pressure physics to geologic problems. Topics to be covered include: concepts of elastic and shock propagation in single and polycrystalline solids and in fluids, and their relation to various thermodynamic processes; phase changes, dynamic yielding, shock metamorphism, and high-pressure electrical properties of minerals and application of shock and ultrasonic equation-of-state data to earth and planetary interiors. The student is introduced to current laboratory methods used in measuring the properties of earth materials under static and dynamic high pressure. Offered in alternate years (1975-76). Instructor: Ahrens.

Ge 261 abc. Advanced Seismology. 9 units (3-0-6). Prerequisite: AMa 95 or A113. Essential material in modern seismology; elastic wave propagation, ray theory, normal mode theory, free oscillations, applications to determination of earth structure and earthquake source mechanism, interpretation of seismograms, geophysical time series analysis and synthesis. Offered in alternate years (1976-77). Instructors: Harkrider, Helmerger.

Ge 264 abc. Theoretical Geophysics. 9 units (3-0-6). Prerequisite: Ph 129 abc or equivalent.

First term. A systematic presentation of basic continuum theory relevant to planetary geophysics. Topics from: hydrodynamics, electromagnetics, hydromagnetics, shock-wave theory, elasticity, thermodynamics and the basic solid state theory related to mechanical properties of solids.

Second term. Applications to planetary dynamics and thermal properties. Topics include: convection and diffusion processes, heat transport processes, phase changes, discussion of the hydromagnetic dynamo problem, geophysical evidence and dynamical model...
calculations related to mass transport and planetary evolution. The final part of the term will be devoted to an introduction to stress wave propagation. Topics include: reflection, refraction and scattering of waves in fluid media, waves in random media, waves in multiphase media, statistical continuum methods.

Ge 265 ab. Advanced General Geophysics. 9 units (3-0-6); first, second terms. Prerequisite: Ph 129 abc. A discussion of a range of problems of current geophysical importance selected from among the general categories of: planetary magnetic and gravity fields, thermal history and evolution, mass transport processes in the earth and tectonics, high temperature-pressure geophysics, anelastic processes, wave propagation theory and solid state geophysics. Offered in alternate years (1976-77). Instructors: Anderson in charge, and staff.

Ge 297. Advanced Study. Students may register for up to 15 units of advanced study in fields listed under Ge 299. Occasional conferences.

Ge 299. Research. Original investigation, designed to give training in methods of research, to serve as theses for higher degrees, and to yield contributions to scientific knowledge. These may be carried on in the following fields:

Geology:
(A) Economic Geology
(B) Field Geology
(C) Geomorphology
(D) Glaciology
(E) Invertebrate Paleontology
(F) Mineralogy
(G) Paleocology
(H) Petrology
(I) Sedimentation
(J) Stratigraphy
(K) Structural Geology

Geochemistry:
(L) General Geochemistry
(M) Geochronology
(N) Isotopic Geochemistry
(O) Meteorites

Geophysics:
(P) Applied Geophysics
(Q) General Geophysics
(R) Geophysical Instruments
(S) Seismology
(T) Theoretical Geophysics

Planetary Science:
(U) Planetary Surfaces
(V) Planetary Dynamics
(W) Planetary Atmospheres
(X) Radar Observations
(Y) Radio Emissions

GERMAN

(See Languages)

HISTORY

Undergraduate Courses

H 1 abc. Introduction to Europe. 9 units (3-0-6). Europe, its background, development, and relations with other parts of the world. Topics will vary from instructor to instructor, but will usually include feudalism, the Renaissance and Reformation, seventeenth-century England, the Enlightenment, the French Revolution and Napoleon, the Industrial Revolution, nineteenth-century liberalism and nationalism, Marx, overseas expansion and contraction, the Russian Revolution and Stalin, fascism, the two World Wars, and the Cold War. Instructors: Staff.

H 2 abc. Revolution to Roosevelt. 9 units (3-0-6). An examination of American history from 1765 through the New Deal. The first term will cover the period 1765 to 1800; the second, from 1830 to 1877; and the third from the end of the nineteenth century to World War II. The first two terms will focus on such questions as: Why do men revolt? How and why do they set up stable political structures? What motivates Radicals? Under what conditions do moderate reforms fail to prevent Civil War? The third term will ask: Why was Victorian America swept by tumultuous protests in the closing years of the nineteenth century? What motivated the reforms of the early twentieth century and of the New Deal? And who led the nation and why? Instructors: Staff.

H 6 abc. American Life and Thought. 9 units (3-0-6). Topics in the development of American culture, explored through an examination of selected social, political and artistic materials, including essays, novels and films. Instructors: Staff.

H 8 ab. Introduction to Asia. 9 units (3-0-6); second, third terms. Not a textbook survey. Rather, an examination of selected topics in the history of Asia from Mohammed to the Arab-Israeli conflict, Akbar to Gandhi, the Sung dynasty to Mao Tse-tung, using books marked by their narrative quality. Each term will end with a short reading period during which students will read one book of their own choosing. Instructor: Fay.

H 23. Cultural History of Early Medieval Europe. 9 units (3-0-6); first term. From the end of the Roman Empire to the First Crusade. Shows how classical, Christian and barbarian cultures combined to form a new civilization. Instructor: Fay.

H 24. Cultural History of the High Middle Ages and Renaissance. 9 units (3-0-6); second term. H 23 precedes but is not a prerequisite for H 24. Europe from the 12th through 15th centuries. Shows relationship of art, literature, music and social relations to political, economic and religious institutions. Instructor: Benton.

H 25. Europe in the 17th and 18th Centuries. 9 units (3-0-6). Not intended for students who took European history as freshmen. A survey of Europe in this period, with special attention to the English revolutions, Louis XIV, the Enlightenment, and the French Revolution. Instructors: Staff.

H 26. Europe in the 19th and 20th Centuries. 9 units (3-0-6). Not intended for students who took European history as freshmen. A survey of Europe in this period, with special attention
to the Industrial Revolution, liberal revolutions and reforms, the formation of Germany, the two World Wars, the Russian Revolution, and Hitler. Instructor: Staff.

H 40. Reading in History. Units to be determined for the individual by the department. Elective, in any term. Reading in history and related subjects, done either in connection with the regular courses or independently of any course, but under the direction of members of the department. A brief written report will usually be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

H 97 ab. Junior Tutorial. 9 units (2-0-7); second, third terms. Prerequisite: instructor's permission. Designed primarily for students majoring in history. The course will be taught on a tutorial basis with frequent meetings between the instructor and student. The course subject matter will vary according to individual needs. The course normally will be taken in the junior year. Instructors: Staff.

H 98 ab. Senior Tutorial. 9 units (2-0-7); first, second terms. Prerequisite: instructor's permission. Designed primarily for students majoring in history. The course will be taught on a tutorial basis with frequent meetings between the instructor and student. The course normally will be taken in the senior year. Instructors: Staff.

H 99 abc. Research Tutorial. 9 units (1-0-8). Prerequisite: instructor's permission. Students will work with the instructor in the preparation of a research paper which will form the basis of an oral examination. Instruction will be conducted on a tutorial basis. Instructors: Staff.

Advanced Courses

H 106 ab. Topics in Medieval and Renaissance History. 9 units (3-0-6); first, second terms. Prerequisite: H 23 or H 24 or instructor's permission. Seminar treatment of special topics, varying from term to term. Topics in the past have included history of autobiography, economic development, love and marriage, political theory, and childhood. For schedule of anticipated topics, see instructor or Registrar. Instructor: Benton.

H/Psy 107. Psychohistory. See Psychology.

H 108. Europe and Asia. 9 units (3-0-6). Topics in the interrelation of Europe and Asia since the fall of Rome. May include the Arab conquest of the Mediterranean, the Crusades, Turkey in Europe, Russia in Asia, the spice trade, Christ and opium in China, Lawrence and the Hashemites, and the birth of Israel. Instructor: Fay.

H 109. Protestant, Catholic, and Jew. 9 units (3-0-6). Topics in the political and social history of religion and religious communities in Europe since the fall of Rome. May include Becket and Henry II, the medieval ghetto, the Renaissance Papacy, Luther, the Revolt of the Netherlands, church and chapel in Victorian England, and the "final solution." Instructor: Fay.

H 112. Contemporary Europe. 9 units (3-0-6); first term. This course will deal with some of the public issues, social trends, and cultural developments which are of special interest in Europe today. While the setting will be historical, particular emphasis will be placed on what has been going on in the last twenty-five years. Instructor: Elliot.

H 116. Germany. 9 units (3-0-6). Principal historical developments in Germany from the Reformation to the present day. Emphasis on the evolution of social and political institutions and attitudes. Instructor: Ellersieck.

H 117. Russia. 9 units (3-0-6). An attempt to discover and interpret the major recurring characteristics of Russian history and society, with attention particularly to developments in the Soviet period. Instructor: Ellersieck.

H 118. Britain. 9 units (3-0-6). Main elements in the political life of modern Britain. Attention
will be concentrated primarily on events since 1832, and emphasis will be placed on economic and social trends, on political and constitutional development, and on the lives of important statesmen. Instructor: Elliot.

H 120. The British Empire and Commonwealth. 9 units (3-0-6). The growth of the imperial idea and the institutional development of the Empire and the Commonwealth with particular reference to Africa and Asia. Instructor: Huttenback.

H 121. India and Pakistan. 9 units (3-0-6). The growth of Indian nationalism in the years before independence, and developments in India and Pakistan since partition. Special emphasis will be placed on the philosophical conflict between British and indigenous Indian attitudes and the consequent effect on contemporary India and Pakistan. Instructor: Huttenback.

H 130. History of War. 9 units (3-0-6). An examination of instructive episodes in the evolution of warfare. Emphasis upon the role of political, economic and social factors in influencing the choice of organization, armament, tactics and the timing of conflict. Instructor: Ellersieck.

H 147. The Far West and the Great Plains. 9 units (3-0-6). The exploration and development of the great regions of western America. Special attention will be paid to the influence of the natural environment, and the exploitation of it by such industries as the fur trade, mining, cattle ranching, farming, and oil. Instructor: Paul.

H 148. The Supreme Court in U.S. History. 9 units (3-0-6); first term. An examination of the development of the Supreme Court, its doctrines, and its role in U.S. history through analyses of selected cases. Instructor: Kousser.

H 151. The Shaping of Modern America, 1890-1917. 9 units (3-0-6). An examination of the consolidation and expansion of economic, political, and social control by regional and national power elites. Instructor: Kousser.

H 152. America in the Era of Roosevelt and Truman. 9 units (3-0-6); second term. Topics in the history of the depression, World War II, and the origins of the Cold War. Instructors: Kevles, Rosenstone.

H 153. America since World War II. 9 units (3-0-6); third term. Topics in the recent social, cultural and political history of the United States. Instructors: Kevles, Rosenstone.

H 154. American Foreign Policy in the Twentieth Century. 9 units (3-0-6). How American foreign policy has been formed and administered in recent times: the respective roles of the State Department, Congress, and the President, of public opinion and pressure groups, of national needs and local politics. Instructor: Paul.

H 156. The History of Modern Science. 9 units (3-0-6); first term. Selected topics in the development of the physical and biological sciences since the seventeenth century, with emphasis on the evolution of scientific ideas as a problem in intellectual history. Instructor: Kevles.

H 157. Science in America, 1865-present. 9 units (3-0-6). A study of the social and political history of American science, emphasizing the relationship of the research community to universities, industry, and government. Instructor: Kevles.

H 158. American Intellectual History. 9 units (3-0-6); first term. A study of selected topics in the history of American thought and attitudes. Instructor: Rosenstone.

H 159 a. American Radicalism. 9 units (3-0-6); second term. An examination of the nature of dissident American social and political movements in the nineteenth and twentieth centuries, with emphasis on their critiques of American life, their role in society, and their contributions. Instructor: Rosenstone.
H 159 b. American Radicalism. 9 units (3-0-6); third term. Prerequisite: H 159 a, or instructor's permission. A seminar on selected topics, concentrating on a deep examination of some aspect of radicalism and the writing of an original research paper. Instructor: Rosenstone.

H 160. The History of Black People in America. 9 units (3-0-6). This course will focus primarily on actions taken and ideas expressed by Negroes themselves rather than by whites. Themes will include accommodation and resistance before and after the Civil War; the development of racism and segregation; the migration from black belt to ghetto; and the roles of certain black leaders and ideologies. Instructor: Kousser.

H 161. Selected Topics in History. 9 units (3-0-6). Instructors: Staff and visiting lecturers.

H 201. Reading and Research for Graduate Students. Units to be determined for the individual by the staff.

HUMANITIES AND SOCIAL SCIENCES

HSS 99. Humanities-Social Science Tutorial Program. Upon application and screening by the Tutorial Committee, which is composed of HSS faculty, a limited number of sophomores, juniors, and seniors will be admitted to a tutorial program. Once admitted, a student will work on a one-to-one basis with tutors drawn from the division's faculty, at the rate of 9 units per term, on subjects agreed upon between student, tutor, and the Tutorial Committee. Written work will be required, letter grades given, and a term's work and grade reported (through the Tutorial Committee) in the form shown by the following example:

HSS 99 Tutorial (World War I in fiction) 9 units.
Instructor: Tutorial Committee (D. C. Elliot).

The Tutorial Committee will review each student's work periodically, may require that a student take regular HSS courses along with or prior to a tutorial, and may ask a student to leave the program altogether.

The program is not designed for students in the four HSS options, and units earned in it do not take the place of course or tutorial instruction in those options, unless the options say they may. The program is nevertheless open to applicants from those options.

HYDRAULICS

(See Engineering and Applied Science)

INDEPENDENT STUDIES PROGRAM

The course for ISP students is intended to accommodate individual programs of study or special research that fall outside ordinary course offerings. Students signing up for the ISP course will prepare, with the help of the advisory committee, a description of the course of study, a syllabus delineating the work to be accomplished, and a time schedule for reports both on progress and for work completed. The units of credit and form of grading of this course are decided by mutual agreement between the ISP committee, the student, and his three-member advisory committee. See page 194 for complete details.

INFORMATION AND COMPUTER SCIENCE

(See Engineering and Applied Science)

JET PROPULSION

(See Engineering and Applied Science)
LANGUAGES

Undergraduate Courses

L 39. Reading in French, German or Russian. Units to be determined for the individual by the department. Reading in scientific or literary French, German or Russian under the direction of the department. Graded pass/fail. Not available for credit toward humanities-social science requirement.

HSS 99 See page 328 for description.

Advanced Courses

L 101. Selected Topics in Language. Units to be determined by arrangement with the instructor. Graded pass/fail. Instructors: Staff and visiting lecturers.

L 102 abc. Elementary French. 10 units (3-1-6); first, second, third terms. A course taught by the conversational method, aimed at giving a student a superior reading knowledge of French as well as competence in general conversation. This is the first course of a two-year sequence, but enrollment is not restricted to students intending to complete the two-year program. Credit not given for high school courses repeated at Caltech; any student who has had two years of high school French should not register for first-year French without consulting the instructor. Instructor: A. Smith.

L 103 abc. Intermediate French. 9 units (3-0-6); first, second, third terms. Prerequisite: L 102 abc or equivalent. Continuation of L 102 abc, including a review of grammar, conversational practice, introduction to French history, literature, and politics, and exposure to basic scientific and technical reading and communicating.

L 105 abc. French Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 103 abc or equivalent. Courses need not be taken in sequence. Open to undergraduates and graduates. Each term treats a body of French literature from the standpoint of a dominant theme: Alienation and Literature; The Search for Values in an Absurd Universe (after World War II); The Classical Age of the Sun King. Conducted in French. Instructor: A. Smith. Not offered in 1975-76.

L 130 abc. Elementary German. 10 units (3-1-6); first, second, third terms. The course provides the basis for developing a broad knowledge of the German language, covering aural comprehension, speaking, reading, and writing. Classroom work is supplemented by language laboratory drill. Open to graduate and undergraduate students. Students who have had German in the secondary school or junior college should not register for this course without consulting the staff in languages. Instructor: A. Smith. Not offered in 1975-76.

L 132 abc. Intermediate German: Readings in German Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L 130 abc, or equivalent. The reading of selected short contemporary stories and plays of intermediate difficulty with emphasis on the development of communication skills. Open to graduate and undergraduate students. Students who wish to offer German study elsewhere as basis for admittance to the course should consult with the instructor. Instructors: Staff.

L 139. Independent Reading in French, German, or Russian Literature. For graduate students who have completed at least one year of literature in the foreign language. Credit in this course may be applied towards a subject minor in language. Units to be determined for the individual by the department. Graded pass/fail. Instructors: Staff.

L 140 abc. German Literature. 9 units (3-0-6); first, second, third terms. Courses need not be taken in sequence. Prerequisite: L 132 or equivalent. The reading and discussion of work by selected twentieth-century authors. Conducted in German. Open to undergraduates and graduates. Instructor: Wayne. Not offered in 1975-76.
L141 abc. Elementary Russian. 10 units (3-1-6); first, second, third terms. The course aims to give the student the vocabulary and knowledge of morphology and syntax to read, write about, discuss and comprehend basic materials (stories and articles) from the literary language. The first course of a two-year sequence; enrollment not restricted to students intending to complete the two-year program. Credit not given for high school or junior college courses repeated at Caltech; any student who has had two years of high school Russian or one year of junior college Russian should not register for this course without consulting the instructor. Instructors: Staff.

L/Lit 152 ab. The French Image of Man: Classical and Modern. 9 units (3-0-6); first and second terms. Starting with Montaigne, the first term will suggest a certain concept of man developing through the seventeenth and eighteenth centuries. Both orthodox and dissident writings will be read. The second term will be concerned primarily with literary responses to the Absurd from 1939 to the present. Authors read will include such writers as Céline, Sartre, Camus, Genet, Beckett and representatives of the Nouveau Roman. Readings will be in English, although students proficient in French may read the originals. Instructor: A. Smith.

L153 abc. Intermediate Russian. 9 units (3-0-6). Continuation of L141 abc. Grammar review; readings, discussion and written and oral reports on material from Russian science, culture, and history. Instructors: Staff.

L/Lit 154. The Development of the French Novel. 9 units (3-0-6); third term. A selection of famous novels from the sixteenth to the twentieth century will allow an exploration of the coherent development of the genre and the effect of the historical, sociological and philosophical background on the form. Authors will include Rabelais, Mme. de la Fayette, Diderot, Laclos, Flaubert, Zola and Proust. Readings will be in English, although students proficient in French may read the originals. Instructor: A. Smith.

L/Lit 160 abc. German Literature in Translation. 9 units (3-0-6); first, second and third terms. The first term will be devoted to a study of the development of German literature from the courtly epics and lyrics of the Middle Ages through the Romantic Age. Major representative works will be read against their backgrounds in history, philosophy, art and music. Special emphasis will be placed on Goethe’s Faust. In the second or third terms, which may be taken independently of the first, students will explore German literature from the beginning of the twentieth century to the present. The course will emphasize major authors such as Kafka, Hesse, Thomas Mann, Frisch, Duerrenmatt, and Grass. Instructor: Carmely.

L/Lit 165 abc. Russian Literature in Translation. 9 units (3-0-6); first, second, third terms. A three-term course, any term of which may be taken independently, tracing the development of Russian literature in its socio-historical context from the Classical period to contemporary Soviet texts. Authors will range from Pushkin to Solzhenitsyn. All readings will be in English. Instructors: Staff.

L166 abc. Russian Literature. 9 units (3-0-6); first, second, third terms. Prerequisite: L153 or equivalent. Students are advised to take these courses in sequence. Reading and discussion of representative works of selected nineteenth- and twentieth-century Russian authors. Conducted in Russian. Open to undergraduates and graduates. Not offered in 1975-76. Instructors: Staff.

LINGUISTICS

Advanced Courses

Lin 101. Linguistics. 9 units (3-0-6); first term. An introduction to the fundamental concepts and methods of modern study of natural language (exemplified largely through English).
Primary focus on three levels of linguistic analysis: (1) phonology, (2) morphology, (3) syntax as descriptive and theoretical levels for the study, respectively, of (a) sound systems, (b) internal structure of words, (c) inter- and intra-phrase and sentence structure and relations (including transformational grammar). Prerequisite for all linguistics courses. Instructor: B. H-D. Thompson.

Lin 102. Linguistic Theory. 9 units (2-1-6); second term. Prerequisite: Lin 101 or equivalent. Current models of language structure, especially in syntax and semantics. Transformational generative grammar, case grammar, theory of semantic markers, generative semantics. Implications of language study for understanding human mental behavior. A research project is expected. Instructor: B. H-D. Thompson.

Lin 103. Psycholinguistics. 9 units (2-1-6); third term. Prerequisite: Lin 101 or equivalent. A seminar-type course concentrating on language behavior as a reflection of mental processes. Major areas covered: child language acquisition, language disorders, language in the brain, grammatical organization in linguistic performance, language memory, bilingualism. Some psycholinguistic experiments are performed in class. A research project, preferably involving experiments with subjects, is expected. Instructor: B. H-D. Thompson.

Lin 104. Sociolinguistics. 9 units (3-0-6); first term. Forms and dynamics of language in social interaction. Geographical and social dialects. Dialects of minority groups. Languages of rapidly changing and developing countries. Social and scientific jargon development. Language dynamics in scientific interaction. A research project may be required. Taught in alternate years. First offered in Fall 1975. Instructor: B. H-D. Thompson.

LITERATURE

Courses above Lit 10 are open only to students who have fulfilled the freshman humanities requirements. See page 170 for further information.

Courses Primarily for Freshmen

Lit 1 abc. Literature Past and Present. 9 units (3-0-6); first, second, third terms. An exploration of major literary texts — poetry, narrative fiction, essays and plays — from the Middle Ages or the Renaissance to our own day. Readings will be chosen from English, American and Continental literatures, with the English tradition at the center. Literature will be considered both as the art of giving pleasure to man and the art of interpreting man. Using the historical approach the course will trace the development of new idioms and forms in response to changing concepts of life. The student will be defining the characteristics of Renaissance, baroque, neo-classical, romantic, Victorian, and twentieth-century literary expression, while searching for the permanent aesthetic qualities that keep a portion of the literary output of every age alive. Frequent analytical and critical papers will be assigned. Instructors: Staff. Students may not receive credit for both Lit 1 and Lit 3.

Lit 3 abc. The Modes of Literature. 9 units (3-0-6); first, second, third terms. A sequence of courses dealing with Western man's attitudes toward his experience as expressed in drama, narrative, and poetry. The ways in which literature explores man's relationship to himself and his world are studied through the forms of comedy and tragedy, epic and novel, lyric, narrative, and dramatic poetry. The material is drawn from acknowledged literary classics of the Graeco-Roman world, the Middle Ages, the Renaissance, the Age of Enlightenment, the Romantic Age, and the contemporary world. Frequent critical papers are assigned. Instructors: Staff. Students may not receive credit for both Lit 1 and Lit 3.

Lit 5. Literature of Initiation. 9 units (3-0-6); first term. A study of the experience of initiation, the passage in an individual's life from innocence into experience, and the consequent emergence of a new identity during a critical period of confrontation, testing, and conver-
sion. The reading will vary a good deal from year to year, but will include selected reading in anthropology and psychology as well as novels, short stories, and plays. Instructor: D. Smith.

Lit 6. The Hero and Society. 9 units (3-0-6); second term. This course will study the development of the hero from his role as a model of society's ideals through his emergence into the "anti-hero" of much contemporary literature. The reading matter will vary a good deal, but will be chosen from ancient, medieval, and modern literatures. Instructor: Clark.

Lit 7. Literature and Myth. 9 units (3-0-6); second term. One or more of several approaches to myth may be undertaken in this course. For example, a single myth (say that of Orpheus) may be traced through its use by a number of poets. Or, the folklore and anthropological backgrounds of a myth and their influences upon literary expressions of specific myths may be explored (as in examples of creation or fertility myths). Some reading will be selected from such fountainheads of Western myths as Hesiod, Ovid, and the Bible, and background material in the meaning and relevance of myth may be assigned. But the main focus of the course will be upon literary works of Britain and America. Instructor: Ende.

Lit 9. The American Traditions in Prose Fiction. 9 units (3-0-6); third term. This survey of the paths followed by American novelists will emphasize the continuity and the polarities of American culture. It will include such authors as Poe, Hawthorne, Melville, Twain, James, Hemingway and Faulkner. Instructor: Penn.

Special Courses

Lit 13. Reading in English. Units to be determined for the individual by the department. Collateral reading in literature and related subjects, done in connection with regular courses in literature or history, or independently of any course, but under the direction of members of the department. Graded pass/fail. Instructors: Staff. Not available for credit toward humanities-social science requirement.

Lit 15 abc. Journalism. 3 units (1-0-2); first, second, third terms. A study of the elementary principles of newspaper writing and editing, with special attention to student publications at the Institute. Instructor: Hutchings.

Lit 20. Summer Reading. Units to be determined for the individual by the department. Maximum 9 units. Reading in literature, history, and other fields during summer vacation, books to be selected from a recommended reading list, or in consultation with a member of the staff. Critical essays on reading will be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

HSS 99. See page 328 for description.

Courses Primarily for Upperclassmen

Lit 100 (formerly Lit 8). The Bible as Literature. 9 units (3-0-6); first term. A study of ancient Hebrew history, legend, epic, short fiction, poetry, and wisdom literature in the Old Testament. A study of selections from the gospels, Acts, and epistles in the New Testament. Major emphasis will be placed upon Old Testament materials. Instructors: Langston, Penn.

Lit 102 ab (formerly Lit 9, Lit 119, and Lit 120). The Classical Heritage. 9 units (3-0-6); first, second terms. A study of the major texts of ancient Greek and Roman civilization and their backgrounds. The first term will deal — in English translation — with such writers as Homer, Plato, Herodotus and the writers of Greek lyric poetry, tragedy, and comedy. The second term will concern itself — in translation — with the works of such figures as Virgil, Horace, Catullus, Ovid, Juvenal, Plautus, Terence, and Seneca. Instructors: Langston, Jackson.
Lit 106 ab (formerly Lit 121). Continental and English Medieval Literature. 9 units (3-0-6); second, third terms. In both terms major medieval texts will be studied in their relationships to the great literary, philosophical, and social currents of the period. The first term will center around Chaucer in England and the Romance of the Rose in France. In the second term, which may be taken independently of the first, the course will dwell on Dante, Boccaccio, and Petrarch in Italy, and several important Spanish and German texts. Instructor: Jackson.

Lit 112 ab (formerly Lit 125). Reformation to Revolution in England. 9 units (3-0-6); first, second terms. Prerequisite: 27 units of literature. A course designed to acquaint the student with the principal figures and genres from the Reformation in the early sixteenth century to the Puritan Revolution of the mid-seventeenth century. It includes the Humanists (such as Erasmus and More), Elizabethan poetry (e.g. Spenser and Sidney), non-Shakespearean drama (e.g. Marlowe, Jonson, Webster), seventeenth-century prose writers, and metaphysical and cavalier poets such as Donne, Herbert, and Herrick. Instructor: La Belle.

Lit 114 abc (formerly Lit 123). Shakespeare. 9 units (3-0-6); first, second, third terms. A different list of comedies, histories and tragedies will be studied each term, so that each term may be taken for credit, and no term is a prerequisite to the others. Instructors: Staff.

Lit 116 (formerly Lit 10). Milton. 9 units (3-0-6); third term. Prerequisite: 27 units of literature. A study of Milton's epics, his important shorter works, and selected prose. Instructor: Jackson.

Lit 120 (formerly Lit 126). Satire and Common Sense in Restoration and Eighteenth-Century Literature. 9 units (3-0-6); third term. A seminar on the great figures, the prevailing genres, and the critical theories of the Restoration, Augustan, and mid-eighteenth century period. The course will focus on such dominant figures as Dryden, Swift, Pope and Johnson, but it will also give attention to dramatists such as Congreve, Gay, and Sheridan, and to several "minor" poets. Instructor: Clark.

Lit 122 ab (formerly Lit 127). The Rise and Progress of the English Novel to Conrad. 9 units (3-0-6); second, third terms. The first term will study the rise of the English novel beginning with Fielding and ending with Scott. It will consider the forces, literary and social, that shaped the novel and prepared it to become the dominant literary form of the nineteenth century. The second term focuses on the Victorian novel against its background of social, political, religious, industrial, and aesthetic ferment of the period. It will consider the works of such major novelists as Emily Bronte, Dickens, George Eliot, Thackeray, Trollope, and Hardy. Instructors: Clark and Staff.

Lit 125 ab (formerly Lit 129). Romanticism. 9 units (3-0-6); first, second terms. Prerequisite: 27 units of literature. An approach to the poets of the Romantic period and to Romanticism, the birth of poetic subjectivity and its primary concerns: enchantment and the internalization of romance, the relation of man to external nature, wrestling with one's poetic precursors. Readings in Gray and Collins, Blake, Wordsworth, Coleridge. Second term: Byron, Shelley, Keats, Yeats. Instructor: Ende.

Lit 126. Victorian Poetry and Prose. 9 units (3-0-6); third term. The major poets and prose writers (exclusive of the novel) will be read against the background of the great issues of the period and in the light of the more important aesthetic movements in England and abroad. Among the figures to be considered will be such poets as Tennyson, Browning, Hopkins, and pre-Raphaelites, Housman, and the "Decadents," and such essayists as Carlyle, Ruskin, Arnold, Huxley, Newman, and Pater. Instructor: Rubin.

Lit 130 abc (formerly Lit 100). The Nineteenth- and Twentieth-Century Novel. 9 units (3-0-6); first, second, third terms. A three-term exploration of the late nineteenth- and twentieth-century European, English and American novel. No term is a prerequisite to the
other terms. A background to the modern novel will be provided; but while surveying major developments, the course will concentrate on a few seminal figures such as Flaubert, Conrad, Joyce, and Kafka. Instructors: Penn, D. Smith, Splitter.

Lit 132 (formerly Lit 105 and Lit 106). American Naissance-Renaissance. 9 units (3-0-6); first term. A survey of major figures of an emerging national literature in the romantic period. Such authors as Irving, Brown, Cooper, Poe, Emerson, Thoreau, Hawthorne and Melville will be considered. Instructors: Langston, Penn, D. Smith.

Lit 134. Hawthorne and Melville. 9 units (3-0-6); first term. An in-depth critical reading of America's first two great novelists. Instructor: D. Smith.

Lit 136. Nineteenth-Century American Poetry. 9 units (3-0-6); third term. The course will emphasize the works, lives, and backgrounds of Walt Whitman and Emily Dickinson, though it may touch upon other poets as late as 1914. Instructor: Langston.

Lit 138 (formerly Lit 107). The Gilded Age. 9 units (3-0-6); second term. A survey of the major figures from the post-Civil War period to the First World War. The course will include such writers as Twain, James, Howell, Norris, Wharton, Dreiser, and Stephen Crane. Instructors: Langston, Penn, D. Smith.

Lit 140. Twain and James. 9 units (3-0-6); second term. An in-depth critical reading of the two writers who dominated post-Civil War American literature. Instructor: D. Smith.

Lit 142 abc (formerly Lit 108). Twentieth-Century American Literature. 9 units (3-0-6); first, second, third terms. The first two terms will center attention on American literature since the First World War and on such novelists as Sherwood Anderson, Hemingway, Faulkner, Fitzgerald, Wolfe, and Steinbeck, but may take occasional excursions into the work of poets and dramatists like Eliot and O'Neill. The third term will deal with the work of post-World War II writers such as Ralph Ellison, Edward Albee, Joseph Heller, Arthur Miller, Thomas Pynchon, Kurt Vonnegut, Flannery O'Connor, Saul Bellow, and brief selections from contemporary American poets. Instructors: Langston, Penn, D. Smith.

Lit 146 ab (formerly Lit 118). Twentieth-Century American and British Poetry. 9 units (3-0-6); first, second terms. A two-term seminar on the major poets and poetic theories from the turn of the century to the present. The first term will concentrate on American poets, including such figures as Frost, Eliot, Pound, Stevens, Williams, Lowell, Roethke, and Ginsberg. The second term, which may be taken independently of the first, will be devoted to British poets, including Hopkins, Yeats, Auden, Hughes and Larkin. In both terms, students will contribute seminar papers and oral reports for class discussion. Instructor: Clark.

L/Lit 152 ab (formerly L/Lit 150). The French Image of Man: Classical and Modern. 9 units (3-0-6); first, second terms. Starting with Montaigne, the first term will suggest a certain concept of man developing through the seventeenth and eighteenth centuries. Both orthodox and dissident writings will be read. The second term will be concerned primarily with literary responses to the Absurd from 1939 to the present. Authors read will include such writers as Céline, Sartre, Camus, Genet, Beckett, and representatives of the Nouveau Roman. Readings will be in English, although students proficient in French may read the originals. Instructor: A. Smith.

L/Lit 154 (formerly Lit 150). The Development of the French Novel. 9 units (3-0-6); third term. A selection of famous novels from the sixteenth to the twentieth century will allow an exploration of the coherent development of the genre and the effect of the historical, sociological and philosophical background on the form. Authors will include Rabelais, Mme. de la Fayette, Diderot, Laclos, Flaubert, Zola and Proust. Readings will be in English, although students proficient in French may read the originals. Instructor: A. Smith.
L/Lit 160 abc (formerly L/Lit 150). German Literature in Translation. 9 units (3-0-6); first, second, third terms. The first term will be devoted to a study of the development of German literature from the courtly epics and lyrics of the Middle Ages through the Romantic Age. Major representative works will be read against their backgrounds in history, philosophy, art and music. Special emphasis will be placed on Goethe’s Faust. In the second term, which may be taken independently of the first, students will explore German literature from the beginning of the twentieth century to the present. The course will emphasize major authors such as Kafka, Hesse, Thomas Mann, Frisch, Duerrenmatt and Grass. Instructor: Carmely.

L/Lit 165 abc (formerly L/Lit 150). Russian Literature in Translation. 9 units (3-0-6); first, second, third terms. A three-term course, any term of which may be taken independently, tracing the development of Russian literature in its socio-historical context from the Classical period to the contemporary Soviet texts. For example, authors might include Pushkin and Solzhenitsyn. All readings will be in English. Instructors: Staff.

Lit 170 abc (formerly Lit 110). From Mysteries to Absurdism: A Survey of Drama. 9 units (3-0-6); first, second, third terms. The first and second terms are prerequisites respectively for the second and third. The first term will take the student from the origins of “modern” drama in the Middle Ages to the Classical Age in seventeenth-century France. The second term begins with the “Age of Elegance” in the late seventeenth century and concludes with the “Triumph of the Bourgeoisie” in the nineteenth century. The third term surveys the theatre from Ibsen to the present. Attention is given throughout to aesthetic principles, thematic statements, the socio-historical background, ctor: Mandel.

Lit 180 (formerly Lit 101). Special Topics in Literature. 9 units (3-0-6). See Registrar’s announcement for details. Instructors: Staff.

Lit 184 (formerly Lit 151). Science Writing and Language. 9 units (3-0-6); second term. This course deals with the development of brevity and clarity in the communication of scientific and engineering subjects to people with little or no technical background. Students are required to write a 700-word essay each week. Subjects for the weekly essays are articles selected by the instructor from current journals or magazines. Various reading assignments include the historical, geographical, and cultural development of the English language. Instructor: Bengelsdorf. Not available for credit toward humanities-social science requirement.

MATERIALS SCIENCE

(See Engineering and Applied Science)

MATHEMATICS

Undergraduate Courses

Ma 1 abc. Freshman Mathematics. 9 units (4-0-5); first, second, third terms. Prerequisites: high school algebra and trigonometry. Topics covered: the calculus of functions of one variable and an introduction to differential equations; vector algebra; analytic geometry in two and three dimensions; infinite series. The course work consists of two general lectures each week in which the mathematical notions of the calculus and the other topics listed above are presented and two class recitations which provide active practice in applications of the corresponding mathematical techniques. Instructor in charge: Dilworth.

Ma 2 abc. Sophomore Mathematics. 9 units (4-0-5); first, second, third terms. A continuation of the freshman mathematics course extending the calculus to functions of several variables.
Topics are selected from linear algebra, multiple integrals, vector analysis, ordinary and partial differential equations, probability, and numerical analysis. Instructor: Apostol.

Ma 4 ab. Computer Graphic Techniques in Mathematics. 6 units (1-3-2); second and third terms. The course provides an experimental approach to mathematical analysis using the computer and graphic display terminals. Problems for analysis may be suggested from mathematics, science, economics, or engineering. Possible mathematical topics include properties of real and complex functions (optimization, symmetry, periodicity, location of roots, conformal maps), expansions and approximations (Taylor, Fourier, Picard, Bernstein), differential equations (damped oscillations, periodic oscillations, phase plane, stable and unstable equilibria, mechanical and biological systems), numerical methods (Newton, integration, Runge-Kutta), probability and statistics (distributions, linear regression). The computer will be used as an investigative tool in the formulation of mathematical principles. Observations and conjectures will be discussed, analyzed mathematically, and presented in written and oral reports. Problems for study will be assigned initially, but increasing independence in the choice and execution will be given to students. No computer programming knowledge is required. Instructor: Dean.

Ma 5 abc. Introduction to Abstract Algebra. 9 units (3-0-6); first, second, third terms. Groups, rings, fields, and vector spaces are presented as axiomatic systems. The structure of these systems is studied, making use of the techniques of automorphisms, homomorphisms, linear transformations, subsystems, direct products, and representation theory. Many examples are treated in detail. Instructors: Aschbacher, Dean, Holladay.

Ma 91 a. Infinite Series. 9 units (3-0-6); first term. Prerequisite: Ma 1 abc or equivalent. Instructor: Luxemberg.

Ma 91 b. Introduction to Approximation Theory. 9 units (3-0-6); second term. Instructor: Bennett.

Ma 91 c. Basic Numerical Mathematics. 9 units (3-0-6); third term. Instructors: Staff.

Ma 92 abc. Senior Thesis. 9 units (0-0-9); first, second, third terms. Prerequisite: approval of adviser. Open only to seniors who are qualified to pursue independent reading and research. The work must begin in the first term and will be supervised by a member of the staff. Students will consult periodically with their supervisor, and will submit a thesis at the end of the year. Graded pass/fail.

Ma 98. Reading. 3 units or more by arrangement. Occasionally a reading course under the supervision of an instructor will be offered. Topics, hours, and units by arrangement. Only qualified students will be admitted after consultation with the instructor in charge of the course. Graded pass/fail.

Advanced Courses

(A) The following courses are open to undergraduate and graduate students.

Ma 102 ab. Differential Geometry. 9 units (3-0-6). Selected topics in metrical differential geometry. Not offered in 1975-76.

Ma 103. Algebraic Geometry. 9 units (3-0-6); third term. Prerequisite: Ma 5 abc. A study of the relations between geometric objects (varieties) and the algebraic structures attached to them. Not offered in 1975-76.
Ma 104 ab. Projective Geometry. 9 units (3-0-6); first, second terms. Prerequisite: Ma 5 abc. Foundations of projective geometry. Theorems of Desargues and Pappus. Introduction of coordinates. Finite projective planes. Instructor: Hall.

Ma 108 abc. Advanced Calculus. 12 units (4-0-8); first, second, third terms. In this course, advanced techniques and applications of the theory of real and complex analysis are treated. An introduction to metric spaces is the point of departure for the theory of convergence, and applications are made to infinite series and infinite products of real and complex numbers. The theory of the Lebesgue integral of functions of one or more variables is considered. Other topics include: functions defined by integrals; Fourier series and integrals; Poisson summation formula. Instructors: Anderson, Vaaler, Dashiell.

Ma 109. Delta Functions and Generalized Functions. 9 units (3-0-6); first term. Prerequisite: Ma 108 or equivalent. Introduction to operational calculus and to delta functions. Applications to ordinary and partial differential equations. Not offered in 1975-76.

Ma 112 abc. Statistics. 9 units (3-0-6); first, second, third terms. The first term is an introductory course covering the standard techniques most frequently applied in science and engineering, including elementary probability theory, hypothesis testing, least squares, and analysis of variance. The second and third terms include estimation theory, non-parametric inference, sequential analysis and statistical decision theory. Instructor: Lorden.

Ma 116 abc. Mathematical Logic and Axiomatic Set Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc or equivalent. First order logic and Godel's completeness theorem. Introduction to model theory, compactness and categoricity, ultra-products. Recursive functions, Turing machines and effective computability. Godel's incompleteness theorems and undecidability. Axiomatic set theory, ordinals and cardinals, ranks of sets. The Axiom of Choice and the Continuum Hypothesis. Inaccessible cardinals and models of set theory. Instructor: Kechris.

Ma 118 abc. Functions of a Complex Variable. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 or equivalent. Review of the basic concepts of the theory of analytic functions (Cauchy's theorem, singularities, residues, contour integration, analytic continuation). Further topics selected from: entire functions, conformal mapping, differential equations, special functions, applications of complex variable analysis. Instructor: De Prima.

Ma 120 abc. Abstract Algebra. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. Abstract development of the basic structure theorems of groups, commutative and non-commutative rings, lattices, and fields. Instructor: Kisilevsky.

Ma 121 abc. Combinatorial Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5. Elementary and advanced theory of permutations and combinations. Theory of partitions. Theorems on choice including Ramsey's theorem and the Hall-Konig theorem. Existence and construction of block designs with reference to statistical design of experiments, linear programming, and finite geometries. Instructor: Ryser.

Ma 122 abc. Introduction to Group Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 5 abc. A study of the basic properties of finite and infinite groups. Theorems on homomorphisms, the theory of abelian groups, permutation groups, free groups, automorphisms. The Sylow theorems and their generalizations. An introduction to the theory of group representation and its applications. The Burnside Problem. Instructor: Wales.

Ma 125 abc. Analysis of Algorithms. 11 units (3-2-6); first, second, third terms. Mathematical theory associated with algorithms for information processing; expected time and space requirements of algorithms, comparison of algorithms, construction of optimal algorithms, theory underlying particular algorithms. Instructor: J. Todd.
Ma 128 ab. Lie Algebras. 9 units (3-0-6); first, second terms. Topics in the first term will include solvable and nilpotent Lie Algebras and the classification theorem for simple Lie Algebras in terms of the Dynkin Diagram. In the second term applications will be given including a discussion of Chevalley Groups. Not offered in 1975-76.

Ma 137 a. Real Variable Theory. 9 units (3-0-6); first term. Prerequisite: Ma 108 or equivalent. Point set topology, measure theory and integration theory. The theory of the Lebesgue \(L_p\)-spaces of measurable functions. Functions of bounded variation and the theory of differentiation of functions of a real variable. Introduction to Fourier analysis, ergodic theory and the theory of integral equations. Instructor: Bennett.

Ma 141 abc. Ordinary Differential Equations. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 or equivalent. Existence, uniqueness, continuous dependence on parameters of solutions of differential equations. Singular points, periodic solutions, stability, boundary value problems, eigenvalues. Not offered in 1975-76.

Ma 142 abc. Introduction to Partial Differential Equations. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 143 or equivalent. Selected topics from the classical theory of second order linear and non-linear partial differential equations: Maximum principles, Green's functions, Schauder estimates. Generalized solutions of second and higher order linear equations: Sobolev spaces, regularity of solutions of hypoelliptic equations, spectral theory, evolution equations. Instructor: De Prima.

Ma 144 ab. Probability. 9 units (3-0-6); second, third terms. The course covers the basic concepts and techniques of modern probability theory, including conditional expectation, characteristic functions, laws of large numbers, and the central limit theorem. Also included is an introduction to stochastic processes such as Brownian motion, Poisson processes, and Markov chains, with applications. Not offered in 1975-76.

Ma 150 abc. Combinatorial Topology. 9 units (3-0-6); first, second, third terms. Introduction to combinatorial topology. The course covers homology and cohomology theory with applications to fixed point theorems and homotopy theory. Selected topics from the theory of fiber bundles. Not offered in 1975-76.

Ma 151 abc. Fixed Point Theory and Its Applications to Analysis. 9 units (2-0-7); first, second, third terms. Derivation of the finite dimensional index via differential forms. The Schauder fixed point theorem. The contraction principle. Leray-Schauder fixed point theory for compact maps. Existence theorems for differential and integral equations. Current research on monotone and non-expansive maps and minimization problems for non-linear functions. Not offered in 1975-76.

Ma 152 abc. Geometry of Surfaces. 9 units (3-0-6). Prerequisite: Ma 108 or equivalent. Surfaces are studied from the viewpoints of algebraic topology, differential geometry, complex variable theory and analysis. Topics include: homology groups, covering spaces, fixed points, tangent and normal bundles, imbedding theorems, differential forms, minimal surfaces, Riemann surfaces, conformal mapping, ordinary differential equations on surfaces, vibrating membranes. Instructor: Fuller.

Ma 160 abc. Number Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 108 abc or equivalent. The first term, Ma 160 a, is a review of the elementary theory of numbers
including congruences, numerical functions, elementary theory of primes, quadratic residues. The second and third terms, Ma 160 bc, include topics selected from: zeta functions, distribution of primes, elliptic modular functions, asymptotic theory of partitions, geometry of numbers, foundation of ideal theory in algebraic number fields, theory of units, valuations and local theory, discriminants, differentials. Not offered in 1975-76.

Ma 165. Diophantine Analysis. 9 units (3-0-6); third term. Prerequisite: Ma 5. The study of rational or integral solutions of equations. Theory of rational approximations to irrational numbers, and theory of continued fractions. The theorems of Thue-Siegel and Roth will be included. Instructor: Hall.

Ma 190 abc. Elementary Seminar. 9 units; first, second, third terms. This seminar is restricted to first-year graduate students and is combined with independent reading. The topics will vary from year to year. Graded pass/fail. Instructor: Luxemburg.

Ma 191. Special Course. 9 units (3-0-6). In 1975-76 three special courses will be given:

- **Ma 191 a. Uniformly Distributed Sequences Modulo 1.** First term. Instructor: Vaaler.
- **Ma 191 b. Sums of Squares.** Second term. Prerequisite: Ma 120 or equivalent. Instructor: O. Todd.
- **Ma 191 c. Entire Functions and the Fourier Transform.** Third term. Instructor: Luxemburg.

(B) The following courses are open primarily to graduate students.

Ma 205 a. Advanced Numerical Analysis. 9 units (3-0-6); first, second, third terms. Prerequisite: AMa 105 or equivalent. Discussion of areas of current interest in numerical analysis and related mathematics, such as: matrix inversion and decomposition, ordinary differential equations, partial differential equations, integral equations, conformal mapping, discrete problems, linear programming and game theory, approximation theory, applications of functional analysis, theory of machines, theory of programming, theory of context-free languages, estimates for characteristic values of matrices. Each quarter will be treated as a separate unit. Where appropriate, accompanying laboratory periods will be arranged as a separate reading course. Not offered in 1975-76.

Ma 216 abc. Advanced Mathematical Logic. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 116 or equivalent. Topics to be chosen from such subjects as proof theory, first order model theory and its applications to algebra, infinitary and abstract logics, admissible sets, ordinary and generalized recursion theory (including inductive definability and recursion in higher types), consistency and independence results in set theory (including Gödel's constructible sets and Cohen's forcing method), large cardinals, descriptive set theory. Content varies from year to year so that students may take the course in successive years. Instructor: Schlipf.

Ma 222 ab. Advanced Group Theory. 9 units (3-0-6); second, third terms. Prerequisite: Ma 120 or Ma 122 or instructor's permission. Discussion of topics related to current areas of interest in group theory. Advanced theory of permutation groups and group representation. Problems related to the theorems of Hall-Higman, Feit-Thompson, Gorenstein-Walter and other recent advances. The classical and sporadic finite simple groups. Linear groups. Not offered in 1975-76.

Ma 223 ab. Matrix Theory. 9 units (3-0-6); first, third terms. Prerequisite: Ma 120 or equivalent. Algebraic, arithmetic and analytic aspects of matrix theory. Instructor: O. Todd.

Ma 224 abc. Lattice Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ma 120 or instructor's permission. Systematic development of the theory of Boolean algebras, distribu-

Ma 226 ab. Ring Theory. 9 units (3-0-6) Prerequisite: Ma 120 or equivalent. Selected topics in the structure of rings leading from classical theorems to areas of current research. Topics covered will include the role of the radical, decomposition theory, representation theory, group rings, polynomial identity rings, algebras, and communicative ideal theory. Not offered in 1975-76.

Ma 238 a. Advanced Complex Variable Theory. 9 units (3-0-6); third term. Prerequisite: Ma 118 or equivalent. In this course the knowledge of basic parts of the classical theory of analytic functions is assumed, and special topics are presented introducing topological and group-theoretical considerations, and relations to functional analysis. The topics will be selected from: linear spaces of analytic functions, conformal mapping, algebraic functions, Riemann surfaces, functions of several complex variables, singular integral equations. Not offered in 1975-76.

Ma 243 ab. Advanced Probability. 9 units (3-0-6); first, second terms. Prerequisite: Ma 144 or equivalent. An exposition of probability theory in general sample spaces. Topics will include the following: modes of convergence of random variables, sequences of independent random variables, the central limit theorem, infinitely divisible distributions, conditional expectation, ergodic theory and the role of entropy in ergodic theory (and information theory). Not offered in 1975-76.

Ma 290. Reading. Occasionally advanced work is given by a reading course under the direction of an instructor. Hours and units by arrangement.

(C) The following courses and seminars are intended for advanced graduate students. They are research courses and seminars, offered according to demand, and covering selected topics of current interest. The courses offered, and the topics covered, will be announced at the beginning of each term.

Ma 305 abc. Seminar in Numerical Analysis. 6 units. Three terms.
Ma 320 abc. Special topics in Algebra. 9 units. Three terms.
Ma 324 abc. Seminar in Matrix Theory. Units to be arranged. Three terms.
Ma 325 abc. Seminar in Algebra. 6 units. Three terms.
Ma 340 abc. Special topics in Analysis. 9 units. Second and third terms. Instructor: Browder.
Ma 345 abc. Seminar in Analysis. 6 units. Three terms.
Ma 350 abc. Special topics in Geometry. 9 units. Three terms.
Ma 355 abc. Seminar in Geometry. 6 units. Three terms.
Ma 360 ab. Special topics in Number Theory. 9 units. Three terms.
Ma 365 abc. Seminar in Number Theory. 6 units. Three terms.
Ma 390. Research. Units by arrangement.
Ma 392. Research Conference. Three terms.
See also the list of courses in Applied Mathematics.
MECHANICAL ENGINEERING

(See Engineering and Applied Science)

MUSIC

Mu 11. Fundamentals of Music. 5 units (2-0-3); first term. Course content: notation, music reading, chord structures, keys, elementary ear training, basic keyboard harmony. For students with little or no previous music study. Offered the first term of each year. Instructor: Ochse.

Mu 12. Music History and Music Theory. 9 units (3-0-6); second term. Prerequisite: Mu 11, or successful completion of the Music Fundamentals Test. Course content, alternate years: history of music during the Renaissance and Baroque periods; analysis of forms and styles. Course content, alternate years: music theory, including diatonic chord progressions, common chord modulations, non-harmonic tones, composition in 2, 3, and 4 parts, harmonic analysis. Instructor: Ochse.

Mu 13. Music History and Music Theory. 9 units (3-0-6); third term. Prerequisite: Mu 12. Course content, alternate years: history of music from 1750 to the present; analysis of forms and styles. Course content, third term of alternate years: music theory, including chromatic progressions and modulations, altered chords, composition in more advanced forms, introduction to counterpoint. Instructor: Ochse.

Mu 101. Selected Topics in Music. Units to be determined by arrangement with the instructor. Instructors: Staff and visiting lecturers.

PHILOSOPHY

Undergraduate Courses

Pl 11. Classical and Modern Approaches to Self. 9 units (3-0-6); third term. An examination of philosophical views, both occidental and oriental, classical and contemporary, on the problem of self-identity. Included will be representative views from idealism, rationalism, pragmatism, existentialism, mysticism, esotericism, and modern psychology. Instructors: Staff.

Pl 12. Induction. 9 units (3-0-6). Inductive logic and the foundations of probability. Investigation of the inductive basis of scientific theories. The course will be built around readings in the contemporary literature. Instructor: Thompson.

Pl 13. Reading in Philosophy. Elective in any term or for summer reading with consent of specific instructor. Units to be determined by consultation with the instructor. Reading in philosophy, supplementary to, but not substituted for, courses listed; supervised by members of the department. Graded pass/fail. Not available for credit toward humanities-social science requirement.

Pl 16. Life Cycles. 9 units (3-0-6); second term. A study of life patterns, world cultures, and conceptions of human life. Instructors: Staff.

Pl 19. Human Nature and Ethics. 9 units (3-0-6); first term. A study of ethical values in relation to human nature and culture. Conceptions of human nature provide bases for study
of human value systems. All phases of human inquiry which bear on human nature are considered. Instructors: Staff.

PI 20. The Psychology of Liberation: Laing, Brown, and Marcuse. 9 units (3-0-6); first term. This course will examine some contemporary views on the elimination of repression in sex, art, and society. Readings from Laing's *Politics of Experience*, Brown's *Life Against Death*, and Marcuse's *Eros & Civilization*. Instructor: Abrams.

PI 21. Theory of Knowledge. 9 units (3-0-6); second term. An investigation of selected topics in the theory of knowledge including the difference between knowledge and true opinion; our evidence for belief in material objects and other minds; necessary truth; and the status of appearances. Instructor: Abrams.

HSS 99. See page 328 for description.

Advanced Courses

PI 100 abc. Philosophy of Science. 9 units (2-0-7); first, second, third terms. A full-year sequence. A study of the relationships between science and philosophy. The three terms respectively concentrate on: language and logic, logical analysis of some basic problems in the philosophy of science such as measurement, causality, probability, induction, space, time, reality; human nature, science and society. Not open to new registrants second and third terms. Instructors: Staff.

PI 102. Selected Topics in Philosophy. 9 units (3-0-6). Instructors: Staff and visiting lecturers.

PI 103. World Views. 9 units (2-0-7); first term. A study of world views and of the ways in which they are reflected in the literature, art, philosophy and science of different cultures. Several contrasting views will be selected for detailed study. Instructor: Jones.

PI 104. Educational Issues and Problems. 9 units (3-0-6); first term. A course in educational theories, issues, and problems. Special emphasis on basic changes necessary to facilitate growth and restructuring of the public schools. Topics to include: innovative curricula, integration and the minority group student, new directions in teacher certification, student-teacher relations, political and financial control of the public schools, school administration and student rights, and the learning process. Selected requirements for credit include: required reading, a documented paper, a journal, and several visitations to local educational institutions. Selected guest speakers prominent in the fields of education and psychology. Instructor: Browne.

PI 105 abc. Philosophy of Science Seminar. 9 units (3-0-6). Three term sequence. PI 105 a or PI 105 b strongly recommended as preparation for PI 105 c. Topics to include the structure and function of scientific methods, concepts, theories, and explanation. PI 105 c is concerned primarily with the behavioral sciences. Instructor: Browne.

PI 106 ab. Philosophy of Language. 9 units (3-0-6); first, second terms. An investigation of some contemporary issues in the philosophy of language: the analytic-synthetic distinction, theories of sense and reference, the status of speech acts. Readings from Quine, Putnam, Russell, Strawson, Kripke, and others. An effort will be made to show how these issues relate to more traditional philosophical problems. Instructor: Abrams. Not offered in 1975-76.

Physics 343

Pl 113. Reading in Philosophy. Same as Pl 13 but for graduate credit.

PHYSICS

Undergraduate Courses

Ph 1 abc. Kinematics, Particle Mechanics, and Electric Forces. 9 units (4-0-5); first, second, third terms. Prerequisites: High school physics, algebra, and trigonometry. The first year of a two-year course in introductory classical and modern physics. Topics to be covered include the kinematics and dynamics of particles, planetary and harmonic motion, geometrical and physical optics, kinetic theory, and thermodynamics. The course is offered in two tracks; track A emphasizes fundamentals, while track B is at a somewhat higher mathematical level and covers more topics. In both tracks, emphasis is placed upon the application of the fundamental principles through the solution of problems. Graded pass/fail. Instructors: Farrar, Gomez, Hibbs, Neugebauer, Werner, and assistants.

Ph 2 abc. Electromagnetism and Quantum Mechanics. 9 units (4-0-5); first, second, third terms. Prerequisites: Ph 1 abc, Ma 1 abc, or their equivalent. The second year of a two-year course in introductory classical and modern physics. Topics to be covered include electricity and magnetism, Maxwell’s equations, electromagnetic waves and elementary quantum mechanics. The course is offered in two tracks, similar to Ph 1. In track B there is greater use of mathematics, and more emphasis upon quantum mechanics. Instructors: Barish, Barnes, Goodstein, Sciulli and assistants.

Ph 3. Physics Laboratory. 6 units; first, second, third terms. Normally not offered to freshmen the first term. The six units cover one three-hour laboratory session per week, an individual conference with the instructor, prelab preparation, and analysis of experimental results outside the laboratory period. This introductory course emphasizes quantitative measurements, the treatment of measurement errors, and graphical analysis. A variety of experimental techniques will be employed. The experiments include studies of d.c. meters, the oscilloscope, the Maxwell top, electrical and mechanical resonant systems, and radioactivity. Instructors: Kavanagh, Pine, and assistants. Graded pass/fail.

Ph 4. Physics Laboratory. 6 units; third term only. Prerequisite: Ph 3 or equivalent. As in Ph 3, the six units cover one laboratory period per week, plus other activities outside the lab. The student will choose from a variety of experiments encompassing both classical and atomic physics. Some examples are the transient response of a resonant circuit, the Millikan oil drop experiment, electron diffraction, viscosity fraction of electromagnetic waves, and sound waves in a cavity. Instructors: Kavanagh, Pine, and assistants. Graded pass/fail.

Ph 5. Physics Laboratory. 6 units; first term. Prerequisites: Ph 1 abc, Ph 2 a (or taken concurrently) and Ph 3 or equivalent. This is a continuation of Ph 3 laboratory. Measurements of physical quantities, their analysis and assignment of errors are stressed. Most of the experiments are concerned with topics in the theoretical course, Ph 2 a. These include experiments in electrostatics and direct currents. Instructors: Kavanagh, Pine, and assistants.

Ph 6. Physics Laboratory. 6 units; second term. Prerequisites: Ph 1 abc, Ph 2 b (or taken concurrently) and Ph 3 or equivalent. This laboratory course involves experiments in electromagnetic phenomena such as electromagnetic induction, properties of magnetic materials and high-frequency circuits. The mobility of ions in gases is studied and a precise measurement of the value of e/m of the electron is made. Instructors: Kavanagh, Pine, and assistants.
Ph 7. Physics Laboratory. 6 units; third term. Prerequisite: Ph 5 or Ph 6. In this laboratory course, experiments are performed in atomic and nuclear physics. These include studies of the Balmer series of hydrogen and deuterium, the decay of radioactive nuclei, absorption of X-rays and gamma rays, ratios of abundances of isotopes and the Stern-Gerlach experiment. Instructors: Kavanagh, Pine, and assistants.

Ph 10. Special Topics in Introductory Physics. 6 units (2-0-4); third term. An elective course for first-year students, based upon material covered in Ph 1 abc. The purpose of the course is to provide interested students an opportunity to penetrate more deeply into some of the topics covered earlier in Ph 1. Emphasis will be given to the analysis of problems of broad scientific and technical interest. Topics to be covered will be selected partly on the basis of class preference. Instructor: Tombrello.

Ph 77 ab. Advanced Physics Laboratory. 6 units; first, second, or third terms. A two-term laboratory course open to junior and senior physics majors. The purpose of the course is to familiarize the student with laboratory equipment and procedures that are used in the research laboratory. The experiments are designed to illustrate fundamental physical phenomena, such as Compton scattering, nuclear and paramagnetic resonance, the photoelectric effect, the interaction of charged particles with matter, etc. Instructor: Whaling.

Ph 78 abc. Senior Thesis Experimental. 9 units; first, second, third terms. Prerequisite: instructor's permission. This course is intended to provide supervised experimental research experience, and is open only to senior physics majors. Requirements will be set by individual faculty members, but will include a term paper based upon actual laboratory experience. The selection of topics and the final report must be approved by the Physics Undergraduate Committee. Not offered on pass/fail basis. Instructors: Physics Staff.

Ph 79 abc. Senior Thesis Theoretical. 9 units; first, second, third terms. Prerequisite: instructor's permission. This course is intended to provide supervised theoretical research experience and is open only to senior physics majors. Requirements will be set by individual faculty members, but will include a term paper based on the work performed. The selection of topics and the final report must be approved by the Physics Undergraduate Committee. Not offered on pass/fail basis. Instructors: Physics Staff.

Students wishing assistance in finding an adviser and/or a topic for a senior thesis are invited to consult with Professor Gomez, chairman of the Physics Undergraduate Committee, or any other member of the committee. It should be noted that a grade will not be assigned in Ph 78 or Ph 79 until the completion of the thesis, which is normally expected to take three terms. P grades will be given the first two terms, and then changed at the end of the course to the appropriate letter grade.

Ph 92 abc. Modern Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc, Ma 2 abc, or equivalents; Ph 106 abc concurrently. Applications of quantum mechanics to atomic and nuclear phenomena. The one-electron atom, the periodic table, atomic spectra, and quantum statistics will be studied. In addition there will be an introduction to the interactions of radiation with matter. Additional selected topics will be studied, depending upon the instructor and the interests of the students. These might, for example, be chosen from the fields of solid-state physics, low-temperature physics, cosmic rays, elementary particles, nuclear physics, quantum optics, or astrophysics. Instructors: Cowan, Peck.

Ph 93 ab. Topics in Contemporary Physics. 9 units (3-0-6); second, third terms. Prerequisites: Ph 92 abc or Ph 125 abc. A series of introductory one-term courses on topics of contemporary physics. In general, students may register for any particular term or terms. In 1975-76 the topics will be (a) nuclear physics, and (b) low-temperature physics. Instructors: Tombrello, Mercereau.
Advanced Courses

Ph 106 abc. Topics in Classical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 2 abc, Ma 2 abc. An intermediate course in the application of the basic principles of classical physics to a wide variety of subjects. It is intended that roughly half of the year will be devoted to mechanics, and half to electromagnetism. Topics to be covered include the Lagrangian and Hamiltonian formulations of mechanics, small oscillations and normal modes, boundary value problems, multipole expansions and various applications of electromagnetic theory. Graduate students majoring in physics or astronomy will be given only 6 units credit for this course. Instructors: Davis, Gould, Leighton.

Ph 112 abc. Modern Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 106 abc, Ph 125 abc, or equivalents. Not open to students who have taken Ph 92. A lecture and problem course on the physics of atoms, nuclei, and elementary particles. Among the topics discussed are: atomic and molecular structure, electromagnetic interactions, quantum statistical mechanics, and an introduction to the physics of nuclei, elementary particles, and condensed matter. Instructor: Boehm.

Ph 118 abc. Electronic Circuits and Their Application to Physical Research. 9 units (3-3-3); first, second, third terms. A course on the fundamentals of analog and digital electronics with emphasis on proven techniques of instrumentation for scientific research. The first two terms will deal with the physical principles and properties of electronic components and circuits and the last will discuss the logical design of digital systems. Topics considered in the first two terms will include the theory of transient signal response in linear networks, the properties of solid-state devices, basic passive and active circuit combinations, linear amplifiers, feedback theory, and the properties of currently available integrated circuits. The third term topics will include techniques of systematic logic design, Boolean algebra reductions using Karnaugh maps, the design of both synchronous and asynchronous sequential circuits, and existing computer aids for digital design. Common electronic instruments, computer interfaces, and typical digital control logic in scientific research will be used as illustrative examples. The homework will consist mostly of laboratory problems. Not offered in 1975-76.

Ph 125 abc. Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 2 abc. Recommended: Ph 92 abc, and either AMa 95 abc or Ma 108 abc. Available to juniors only by permission of instructor. A fundamental course in quantum mechanics aimed at understanding the mathematical structure of the theory and its application to physical phenomena at the atomic and nuclear levels. The subject matter will include the various formulations of quantum mechanics, properties of operators, one-dimensional and central potentials, angular momentum and spin, scattering theory, perturbation theory, identical particles, and introductory relativistic quantum theory. Instructor: Walker.

Ph 127 abc. Statistical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 92 abc, Ph 106 abc. This course will present a thorough introduction to problems in physics which are fundamentally statistical. Topics to be covered will include: fundamental laws and concepts of thermodynamics, kinetic theory and transport phenomena, statistical mechanics and the connection between macroscopic and atomic laws. Instructor: Fox.

Ph 129 abc. Methods of Mathematical Physics. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc or the equivalent. Recommended: either AMa 95 abc or Ma 108 abc. Aimed at developing familiarity with the mathematical tools useful in physics, the course discusses practical methods of summing series, integrating, and solving differential equations, including numerical methods. The special functions (Bessel, Elliptic, Gamma, etc.) arising in physics are described, as well as Fourier series and transforms, partial differential equations, orthogonal functions, eigenvalues, calculus of variations, integral equations, matrices and tensors, and group theory. The emphasis is toward applications, with special attention to approximate methods of solution. Instructor: Zweig.
Ph 171. Reading and Independent Study. Occasionally, advanced work involving reading, special problems, or independent study is carried out under the supervision of an instructor. Units in accordance with work accomplished. Approval of the instructor and of the student's departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 172. Experimental Research in Physics. Units in accordance with the work accomplished. Approval of the student's research supervisor and of his departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 173. Theoretical Research in Physics. Units in accordance with the work accomplished. Approval of the student's research supervisor and of his departmental adviser or registration representative must be obtained before registering. Graded pass/fail.

Ph 203 ab. Nuclear Physics. 9 units (3-0-6); second, third terms. Prerequisites: Ph 92 abc and Ph 125 abc or equivalents. A problem and lecture course in nuclear physics concerning experimental and theoretical methods for the study of nuclear structure. Topics include: review of angular momentum coupling, nuclear sizes and moments, two-body interactions and the deuteron, nuclear models including liquid drop, shell and collective models, electromagnetic transitions, and relativistic systems involving beta decay and muonic atoms. Not offered in 1975-76.

Ph 205 abc. Advanced Quantum Mechanics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125 abc, Ph 92 abc. The course will cover advanced nonrelativistic quantum mechanics and relativistic quantum mechanics with an introduction to field theory. Topics covered include angular momentum, transition probabilities, scattering theory, Dirac equation, Feynman diagrams, quantum electrodynamics, and other applications of field theory. Instructor: Matthews.

Ph 209 abc. Classical Electromagnetism. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 106 abc. Electromagnetic fields in vacuum and in matter; classical electron theory, retarded potentials, radiation, dispersion, and absorption; theories of the electric and magnetic properties of materials; selected topics in wave propagation; special relativity. Instructor: Sierk.

Ph 213 ab. Nuclear Physics and Nuclear Astrophysics. 9 units (3-0-6); first, second terms. A lecture or reading course in the applications of nuclear physics to astronomy, geochronology, cosmochronology and other fields. The first term reviews the fundamental properties, interactions and structure of nuclei. The experimental evidence on nuclear cross sections is analyzed in terms of current theories of nuclear reactions and is applied to the rates of nuclear processes under astrophysical circumstances. The second term covers energy generation (nuclear, gravitational and rotational) and element synthesis in stars, supernovae, and massive condensations with applications to pulsars, quasars, and extended radio sources. Nuclear evidence on the origin of the solar system and on the chronology of the Galaxy is discussed. Not offered in 1975-76.

Ph 221. Topics in Solid-State Physics. 9 units (3-0-6); third term. Prerequisite: APh 114 abc or equivalent. A course on selected topics in solid-state physics, with different subjects being presented each year. Not offered in 1975-76.

Ph 224 abc. Space Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 92, Ph 106 or equivalent. The first term will be devoted to the experimental techniques employed in measurements made in space with applications to UV, X-ray, and gamma ray astronomy. A comprehensive review of X-ray and gamma ray astronomy will complete the term. The second term will be devoted to plasma physics, with applications to planetary radiation belts and the solar wind. The third term will be devoted to a thorough review of cosmic ray research. Instructors: Garmire, Davis, and Stone.
Ph 230 abc. Elementary Particle Theory. 9 units (3-0-6); first, second, third terms. Prerequisite: Ph 205 abc (may be taken concurrently). A course in advanced techniques of elementary particle theory, including field theory, renormalization, groups and symmetries, gauge theories, current algebra, dispersion theory, and other approaches of current interest. Instructor: Frautschi.

Ph 231 abc. High Energy Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 125 abc or equivalent. An introductory course covering the properties of elementary particles and their interactions, especially at high energies. Emphasis will be on discussion of problems of current experimental interest. Topics discussed include the classification of particles and their symmetries, experimental detection of particle properties, strong interactions at low and high energies, weak decays of strange and non-strange particles, problems associated with very high energy interactions. Instructor: Feynman.

Ph 234 abc. Topics in Theoretical Physics. 9 units (3-0-6); first, second, third terms. Prerequisites: Ph 205 abc and Ph 231 abc, or instructor's permission. Current topics of research in high energy physics will be presented. Independent study and research will be encouraged. The detailed content of this course may vary from quarter to quarter. Not offered in 1975-76.

Ph 236 abc. Relativity. 9 units (3-0-6); first, second, third terms. Prerequisite: a mastery of special relativity at the level of Goldstein, Classical Mechanics, or of Leighton, Principles of Modern Physics. A systematic exposition of Einstein's general theory of relativity, with particular emphasis on applications to astrophysical and cosmological problems. Topics covered include a review of special relativity; accelerated observers in special relativity; modern differential geometry; the foundations of general relativity and of other geometric theories of gravity; past and future experimental tests of general relativity; relativistic stars; gravitational collapse; black holes; gravitational radiation; cosmology; singularities and singularity theorems. Instructor: Gunn. Second and third terms graded pass/fail.

Ph 237. Theoretical Nuclear Physics. 9 units (3-0-6); first term. Prerequisite: Ph 205 or equivalent. A lecture course on non-relativistic scattering and reaction theory. The emphasis will be on various approximation methods for inelastic scattering and rearrangement collisions, with applications in several areas of physics. Not offered in 1975-76.

Ph 240 abc. Current Theoretical Problems in Particle Physics. 6 units (2-0-4); first, second, third terms. Prerequisite: Ph 230 abc or equivalent. Problems connected with quark-gluon gauge theory of strong interaction, gauge theory of electromagnetic, weak, and associated interactions, and attempts at overall unification. Discussion and argument are encouraged. Graded pass/fail. Instructor: Gell-Mann.

Ph 241. Research Conference in Physics. No credit; first, second, third terms. Meets once a week for a report and discussion of the work appearing in the literature and that in progress in the laboratory. Advanced students in physics and members of the physics staff take part.

Ph 300. Research in Physics. Units in accordance with work accomplished. Ph 300 is elected in placed of Ph 172 when the student has progressed to the point where his research leads directly toward the thesis of the degree of Doctor of Philosophy. Approval of the student's research supervisor and of his department adviser or registration representative must be obtained before registering. Graded pass/fail.

POLITICAL SCIENCE
Undergraduate Courses

PS 1. Political Psychology. 9 units (3-0-6); first term. This course will survey the application in political studies of theories of individual psychology, and especially of theories of
psychoanalytic persuasion. Through an analysis of the most successful works in this tradition, students will acquire a critical appreciation of the power, the limits, and the method of this approach. Materials will include psychological biographies, noted essays in psychoanalysis, and studies of leadership behavior. Instructors: Staff.

PS 2. Group Processes and Political Behavior. 9 units (3-0-6); second term. The course will focus on selected works in the literature on group dynamics; isolate the principal ideas and assertions contained therein; and apply these to materials on politics. We will be primarily concerned with the studies of attitude formation, decision-making, innovation and leadership; and with applications in the areas of presidential decision making, electoral choice, and the operation of Congressional committees. A critical secondary concern will be with evaluating the relative merit of this group dynamics literature and the theories of groups and committees deriving from the social choice literature in economics. Instructors: Staff.

PS 3. Stratification and Community Power. 9 units (3-0-6); third term. The course will study theories of social inequality deriving from the classical works of Marx and Weber. It will then assess the validity of extensions of these theories in politics through the analysis of community power structures. Applications to the area of political change will be made through the studies of community responses to disasters. Instructors: Staff.

PS 8. Introduction to American Politics. 9 units (3-0-6); first term. The major emphasis of the course will be placed on substantive topics. Sections of the course will be devoted to the electoral process, the legislative process, the judicial process, the bureaucracy, and the presidency. The course will focus on the American system, but aspects of Western European and British Commonwealth democracies will receive some attention where reliable studies exist. The theoretical framework of contemporary political science will be introduced via several nontechnical works, but emphasis will be placed on real-world happenings rather than theoretical esoterics. Instructor: Fiorina.

HSS 99. See page 328 for description.

Advanced Courses

PS 101. Selected Topics in Political Science. Units to be determined by arrangement with the instructor. Instructors: Staff and visiting lecturers.

PS 102. Black Africa 800 A.D. to the Present. 9 units (2-0-7). Topics relating to the origins of Americans of African descent, including African empires such as Ghana and Songhai, the Slave Trade, and the emergence of independent nations. Emphasis will be given to Western Africa and there will be African lecturers. Instructors: Munger, in collaboration with Scudder and Bates.

PS 110 ab. Political Modernization and Development. 9 units (3-0-6); second, third terms. The first term is devoted to the general literature in the field; the second, to case studies of African nations; e.g., Nigeria and Zaire. Topics will include: the nature and origins of political change, the formation of new elites and pressure groups, the erosion of traditional sources of power, the integrative role of political symbols, and the role of parties and bureaucracies in managing the process of change. Instructor: Bates.

PS 115. Seminar on National Security. 9 units (2-0-7). The object of this course is to afford an opportunity to study some of the problems faced by the U.S. Government in the world today. Consideration will be given to such matters as the process of policy formation within the government, the relationship of disarmament and arms control to defense policy, and the role of international organizations in the development of an orderly world society. Instructor: Elliot.
PS 118. Democratic Theory. 9 units (3-0-6); third term. This course will raise several types of questions and answer none. Is it possible to have a democracy; how ought citizens to act in a democracy; how do democratic governments and citizens of democratic politics actually behave; and is a democratic government necessarily just? Instructor: Ferejohn.

PS 120. American Electoral Behavior and Party Strategy. 9 units (3-0-6); first, second terms. A consideration of existing literature on the voting behavior of the citizen, moving to an examination of theoretical and empirical views of the strategies followed by the parties. Instructors: Fiorina, Ferejohn.

PS 121. Congressional Policy Formation and Legislative Process. 9 units (3-0-6); second term. An analysis of decision-making in legislative bodies with major emphasis on the American Congress. Where appropriate, comparative materials from state legislatures and non-American systems will be introduced. The course also includes an investigation into the impact of Congressional structure and practices on the kinds of policies which are produced by the Federal Government. Instructors: Fiorina, Ferejohn.

PS/SS 122. Formal Theories in Political Science. 9 units (3-0-6). Prerequisite: Ec/SS 11 b. An examination of the axiomatic structure and the behavioral interpretations of game theoretic and social choice models, and selected political models based on them. Instructors: Ferejohn, Fiorina, Plott.

PS 125. Peasant Politics. 9 units (3-0-6); third term. The course will study the political role of the peasantry. Topics will include: the behavior of peasants in the French, Russian and Chinese revolutions; the origins of peasant movements and insurgencies in the developing world; the rise of ethnic associations in Africa; urban migration as an alternative to political action; and the determinants of peasant political apathy. Particular attention will be paid to rural political organization — feudal relationships, local administration, the incidence and methods of taxation and conscription, etc. — and the effect of market relationships, e.g., shifts in the prices for agricultural commodities, consumer goods, agricultural inputs, on the level of well-being of peasant societies. Instructor: Bates.

PS 132. Strategy in Politics. 9 units (3-0-6); first term. Prerequisite: Ec/SS 11 a. Game theory examined on a non-technical level, considering experimental work and political applications, with a focus on applications. Instructors: Fiorina, Ferejohn.

PS 135. Political Geography of Developing Countries. 9 units (2-0-7); first term. The swift transition from colonialism or an undeveloped state to the present includes the growth of one-party states; the role of the military; tribal, religious, and class pressures; the internal and external role of boundaries; and new foreign policies including such regional groupings as the OAU and OAS. Emphasis on Africa with outside lecturers, including AUFS associates, on Latin America and Southeast Asia. Instructor: Munger.

PS 140. Seminar in Foreign Area Problems. 9 units (3-0-6). The object of this course is to give students an opportunity to study in some detail problems current in certain selected foreign areas. Three or four areas will be considered each time the course is given, and the selection will normally vary from year to year. Instruction will be given mainly by area specialists of the American Universities Field Staff. Instructors: Staff and members of AUFS.

PS 141. African Studies. 9 units (2-0-7); second, third terms. Political and social change in sub-Saharan Africa; the evolving geopolitical configuration of the white south. Emphasis is placed on student ability to utilize assigned readings as a basis for cogent questioning of African leaders who speak to the class. Instructor: Munger.

PS 150. Political Stability. 9 units (3-0-6); third term. The course delves into the theory and practice of extremism and extremist movements, domestic violence, and revolution. Instructors: Fiorina, Ferejohn.
PS 151. Justice and Obligation. 9 units (3-0-6); third term. An analysis of the concepts of justice and obligation primarily within a social contract framework but with some comparative study of utilitarian, Kantian and other ethical schemes. Other normative concepts such as that of “the public interest,” “rights,” and “duty,” will be examined as well. Instructors: Fiorina, Ferejohn.

PSYCHOLOGY

Undergraduate Courses

Psy 11. Introduction to Psychology. 9 units (3-0-6); first term. Class discussion, readings, papers and occasional lectures designed to permit a relatively free exploration of the variety of topics that comprise psychology. Topics can include, but are not limited to: historical background, development of personality and intellect, biological-evolutionary factors, issues in motivation, learning, social and abnormal psychology. Suggested, but not required, as background for later courses in psychology. Instructor: Breger.

Psy 12. Introduction to Abnormal Psychology. 9 units (3-0-6); second term. An introduction to the development of mental and emotional disturbances. Basic theory will be reviewed in relation to selected case material and relevant research. Instructors: Staff.

Psy 13. Introduction to Social Psychology. 9 units (3-0-6); third term. A survey of background and current areas in social psychology including, but not limited to: structure and functioning of small groups, leadership and communication, the use and abuse of social power, attitude structure and change, and interpersonal attraction and affiliation. Instructor: Beakel.

Psy 25. Reading and Research in Psychology. Units to be determined by the instructor. Reading and research in psychology and related subjects, either in connection with a regular course or independently of any course, but under the direction of members of the department. A written report or field research will usually be required. Graded pass/fail. Not available for credit toward humanities-social science requirement.

Advanced Courses

Psy 100 ab. Psychological Development. 9 units (3-0-6); second, third terms. A study of the psychological development of the individual within a context of biological, cultural, and social evolution. First term covers: models of development, primate background, early human culture, infancy, childhood, and the psychology of dreams. Second term covers: anxiety and disturbance in development, conscience and the development of moral reasoning, adolescence, and problems in the development of self and identity. Instructor: Breger.

Psy 101. Selected Topics in Psychology. Units to be determined by arrangement with the instructor. Instructors: Staff and visiting lecturers.

H/Psy 107. Psychohistory. 9 units (3-0-6); third term. An examination of the interaction of psychological factors on the course of history; and of historical forces in the shaping of individual psychology. The course will focus on the intensive psychological study of important historical figures. Instructors: Breger, Rosenstone.

Psy 125. Reading and Research in Psychology. Same as Psy 25, but for graduate credit. Not available for credit toward humanities-social science requirement.
RUSSIAN
(See Languages)

SOCIAL SCIENCE

Undergraduate Courses

Ec/SS 11 a. Social Science Principles and Problems. 9 units (3-0-6); first term. An introduction to the methodology of social science and the applications of that methodology to current social problems. This course emphasizes the role of wages, prices, and profits in a free enterprise economy and develops a theory of individual and firm decision-making that can be used to analyze the behavior of business and public institutions. Subjects covered may also include financial markets, international trade, development, and alternative economic systems. Instructors: Staff.

Ec/SS 11 b. Social Science Principles and Problems. 9 units (3-0-6); second term. Prerequisite: Ec/SS 11 a. This course concentrates on non-market decisions. It focuses on committee and legislative decision-making as well as providing an introduction to recent work in the theory of voting and the political process. Instructors: Staff.

Ec/SS 11 c. Social Science Principles and Problems. 9 units (3-0-6); third term. Prerequisite: Ec/SS 11 b. This course is devoted to current social problems and is designed to show the student that the theoretical tools developed in the first two terms can be used as the basis for rational solutions to pressing social problems. Although the particular problems studied may vary from term to term, they might include housing, health delivery systems, the environment, public expenditures, and poverty. Instructors: Staff.

Advanced Courses

SS 117. Problems of Urban Society. 9 units (3-0-6); third term. A description of some of the significant urban problems of contemporary America and an investigation of alternative policies. The problems considered include race relations, poverty, public education, crime, housing, urban planning, the public administration of cities and local politics and finance. Stress is placed on field trips and individual student research on specific problems in the Pasadena area. This course emphasizes economic theory less than does Ec 116. Instructor: Oliver.

PS/SS 122. Formal Theories in Political Science. 9 units (3-0-6); Prerequisite: Ec/SS 11 b. An examination of the axiomatic structure and the behavioral interpretations of game theoretic and social choice models, and selected political models based on them. Instructors: Ferejohn, Fiorina, Plott.

SS 130 abc. Law, Legal Processes, and the Control of Technological and Economic Risk. 9 units (3-0-6). This course will attempt to provide familiarity with and insight into the distinctive ways that lawyers think about and deal with problems. A legal subarea will be examined in detail to investigate: (1) how lawyers define a problem; (2) the kinds of legal institutions available to deal with problems once they are defined; and (3) criteria by which alternative “solutions” to legal problems may be evaluated. In the process, students will acquire considerable familiarity with the law of the subarea selected for examination, as well as with the use of legal materials such as court cases and statutes. To the extent possible, the course will be conducted in the manner of legal education, using a defined set of materials (a “casebook”) and relying on classroom dialogue in response to direct inquiry by the instructor to stimulate student formulation of questions and generalizations. Instructor: Levine.
SS 132. Government Regulation of Business. 9 units (3-0-6). Prerequisite: Ec/SS 11 a, or introductory economics. Many economic enterprises (e.g., transportation, communications, liquor) are subject to direct government regulation. This course examines the economic, institutional, and legal implications of such regulation. Comparisons with alternative mechanisms for organizing markets will be undertaken. Instructors: Levine, Noll.

SS 133. Topics in Anglo-American Law. 9 units (3-0-6); second, third terms. An introduction to the American legal system through the study of a particular subarea of law, which may vary from term to term or year to year. Examples might include tort (accident) law, contract law, natural resource law or antitrust law. For information on topics for any particular term, contact the instructor or the Registrar. Instructor: Levine. May be taken more than once if the topic is different.

SS 140. Laboratory Experiments in the Social Sciences. 9 units (3-0-6). An examination of recent work in laboratory testing in the social sciences with particular reference to work done in social psychology, economics, and political science. Included will be a discussion of simulation, gaming, and the use of the computer as a source of the laboratory environment. In addition, the student will be introduced to problems of experimental design and will be expected to use the laboratory techniques in problems of his own design. Instructors: Breger, Ferejohn, Thompson.

SS 141. Field Research in the Social Sciences. 9 units (3-0-6). An examination of the uses for census and social statistics, an introduction to survey techniques and an evaluation of recent work in the area, and a careful look at field studies with particular reference to the work of social and cultural anthropology; the application of these techniques to present problems in the social sciences. Instructors: Bates, Scudder.

IS/SS 142 abc. Computer Modeling and Data Analysis. 9 units (3-3-3). The building of conceptual models as an expression of the patterns perceived in the analysis of data. Analysis of data through model fitting and the study of residuals. Mathematical, statistical, and simulation models will be analyzed. The computer will be used extensively. Instructor: Thompson.

SS 150 abc. Social Science Aspects of Technology. 9 units (3-0-6). This course is especially oriented towards engineering seniors and graduate students. The first term will present the theory of the operation of a competitive price system, taking up the elements of the theory of consumer behavior, the theory of the competitive industry, factor markets, capital theory, and the theory of price determination and resource allocation in a competitive environment. The second term will deal with problems related to distortions of the competitive market mechanism, centering upon externalities, common property resources, public goods and monopoly power, and with the political and social institutions that have been developed to deal with these problems. The third term will focus on a limited number of specific problems involving substantial overlap between engineering and social science. Instructors: Staff.

SS 151. Research Seminar in Social Science Aspects of Technology. 9 units (3-0-6). This course is especially oriented towards engineering seniors and graduate students. The seminar will make use of faculty in engineering and social science, visitors, postdoctoral fellows and graduate students to deal with current engineering research with strong social science implications. Instructors: Social Science and Engineering Staff.
The graduate courses listed below are not necessarily taught each year. They will be offered as need dictates.

SS 200. Selected Topics in Social Science. Units to be determined by arrangement with instructors. Instructors: Staff and visiting lecturers.

SS 201 abc. Microeconomics. 9 units (3-0-6); first, second, and third terms. Prerequisite: Ec 121 or equivalent. The first quarter covers classical consumption, including the psychological foundation of value theory, the theory of production and markets, externalities and the question of public goods. The second quarter deals with modern economic theory, including decision theory, game theory, the role of uncertainty, and investment theory. Instructors: Quirk, Plott.

SS 202. Behavioral Perspectives in Political Science. 9 units (3-0-6); first term. This course will focus on the influence of psychological and sociological theories upon the analysis of political behavior. Among the topics to be examined will be: theories concerning the acquisition of ideologies and political beliefs; the influence of groups upon political attitudes and political decisions; and the selection and role of leaders. Material will be drawn from the literature in psychology, communications research, and group dynamics; and will be applied to voter decisions and electoral campaigns, the operations of congressional committees, and the behavior of leaders in the executive branch of government. Instructor: Bates.

SS 203. Game and Decision Theoretic Applications in Political Science. 9 units (3-0-6); second term. The course examines recent attempts to apply game and decision theoretic models to politics, particularly legislative and electoral processes. A level of knowledge equivalent to PS/SS 122 is presumed. Instructors: Ferejohn, Fiorina.

SS 204. Social Choice Theories in Political Science. 9 units (3-0-6); third term. Mathematical theories of individual and social choice are introduced as an approach to the classic problems of welfare economics and economic policy. The design and construction at an abstract level of political-economic processes consistent with stipulated ethical postulates will be studied together with the related impossibility theorems. Instructors: Ferejohn, Plott.

SS 206. Economic Foundations of Property, Exchange, and Liability Law. 9 units (3-0-6); second term. Property, contract and tort law will be introduced and examined as legal mechanisms for maximizing the value of production, controlling externalities, and distributing wealth. The application of microeconomic and welfare economic concepts and tools to legal institutions will be emphasized. The problem of reconciling prescriptions based in economics with other social goals in designing institutions will be considered. Instructor: Levine.

SS 207. Experimental Foundations of Social Problems. 9 units (3-0-6); second term. The course is concerned with the design of experiments in social problems. The work will cover, for example, problems of competitive markets, cartel behavior, spatial models and politics. Instructor: Plott.

SS 210 ab. Foundations of Political Economy. 9 units (3-0-6). Mathematical theories of individual and social choice applied to problems of welfare economics and political decision-making will be the focus of the first quarter, which will also include the design and construction of political economic processes consistent with stipulated ethical postulates. The second quarter will cover political platform formulation, the theory of political coalitions and decision-making in large political (bureaucratic) organizations. Instructors: Plott, Ferejohn.

SS 211. Advanced Economic Theory. 9 units (3-0-6). Advanced work in a specializing area of economic theory, with topics varying from year to year according to the interests of students. Among such topics are decision-making under uncertainty, the role of markets in
an economy operating under uncertainty, stability of competitive markets, international trade theory, growth theory, applications of optimal control theory to economics. Instructors: Quirk, Plott, Montgomery. Can be repeated for credit.

SS 212. Application of Microeconomic Theory. 9 units (3-0-6). This course will be a working seminar in which the tools of microeconomic theory are applied in a systematic fashion to the explanation of events and the evaluation of policy. Students are expected to carry out a research project, and the content of the course will vary with their interests. Suggested topics will include environmental policy, energy, the economics of research and development, and taxation. Faculty members will also present results of their current research at the seminar. Instructor: Montgomery. Can be repeated for credit.

SS 213. Competition and Antitrust Policy. 9 units (3-0-6); second term. This course is concerned with the differences in antitrust policies which would result from taking static as opposed to dynamic points of view; and the changes in governmental machinery needed for a more effective antitrust policy. Instructor: Klein.

SS 214. Legal Aspects of the Economics and Politics of Regulation. 9 units (3-0-6); first term. An examination of the relationship between the law and governmental regulation of economic enterprise. The course will examine the operation of government regulatory agencies (the CAB and the FCC, for example) with a particular view of developing an economic theory of political regulation within the constraints of the existing legal structures; the effects of possible modification of these structures will also be explored. Instructor: Levine.

SS 222 ab. Econometrics. 9 units (3-0-6). Prerequisites: Mathematical Statistics, Ec 122. Advanced topics in econometrics with special emphasis on the formulation, estimation, and evaluation of multi-equation systems. Students will be required to complete a major project in measurement. Instructor: Grether.

SS 223 abc. Special Topics in Econometrics. 9 units (3-0-6); Prerequisite: SS 222 ab; may be repeated for credit. This course in quantitative methods designed for second- and third-year social science graduate students. The content will vary from term to term. Examples of topics to be covered are multivariate analysis, time series, distributed lag models, models with limited dependent variables, Bayesian inference and decision theory, etc. Instructors: Grether, Nelson.

SS 229 ab. Historical Dimensions of Economic Analysis. 9 units (3-0-6); first and second terms. The first quarter provides an introduction to modern quantitative economic history and to the empirical literature on economic growth. The focus is on the social problems and policy aspects of American and Western European economic development. Topics will include transportation, slavery, capital accumulation and mobilization, demographic change, the growth of government regulation, etc. The second quarter is a research seminar in which the students will apply the techniques of the new economic history to some historical problem. Instructor: Davis.

SS 230. Psychology and Organizational Behavior. 9 units (3-0-6). Psychological theories of decision-making, small-group and organizational behavior, uncertainty and the tolerance for ambiguity and stress and change. Instructors: Staff.

SS 231 abc. American Politics. 9 units (3-0-6). A three-term course in American politics and political behavior. Topics will include Congress and the legislative process; the presidency and the role of the federal executive; the Supreme Court and judicial behavior; political parties, pressure groups, and electoral behavior. The course will be run on a seminar basis. While drawing from contemporary materials, the course will emphasize the historical background of American political institutions. Instructors: Staff.
SS 232 abc. Historical and Comparative Perspectives in Political Analysis. 9 units (3-0-6). The course will 1) provide an introduction to selected problems in American political history and quantitative analyses which have been made of them: for example, the socioeconomic bases of political parties during the Age of Jackson, and the ethnocultural interpretation of nineteenth-century voting; and 2) focus on electoral politics in the European democracies. Primary attention will be paid to comparisons between the findings of the American electoral studies and those from Europe. The course will compare the role of social class, ethnicity, region, ideology and party identification in the different political systems; it will investigate the effects of variations in electoral institutions; and it will examine the basis for the present party alignments in the Western European nations. Instructors: Bates, Kousser.

SS 233 abc. Public Policy Making. 9 units (3-0-6). In this course we examine the policy making processes in national, state and local governments. The focus is on how various institutions affect policy choices. We study theories of legislative, executive, and bureaucratic behavior and examine the empirical literature in each of these areas. Instructors: Fiorina, Ferejohn.

SS 234. Research Seminar in Modern Political Science. 9 units (3-0-6); third term.

SS 240. Techniques of Policy Research. 9 units (3-0-6); first term. Prerequisites: SS 201 abc, SS 202, SS 203, SS 204, SS 222 ab. The application of social science theory and methods to the formulation and evaluation of public policy. Case studies are used to illustrate various techniques employed by social scientists for estimating the effects of government institutions and programs. Among the topics covered are benefit-cost analysis and other methods of program evaluation, social experiments for testing new policies and policy instruments, and social choice theory as a guide to designing government agencies. Instructor: Noll.

SS 241 ab. Workshop in Policy Research. 9 units (3-0-6); second, third terms. Prerequisite: SS 240. (Note: SS 241 b is offered only if the participants in SS 241 a agree that continuation of the workshop for an additional term is worthwhile.) A working seminar in which the students and participating faculty apply the techniques examined in SS 240 to a policy problem of mutual interest. After exploring the relevant research done by others, the participants assist each other in designing and executing individual research projects that are relevant to formulating policy in the selected problem area. Students intending to enroll in the course should contact the instructor by November 15 so that they may participate in choosing the policy issue to be studied. Instructor: Noll.

SS 300. Research in Social Science. 9 units (3-0-6). Instructors: Staff.
INDEX

Abbreviation Key 3
Administrative Committees 13
Administrative Officers 12
Admission
 Application for 143
 Notification of 145
 To Freshman Class 143
 To Graduate Standing 204
 To Undergraduate Standing 143
 Transfer from Other Institutions 147
Admission to Candidacy
 Doctor's Degree 210
 Engineer's Degree 209
 Master's Degree 208
Advanced Placement Program 146
Aeronautics
 Courses 289
 Graduate Option 223
 Physical Facilities 110
 Study and Research 109
Air Force ROTC 150
Anthropology Courses 261
Applied Mathematics
 Courses 261
 Graduate Option 211
 Study and Research 111
 Undergraduate Option 171
Applied Mechanics
 Courses 293
 Graduate Option 225
 Research Facilities 112
 Study and Research 111
Applied Physics
 Courses 264
 Graduate Option 213
 Study and Research 112
 Undergraduate Option 172
Art Courses 268
Assistantships 256
Associated Student Body Dues 159
Associated Students of the California Institute of Technology, Inc. 139
Astronomy
 Courses 268
 Graduate Option 215

Physical Facilities 114
Staff of Instruction and Research 38
Study and Research 113
Undergraduate Option 174
Athenaeum 103
Athletic Council 48
Athletics and Physical Education Members of the Staff 48
Auditing of Courses 151
Bachelor of Science Degree Candidacy for 156
Beckman Auditorium 141
Big Bear Solar Observatory 115
Biological Engineering Sciences 124
Biological Fluid Mechanics 124
Biology
 Courses 272
 Graduate Option 216
 Physical Facilities 116
 Staff of Instruction and Research 16
 Study and Research 115
 Undergraduate Option 176
Biomedical Transport Processes 124
Board of Control, Student Body 139
Board of Trustees 9
Bookstore 141
Booth Computing Center 47, 108
Buildings and Facilities 103
Business Economics and Management Courses 277
Business Officers 12
Calendar 4-5
Chairmen of Divisions 12
Chemical Engineering
 Courses 277
 Graduate Option 219
 Physical Facilities 118
 Staff of Instruction and Research 20
 Study and Research 117
 Undergraduate Option 179
Chemistry
 Courses 281
 Graduate Option 221
 Physical Facilities 120

357
Staff of Instruction and Research 20
Study and Research 119
Undergraduate Option 181
Computing Center 47, 108
Civil Engineering
Courses 295
Graduate Option 227
Physical Facilities 121
Study and Research 121
Credits and Units 153
Deans 12
Deferred Tuition 166, 259
Degree Regulations 207
Deposit, General 159, 254
Design 133
Dining Facilities 256
Doctor of Philosophy Degree
Regulations and Requirements 209
Drafting (see Engineering Graphics)
Early Decision Plan 146
Economics
Courses 286
Undergraduate Option 184
Electrical Engineering
Courses 297
Graduate Option 230
Physical Facilities 121
Study and Research 121
Employment 167
Energy 123
Engineering and Applied Science
Courses 289
Staff of Instruction and Research 25
Undergraduate Option 185
Engineering Graphics 300
Engineering Science
Courses 301
Graduate Option 232
Physical Facilities 124
Study and Research 123
Engineer’s Degree
Regulations and Requirements 208
Environmental Engineering Science
Courses 301
Graduate Option 234
Physical Facilities 127
Study and Research 125
Environmental Health Engineering 124
Environmental Quality Laboratory 128
Members of the Staff 45
Examinations
Entrance, Undergraduate 144
Placement for Graduate Students
(see Placement Examinations) 155
Term 155
Exchange Programs 150, 207
Expenses
Graduate 254
Undergraduate 158
Faculty Members 49
Faculty Officers and Committees 14
Faculty-Student Relations 138
Fairchild Scholars Program 108
1974-75 Scholars 44
1975-76 Scholars 44
Fees
Application 158
General Deposit 159, 255
Graduate Tuition 254
Late Registration 160
Special 160
Summer Health 157
Undergraduate Tuition 158
Fellowships
Graduate 256
Postdoctoral 108
Financial Aid 160, 256
First-Year Course, All Options 171
Foreign Students
English Requirement 149, 204
International Desk 256
French (see Languages)
Freshman Advisers 138
Geological and Planetary Sciences
Courses 315
Graduate Option 242
Physical Facilities 129
Staff of Instruction and Research 32
Study and Research 128
Undergraduate Option 190
German (see Languages)
Grade-Point Average 153
Grades 152, 207
Graduate Assistantships 256
Graduate Courses 261
Graduate Program 203
Graduate Standing, Admission to 204
Graduate Student Council 139
Graduation
In Normally Prescribed Time 155
In Two Different Options 155
Requirements (B.S.) 155
With Honor 155
Graphics, Engineering 300
Hale Observatories, Staff 46
Health Center 157
Members of the Staff 48
Health Plan 157
Health Services 157
High-Energy Physics 135
High School Credits 144
Historical Sketch 99
History
Courses 325
Undergraduate Option 193
Honor Standing 155
Honor System (see Board of Control) 157
Hospital Services 157
Housing, on-campus 136, 255
Humanities and Social Sciences
HSS Tutorial 328
Staff of Instruction 35
Study and Research 130
Undergraduate Requirements 170
Hydraulics Courses 304
Independent Studies Program 131, 328
Undergraduate Option 194
Industrial Relations Center 47, 108
Information and Computer Science
Courses 306
Interhouse Activities 137
International Desk 256
Interviews, Personal 145
Jet Propulsion
Courses 309
Study and Research 134
Jet Propulsion Laboratory 102, 110
Kellogg Radiation Laboratory 135
Kerckhoff Marine Laboratory 117
Language Courses 329
Leave of Absence 156
Libraries 47, 107
Linguistics Courses 330
Literature
Courses 331
Undergraduate Option 195
Loan Funds 165, 259
Low Temperature Physics 136
Map and Directory 6-7
Marine Biology Laboratory 117
Master of Science Degree
Regulations and Requirements 207
Materials Science
Courses 310
Graduate Option 237
Physical Facilities 132
Study and Research 131
Mathematics
Courses 335
Graduate Option 247
Physical Facilities 133
Staff of Instruction and Research 38
Study and Research 132
Undergraduate Option 196
Mechanical Engineering
Courses 313
Graduate Option 239
Study and Research 133
Mechanics 133
Medical Examination 147, 157, 204
Metallurgy (see Materials Science) 114
Mount Wilson Observatory 114
Music
Courses 341
Members of the Staff 48
Musical Activities 139
New Student Orientation 147
Nuclear Energy 134
Officers
Administrative 12
Board of Trustees 9
Faculty 14
Option
Advisers 138
Change of 156
Selection of 156
Owens Valley Radio Observatory 115
Members of the Staff 43
Paleontology (see Geological and Planetary Sciences)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palomar Observatory</td>
<td>114</td>
</tr>
<tr>
<td>Part-time Programs</td>
<td>206</td>
</tr>
<tr>
<td>Ph.D. (see Doctor of Philosophy)</td>
<td></td>
</tr>
<tr>
<td>Philosophy Courses</td>
<td>341</td>
</tr>
<tr>
<td>Physical Education</td>
<td>48, 156</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>343</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>249</td>
</tr>
<tr>
<td>Physical Facilities</td>
<td>136</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td>38</td>
</tr>
<tr>
<td>Study and Research</td>
<td>135</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>198</td>
</tr>
<tr>
<td>Placement Examination</td>
<td></td>
</tr>
<tr>
<td>Astronomy</td>
<td>215</td>
</tr>
<tr>
<td>Chemistry</td>
<td>221</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>230</td>
</tr>
<tr>
<td>Geological and Planetary Sciences</td>
<td>243</td>
</tr>
<tr>
<td>Physics</td>
<td>250</td>
</tr>
<tr>
<td>Social Science</td>
<td>253</td>
</tr>
<tr>
<td>Placement Service</td>
<td>167</td>
</tr>
<tr>
<td>Political Science Courses</td>
<td>347</td>
</tr>
<tr>
<td>Postdoctoral Fellowships</td>
<td>108</td>
</tr>
<tr>
<td>Premedical Program</td>
<td>177</td>
</tr>
<tr>
<td>Prizes</td>
<td>168</td>
</tr>
<tr>
<td>Psychology Courses</td>
<td>350</td>
</tr>
<tr>
<td>Publications, Student Body</td>
<td>139</td>
</tr>
<tr>
<td>Public Events</td>
<td>141</td>
</tr>
<tr>
<td>Radio Astronomy</td>
<td>115, 136</td>
</tr>
<tr>
<td>Recommendation Forms</td>
<td>145</td>
</tr>
<tr>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>Changes of</td>
<td>151</td>
</tr>
<tr>
<td>For Summer Research</td>
<td>151, 205</td>
</tr>
<tr>
<td>Graduate</td>
<td>205</td>
</tr>
<tr>
<td>Ineligibility for</td>
<td>154</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>151</td>
</tr>
<tr>
<td>Reinstatement</td>
<td>154</td>
</tr>
<tr>
<td>Requirements, Scholastic</td>
<td>154</td>
</tr>
<tr>
<td>Research at the Institute</td>
<td>109</td>
</tr>
<tr>
<td>Residence Requirements</td>
<td>155, 205</td>
</tr>
<tr>
<td>ROTC (see Air Force ROTC)</td>
<td></td>
</tr>
<tr>
<td>Russian (see Languages)</td>
<td></td>
</tr>
<tr>
<td>Scholarships</td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>257</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>160</td>
</tr>
<tr>
<td>Seismological Laboratory</td>
<td>129</td>
</tr>
<tr>
<td>Social Science Courses</td>
<td>351</td>
</tr>
<tr>
<td>Graduate Option</td>
<td>252</td>
</tr>
<tr>
<td>Undergraduate Option</td>
<td>200</td>
</tr>
<tr>
<td>Space Physics</td>
<td>135</td>
</tr>
<tr>
<td>Special Laboratories</td>
<td>206</td>
</tr>
<tr>
<td>Special Program</td>
<td>108</td>
</tr>
<tr>
<td>Staff of Instruction and Research</td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td>49</td>
</tr>
<tr>
<td>Summary by Division</td>
<td>16</td>
</tr>
<tr>
<td>Student Center, Winnett</td>
<td>140, 160</td>
</tr>
<tr>
<td>Student Employment</td>
<td>167</td>
</tr>
<tr>
<td>Student Health Plan</td>
<td>157</td>
</tr>
<tr>
<td>Student Houses</td>
<td>136, 255</td>
</tr>
<tr>
<td>Student Life</td>
<td>136</td>
</tr>
<tr>
<td>Study and Research at the Institute</td>
<td>109</td>
</tr>
<tr>
<td>Subjects of Instruction</td>
<td>261</td>
</tr>
<tr>
<td>Summer Research</td>
<td>151, 205</td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>136</td>
</tr>
<tr>
<td>Thermal and Fluids Engineering</td>
<td>134</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>For Engineer's Degree</td>
<td>209</td>
</tr>
<tr>
<td>For Ph.D. Degree</td>
<td>211</td>
</tr>
<tr>
<td>3-2 Plan</td>
<td>150</td>
</tr>
<tr>
<td>Transcripts of Records</td>
<td>156</td>
</tr>
<tr>
<td>Transfer from Other Institutions</td>
<td>147</td>
</tr>
<tr>
<td>Trustee Committees</td>
<td>10</td>
</tr>
<tr>
<td>Trustees, Board of Tuition</td>
<td>9</td>
</tr>
<tr>
<td>Tuition</td>
<td></td>
</tr>
<tr>
<td>Deferred</td>
<td>166, 259</td>
</tr>
<tr>
<td>Graduate</td>
<td>254</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>158</td>
</tr>
<tr>
<td>Undergraduate Courses</td>
<td>261</td>
</tr>
<tr>
<td>Undergraduate Options and Course Schedules</td>
<td>170</td>
</tr>
<tr>
<td>Undergraduate Research</td>
<td>136</td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>Assignment of</td>
<td>153</td>
</tr>
<tr>
<td>Excess or Fewer Than Normal</td>
<td>155</td>
</tr>
<tr>
<td>Unpaid Bills</td>
<td>160, 254</td>
</tr>
<tr>
<td>Vacations</td>
<td>4-5</td>
</tr>
<tr>
<td>Winnet Student Center</td>
<td>140, 160</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>159, 255</td>
</tr>
<tr>
<td>Work-Study Programs</td>
<td>259</td>
</tr>
<tr>
<td>Y, Caltech</td>
<td>141</td>
</tr>
</tbody>
</table>